1
|
Obara I, Nijhof A, Atimnedi P, Mijele D, Nanteza A, Elati K, Bishop R. The antigen recognition portion of African buffalo class I MHC is highly polymorphic, consistent with a complex pathogen challenge environment, and the 3' region suggests distinct haplotype configurations. Immunogenetics 2023; 75:115-132. [PMID: 36512055 PMCID: PMC10039833 DOI: 10.1007/s00251-022-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
African buffalo (Syncerus caffer) have been distinct from the Auroch lineage leading to domestic cattle for 5 million years, and are reservoirs of multiple pathogens, that affect introduced domestic cattle. To date, there has been no analysis of the class I MHC locus in African buffalo. We present the first data on African buffalo class I MHC, which demonstrates that gene and predicted protein coding sequences are approximately 86-87% similar to that of African domestic cattle in the peptide binding region. The study also shows concordance in the distribution of codons with elevated posterior probabilities of positive selection in the buffalo class I MHC and known antigen binding sites in cattle. Overall, the diversity in buffalo class I sequences appears greater than that in cattle, perhaps related to a more complex pathogen challenge environment in Africa. However, application of NetMHCpan suggested broad clustering of peptide binding specificities between buffalo and cattle. Furthermore, in the case of at least 20 alleles, critical peptide-binding residues appear to be conserved with those of cattle, including at secondary anchor residues. Alleles with six different length transmembrane regions were detected. This preliminary analysis suggests that like cattle, but unlike most other mammals, African buffalo appears to exhibit configuration (haplotype) variation in which the loci are expressed in distinct combinations.
Collapse
Affiliation(s)
- Isaiah Obara
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Berlin, Germany.
- Freie Universität Berlin, Veterinary Centre for Resistance Research, Department of Veterinary Medicine, Berlin, Germany.
| | - Ard Nijhof
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Berlin, Germany
- Freie Universität Berlin, Veterinary Centre for Resistance Research, Department of Veterinary Medicine, Berlin, Germany
| | | | | | - Anne Nanteza
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Khawla Elati
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Berlin, Germany
- Freie Universität Berlin, Veterinary Centre for Resistance Research, Department of Veterinary Medicine, Berlin, Germany
- Laboratoire de Parasitologie, Institution de La Recherche Et de L'Enseignement Supérieur Agricoles &, Univ. Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet, Tunisia
| | - Richard Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
3
|
Garzón-Ospina D, Buitrago SP. Igh locus structure and evolution in Platyrrhines: new insights from a genomic perspective. Immunogenetics 2019; 72:165-179. [PMID: 31838542 DOI: 10.1007/s00251-019-01151-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Non-human primates have been used as animal models because of their phylogenetic closeness to humans. However, the genetic differences between humans and non-human primates must be considered to select the appropriate animal models. Recently, New World monkeys (Platyrrhines) have generated a higher interest in biomedical research, especially in assessing vaccine safety and immunogenicity. Given the continued and renewed interest in Platyrrhines as biomedical models, it is a necessary to have a better and more complete understanding of their immune system and its implications for research. Immunoglobulins (Ig) are the main proteins that mediate humoral immunity. These proteins have evolved as part of an adaptive immune response system derived from ancient vertebrates. There are at least four Ig classes in Prosimians, whereas five have been reported in Catarrhines. Information on the structure and evolution of the loci containing immunoglobulin heavy chain constant genes (Igh) in Platyrrhines, however, is limited. Here, Igh loci were characterized in 10 Platyrrhines using the available whole genome sequences. Human and Macaca Igh loci were also assessed to compare them with their Platyrrhines counterparts. Differences in Igh locus structure were observed between Platyrrhines and Catarrhines. Noteworthy changes occur in the γ gene, which encodes a key Ig involved in organism defense that would favor protection after vaccination. The remarkable differences between the immunoglobulin proteins of Platyrrhines and Catarrhines warrant a cautionary message to biomedical researchers.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| | - Sindy P Buitrago
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| |
Collapse
|
4
|
Gordeychuk IV, Tukhvatulin AI, Petkov SP, Abakumov MA, Gulyaev SA, Tukhvatulina NM, Gulyaeva TV, Mikhaylov MI, Logunov DY, Isaguliants MG. Assessment of the Parameters of Adaptive Cell-Mediated Immunity in Naïve Common Marmosets (Callithrix jacchus). Acta Naturae 2018; 10:63-69. [PMID: 30713763 PMCID: PMC6351028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Common marmosets are small New World primates that have been increasingly used in biomedical research. This report presents efficient protocols for assessment of the parameters of adaptive cell-mediated immunity in common marmosets, including the major subpopulations of lymphocytes and main markers of T- and B-cell maturation and activation using flow cytometry with a multicolor panel of fluorescently labelled antibodies. Blood samples from eight common marmosets were stained with fluorescently labeled monoclonal antibodies against their population markers (CD45, CD3, CD20, CD4, CD8) and lymphocyte maturation and activation markers (CD69, CD62L, CD45RO, CD107a and CD27) and analyzed by flow cytometry. Within the CD45+ population, 22.7±5.5% cells were CD3- CD20+ and 67.6±6.3% were CD3+CD20-. The CD3+ subpopulation included 55.7±5.5% CD3+CD4+CD8- and 34.3±3.7% CD3+CD4-CD8+ cells. Activation and maturation markers were expressed in the following lymphocyte proportions: CD62L on 54.0±10.7% of CD3+CD4+ cells and 74.4±12.1% of CD3+CD8+ cells; CD69 on 2.7±1.2% of CD3+CD4+ cells and 1.2±0.5% of CD3+CD8+ cells; CD45RO on 1.6±0.6% of CD3+CD4+ cells and 1.8±0.7% of CD3+CD8+ cells; CD107a on 0.7±0.5% of CD3+CD4+ cells and 0.5±0.3% of CD3+CD8+ cells; CD27 on 94.6±2.1% of CD3+ cells and 8.9±3.9% CD20+ cells. Female and male subjects differed in the percentage of CD3+CD4+CD45RO+ cells (1.9±0.5 in females vs 1.1±0.2 in males; p < 0.05). The percentage of CD20+CD27+ cells was found to highly correlate with animals' age (r = 0.923, p < 0.005). The basal parameters of adaptive cell-mediated immunity in naïve healthy marmosets without markers of systemic immune activation were obtained. These parameters and the described procedures are crucial in documenting the changes induced in common marmosets by prophylactic and therapeutic immune interventions.
Collapse
Affiliation(s)
- I. V. Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, premises 8, bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, Moscow, 108819, Russia ,N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia ,Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str., 19, bldg. 1, Moscow, 119146, Russia
| | - A. I. Tukhvatulin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia
| | - S. P. Petkov
- MTC, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - M. A. Abakumov
- Pirogov Russian National Research Medical University, Ostovitjanova Str. 1, Moscow, 117997, Russia ,National University of Science and Technology MISiS, Leninsky Ave., 4, Moscow, 119049, Russia
| | - S. A. Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, premises 8, bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, Moscow, 108819, Russia
| | - N. M. Tukhvatulina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia
| | - T. V. Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, premises 8, bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, Moscow, 108819, Russia
| | - M. I. Mikhaylov
- Russian Medical Academy of Continuous Professional Education, Barrikadnaja Str., 2/1, bldg. 1, Moscow, 125993, Russia ,Mechnikov Research Institute for Vaccines and Sera, Maliy Kazenniy Lane, 5a, Moscow, 105064, Russia
| | - D. Y. Logunov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia
| | - M. G. Isaguliants
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, premises 8, bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, Moscow, 108819, Russia ,N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia ,Rīga Stradiņš University, LV-1007, Riga, Lativa
| |
Collapse
|
5
|
Neehus AL, Wistuba J, Ladas N, Eiz-Vesper B, Schlatt S, Müller T. Gene conversion of the major histocompatibility complex class I Caja-G in common marmosets (Callithrix jacchus). Immunology 2016; 149:343-352. [PMID: 27450742 PMCID: PMC5046058 DOI: 10.1111/imm.12652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 01/13/2023] Open
Abstract
Currently, the amount of sequenced and classified MHC class I genes of the common marmoset is limited, in spite of the wide use of this species as an animal model for biomedical research. In this study, 480 clones of MHC class I G locus (Caja‐G) cDNA sequences were obtained from 21 common marmosets. Up to 10 different alleles were detected in each common marmoset, leading to the assumption that the Caja‐G loci duplicated in the marmoset genome. In the investigated population, four alleles occurred more often, giving evidence for higher immunological advantage of these alleles. In contrast to the human non‐classical MHC class I genes, Caja‐G shows high rates of polymorphism at the relevant peptide‐binding sites, despite its phylogenetic relationship to the non‐classical HLA‐G. Our results provide information for better understanding of the immunological properties of the common marmoset and confirm the theory of a gene conversion of the Caja‐G due to its detected plasticity and the absence of any known HLA‐A equivalent.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Münster, Münster, Germany
| | - Nektarios Ladas
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Stefan Schlatt
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Münster, Münster, Germany
| | - Thomas Müller
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany. .,Synlab Medical Care Centre Weiden Ltd, Weiden, Germany.
