1
|
Brannon ER, Piegols LD, Cady G, Kupor D, Chu X, Guevara MV, Lima MRN, Kanthi Y, Pinsky DJ, Uhrich KE, Eniola-Adefeso O. Polymerized Salicylic Acid Microparticles Reduce the Progression and Formation of Human Neutrophil Extracellular Traps (NET)s. Adv Healthc Mater 2024:e2400443. [PMID: 38898728 DOI: 10.1002/adhm.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Neutrophils can contribute to inflammatory disease propagation via innate mechanisms intended for inflammation resolution. For example, neutrophil extracellular traps (NETs) are necessary for trapping pathogens but can contribute to clot formation and blood flow restriction, that is, ischemia. Currently, no therapeutics in the clinic directly target NETs despite the known involvement of NETs contributing to mortality and increased disease severity. Vascular-deployed particle-based therapeutics are a novel and robust alternative to traditional small-molecule drugs by enhancing drug delivery to cells of interest. This work designs a high-throughput assay to investigate the immunomodulatory behavior and functionality of salicylic acid-based polymer-based particle therapeutics against NETosis in human neutrophils. Briefly, this work finds that polymeric composition plays a role, and particle size can also influence rates of NETosis. Salicylate-based polymeric (Poly-SA) particles are found to functionally inhibit NETosis depending on the particle size and concentration exposed to neutrophils. This work demonstrates the high throughput method can help fast-track particle-based therapeutic optimization and design, more efficiently preparing this innovative therapeutics for the clinic.
Collapse
Affiliation(s)
- Emma R Brannon
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - Logan D Piegols
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - Gillian Cady
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Kupor
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - Xueqi Chu
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - M Valentina Guevara
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - Mariana R N Lima
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Section of Vascular Thrombosis & Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, USA
| | - David J Pinsky
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathryn E Uhrich
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Ding Y, Fan B, Zhu C, Chen Z. Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans. Cells 2023; 12:219. [PMID: 36672154 PMCID: PMC9856608 DOI: 10.3390/cells12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
3
|
Antiplatelet Drugs on the Recurrence of Hepatocellular Carcinoma after Liver Transplantation. Cancers (Basel) 2022; 14:cancers14215329. [PMID: 36358749 PMCID: PMC9654602 DOI: 10.3390/cancers14215329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies reported suppressive effects of antiplatelet agents on hepatocellular carcinoma (HCC); however, this has never been assessed in patients who underwent liver transplantation (LT). This retrospective observational study used data from LT recipients with pre-transplant HCC in a single tertiary hospital. The study population was divided into two groups according to the use of antiplatelet agents for >90 days within the study period (377 antiplatelet groups versus 91 non-antiplatelet groups). Matched groups containing 79 patients in each group were also compared regarding HCC-recurrence and HCC-related mortality, which were analyzed by treating non-HCC death as a competing risk. In Kaplan−Meier analyses of the matched cohort, the 5-year cumulative incidences of HCC recurrence and HCC-specific death were similar between the antiplatelet (p = 0.876) and non-antiplatelet groups (p = 0.701). All-cause and non-HCC deaths were also similar between the two groups (p = 0.867 and p = 0.413, respectively). In multivariable analyses of the entire cohort, antiplatelet use was not associated with HCC recurrence (hazard ratio [HR] 1.37, p = 0.300) or HCC-specific death (HR 1.54, p = 0.310). Therefore, unlike the usual setting with liver disease, antiplatelet therapy did not affect HCC recurrence or HCC-specific mortality when used after LT.
Collapse
|
4
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
5
|
Wan W, Liu G, Li X, Liu Y, Wang Y, Pan H, Hu J. MiR-191-5p alleviates microglial cell injury by targeting Map3k12 (mitogen-activated protein kinase kinase kinase 12) to inhibit the MAPK (mitogen-activated protein kinase) signaling pathway in Alzheimer's disease. Bioengineered 2021; 12:12678-12690. [PMID: 34818971 PMCID: PMC8810200 DOI: 10.1080/21655979.2021.2008638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple reports have elucidated that microRNAs are promising biomarkers for AD diagnosis and treatment. Herein, the effect of miR-191-5p on microglial cell injury and the underlying mechanism were explored. APP/PS1 transgenic mice were utilized to establish mouse model of AD. Amyloid-β protein 1-42 (Aβ1-42)-treated microglia were applied to establish in vitro cell model of AD. MiR-191-5p expression in hippocampus and microglia was measured by reverse transcription quantitative polymerase chain reaction. The viability and apoptosis of microglia were evaluated by Cell Counting Kit-8 assays and flow cytometry analyses, respectively. The binding relationship between miR-191-5p and its downstream target mitogen-activated protein kinase kinase kinase 12 (Map3k12) was determined by luciferase reporter assays. Pathological degeneration of hippocampus was tested using hematoxylin-eosin staining and Nissl staining. Aβ expression in hippocampus was examined via immunohistochemistry. In this study, miR-191-5p was downregulated in Aβ1-42-stimulated microglia and hippocampal tissues of APP/PS1 mice. MiR-191-5p overexpression facilitated cell viability and inhibited apoptosis rate of Aβ1-42-treated microglia. Mechanically, miR-191-5p targeted Map3k12 3'-untranslated region to downregulate Map3k12 expression. MiR-191-5p inhibited Aβ1-42-induced microglial cell injury and inactivated the MAPK signaling by downregulating Map3k12. Overall, miR-191-5p alleviated Aβ1-42-induced microglia cell injury by targeting Map3k12 to inhibit the MAPK signaling pathway in microglia.