| |
Collapse
|
6
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
7
|
Lugo JS, Cadavid LF. Patterns of MHC-G-Like and MHC-B Diversification in New World Monkeys. PLoS One 2015; 10:e0131343. [PMID: 26121030 PMCID: PMC4486459 DOI: 10.1371/journal.pone.0131343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/01/2015] [Indexed: 11/29/2022] Open
Abstract
The MHC class I (MHC-I) region in New World monkeys (Platyrrhini) has remained relatively understudied. To evaluate the diversification patterns and transcription behavior of MHC-I in Platyrrhini, we first analyzed public genomic sequences from the MHC-G-like subregion in Saimiri boliviensis, Ateles geoffroyi and Callicebus moloch, and from the MHC-B subregion in Saimiri boliviensis. While S. boliviensis showed multiple copies of both MHC-G-like (10) and –B (15) loci, A. geoffroyi and C. moloch had only three and four MHC-G-like genes, respectively, indicating that not all Platyrrhini species have expanded their MHC-I loci. We then sequenced MHC-G-like and -B cDNAs from nine Platyrrhini species, recovering two to five unique cDNAs per individual for both loci classes. In two Saguinus species, however, no MHC-B cDNAs were found. In phylogenetic trees, MHC-G-like cDNAs formed genus-specific clusters whereas the MHC-B cDNAs grouped by Platyrrhini families, suggesting a more rapid diversification of the former. Furthermore, cDNA sequencing in 12 capuchin monkeys showed that they transcribe at least four MHC-G-like and five MHC-B polymorphic genes, showing haplotypic diversity for gene copy number and signatures of positive natural selection at the peptide binding region. Finally, a quantitative index for MHC:KIR affinity was proposed and tested to predict putative interacting pairs. Altogether, our data indicate that i) MHC-I genes has expanded differentially among Platyrrhini species, ii) Callitrichinae (tamarins and marmosets) MHC-B loci have limited or tissue-specific expression, iii) MHC-G-like genes have diversified more rapidly than MHC-B genes, and iv) the MHC-I diversity is generated mainly by genetic polymorphism and gene copy number variation, likely promoted by natural selection for ligand binding.
Collapse
Affiliation(s)
- Juan S. Lugo
- Department of Biology and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luis F. Cadavid
- Department of Biology and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
8
|
Cao YH, Fan JW, Li AX, Liu HF, Li LR, Zhang CL, Zeng L, Sun ZZ. Identification of MHC I class genes in two Platyrrhini species. Am J Primatol 2015; 77:527-34. [PMID: 25573376 DOI: 10.1002/ajp.22372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/22/2014] [Accepted: 11/30/2014] [Indexed: 11/07/2022]
Abstract
The major histocompatibility complex is a diverse gene family that plays a crucial role in the adaptive immune system. In humans, the MHC class I genes consist of the classical loci of HLA-A, -B, and -C, and the nonclassical loci HLA-E, -F, and -G. In Platyrrhini species, few MHC class I genes have been described so far and were classified as MHC-E, MHC-F, and MHC-G, with MHC-G possibly representing a classical MHC class I locus while there were arguments about the existence of the MHC-B locus in Platyrrhini. In this study, MHC class I genes were identified in eight common marmosets (Callithrix jacchus) and two brown-headed spider monkeys (Ateles fusciceps). For common marmosets, 401 cDNA sequences were sequenced and 18 alleles were detected, including 14 Caja-G alleles and 4 Caja-B alleles. Five to eleven Caja-G alleles and one to three Caja-B alleles were detected in each animal. For brown-headed spider monkeys, 102 cDNA sequences were analyzed, and 9 new alleles were identified, including 5 Atfu-G and 4 Atfu-B alleles. Two or three Atfu-G and two Atfu-B alleles were obtained for each of animal. In phylogenetic analyses, the MHC-G and -B alleles from the two species and other Platyrrhini species show locus-specific clusters with bootstrap values of 86% and 50%. The results of pairwise sequence comparisons and an excess of non-synonymous nucleotide substitutions in the PBR region are consistent with the suggestion that Caja-G and Atfu-G may be classical MHC class I loci in the Platyrrhini species… But it appears that MHC-B locus of the two Platyrrhini species shares features with both classical and nonclasical MHC class I loci. Our results are an important addition to the limited MHC immunogenetic information available for the Platyrrhini species.
Collapse
Affiliation(s)
- Yu-Hua Cao
- Laboratory Animal Center of the Academy of Military Medical Science, Beijing, China; College of Life Sciences of Tarim University, Alaer, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity. Immunogenetics 2013; 65:841-9. [PMID: 24018468 DOI: 10.1007/s00251-013-0732-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/24/2013] [Indexed: 12/23/2022]
Abstract
In humans, the classical antigen presentation function of major histocompatibility complex (MHC) class I molecules is controlled by the human leukocyte antigen HLA -A, HLA-B and HLA-C loci. A similar observation has been made for great apes and Old World monkey species. In contrast, a New World monkey species such as the cotton-top tamarin (Saguinus oedipus) appears to employ the G locus for its classical antigen presentation function. At present, little is known about the classical MHC class I repertoire of the common marmoset (Callithrix jacchus), another New World monkey that is widely used in biomedical research. In the present population study, no evidence has been found for abundant transcription of classical I class genes. However, in each common marmoset, four to seven different G-like alleles were detected, suggesting that the ancestral locus has been subject to expansion. Segregation studies provided evidence for at least two G-like genes present per haplotype, which are transcribed by a variety of cell types. The alleles of these Caja-G genes cluster in separate lineages, suggesting that the loci diversified considerably after duplication. Phylogenetic analyses of the introns confirm that the Caja-G loci cluster in the vicinity of HLA-G, indicating that both genes shared an ancestor. In contrast to HLA-G, Caja-G shows considerable polymorphism at the peptide-binding sites. This observation, together with the lack of detectable transcripts of A and B-like genes, indicates that Caja-G genes have taken over the function of classical class I genes. These data highlight the extreme plasticity of the MHC class I gene system.
Collapse
|
10
|
Ward JM, Vallender EJ. The resurgence and genetic implications of New World primates in biomedical research. Trends Genet 2012; 28:586-91. [PMID: 23099234 PMCID: PMC3500444 DOI: 10.1016/j.tig.2012.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/04/2012] [Accepted: 09/19/2012] [Indexed: 11/30/2022]
Abstract
There has been a recent resurgence of interest in New World monkeys within the biomedical research community, driven by both the sequencing of the common marmoset (Callithrix jacchus) genome and a growing demand for alternatives to Old World primates. New World monkeys offer attractive advantages over Old World species, including cheaper and simpler husbandry, while still maintaining a greater evolutionary proximity to humans compared with other animal models. Although numerous commonalities across primate species exist, there are also important genetic and reproductive differences that can and should play a critical role in selecting appropriate animal models. Common marmosets in particular have significantly reduced diversity at the major histocompatibility complex (MHC) loci and are born as hematopoietic chimeras. New World primates can make ideal translational models for research, but scientists must necessarily incorporate complete understandings of their genetic and phenotypic differences from humans and other model organisms.
Collapse
Affiliation(s)
- Joshua M. Ward
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA 01772, USA
| | - Eric J. Vallender
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA 01772, USA
| |
Collapse
|
11
|
Zhang P, Kuang YY, Wu HL, Li L, Ge YF, Wan QH, Fang SG. The Père David's deer MHC class I genes show unexpected diversity patterns, with monomorphic classical genes but polymorphic nonclassical genes and pseudogenes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:294-307. [PMID: 22821865 DOI: 10.1002/jez.b.22445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Père David's deer (Elaphurus davidianus) is a highly inbred species that arose from 11 founders but now comprises a population of about 3,000 individuals, making it interesting to investigate the adaptive variation of this species from the major histocompatibility complex (MHC) perspective. In this study, we isolated Elda-MHC class I loci using magnetic bead-based cDNA hybridization, and examined the molecular variations of these loci using single-strand conformation polymorphism (SSCP) and sequence analysis. We obtained seven MHC class I genes, which we designated F1, F12, G2, I7, AF, I8, and C1. Our analyses of stop codons, phylogenetic trees, amino acid conservation, and G+C content revealed that F1, F12, G2, and I7 were classical genes, AF was a nonclassical gene, and I8 and C1 were pseudogenes. Our subsequent molecular examinations showed that the diversity pattern in the Père David's deer was unusual. Most mammals have more polymorphic classical class I loci vs. the nonclassical and neutral genes. In contrast, the Père David's deer was found to be monomorphic at classical genes F1, F12, G2, and I7, dimorphic at the nonclassical AF gene, dimorphic at pseudogene I8, and tetramorphic at pseudogene C1. The adverse polymorphism patterns of Elda-I genes might provide evidence for selection too faster deplete MHC variation than drift in the bottlenecked populations, while the postbottleneck tetramorphism of the C1 pseudogene appears to be evidence of strong historical balancing selection.
Collapse
Affiliation(s)
- Pei Zhang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Gupta SK, Haigh BJ, Griffin FJ, Wheeler TT. The mammalian secreted RNases: Mechanisms of action in host defence. Innate Immun 2012; 19:86-97. [DOI: 10.1177/1753425912446955] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The mammalian ribonucleaseA family comprises a large group of structurally similar proteins which are secreted by a range of tissues and immune cells. Their physiological role is unclear. It has been suggested that some of these RNases contribute to host defence, notably eosinophil-derived neurotoxin, eosinophil cationic protein, eosinophil-associated RNases, RNase4, angiogenin (RNase5), RNase7, RNase8 and bovine seminal RNase. This review summarises data supporting the involvement of these proteins in host defence, focusing on their antimicrobial, cytotoxic and immunomodulatory activities. The extent to which the data support possible mechanisms of action for these proteins is discussed. This compilation of findings and current hypotheses on the physiological role of these RNases will provide a stimulus for further research and development of ideas on the contribution of the RNases to host defence.
Collapse
Affiliation(s)
- Sandeep K Gupta
- AgResearch Ltd, Ruakura Research Centre, Hamilton, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Brendan J Haigh
- AgResearch Ltd, Ruakura Research Centre, Hamilton, New Zealand
| | - Frank J Griffin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
13
|
Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics 2012; 64:615-31. [PMID: 22526602 DOI: 10.1007/s00251-012-0617-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response. The MHC region is characterised by a high gene density, and most of these genes display considerable polymorphism. Next to humans, non-human primates (NHP) are well studied for their MHC. The present nomenclature report provides the scientific community with the latest nomenclature guidelines/rules and current implemented nomenclature revisions for Great Ape, Old and New World monkey species. All the currently published MHC data for the different Great Ape, Old and New World monkey species are archived at the Immuno Polymorphism Database (IPD)-MHC NHP database. The curators of the IPD-MHC NHP database are, in addition, responsible for providing official designations for newly detected polymorphisms.
Collapse
|
14
|
Sweeney C, Ward J, Vallender EJ. Naturally occurring, physiologically normal, primate chimeras. CHIMERISM 2012; 3:43-4. [PMID: 22627807 DOI: 10.4161/chim.20729] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Callitrichids, South American primates including marmosets and tamarins, have evolved a unique physiology. Twins share a placenta during gestation and exchange stem cells, resulting in naturally occurring chimeric adults. Our study used a quantitative PCR-based assay to address whether this chimerism was restricted to blood and other cells of the hematopoietic lineage or whether it extended to other somatic tissues. These studies help to characterize species that have adapted evolutionarily to pervasive chimerism, with every individual healthy and unperturbed. This experiment of evolution offers insight into transplantation and histocompatibility, reproductive biology and behavior, and innate and adaptive immunity.
Collapse
Affiliation(s)
- Carolyn Sweeney
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | |
Collapse
|
15
|
Jagessar SA, Heijmans N, Blezer ELA, Bauer J, Blokhuis JH, Wubben JAM, Drijfhout JW, van den Elsen PJ, Laman JD, Hart BA'. Unravelling the T-cell-mediated autoimmune attack on CNS myelin in a new primate EAE model induced with MOG34-56 peptide in incomplete adjuvant. Eur J Immunol 2012; 42:217-27. [PMID: 21928277 DOI: 10.1002/eji.201141863] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 12/20/2022]
Abstract
Induction of experimental autoimmune encephalomyelitis (EAE) has been documented in common marmosets using peptide 34-56 from human myelin/oligodendrocyte glycoprotein (MOG(34-56) ) in incomplete Freund's adjuvant (IFA). Here, we report that this EAE model is associated with widespread demyelination of grey and white matter. We performed an in-depth analysis of the specificity, MHC restriction and functions of the activated T cells in the model, which likely cause EAE in an autoantibody-independent manner. T-cell lines isolated from blood and lymphoid organs of animals immunized with MOG(34-56) displayed high production of IL-17A and specific lysis of MOG(34-56) -pulsed EBV B-lymphoblastoid cells as typical hallmarks. Cytotoxicity was directed at the epitope MOG(40-48) presented by the non-classical MHC class Ib allele Caja-E, which is orthologue to HLA-E and is expressed in non-inflamed brain. In vivo activated T cells identified by flow cytometry in cultures with MOG(34-56,) comprised CD4(+) CD56(+) and CD4(+) CD8(+) CD56(+) T cells. Furthermore, phenotypical analysis showed that CD4(+) CD8(+) CD56(+) T cells also expressed CD27, but CD16, CD45RO, CD28 and CCR7 were absent. These results show that, in the MOG34-56/IFA marmoset EAE model, a Caja-E-restricted population of autoreactive cytotoxic T cells plays a key role in the process of demyelination in the grey and white matter.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shiina T, Kono A, Westphal N, Suzuki S, Hosomichi K, Kita YF, Roos C, Inoko H, Walter L. Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus). Immunogenetics 2011; 63:485-99. [PMID: 21505866 DOI: 10.1007/s00251-011-0526-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/07/2011] [Indexed: 01/20/2023]
Abstract
Common marmoset monkeys (Callithrix jacchus) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex (MHC) region. However, the genomic information of the marmoset MHC (Caja) is still lacking. The MHC-B/C segment represents the most diverse MHC region among primates. Therefore, in this paper, to elucidate the detailed gene organization and evolutionary processes of the Caja class I B (Caja-B) segment, we determined two parts of the Caja-B sequences with 1,079 kb in total, ranging from H6orf15 to BAT1 and compared the structure and phylogeny with that of other primates. This segment contains 54 genes in total, nine Caja-B genes (Caja-B1 to Caja-B9), two MIC genes (MIC1 and MIC2), eight non-MHC genes, two non-coding genes, and 33 non-MHC pseudogenes that have not been observed in other primate MHC-B/C segments. Caja-B3, Caja-B4, and Caja-B7 encode proper MHC class I proteins according to amino acid structural characteristics. Phylogenetic relationships based on 48 MHC-I nucleotide sequences in primates suggested (1) species-specific divergence for Caja, Mamu, and HLA/Patr/Gogo lineages, (2) independent generation of the "seven coding exon" type MHC-B genes in Mamu and HLA/Patr/Gogo lineages from an ancestral "eight coding exon" type MHC-I gene, (3) parallel correlation with the long and short segmental duplication unit length in Caja and Mamu lineages. These findings indicate that the MHC-B/C segment has been under permanent selective pressure in the evolution of primates.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Shimokasuya, Isehara, Kanagawa, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ribic A, Flügge G, Schlumbohm C, Mätz-Rensing K, Walter L, Fuchs E. Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey. Behav Brain Funct 2011; 7:1. [PMID: 21205317 PMCID: PMC3023691 DOI: 10.1186/1744-9081-7-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/04/2011] [Indexed: 01/31/2023] Open
Abstract
Background Several recent studies have highlighted the important role of immunity-related molecules in synaptic plasticity processes in the developing and adult mammalian brains. It has been suggested that neuronal MHCI (major histocompatibility complex class I) genes play a role in the refinement and pruning of synapses in the developing visual system. As a fast evolutionary rate may generate distinct properties of molecules in different mammalian species, we studied the expression of MHCI molecules in a nonhuman primate, the common marmoset monkey (Callithrix jacchus). Methods and results Analysis of expression levels of MHCI molecules in the developing visual cortex of the common marmoset monkeys revealed a distinct spatio-temporal pattern. High levels of expression were detected very early in postnatal development, at a stage when synaptogenesis takes place and ocular dominance columns are formed. To determine whether the expression of MHCI molecules is regulated by retinal activity, animals were subjected to monocular enucleation. Levels of MHCI heavy chain subunit transcripts in the visual cortex were found to be elevated in response to monocular enucleation. Furthermore, MHCI heavy chain immunoreactivity revealed a banded pattern in layer IV of the visual cortex in enucleated animals, which was not observed in control animals. This pattern of immunoreactivity indicated that higher expression levels were associated with retinal activity coming from the intact eye. Conclusions These data demonstrate that, in the nonhuman primate brain, expression of MHCI molecules is regulated by neuronal activity. Moreover, this study extends previous findings by suggesting a role for neuronal MHCI molecules during synaptogenesis in the visual cortex.