Collapse
Affiliation(s)
- Wenjun Wan
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganzhe Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ying Wang
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haisong Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
6
|
Ansarey SH. Inflammation and JNK's Role in Niacin-GPR109A Diminished Flushed Effect in Microglial and Neuronal Cells With Relevance to Schizophrenia. Front Psychiatry 2021; 12:771144. [PMID: 34916973 PMCID: PMC8668869 DOI: 10.3389/fpsyt.2021.771144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is a neuropsychiatric illness with no single definitive aetiology, making its treatment difficult. Antipsychotics are not fully effective because they treat psychosis rather than the cognitive or negative symptoms. Antipsychotics fail to alleviate symptoms when patients enter the chronic stage of illness. Topical application of niacin showed diminished skin flush in the majority of patients with schizophrenia compared to the general population who showed flushing. The niacin skin flush test is useful for identifying patients with schizophrenia at their ultra-high-risk stage, and understanding this pathology may introduce an effective treatment. This review aims to understand the pathology behind the diminished skin flush response, while linking it back to neurons and microglia. First, it suggests that there are altered proteins in the GPR109A-COX-prostaglandin pathway, inflammatory imbalance, and kinase signalling pathway, c-Jun N-terminal kinase (JNK), which are associated with diminished flush. Second, genes from the GPR109A-COX-prostaglandin pathway were matched against the 128-loci genome wide association study (GWAS) for schizophrenia using GeneCards, suggesting that G-coupled receptor-109A (GPR109A) may have a genetic mutation, resulting in diminished flush. This review also suggests that there may be increased pro-inflammatory mediators in the GPR109A-COX-prostaglandin pathway, which contributes to the diminished flush pathology. Increased levels of pro-inflammatory markers may induce microglial-activated neuronal death. Lastly, this review explores the role of JNK on pro-inflammatory mediators, proteins in the GPR109A-COX-prostaglandin pathway, microglial activation, and neuronal death. Inhibiting JNK may reverse the changes observed in the diminished flush response, which might make it a good therapeutic target.
Collapse
Affiliation(s)
- Sabrina H Ansarey
- Department of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Hayashi T, Shibata M, Oe S, Miyagawa K, Honma Y, Harada M. Antiplatelet Therapy Improves the Prognosis of Patients with Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12113215. [PMID: 33142758 PMCID: PMC7693153 DOI: 10.3390/cancers12113215] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Antiplatelet therapy shows antitumor effect in several types of cancers. In liver disease, antiplatelet therapy reduces liver fibrosis and occurrence of HCC. However, the effect after diagnosis of hepatocellular carcinoma is still unknown. Therefore, we aimed to clarify the effects of antiplatelet therapy for HCC patients in this study. We compared patients with and without antiplatelet therapy in overall survival, liver-related death, tumor progression, Child-Pugh deterioration and bleeding. Our results suggested that antiplatelet therapy had antitumor effect, liver protective effect and safety. Therefore, patients with antiplatelet therapy could reduce liver-related death and improve overall survival. Abstract Aims: Antiplatelet therapy has been reported to reduce liver fibrosis and hepatocellular carcinoma (HCC), and has exhibited antitumor properties in other cancers. However, the effects of antiplatelet therapy after diagnosis of HCC are unknown. We investigated the effects of antiplatelet therapy on prognosis, tumor progression, liver function and safety in HCC patients. Methods: We retrospectively analyzed 772 HCC patients. Antiplatelet therapy was defined as the regular intake of aspirin or clopidogrel from HCC diagnosis through to an endpoint of either overall survival (OS) or liver-related death. Overall survival, liver-related death, tumor progression, Child–Pugh deterioration and hemorrhage were analyzed for patients who either had or had not undertaken antiplatelet therapy. Results: The numbers of patients who did and did not undertake antiplatelet therapy were 111 and 661, respectively. Patients who undertook antiplatelet therapy were older and had better liver function at diagnosis. Antiplatelet therapy resulted in significant improvements in OS (p < 0.01) and lower risk of liver-related death (p < 0.01). Multivariate Cox regression analysis revealed that antiplatelet therapy had a significant negative association with liver-related death (hazard ratio (HR): 0.64, 95% confidence interval (CI): 0.44–0.93, p = 0.02). In patients who underwent transcatheter arterial chemoembolization (TACE) as the first treatment, antiplatelet therapy prevented tumor progression (p < 0.01) and Child–Pugh deterioration (p < 0.01). Antiplatelet therapy did not increase the risk of hemorrhagic events. Conclusions: Antiplatelet therapy reduced liver-related death and improved OS safely in HCC patients.
Collapse
|
8
|
The IL-33-induced p38-/JNK1/2-TNFα axis is antagonized by activation of β-adrenergic-receptors in dendritic cells. Sci Rep 2020; 10:8152. [PMID: 32424229 PMCID: PMC7235212 DOI: 10.1038/s41598-020-65072-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
IL-33, an IL-1 cytokine superfamily member, induces the activation of the canonical NF-κB signaling, and of Mitogen Activated Protein Kinases (MAPKs). In dendritic cells (DCs) IL-33 induces the production of IL-6, IL-13 and TNFα. Thereby, the production of IL-6 depends on RelA whereas the production of IL-13 depends on the p38-MK2/3 signaling module. Here, we show that in addition to p65 and the p38-MK2/3 signaling module, JNK1/2 are essential for the IL-33-induced TNFα production. The central roles of JNK1/2 and p38 in DCs are underpinned by the fact that these two MAPK pathways are controlled by activated β-adrenergic receptors resulting in a selective regulation of the IL-33-induced TNFα response in DCs.