Collapse
Affiliation(s)
- Adema Ribic
- German Primate Center/Leibniz Institute for Primate Research, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Goyos A, Sowa J, Ohta Y, Robert J. Remarkable conservation of distinct nonclassical MHC class I lineages in divergent amphibian species. THE JOURNAL OF IMMUNOLOGY 2010; 186:372-81. [PMID: 21115732 DOI: 10.4049/jimmunol.1001467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonclassical MHC class Ib (class Ib) genes are heterogeneous genes encoding molecules that are structurally similar to classical MHC class Ia molecules but with limited tissue distribution and polymorphism. Mammalian class Ib genes have diverse and often uncharacterized functions, and because of their rapid rate of evolution, class Ib phylogeny is difficult to establish. We have conducted an extensive genomic, molecular, and phylogenetic characterization of class Ib genes in two Xenopodinae amphibian species of different genera that diverged from a common ancestor as long ago as primates and rodents (∼65 million years). In contrast with the unsteadiness of mammalian class Ib genes, our results reveal an unusual degree of conservation of most Xenopodinae class Ib gene lineages, including a novel monogenic lineage represented by the divergent Xenopus laevis XNC10 gene and its unequivocal Silurana (Xenopus) tropicalis orthologue, SNC10. The preferential expression of this gene lineage by thymocytes themselves from the onset of thymic organogenesis is consistent with a specialized role of class Ib in early T cell development and suggests such a function is conserved in all tetrapods.
Collapse
Affiliation(s)
- Ana Goyos
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
19
|
't Hart BA, Jagessar SA, Kap YS, Brok HP. Preclinical models of multiple sclerosis in nonhuman primates. Expert Rev Clin Immunol 2010; 3:749-61. [PMID: 20477025 DOI: 10.1586/1744666x.3.5.749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biotechnology has enabled the development of specifically acting therapies for immune-mediated inflammatory disorders (IMIDs) based on biological molecules. The high species specificity precludes safety and effectivity testing in lower species (mice and rats), thus creating a need for valid experimental models in nonhuman primates (NHPs). Here, we review the creation of relevant NHP model(s) for multiple sclerosis (MS), an IMID of the human CNS. We will also discuss how the model(s) can help in the translation of a scientific principle developed in lower species into a therapy for MS.
Collapse
Affiliation(s)
- Bert A 't Hart
- Biomedical Primate Research Centre and Erasmus Medical Centre Rotterdam, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Comprehensive analysis and characterization of the TCR α chain sequences in the common marmoset. Immunogenetics 2010; 62:383-95. [DOI: 10.1007/s00251-010-0445-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/26/2010] [Indexed: 11/27/2022]
|
21
|
Neuronal MHC class I molecules are involved in excitatory synaptic transmission at the hippocampal mossy fiber synapses of marmoset monkeys. Cell Mol Neurobiol 2010; 30:827-39. [PMID: 20232136 PMCID: PMC2912721 DOI: 10.1007/s10571-010-9510-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/01/2010] [Indexed: 10/27/2022]
Abstract
Several recent studies suggested a role for neuronal major histocompatibility complex class I (MHCI) molecules in certain forms of synaptic plasticity in the hippocampus of rodents. Here, we report for the first time on the expression pattern and functional properties of MHCI molecules in the hippocampus of a nonhuman primate, the common marmoset monkey (Callithrix jacchus). We detected a presynaptic, mossy fiber-specific localization of MHCI proteins within the marmoset hippocampus. MHCI molecules were present in the large, VGlut1-positive, mossy fiber terminals, which provide input to CA3 pyramidal neurons. Furthermore, whole-cell recordings of CA3 pyramidal neurons in acute hippocampal slices of the common marmoset demonstrated that application of antibodies which specifically block MHCI proteins caused a significant decrease in the frequency, and a transient increase in the amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in CA3 pyramidal neurons. These findings add to previous studies on neuronal MHCI molecules by describing their expression and localization in the primate hippocampus and by implicating them in plasticity-related processes at the mossy fiber-CA3 synapses. In addition, our results suggest significant interspecies differences in the localization of neuronal MHCI molecules in the hippocampus of mice and marmosets, as well as in their potential function in these species.
Collapse
|
22
|
Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). J Neuropathol Exp Neurol 2009; 68:341-55. [PMID: 19337065 DOI: 10.1097/nen.0b013e31819f1d24] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The efficacy of many new immunomodulatory therapies for multiple sclerosis (MS) patients has often been disappointing, reflecting our incomplete understanding of this enigmatic disease. There is a growing awareness that, at least in part, there may be limited applicability to the human disease of results obtained in the widely studied MS model experimental autoimmune encephalomyelitis in rodents. This review describes the experimental autoimmune encephalomyelitis model developed in a small neotropical primate, the common marmoset (Callithrix jacchus). The model has features including clinicopathologic correlation patterns, lesion heterogeneity, immunologic mechanisms, and disease markers that more closely mimic the human disease. Several unique features of experimental autoimmune encephalomyelitis in marmosets, together with their outbred nature and close genetic and immunologic similarities to humans, create an attractive experimental model for translational research into MS, particularly for the preclinical evaluation of new biologic therapeutic molecules that cannot be investigated in rodents because of their species specificity. Moreover, this model provides new insights into possible pathogenetic mechanisms in MS.
Collapse
|
23
|
Cadavid LF, Lun CM. Lineage-specific diversification of killer cell Ig-like receptors in the owl monkey, a New World primate. Immunogenetics 2008; 61:27-41. [PMID: 19009288 DOI: 10.1007/s00251-008-0342-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/23/2008] [Indexed: 11/25/2022]
Abstract
Killer cell Ig-like receptors (KIRs) modulate the cytotoxic effects of natural killer cells. In primates, the KIRs are highly diverse as a consequence of variation in gene content, alternative domain composition, and loci polymorphism. We analyzed a bacterial artificial chromosome (BAC) clone draft sequence spanning the owl monkey KIR cluster. The draft sequence had seven ordered yet unconnected contigs containing six full-length and two partial gene models, flanked by the LILRB and FcAR framework genes. Gene models were predicted to encode KIRs with inhibitory, activating, or dual functionality. Four gene models encoded three Ig domain receptors, while three others encoded molecules with four Ig domains. The additional domain resulted from an insertion in tandem of a 2,101 bp fragment containing the last 289 bp of intron 2, exon 3, and intron 3, resulting in molecules with two D0 domains. Re-screening of the owl monkey BAC library and sequencing of partial cDNAs from an owl monkey yielded five additional KIRs, four of which encoded receptors with short cytoplasmic domains with premature stop codons due to either a single nucleotide substitution or deletion or the absence of exon 8. Phylogenetic analysis by domains showed that owl monkey KIRs were monophyletic, clustering independently from other primate KIR lineages. Retroelements found in introns, however, were shared by KIRs from different primate lineages. This suggests that the owl monkey inherited a KIR cluster with a rich history of exon shuffling upon which positive selection for ligand binding operated to diversify the receptors in a lineage-specific fashion.
Collapse
Affiliation(s)
- Luis F Cadavid
- Department of Biology and Institute of Genetics, Universidad Nacional de Colombia, Cr. 30 # 4508, Bogotá, Distrito Capital, Colombia.
| | | |
Collapse
|
24
|
Pan HJ, Wan QH, Fang SG. Molecular characterization of major histocompatibility complex class I genes from the giant panda (Ailuropoda melanoleuca). Immunogenetics 2008; 60:185-93. [DOI: 10.1007/s00251-008-0281-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
25
|
Delarasse C, Della Gaspera B, Lu CW, Lachapelle F, Gelot A, Rodriguez D, Dautigny A, Genain C, Pham-Dinh D. Complex alternative splicing of the myelin oligodendrocyte glycoprotein gene is unique to human and non-human primates. J Neurochem 2006; 98:1707-17. [PMID: 16903876 DOI: 10.1111/j.1471-4159.2006.04053.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myelin/oligodendrocyte glycoprotein (MOG) is a minor integral membrane protein specific to CNS myelin, encoded by a gene located in the major histocompatibility complex. MOG is an highly encephalitogenic autoantigen and a target for autoaggressive immune responses in CNS inflammatory demyelinating diseases. We performed transcriptomic analyses for a gene expressed only in mammalian CNS, myelin oligodendrocyte glycoprotein (MOG). Complex splicing patterns were exclusively found in primates and not in mice, unlike patterns found for other myelin protein genes. In addition to those shared with rodents, these multiple MOG isoforms likely support functions unique to the primate order, in particular maintenance of myelin structure, intracellular signaling, and modulation of CNS autoimmunity via exposure of specific MOG determinants. Developmentally, in human brain the splice variants of MOG appear at a late stage compared to the major isoform, coincidental with myelination and myelin maturation, unlike other myelin proteins. These findings are discussed within the framework of a biological basis for phenotype diversity in recent mammalian evolution and for the notoriously variable clinical expression of diseases such as multiple sclerosis.
Collapse
|
26
|
Rölleke U, Flügge G, Plehm S, Schlumbohm C, Armstrong VW, Dressel R, Uchanska-Ziegler B, Ziegler A, Fuchs E, Czéh B, Walter L. Differential expression of major histocompatibility complex class I molecules in the brain of a New World monkey, the common marmoset (Callithrix jacchus). J Neuroimmunol 2006; 176:39-50. [PMID: 16750573 DOI: 10.1016/j.jneuroim.2006.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/06/2006] [Accepted: 04/10/2006] [Indexed: 11/18/2022]
Abstract
It has been supposed that central nervous neurons do not express MHC class I molecules. However, recent studies clearly demonstrated functional MHC class I expression in the rodent brain. In the present study, we have extended these studies and investigated the presence of MHC class I transcripts and proteins in the brain of a non-human primate species, the common marmoset monkey (Callithrix jacchus). Using in-situ hybridization, we found strong expression of MHC class I transcripts in neocortex, hippocampal formation, substantia nigra and nucleus ruber. In-situ hybridization with emulsion autoradiography demonstrated MHC class I mRNA in distinct pyramidal neurons of cortex and hippocampus, in granule neurons of the dentate gyrus, in dopaminergic neurons of substantia nigra and in motor neurons of nucleus ruber. Immunocytochemistry confirmed MHC class I protein expression in these neurons. Two monoclonal antibodies, MRC-Ox18 and HB115, reacted differentially with MHC class I proteins on neuronal and non-neuronal cells, respectively. Interestingly, in marmoset monkeys that were immunosuppressed with FK506 (tacrolimus), expression of neuronal MHC class I proteins, which could be detected with MRC-Ox18, was either very low (neocortex, nucleus ruber, substantia nigra) or absent (hippocampus). In contrast, class I expression in endothelial cells, which was detected by HB115, was not affected by immunosuppression. Our data show that selected neurons in the brain of a non-human primate express MHC class I molecules and that this expression can be modulated by immunosuppression.
Collapse
Affiliation(s)
- Ulrike Rölleke
- Department of Primate Genetics, German Primate Center, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cho S, Zhang J. Ancient expansion of the ribonuclease A superfamily revealed by genomic analysis of placental and marsupial mammals. Gene 2006; 373:116-25. [PMID: 16530354 DOI: 10.1016/j.gene.2006.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/17/2006] [Accepted: 01/18/2006] [Indexed: 12/13/2022]
Abstract
Members of the ribonuclease (RNase) A superfamily participate in a diverse array of biological processes, including digestion, angiogenesis, innate immunity, and possibly male reproduction. The superfamily is vertebrate-specific, with 13-20 highly divergent members in primates and rodents, but only a few members in chicken and fish. This has led to the proposal that the superfamily started off from a progenitor with structural similarities to angiogenin and that the superfamily underwent a dramatic expansion during mammalian evolution. To date this evolutionary expansion and understand the functional diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of dog, cow, and opossum. We identified 7, 20, and 21 putatively functional RNase genes from these three species, respectively. Many of the identified genes are highly divergent from all previously known RNase genes, thus representing new lineages within the superfamily. Phylogenetic analysis indicates that the superfamily expansion predated the separation of placental and marsupial mammals and that differential gene loss and duplication occurred in different species, generating a great variation in gene number and content among extant mammals.
Collapse
Affiliation(s)
- Soochin Cho
- Department of Ecology and Evolutionary Biology, University of Michigan, 1075 Natural Science Building, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
28
|
Rojo R, Castro MJ, Martinez-Laso J, Serrano-Vela JI, Morales P, Moscoso J, Zamora J, Arnaiz-Villena A. MHC-F DNA sequences in bonobo, gorilla and orangutan. ACTA ACUST UNITED AC 2005; 66:277-83. [PMID: 16185322 DOI: 10.1111/j.1399-0039.2005.00477.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC)-F class Ib locus shows a limited polymorphism, and the function of its mainly intracellular protein is not clear. We have identified human leucocyte antigen (HLA)-F orthologous DNA sequences in Pongidae in order to study the MHC-F gene evolution and its products' function. HLA-F orthologous cDNA transcripts are found in chimpanzee and in the new primate species studied (bonobo, gorilla and orangutan). Analyses of the predicted amino acid sequences and their comparison with other primate MHC-F proteins show that MHC-F may be a protein with a typical class I structure and that the key residues of the peptide-binding region (PBR) are highly conserved in MHC-F in all studied primates species. Thus, MHC-F conservation along the primate evolution suggests an important role in cellular physiology. It is possible that the MHC-F protein could be involved, together with MHC-G and MHC-E, in the natural killer (NK) cell activity regulation, although rhesus macaque does not express MHC-G and MHC-E orthologues. The evolutionary pathway of the six-base-pair deletion at exon 2 existing in some primates is put forward.
Collapse
Affiliation(s)
- R Rojo
- Department of Inmunologia, H. 12 Octubre, H. Clinico San Carlos, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cho S, Beintema JJ, Zhang J. The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 2005; 85:208-20. [PMID: 15676279 DOI: 10.1016/j.ygeno.2004.10.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 10/13/2004] [Indexed: 12/22/2022]
Abstract
The RNase A superfamily has been important in biochemical, structural, and evolutionary studies and is believed to be the sole vertebrate-specific enzyme family. To understand the origin and diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of human, mouse, rat, and chicken. We report a previously unnoticed gene cluster in mouse chromosome 10 and a number of new genes, including mammalian RNases 11-13, which are close relatives of the recently identified RNases 9 and 10. Gene expression data imply male-reproductive functions for RNases 9-13, although their sequences suggest the lack of ribonucleolytic activities. In contrast to the presence of 13-20 functional genes in mammals, chicken has only 3 RNase genes, which are evolutionarily close to mammalian RNase 5, like other nonmammalian RNases. This and other evidence suggests that the RNase A superfamily originated from an RNase 5-like gene and expanded in mammals. Together with the fact that multiple lineages of the superfamily, including RNases 2, 3, 5, and 7, have antipathogenic activities, we suggest that the superfamily started off as a host-defense mechanism in vertebrates. Consistent with this hypothesis, all members of the superfamily exhibit high rates of amino acid substitution as is commonly observed in immunity genes.