Collapse
|
9
|
Kim SW, Goossens A, Libert C, Van Immerseel F, Staal J, Beyaert R. Phytohormones: Multifunctional nutraceuticals against metabolic syndrome and comorbid diseases. Biochem Pharmacol 2020; 175:113866. [PMID: 32088261 DOI: 10.1016/j.bcp.2020.113866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is characterized by the co-occurrence of diverse symptoms initiating the development of type 2 diabetes, cardiovascular diseases, and a variety of comorbid diseases. The complex constellation of numerous comorbidities makes it difficult to develop common therapeutic approaches that ameliorate these pathological features simultaneously. The plant hormones abscisic acid, salicylic acid, auxin, and cytokinins, have shown promising anti-inflammatory and pro-metabolic effects that could mitigate several disorders relevant to metabolic syndrome. Intriguingly, besides plants, human cells and gut microbes also endogenously produce these molecules, indicating a role in the complex interplay between inflammatory responses associated with metabolic syndrome, the gut microbiome, and nutrition. Here, we introduce how bioactive phytohormones can be generated endogenously and through the gut microbiome. These molecules subsequently influence immune responses and metabolism. We also elaborate on how phytohormones can beneficially modulate metabolic syndrome comorbidities, and propose them as nutraceuticals.
Collapse
Affiliation(s)
- Seo Woo Kim
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Alain Goossens
- VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jens Staal
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Bashir AIJ, Kankipati CS, Jones S, Newman RM, Safrany ST, Perry CJ, Nicholl ID. A novel mechanism for the anticancer activity of aspirin and salicylates. Int J Oncol 2019; 54:1256-1270. [PMID: 30720135 PMCID: PMC6411351 DOI: 10.3892/ijo.2019.4701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies indicate that long‑term aspirin usage reduces the incidence of colorectal cancer (CRC) and may protect against other non‑CRC associated adenocarcinomas, including oesophageal cancer. A number of hypotheses have been proposed with respect to the molecular action of aspirin and other non‑steroidal anti‑inflammatory drugs in cancer development. The mechanism by which aspirin exhibits toxicity to CRC has been previously investigated by synthesising novel analogues and derivatives of aspirin in an effort to identify functionally significant moieties. Herein, an early effect of aspirin and aspirin‑like analogues against the SW480 CRC cell line was investigated, with a particular focus on critical molecules in the epidermal growth factor (EGF) pathway. The present authors proposed that aspirin, diaspirin and analogues, and diflunisal (a salicylic acid derivative) may rapidly perturb EGF and EGF receptor (EGFR) internalisation. Upon longer incubations, the diaspirins and thioaspirins may inhibit EGFR phosphorylation at Tyr1045 and Tyr1173. It was additionally demonstrated, using a qualitative approach, that EGF internalisation in the SW480 cell line may be directed to endosomes by fumaryldiaspirin using early endosome antigen 1 as an early endosomal marker and that EGF internalisation may also be perturbed in oesophageal cell lines, suggestive of an effect not only restricted to CRC cells. Taken together and in light of our previous findings that the aspirin‑like analogues can affect cyclin D1 expression and nuclear factor‑κB localisation, it was hypothesized that aspirin and aspirin analogues significantly and swiftly perturb the EGFR axis and that the protective activity of aspirin may in part be explained by perturbed EGFR internalisation and activation. These findings may also have implications in understanding the inhibitory effect of aspirin and salicylates on wound healing, given the critical role of EGF in the response to tissue trauma.
Collapse
Affiliation(s)
- Asma'u I J Bashir
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Chandra S Kankipati
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Sarah Jones
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Robert M Newman
- School of Mathematics and Computer Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | | | - Christopher J Perry
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iain D Nicholl
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
11
|
Gao S, Lin J, Wang T, Shen Y, Li Y, Yang W, Zhou K, Hu H. Qingxin kaiqiao fang ameliorates memory impairment and inhibits apoptosis in APP/PS1 double transgenic mice through the MAPK pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:459-475. [PMID: 30774310 PMCID: PMC6350643 DOI: 10.2147/dddt.s188505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Qingxin kaiqiao fang (QKF) has been found to treat Alzheimer’s disease (AD) through apoptosis inhibition. The mitogen-activated protein kinase (MAPK) pathway is closely related to apoptosis in the course of AD. This study aimed to investigate whether QKF-induced apoptosis depression is achieved through MAPK pathway. Materials and methods C57BL/6 J and APP/PS1 mice were used as control and model groups. APP/PS1 mice were treated with different dosages of QKF (4.75, 9.5, and 19 g⋅kg−1⋅d−1⋅ig, respectively) for 12 weeks as L-QKF, M-QKF, and H-QKF groups. The M-QKF-treated APP/ PS1 mice were administrated with 2 µg/kg of U46619 and saline, intra ventricular ventricle injection, as M-QKF+U46619 and M-QKF+saline groups and were injected with PD98059 0.3 mg/kg and the same volume of dimethyl sulfoxide (DMSO), intravenous, as M-QKF+PD98059 and M-QKF+DMSO groups. After 12 weeks treatment, Morris water maze was performed for behavior study. Pathological degeneration was examined by H&E staining, Nissl staining, and transmission electron microscope observation of hippocampus; immunohistochemistry and Western blot (WB) were tested for amyloid β (Aβ) expression. Apoptosis was measured through TUNEL assay; Bax, Bcl-2, and caspase-3 expression through WB; and cleaved caspase-3 expression through ELISA. MAPK pathway was detected via WB for the expressions of ERK1/2, JNK, and p38 MAPK and their phosphorylation patterns. Results QKF improved the learning and memory capability, as well as inhibited neuronal apoptosis and then reduced the pathological degeneration of APP/PS1 mice. M-QKF reduced neuron apoptosis by inhibiting p38 MAPK and activating ERK1/2 but had no significant effect on JNK. Conclusion QKF, especially at the middle dose, alleviated the learning and memory impairment and played an antiapoptotic role in AD through MAPK pathways.