Collapse
Affiliation(s)
- Soochin Cho
- Department of Ecology and Evolutionary Biology, University of Michigan, 3003 Natural Science Building, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
30
|
Moncada CA, Guerrero E, Cardenas P, Suarez CF, Patarroyo ME, Patarroyo MA. The T-cell receptor in primates: identifying and sequencing new owl monkey TRBV gene sub-groups. Immunogenetics 2005; 57:42-52. [PMID: 15711805 DOI: 10.1007/s00251-004-0758-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/22/2004] [Indexed: 10/25/2022]
Abstract
The New World primate Aotus nancymaae (owl monkey) has been shown to be an excellent experimental model when studying malarial parasites. Characterising the T-cell receptor (TR) alphabeta repertoire by means of the different variable beta (TRBV) genes displayed contributes to a better understanding of these lymphocytes' role in the response against several malarial antigens. This study describes identifying and characterising eleven new TRBV gene sub-groups in cDNA from Aotus nancymaae's peripheral blood lymphocytes; these 11 gene sequences displayed homology to the previously reported human TRBV3, TRBV10, TRBV11, TRBV14, TRBV18, TRBV19, TRBV20, TRBV25, TRBV27, TRBV29 and TRBV30 sub-groups, resulting in 83% overall homology at the amino acid level. An additional Aotus sequence was found having similarity with the human TRBJ-2-7*01 gene. Evolutionary relationships amongst these sequences and the homologous genes from both New and Old World primates have shown that the TRBV repertoire has been maintained in the species being studied, displaying varying association patterns and substitution rates, depending on the sub-group being studied. The degree of identity observed when comparing human and Aotus genes suggests that these species might have a similar TRBV repertoire.
Collapse
Affiliation(s)
- Camilo A Moncada
- Molecular Biology Department, Fundacion Instituto de Inmunologia de Colombia (FIDIC), Colombia, South America
| | | | | | | | | | | |
Collapse
|
31
|
Cardenas PP, Suarez CF, Martinez P, Patarroyo ME, Patarroyo MA. MHC class I genes in the owl monkey: mosaic organisation, convergence and loci diversity. Immunogenetics 2005; 56:818-32. [PMID: 15654599 DOI: 10.1007/s00251-004-0751-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 11/09/2004] [Accepted: 11/09/2004] [Indexed: 10/25/2022]
Abstract
The MHC class I molecule plays an important role in immune response, pathogen recognition and response against vaccines and self- versus non-self-recognition. Studying MHC class I characteristics thus became a priority when dealing with Aotus to ensure its use as an animal model for biomedical research. Isolation, cloning and sequencing of exons 1-8 from 27 MHC class I alleles obtained from 13 individuals classified as belonging to three owl monkey species (A. nancymaae, A. nigriceps and A. vociferans) were carried out to establish similarities between Aotus MHC class I genes and those expressed by other New and Old World primates. Six Aotus MHC class I sequence groups (Ao-g1, Ao-g2, Ao-g3, Ao-g4, Ao-g5 and Ao-g6) weakly related to non-classical Catarrhini MHC were identified. An allelic lineage was also identified in one A. nancymaae and two A. vociferans monkeys, exhibiting a high degree of conservation, negative selection along the molecule and premature termination of the open reading frame at exon 5 (Ao-g5). These sequences' high conservation suggests that they more likely correspond to a soluble form of Aotus MHC class I molecules than to a new group of processed pseudogenes. Another group, named Ao-g6, exhibited a strong relationship with Catarrhini's classical MHC-B-C loci. Sequence evolution and variability analysis indicated that Aotus MHC class I molecules experience inter-locus gene conversion phenomena, contributing towards their high variability.
Collapse
Affiliation(s)
- Paula P Cardenas
- Molecular Biology Department, Fundacion Instituto de Inmunologia de Colombia, Bogota, Colombia
| | | | | | | | | |
Collapse
|
32
|
Sawai H, Kawamoto Y, Takahata N, Satta Y. Evolutionary relationships of major histocompatibility complex class I genes in simian primates. Genetics 2005; 166:1897-907. [PMID: 15126407 PMCID: PMC1470823 DOI: 10.1534/genetics.166.4.1897] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New World monkeys (NWMs) occupy a critical phylogenetic position in elucidating the evolutionary process of major histocompatibility complex (MHC) class I genes in primates. From three subfamilies of Aotinae, Cebinae, and Atelinae, the 5'-flanking regions of 18 class I genes are obtained and phylogenetically examined in terms of Alu/LINE insertion elements as well as the nucleotide substitutions. Two pairs of genes from Aotinae and Atelinae are clearly orthologous to human leukocyte antigen (HLA) -E and -F genes. Of the remaining 14 genes, 8 belong to the distinct group B, together with HLA-B and -C, to the exclusion of all other HLA class I genes. These NWM genes are classified into four groups, designated as NWM-B1, -B2, -B3, and -B4. Of these, NWM-B2 is orthologous to HLA-B/C. Also, orthologous relationships of NWM-B1, -B2, and -B3 exist among different families of Cebidae and Atelidae, which is in sharp contrast to the genus-specific gene organization within the subfamily Callitrichinae. The other six genes belong to the distinct group G. However, a clade of these NWM genes is almost equally related to HLA-A, -J, -G, and -K, and there is no evidence for their orthologous relationships to HLA-G. It is argued that class I genes in simian primates duplicated extensively in their common ancestral lineage and that subsequent evolution in descendant species has been facilitated mainly by independent loss of genes.
Collapse
Affiliation(s)
- Hiromi Sawai
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | |
Collapse
|
33
|
Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes. Immunogenetics 2004; 56:683-95. [PMID: 15605248 DOI: 10.1007/s00251-004-0717-7] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) is a gene dense region found in all jawed vertebrates examined to date. The MHC contains a high percentage of immune genes, in particular genes involved in antigen presentation, which are generally highly polymorphic. The region plays an important role in disease resistance. The clustering of MHC genes could be advantageous for co-evolution or regulation, and its study in many species is desirable. Even though some linkage of MHC genes is apparent in all gnathostomes, the genomic organization can differ greatly by species, suggesting rapid evolution of MHC genes after divergence from a common ancestor. Previous reviews of comparative MHC organization have been written when relatively fragmentary sequence and mapping data were available on many species. This review compares maps of MHC gene orders in commonly studied species, where extensive sequencing has been performed.
Collapse
Affiliation(s)
- James Kelley
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | |
Collapse
|
34
|
Grus WE, Zhang J. Rapid turnover and species-specificity of vomeronasal pheromone receptor genes in mice and rats. Gene 2004; 340:303-12. [PMID: 15475172 DOI: 10.1016/j.gene.2004.07.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/11/2004] [Accepted: 07/29/2004] [Indexed: 11/20/2022]
Abstract
Pheromones are used by individuals of the same species to elicit behavioral or physiological changes, and they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. VNO pheromone receptors are encoded by the V1r and V2r gene superfamilies in mammals. A comparison of the V1r and V2r repertoires between closely related species can provide significant insights into the evolutionary genetic mechanisms responsible for species-specific pheromone communications. A total of 137 putatively functional V1r genes of 12 families were previously identified from the mouse genome. We report the identification of 95 putatively functional V1r genes from the draft rat genome sequence. These genes map primarily to four blocks in two chromosomes. The rat V1r genes can be phylogenetically grouped into 10 families, which are shared with mouse, and 2 new families, which are rat-specific. Even in many shared families, gene numbers differ between the two species, apparently due to frequent gene duplication and pseudogenization after the separation of the two species. Molecular dating suggests that most of the rat V1r families emerged before or during the radiation of mammalian orders, but many duplications within families occurred as recently as in the past 10 million years (MY). Our results show that the evolution of the V1r repertoire is characterized by exceptionally fast gene turnover via gains and losses of individual genes, suggesting rapid and substantial changes in pheromone communication between species.
Collapse
Affiliation(s)
- Wendy E Grus
- Department of Ecology and Evolutionary Biology, University of Michigan, 3003 Natural Science Building, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
35
|
Sawai H, Kawamoto Y, Takahata N, Satta Y. Evolutionary Relationships of Major Histocompatibility Complex Class I Genes in Simian Primates. Genetics 2004. [DOI: 10.1093/genetics/166.4.1897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
New World monkeys (NWMs) occupy a critical phylogenetic position in elucidating the evolutionary process of major histocompatibility complex (MHC) class I genes in primates. From three subfamilies of Aotinae, Cebinae, and Atelinae, the 5′-flanking regions of 18 class I genes are obtained and phylogenetically examined in terms of Alu/LINE insertion elements as well as the nucleotide substitutions. Two pairs of genes from Aotinae and Atelinae are clearly orthologous to human leukocyte antigen (HLA) -E and -F genes. Of the remaining 14 genes, 8 belong to the distinct group B, together with HLA-B and -C, to the exclusion of all other HLA class I genes. These NWM genes are classified into four groups, designated as NWM-B1, -B2, -B3, and -B4. Of these, NWM-B2 is orthologous to HLA-B/C. Also, orthologous relationships of NWM-B1, -B2, and -B3 exist among different families of Cebidae and Atelidae, which is in sharp contrast to the genus-specific gene organization within the subfamily Callitrichinae. The other six genes belong to the distinct group G. However, a clade of these NWM genes is almost equally related to HLA-A, -J, -G, and -K, and there is no evidence for their orthologous relationships to HLA-G. It is argued that class I genes in simian primates duplicated extensively in their common ancestral lineage and that subsequent evolution in descendant species has been facilitated mainly by independent loss of genes.
Collapse
Affiliation(s)
- Hiromi Sawai
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | - Yoshi Kawamoto
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naoyuki Takahata
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | - Yoko Satta
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
36
|
Abstract
The Human Genome Project transformed the quest of more than 50 years to understand the major histocompatibility complex (Mhc). The sequence of the Mhc from human and mouse, together with a large amount of sequence and mapping information from several other species, allows us to draw general conclusions about the organization and origin of this crucial part of the immune system. The Mhc is a mosaic of stretches formed by conserved and nonconserved genes. Surprisingly, of the approximately 3.6-Mb Mhc, the stretches that encode the class I and class II genes, which epitomize the Mhc, are the least conserved part, whereas the approximately 1.7-Mb stretches that encode at least 115 other genes are highly conserved. We summarize the available data to answer the questions (a) What is the Mhc? and (b) How can we define it in a general, not species-specific, way? Knowing what is essential and what is incidental helps us understand the fundamentals of the Mhc, and defining the species differences makes the model organisms more useful.
Collapse
Affiliation(s)
- Attila Kumánovics
- Center for Immunology University of Texas Southwestern Medical Center, Dallas 75390-9050, USA.
| | | | | |
Collapse
|
37
|
Suárez CF, Cárdenas PP, Llanos-Ballestas EJ, Martínez P, Obregón M, Patarroyo ME, Patarroyo MA. Alpha1 and alpha2 domains of Aotus MHC class I and Catarrhini MHC class Ia share similar characteristics. TISSUE ANTIGENS 2003; 61:362-73. [PMID: 12753655 DOI: 10.1034/j.1399-0039.2003.00045.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Functional and structural analyses of major histocompatibility complex (MHC) class I molecules of the Aotus genus are necessary to validate it as a solid animal model for biomedical research. We thus isolated, cloned and sequenced exons 2 and 3 from three Aotus species (A. nancymaae, A. nigriceps and A. vociferans). We found 24 sequences, which divided into two different groups (Ao-g1 and Ao-g2). A further sequence was identified as a processed pseudogene (Aona-PS2). Both sequence evolution and variability analyses showed that Ao-g1 and Ao-g2 display similar characteristics to Catarrhini's classical loci, such as positive selection pressure at the peptide binding region (PBR) high variability and a trans-specific evolution pattern.
Collapse
Affiliation(s)
- C F Suárez
- Fundación Instituto de Inmunología de Colombia, FIDIC, Bogotá, Colombia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Estefanía E, Gómez-Lozano N, de Pablo R, Moreno ME, Vilches C. Complementary DNA sequence of the HLA-B*3924 allele. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2003; 30:11-2. [PMID: 12558815 DOI: 10.1046/j.1365-2370.2003.00362.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated the complete coding region of HLA-B*39 from a Spanish Caucasoid, using a new PCR primer for its 5' untranslated region. The cDNA matched partial genomic sequences of B*3924, an allele whose distribution appears to be restricted to Mediterranean and Arabian Caucasoids. A single amino acid change exclusive to B*3924 (threonine-98) distinguishes it from B*3903.
Collapse
Affiliation(s)
- E Estefanía
- Servicio de Immunología, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Rodriguez I, Del Punta K, Rothman A, Ishii T, Mombaerts P. Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat Neurosci 2002; 5:134-40. [PMID: 11802169 DOI: 10.1038/nn795] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Seven-transmembrane-domain proteins encoded by the vomeronasal receptor V1r and V2r gene superfamilies, and expressed by vomeronasal sensory neurons, are believed to be pheromone receptors in rodents. Four V1r gene families have been described in the mouse (V1ra, V1rb, V1rc and V3r). Here we have screened near-complete mouse genomic databases to obtain a first global draft of the mouse V1r repertoire, including 104 new V1r genes. It comprises eight new and extremely isolated families in addition to the four families previously identified. Members of these new families were expressed in vomeronasal sensory neurons. The genome-wide view revealed great sequence diversity within the V1r superfamily. Phylogenetic analyses suggested an ancient original radiation, followed by the isolation, divergence and expansion of families by extensive gene duplications and frequent gene loss. The isolated nature of these gene families probably reflects a specialization of different receptor classes in the detection of specific types of chemicals.
Collapse
|
40
|
Zhang J, Dyer KD, Rosenberg HF. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc Natl Acad Sci U S A 2000; 97:4701-6. [PMID: 10758160 PMCID: PMC18296 DOI: 10.1073/pnas.080071397] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian RNase A superfamily comprises a diverse array of ribonucleolytic proteins that have a variety of biochemical activities and physiological functions. Two rapidly evolving RNases of higher primates are of particular interest as they are major secretory proteins of eosinophilic leukocytes and have been found to possess anti-pathogen activities in vitro. To understand how these RNases acquired this function during evolution and to develop animal models for the study of their functions in vivo, it is necessary to investigate these genes in many species. Here, we report the sequences of 38 functional genes and 23 pseudogenes of the eosinophil-associated RNase (EAR) family from 5 rodent species. Our phylogenetic analysis of these genes showed a clear pattern of evolution by a rapid birth-and-death process and gene sorting, a process characterized by rapid gene duplication and deactivation occurring differentially among lineages. This process ultimately generates distinct or only partially overlapping inventories of the genes, even in closely related species. Positive Darwinian selection also contributed to the diversification of these EAR genes. The striking similarity between the evolutionary patterns of the EAR genes and those of the major histocompatibility complex, immunoglobulin, and T cell receptor genes stands in strong support of the hypothesis that host-defense and generation of diversity are among the primary physiological function of the rodent EARs. The discovery of a large number of divergent EARs suggests the intriguing possibility that these proteins have been specifically tailored to fight against distinct rodent pathogens.
Collapse
Affiliation(s)
- J Zhang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Abstract
Callitrichid primates typically give birth to twin offspring that are somatic chimeras of cells derived from two products of conception. Each individual is thus the phenotype of two sibling genotypes, one of which may be more closely related to the germ line of the individual's parents than to the individual's own germ line. Chimerism could therefore help to explain the evolution of alloparental care and social suppression of reproduction in callitrichids. Placental chimerism may also have important implications for understanding kin interactions within the womb: on one side of the coin, the intimate juxtaposition of genotypes provides unique opportunities for antagonistic interactions between embryos; on the other side, chimerism could facilitate cooperation between sibling genotypes.