Collapse
Affiliation(s)
- Shiyu Gao
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China, .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China,
| | - Jianwei Lin
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China, .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China,
| | - Tianqi Wang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China, .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China,
| | - Yan Shen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China, .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China,
| | - Yan Li
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China, .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China,
| | - Wenyu Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China, .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China,
| | - Kailiang Zhou
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China, .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Haiyan Hu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China, .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China,
| |
Collapse
|
12
|
Pawar R, Kumar S, Jain D. Metabolic Profile Elucidation of Ventilago calyculata Aqueous Extract Attenuating Sequelae of Aspirin Retarded Wound Healing. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_131_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
13
|
Kilari RS, Bashir AIJ, Devitt A, Perry CJ, Safrany ST, Nicholl ID. The Cytotoxicity and Synergistic Potential of Aspirin and Aspirin Analogues Towards Oesophageal and Colorectal Cancer. ACTA ACUST UNITED AC 2018; 14:141-151. [PMID: 30417794 PMCID: PMC7040498 DOI: 10.2174/1574884713666181112141151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022]
Abstract
Background Oesophageal cancer (OC) is a deadly cancer because of its aggressive nature with survival rates that have barely improved in decades. Epidemiologic studies have shown that low-dose daily intake of aspirin can decrease the incidence of OC. Methods The toxicity of aspirin and aspirin derivatives to OC and a CRC cell line were investigated in the presence and absence of platins. Results The data in this study show the effects of a number of aspirin analogues and aspirin on OC cell lines that originally presented as squamous cell carcinoma (SSC) and adenocarcinoma (ADC). The aspirin analogues fumaryldiaspirin (PN517) and the benzoylsalicylates (PN524, PN528 and PN529), were observed to be more toxic against the OC cell lines than aspirin. Both quantitative and qualitative apoptosis experiments reveal that these compounds largely induce apoptosis, although some necrosis was evident with PN528 and PN529. Failure to recover following the treatment with these analogues emphasized that these drugs are largely cytotoxic in nature. The OE21 (SSC) and OE33 (ADC) cell lines were more sensitive to the aspirin analogues compared to the Flo-1 cell line (ADC). A non-cancerous oesophageal primary cells NOK2101, was used to determine the specificity of the aspirin analogues and cytotoxicity assays revealed that analogues PN528 and PN529 were selectively toxic to cancer cell lines, whereas PN508, PN517 and PN524 also induced cell death in NOK2101. In combination index testing synergistic interactions of the most promising compounds, including aspirin, with cisplatin, oxaliplatin and carboplatin against the OE33 cell line and the SW480 colorectal cancer (CRC) cell line were investigated. Compounds PN517 and PN524, and to a lesser extent PN528, synergised with cisplatin against OE33 cells. Cisplatin and oxaliplatin synergised with aspirin and PN517 when tested against the SW480 cell line. Conclusion These findings indicate the potential and limitations of aspirin and aspirin analogues as chemotherapeutic agents against OC and CRC when combined with platins
Collapse
Affiliation(s)
- Rajagopal S Kilari
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1 LY, United Kingdom
| | - Asma'u I J Bashir
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1 LY, United Kingdom.,Department of Pharmacology, Faculty of Pharmaceutical Sciences, Gombe State University, Gombe, Nigeria
| | - Andreue Devitt
- School of Life & Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Christopher J Perry
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1 LY, United Kingdom
| | | | - Iain D Nicholl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1 LY, United Kingdom
| |
Collapse
|
14
|
Ma J, Gao SS, Yang HJ, Wang M, Cheng BF, Feng ZW, Wang L. Neuroprotective Effects of Proanthocyanidins, Natural Flavonoids Derived From Plants, on Rotenone-Induced Oxidative Stress and Apoptotic Cell Death in Human Neuroblastoma SH-SY5Y Cells. Front Neurosci 2018; 12:369. [PMID: 29904339 PMCID: PMC5990600 DOI: 10.3389/fnins.2018.00369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/14/2018] [Indexed: 01/15/2023] Open
Abstract
Proanthocyanidins (PA) are natural flavonoids widely present in many vegetables, fruits, nuts and seeds, and especially in grape seed. In the present study, we examined the neuroprotective effects of PA and the underlying molecular mechanism in rotenone model of Parkinson's disease (PD). We found that pretreatment with PA significantly reduced rotenone-induced oxidative stress in human neuroblastoma SH-SY5Y dopaminergic cells. In addition, PA markedly enhanced cell viability against rotenone neurotoxicity and considerably blocked rotenone-induced activation of caspase-9, caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP), biochemical features of apoptosis. Further study demonstrated that the anti-apoptotic effect of PA was mediated by suppressing p38, JNK, and ERK signaling, and inhibitors of these three signaling pathways reproduced the protective effect of PA separately. In summary, our results demonstrated that PA mitigated rotenone-induced ROS generation and antagonized apoptosis in SH-SY5Y cells by inhibiting p38, JNK, and ERK signaling pathways, and it may provide a new insight of PA in PD therapy.
Collapse
Affiliation(s)
- Jian Ma
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Shan-Shan Gao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Hai-Jie Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bin-Feng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Wei Feng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Disciplinary group of Psychology and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Wang Y, Du C, Zhang N, Li M, Liu Y, Zhao M, Wang F, Luo F. TGF-β1 mediates the effects of aspirin on colonic tumor cell proliferation and apoptosis. Oncol Lett 2018; 15:5903-5909. [PMID: 29552221 DOI: 10.3892/ol.2018.8047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated that aspirin serves an important role in chemoprevention and the suppression of colorectal cancer (CRC); however, the underlying mechanisms for this inhibition by aspirin remain unclear. Aspirin is capable of promoting apoptosis through prostaglandin-dependent orprostaglandin-independent signaling pathways. In the prostaglandin-dependent pathways, inhibition of cyclooxygenase (COX), particularly COX-2, is the primary mechanism known to be involved in aspirin-induced CRC suppression. Previous studies have implicated prostaglandin-independent signaling pathways and certain associated proteins, including SOX7, in aspirin-induced CRC suppression. In the present study, a newly-characterized association between aspirin, transforming growth factor (TGF)-β1 and CRC inhibition was identified. Specifically, aspirin triggers CRC cell apoptosis by inducing the secretion of TGF-β1, and the increased TGF-β1 then leads to apoptosis and proliferation inhibition in CRC cells.
Collapse
Affiliation(s)
- Yuyi Wang
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chi Du
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oncology, The Second People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Nan Zhang
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Li
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanyang Liu
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Maoyuan Zhao
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Wang
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Li H, Huang K, Gao L, Wang L, Niu Y, Liu H, Wang Z, Wang L, Wang G, Wang J. TES inhibits colorectal cancer progression through activation of p38. Oncotarget 2018; 7:45819-45836. [PMID: 27323777 PMCID: PMC5216763 DOI: 10.18632/oncotarget.9961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/29/2016] [Indexed: 02/06/2023] Open
Abstract
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
2-Oxoadenosine induces cytotoxicity through intracellular accumulation of 2-oxo-ATP and depletion of ATP but not via the p38 MAPK pathway. Sci Rep 2017; 7:6528. [PMID: 28747712 PMCID: PMC5529524 DOI: 10.1038/s41598-017-06636-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
2-Oxoadenosine (2-oxo-Ado), an oxidized form of adenosine, is cytotoxic and induces growth arrest and cell death, which has potential as an anti-cancer drug. However, it is not well understood how 2-oxo-Ado exerts its cytotoxicity. We examined the effects of 2-oxo-Ado on non-tumour cells, namely immortalized mouse embryonic fibroblast lines, and investigated mechanisms by which 2-oxo-Ado exerts its cytotoxicity. We found that cell death induced by 2-oxo-Ado is classical caspase-dependent apoptosis, and requires its sequential intracellular phosphorylation catalysed by adenosine kinase (ADK) and adenylate kinase 2, resulting in intracellular accumulation of 2-oxo-ATP accompanied by accumulation of 2-oxo-Ado in RNA and depletion of ATP. Moreover, we showed that overexpression of MTH1, an oxidized purine nucleoside triphosphatase, prevents 2-oxo-Ado-induced cytotoxicity accompanied by suppression of accumulation of both intracellular 2-oxo-ATP and 2-oxo-Ado in RNA and recovery of ATP levels. We also found that 2-oxo-Ado activates the p38 MAPK pathway. However, siRNAs against Mkk3 and Mkk6, or treatment with several p38 MAPK inhibitors, except SB203580, did not prevent the cytotoxicity. SB203580 prevented intracellular phosphorylation of 2-oxo-Ado to 2-oxo-AMP, and an in vitro ADK assay revealed that SB203580 directly inhibits ADK activity, suggesting that some of the effects of SB203580 may depend on ADK inhibition.
Collapse
|
18
|
Madunić J, Horvat L, Majstorović I, Jodłowska I, Antica M, Matulić M. Sodium Salicylate Inhibits Urokinase Activity in MDA MB-231 Breast Cancer Cells. Clin Breast Cancer 2017; 17:629-637. [PMID: 28456486 DOI: 10.1016/j.clbc.2017.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Sodium salicylate (NaS) is a derivate of acetylsalicylic acid or aspirin, used as a nonsteroidal anti-inflammatory drug for centuries, for its analgesic and anti-inflammatory effects. It was found to modulate different signaling pathways, in a cell-specific way. Here, we explore the effect of NaS on cell growth and urokinase activity in MDA MB-231 breast cancer cells. MATERIALS AND METHODS We analyzed the effect of NaS treatment on cell growth by flow cytometry and viability test. The transwell migration assay was used to study the migratory response of the cells. The gene expression was analyzed by qRT-PCR on RNA level and by Western blot analysis on protein level. Urokinase activity was assessed by caseinolysis. RESULTS Sublethal concentrations of NaS decreased cell growth and inhibited urokinase activity. The latter was a consequence of decrease in urokinase expression and increase in expression of its inhibitors. Analysis of signaling molecules revealed activation of transforming growth factor-β signaling, increase in master transcription factors for epithelial-mesenchymal transition and changes in integrin expression. CONCLUSIONS We propose that NaS causes partial cellular reprogramming through transforming growth factor-β signaling which, together with direct NaS influence, causes changes in expression in a set of genes involved in extracellular proteolysis. These data could be beneficial for the development of new therapeutic approaches in invasive breast cancer treatment.