Collapse
Affiliation(s)
- D Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
42
|
Evans DT, Knapp LA, Jing P, Piekarczyk MS, Hinshaw VS, Watkins DI. Three Different MHC Class I Molecules Bind the Same CTL Epitope of the Influenza Virus in a Primate Species with Limited MHC Class I Diversity. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
One of the most remarkable features of the MHC class I loci of most outbred mammalian populations is their exceptional diversity, yet the functional importance of this diversity remains to be fully understood. The cotton-top tamarin (Saguinus oedipus) is unusual in having MHC class I loci that exhibit both limited polymorphism and sequence variation. To investigate the functional implications of limited MHC class I diversity in this outbred primate species, we infected five tamarins with influenza virus and defined the CTL epitopes recognized by each individual. In addition to an immunodominant epitope of the viral nucleoprotein (NP) that was recognized by all individuals, two tamarins also made a response to the same epitope of the matrix (M1) protein. Surprisingly, these two tamarins used different MHC class I molecules, Saoe-G*02 and -G*04, to present the M1 epitope. In addition, CTLs from one of the tamarins recognized target cells that expressed neither Saoe-G*02 nor -G*04, but, rather, a third MHC class I molecule, Saoe-G*12. Sequence analysis revealed that Saoe-G*12 differs from both Saoe-G*02 and -G*04 by only two nucleotides and was probably generated by recombination between these two alleles. These results demonstrate that at least three of the tamarin’s MHC class I molecules can present the same epitope to virus-specific CTLs. Thus, four of the tamarin’s 12 MHC class I molecules bound only two influenza virus CTL epitopes. Therefore, the functional diversity of cotton-top tamarin’s MHC class I loci may be even more limited than their genetic diversity suggests.
Collapse
Affiliation(s)
| | | | | | | | - Virginia S. Hinshaw
- ‡Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706
| | - David I. Watkins
- *Wisconsin Regional Primate Research Center and
- †Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53715; and
| |
Collapse
|
43
|
Vogel TU, Evans DT, Urvater JA, O'Connor DH, Hughes AL, Watkins DI. Major histocompatibility complex class I genes in primates: co-evolution with pathogens. Immunol Rev 1999; 167:327-37. [PMID: 10319271 DOI: 10.1111/j.1600-065x.1999.tb01402.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major histocompatibility complex (MHC) is the most polymorphic genetic system known, playing a central role in the cellular immune response to pathogens. The relationship between the MHC of humans and non-human primates has increased our understanding of MHC evolution and how polymorphism of this gene family may have been generated. We will review MHC class I evolution in great apes and Old World and New World primates and discuss new data from the simian immunodeficiency virus/rhesus monkey animal model that demonstrate the role of MHC class I alleles in selecting for new populations of viruses. This suggests that certain pathogens co-evolve with the MHC class I molecules they encounter in a population.
Collapse
Affiliation(s)
- T U Vogel
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison 53715-1299, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
To set an accurate chronological framework to the evolution of primate class I and II genes in the major histocompatibility complex (Mhc), the rate of silent nucleotide substitutions in exons and introns is examined for various cDNA and genome sequences currently available. The rate is sensitive to the GC content and correlates negatively with increased GC biases at the third codon positions of Mhc genes. The intergenic recombination rate in the HLA region is estimated from the synonymous nucleotide differences at 37 linked loci. Any HLA subregion is recombined more or less at the ordinary rate of 1 cM per 1 Mb, although the rate may be reduced in some subregions. This information is used to discuss HLA haplotypes when they are applied to studies of human demography. The unusual polymorphism in the alpha-helix of HLA-DRB1 is also revisited in relation to intragenic recombination, but the molecular mechanism and the evolutionary cause both remain enigmatic.
Collapse
Affiliation(s)
- Y Satta
- Department of Biosystems Science, Graduate University for Advanced Studies, Kanagawa, Japan
| | | | | | | |
Collapse
|
45
|
Abstract
Because major histocompatibility complex (MHC) genes play a major role in the development of acquired immune responses, it is essential to obtain comparative information on their organisation, expression and possible functional dichotomies in different species. In human, three classical, polymorphic class I genes (HLA-A, B- and -C) and four expressed A/B class II gene pairs (HLA-DM, -DP, -DQ and -DR) are each present on all haplotypes. With the exception of the HLA-DRB loci, it has been assumed that a similar rigid organisational situation exists in other mammalian species. However, extensive analysis of the bovine MHC (BoLA) at both the genomic and transcriptional levels has revealed a degree of genetic fluidity not described in other species. None of the four (or more) classical class I genes identified is consistently expressed, and haplotypes differ from one another in both the number and composition of expressed class I genes. Similarly, in the class II region, the number of DQ genes varies between haplotypes in both number and composition. These variations in both class I and II (which appear to reflect differences at the genomic level) are likely to play an important role in cattle immune responses. The observed phenotypic differences in cattle demonstrate very clearly the dynamic nature of the MHC region. This review addresses the functional impact of such variation in different breeds and populations, and its significance in terms of MHC evolution.
Collapse
Affiliation(s)
- S A Ellis
- Institute for Animal Health, Compton, UK.
| | | |
Collapse
|
46
|
Abstract
Similarity in structural features would argue that sharks possess class I, class IIA and class IIB genes, coding for classical peptide-presenting molecules, as well as non-classical class I genes. Some aspects of shark major histocompatibility complex genes are similar to teleost genes and others are similar to tetrapod genes. Shark class I genes form a monophyletic group, as also seen for tetrapods, but the classical and nonclassical genes form two orthologous clades, as seen for teleosts. Teleost class I genes arose independently at least four different times with the nonclassical genes of ray-finned fishes and all the shark and lobe-finned fish class I genes forming 1 clade. The ray-finned fish classical class I genes arose separately. In phylogenetic trees of class II alpha 2 and beta 2 domains, the shark and tetrapod genes cluster more closely than the teleost genes and, unlike the teleost sequences, the class II alpha 1 domains of sharks and tetrapods lack cysteines. On the other hand, both shark and teleost genes display sequence motifs in the antigen-binding cleft that have persisted over very long time periods. The similarities may reflect common selective pressures on species in aqueous environments while differences may be due to different evolutionary rates.
Collapse
Affiliation(s)
- S Bartl
- Moss Landing Marine Laboratories, CA 95039-0450, USA.
| |
Collapse
|
47
|
Knapp LA, Cadavid LF, Watkins DI. The MHC-E Locus Is the Most Well Conserved of All Known Primate Class I Histocompatibility Genes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.1.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
The HLA-E locus is characterized by limited polymorphism and low levels of cell surface expression. However, the function of the products of this nonclassical MHC class I gene remains unknown. To evaluate the conservation of the MHC-E locus throughout anthropoid primate evolution, we identified the homologue of the HLA-E locus in six different New World monkey species. Full-length sequencing of MHC-E cDNAs in four unrelated cotton-top tamarins (Saguinus oedipus) revealed no evidence for polymorphism. Using the PCR, denaturing gradient gel electrophoresis, and direct sequencing, we also identified MHC-E alleles in five other New World monkey species, representing all extant platyrrhine families. In contrast to all other classical and nonclassical MHC class I genes in primates, the rate of synonymous nucleotide substitution is much greater than the rate of nonsynonymous nucleotide substitution within exons 2 and 3 encoding the peptide binding region (PBR) in MHC-E genes. The PBR of the MHC-E molecule, therefore, has evolved under purifying selective pressures, and the very unusual evolutionary history of this ancient gene provides further evidence that the products of the HLA-E locus serve a critical immunological function. Given the remarkable conservation of the PBR during primate evolution, this critical immunological function is probably related to the peptide binding ability of the MHC-E protein.
Collapse
Affiliation(s)
- Leslie A. Knapp
- *Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715
| | - Luis F. Cadavid
- *Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715
| | - David I. Watkins
- *Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715
- †HLA/Molecular Diagnostics Laboratory, Department of Pathology, University of Wisconsin, Madison, WI 53792
| |
Collapse
|