Collapse
Affiliation(s)
- Josip Madunić
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Luka Horvat
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Iga Jodłowska
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Maja Matulić
- Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
19
|
Huang T, Xiao Y, Yi L, Li L, Wang M, Tian C, Ma H, He K, Wang Y, Han B, Ye X, Li X. Coptisine from Rhizoma Coptidis Suppresses HCT-116 Cells-related Tumor Growth in vitro and in vivo. Sci Rep 2017; 7:38524. [PMID: 28165459 PMCID: PMC5292956 DOI: 10.1038/srep38524] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is one of the most common causes of cancer-related death in humans. Coptisine (COP) is a natural alkaloid from Coptidis Rhizoma with unclear antitumor mechanism. Human colon cancer cells (HCT-116) and xenograft mice were used to systematically explore the anti-tumor activity of COP in this study. The results indicated that COP exhibited remarkably cytotoxic activities against the HCT-116 cells by inducing G1-phase cell cycle arrest and increasing apoptosis, and preferentially inhibited the survival pathway and induced the activation of caspase proteases family of HCT-116 cells. Experimental results on male BALB/c nude mice confirmed that orally administration of COP at high-dose (150 mg/kg) could suppress tumor growth, and may reduce cancer metastasis risk by inhibiting the RAS-ERK pathway in vivo. Taken together, the results suggested that COP may be potential as a novel anti-tumor candidate in the HCT-116 cells-related colon cancer, further studies are still needed to suggest COP for the further use.
Collapse
Affiliation(s)
- Tao Huang
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yubo Xiao
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Lin Yi
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 400030, China
| | - Ling Li
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Meimei Wang
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Cheng Tian
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hang Ma
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Kai He
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Yue Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Bing Han
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, China
| | - Xuegang Li
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, China
| |
Collapse
|
20
|
Büyükgüzel E, Erdem M, Tunaz H, Küçük C, Atılgan UC, Stanley D, Büyükgüzel K. Inhibition of eicosanoid signaling leads to increased lipid peroxidation in a host/parasitoid system. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:121-128. [DOI: 10.1016/j.cbpa.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/14/2022]
|
21
|
Ye W, Ramos EH, Wong BC, Belsham DD. Beneficial Effects of Metformin and/or Salicylate on Palmitate- or TNFα-Induced Neuroinflammatory Marker and Neuropeptide Gene Regulation in Immortalized NPY/AgRP Neurons. PLoS One 2016; 11:e0166973. [PMID: 27893782 PMCID: PMC5125651 DOI: 10.1371/journal.pone.0166973] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022] Open
Abstract
Neuropeptide Y (NPY)/Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus induce feeding and decrease energy expenditure. With consumption of a diet high in fat, there is an increase in circulating saturated free fatty acids, including palmitate, leading to the development of neuroinflammation and secretion of cytokines, such as TNFα, and in turn activation of the canonical IKKβ/NFκB cascade. We describe a model of palmitate- and TNFα-induced neuroinflammation in a functionally characterized, immortalized NPY/AgRP-expressing cell model, mHypoE-46, to study whether the anti-diabetic metformin alone or in combination with the anti-inflammatory agent salicylate can ameliorate these detrimental effects. Treatment with palmitate increased mRNA expression of feeding peptides Npy and Agrp, and inflammatory cytokines Tnfa and Il-6, whereas treatment with TNFα increased mRNA expression of Npy, Nfkb, Ikba, Tnfa, and Il-6. The effects of metformin and/or sodium salicylate on these genes were assessed. Metformin increased phosphorylation of AMPK and S6K, while sodium salicylate increased phospho-AMPK and decreased phospho-S6K, but neither had any effect on phospho-ERK, -JNK or –p38 in the mHypoE-46 NPY/AgRP neurons. Furthermore, we utilized a pre-treatment and/or co-treatment paradigm to model potential clinical regimens. We determined co-treatment with metformin or sodium salicylate alone was successful in alleviating changes observed in feeding peptide mRNA regulation, whereas a preventative pre-treatment with metformin and sodium salicylate together was able to alleviate palmitate- and TNFα-induced induction of NPY and/or AgRP mRNA levels. These results highlight important differences in reactive versus preventative treatments on palmitate- and TNFα-induced neuroinflammation in NPY/AgRP neurons.
Collapse
Affiliation(s)
- Wenqing Ye
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ernesto H. Ramos
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brian C. Wong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Denise D. Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Departments of Medicine and Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Safety Assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12–15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate. Int J Toxicol 2016. [DOI: 10.1177/1091581803022s303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent—miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents—miscellaneous (Capryloyl, 0.1% to 1%; C12–15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents—miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD50 in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to Methyl Salicylate produced bone lesions as a function of the level of exposure in 2-year rat studies; liver damage was seen in dogs exposed to 0.15 g/kg/day in one study; kidney and liver weight increases in another study at the same exposure; but no liver or kidney abnormalities in a study at 0.167 g/kg/day. Applications of Isodecyl, Tridecyl, and Butyloctyl Salicylate were not irritating to rabbit skin, whereas undiluted Ethylhexyl Salicylate produced minimal to mild irritation. Methyl Salicylate at a 1% concentration with a 70% ethanol vehicle were irritating, whereas a 6% concentration in polyethylene glycol produced little or no irritation. Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were not ocular irritants. Although Salicylic Acid at a concentration of 20% in acetone was positive in the local lymph node assay, a concentration of 20% in acetone/olive oil was not. Methyl Salicylate was negative at concentrations up to 25% in this assay, independent of vehicle. Maximization tests of Methyl Salicylate, Ethylhexyl Salicylate, and Butyloctyl Salicylate produced no sensitization in guinea pigs. Neither Salicylic Acid nor Tridecyl Salicylate were photosensitizers. Salicylic Acid, produced when aspirin is rapidly hydrolyzed after absorption from the gut, was reported to be the causative agent in aspirin teratogenesis in animals. Dermal exposures to Methyl Salicylate, oral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, and parenteral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate are all associated with reproductive and developmental toxicity as a function of blood levels reached as a result of exposure. An exposure assessment of a representative cosmetic product used on a daily basis estimated that the exposure from the cosmetic product would be only 20% of the level seen with ingestion of a “baby” aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were generally negative. Methyl Salicylate, in a mouse skin-painting study, did not induce neoplasms. Likewise, Methyl Salicylate was negative in a mouse pulmonary tumor system. In clinical tests, Salicylic Acid (2%) produced minimal cumulative irritation and slight or no irritation(1.5%); TEA-Salicylate (8%) produced no irritation; Methyl Salicylate (>12%) produced pain and erythema, a 1% aerosol produced erythema, but an 8% solution was not irritating; Ethylhexyl Salicylate (4%) and undiluted Tridecyl Salicylate produced no irritation. In atopic patients, Methyl Salicylate caused irritation as a function of concentration (no irritation at concentrations of 15% or less). In normal skin, Salicylic Acid, Methyl Salicylate, and Ethylhexyl (Octyl) Salicylate are not sensitizers. Salicylic Acid is not a photosensitizer, nor is it phototoxic. Salicylic Acid and Ethylhexyl Salicylate are low-level photoprotective agents. Salicylic Acid is well-documented to have keratolytic action on normal human skin. Because of the possible use of these ingredients as exfoliating agents, a concern exists that repeated use may effectively increase exposure of the dermis and epidermis to UV radiation. It was concluded that the prudent course of action would be to advise the cosmetics industry that there is a risk of increased UV radiation damage with the use of any exfoliant, including Salicylic Acid and the listed salicylates, and that steps need to be taken to formulate cosmetic products with these ingredients as exfoliating agents so as not to increase sun sensitivity, or when increased sun sensitivity would be expected, to include directions for the daily use of sun protection. The available data were not sufficient to establish a limit on concentration of these ingredients, or to identify the minimum pH of formulations containing these ingredients, such that no skin irritation would occur, but it was recognized that it is possible to formulate cosmetic products in a way such that significant irritation would not be likely, and it was concluded that the cosmetics industry should formulate products containing these ingredients so as to be nonirritating. Although simultaneous use of several products containing Salicylic Acid could produce exposures greater than would be seen with use of baby aspirin (an exposure generally considered to not present a reproductive or developmental toxicity risk), it was not considered likely that consumers would simultaneously use multiple cosmetic products containing Salicylic Acid. Based on the available information, the Cosmetic Ingredient Review Expert Panel reached the conclusion that these ingredients are safe as used when formulated to avoid skin irritation and when formulated to avoid increasing the skin's sun sensitivity, or, when increased sun sensitivity would be expected, directions for use include the daily use of sun protection.
Collapse
|
23
|
Systems Pharmacogenomics Finds RUNX1 Is an Aspirin-Responsive Transcription Factor Linked to Cardiovascular Disease and Colon Cancer. EBioMedicine 2016; 11:157-164. [PMID: 27566955 PMCID: PMC5049978 DOI: 10.1016/j.ebiom.2016.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022] Open
Abstract
Aspirin prevents cardiovascular disease and colon cancer; however aspirin's inhibition of platelet COX-1 only partially explains its diverse effects. We previously identified an aspirin response signature (ARS) in blood consisting of 62 co-expressed transcripts that correlated with aspirin's effects on platelets and myocardial infarction (MI). Here we report that 60% of ARS transcripts are regulated by RUNX1 - a hematopoietic transcription factor - and 48% of ARS gene promoters contain a RUNX1 binding site. Megakaryocytic cells exposed to aspirin and its metabolite (salicylic acid, a weak COX-1 inhibitor) showed up regulation in the RUNX1 P1 isoform and MYL9, which is transcriptionally regulated by RUNX1. In human subjects, RUNX1 P1 expression in blood and RUNX1-regulated platelet proteins, including MYL9, were aspirin-responsive and associated with platelet function. In cardiovascular disease patients RUNX1 P1 expression was associated with death or MI. RUNX1 acts as a tumor suppressor gene in gastrointestinal malignancies. We show that RUNX1 P1 expression is associated with colon cancer free survival suggesting a role for RUNX1 in aspirin's protective effect in colon cancer. Our studies reveal an effect of aspirin on RUNX1 and gene expression that may additionally explain aspirin's effects in cardiovascular disease and cancer.
Collapse
|
24
|
Shirakawa K, Wang L, Man N, Maksimoska J, Sorum AW, Lim HW, Lee IS, Shimazu T, Newman JC, Schröder S, Ott M, Marmorstein R, Meier J, Nimer S, Verdin E. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity. eLife 2016; 5. [PMID: 27244239 PMCID: PMC4931907 DOI: 10.7554/elife.11156] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI:http://dx.doi.org/10.7554/eLife.11156.001 People have been using a chemical called salicylate, which was once extracted from willow tree bark, as medicine for pain, fever and inflammation since ancient Greece. Aspirin is derived from salicylate but is a more potent drug. Aspirin exerts its anti-inflammatory effect by shutting down the activity of proteins that would otherwise boost inflammation. Aspirin achieves this by releasing a chemical marker, called an acetyl group, to be added to these proteins via a process known as protein acetylation. However, salicylate cannot trigger protein acetylation and so it was not clear how it reduces inflammation. An anti-diabetes drug that is converted into salicylate in the body reduces inflammation by inhibiting a protein called NF-κB. In 2001, a group of researchers reported that NF-κB becomes active when an enzyme called p300 adds an acetyl group to it. This raised the question: does salicylate reduce inflammation by blocking, instead of triggering, protein acetylation. Now, Shirakawa et al. – who include a researcher involved in the 2001 study – show that salicylate does indeed block the activity of the p300 enzyme. Shirakawa et al. then searched a database looking for drugs that have salicylate as part of their molecular structure. The search led to a drug called diflunisal, which was even more effective at blocking p300 in laboratory tests. Some cancers, including a blood cancer, rely on p300 to grow; diflunisal was shown to stop this kind of cancer cell from growing, both in the laboratory and in mice. Together, the experiments suggest that salicylate and drugs that share some of its structure might represent useful treatments for certain cancers, as well as other diseases that involve the p300 enzyme. DOI:http://dx.doi.org/10.7554/eLife.11156.002
Collapse
Affiliation(s)
- Kotaro Shirakawa
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States.,Department of Hematology and Oncology, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Lan Wang
- University of Miami, Gables, United States.,Sylvester Comprehensive Cancer Center, Miami, United States
| | - Na Man
- University of Miami, Gables, United States.,Sylvester Comprehensive Cancer Center, Miami, United States
| | - Jasna Maksimoska
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Philadelphia, United States
| | - Alexander W Sorum
- Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
| | - Hyung W Lim
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Intelly S Lee
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Tadahiro Shimazu
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - John C Newman
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Sebastian Schröder
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Melanie Ott
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Ronen Marmorstein
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Philadelphia, United States
| | - Jordan Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
| | - Stephen Nimer
- University of Miami, Gables, United States.,Sylvester Comprehensive Cancer Center, Miami, United States
| | - Eric Verdin
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| |
Collapse
|
25
|
Walshe CM, Laffey JG, Kevin L, O’Toole D. Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK-dependent mechanism. Intensive Care Med Exp 2015; 3:35. [PMID: 26215802 PMCID: PMC4513033 DOI: 10.1186/s40635-014-0035-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sepsis has been shown to precondition the intact heart against ischaemia/reperfusion (IR) injury, and prior endotoxin exposure of cells in in vitro models has shown evidence of protection against subsequent simulated ischaemia. Our aim in this study is to validate these findings and further investigate the signaling pathways involved. METHODS Adult male Sprague Dawley rats were randomised to control (n = 7) or caecal ligation and perforation (CLP)-induced sepsis (n = 7). Hearts were harvested at 48 h, suspended in Langendorff mode and subjected to 30-min global ischaemia followed by 90-min reperfusion. In subsequent experiments, designed to determine the mechanisms by which sepsis protected against ischaemic injury, endotoxin-stimulated isolated cardiomyocytes, pulmonary A549 cells and renal HK2 cells were subjected to normoxic and hypoxic conditions. The roles of key pathways, including mitogen-activated protein (MAP) kinases extracellular-regulated protein kinase (ERK) 1/2, p38 MAPK (p38), c-Jun NH2-terminal protein kinase (JNK)), and nuclear factor-kappaB (NF-κB) were examined. RESULTS Systemic sepsis protected isolated hearts from subsequent ischaemic/reperfusion-induced injury, enhancing functional recovery on reperfusion [developed left ventricular pressure ((d)LVP) mean(SE) 66.63(±10.7) mmHg vs. 54.13(±9.9) mmHg; LVPmax at 60 min 67.29(±11.9) vs. 72.48(±9.3), sepsis vs. control] despite significantly reduced baseline LV function in CLP animals (p < 0.001). Septic preconditioning significantly reduced infarct size after IR injury (p < 0.05). Endotoxin exposure protected isolated cardiomyocytes against hypoxia-induced cell death (p < 0.001). This effect appeared mediated in part via the p38, JNK and NF-κB pathways, but was independent of the ERK pathway, and did not appear to be mediated via HMGB1. The preconditioning effect of endotoxin was also demonstrated in isolated kidney and lung cells, suggesting that this preconditioning effect of sepsis is not confined to the myocardium. CONCLUSIONS Sepsis preconditions the isolated rat heart against myocardial IR injury. These effects appeared to be mediated in part via the p38, JNK and NF-κB and pathways, but were independent of the ERK and HMGB pathways.
Collapse
Affiliation(s)
- Criona M Walshe
- Department of Anaesthesia, Galway University Hospitals and National University of Ireland, University Road, Galway, Ireland
| | - John G Laffey
- Department of Anaesthesia, Galway University Hospitals and National University of Ireland, University Road, Galway, Ireland
| | - Leo Kevin
- Department of Anaesthesia, Galway University Hospitals and National University of Ireland, University Road, Galway, Ireland
| | - Daniel O’Toole
- Department of Anaesthesia, Galway University Hospitals and National University of Ireland, University Road, Galway, Ireland
| |
Collapse
|
26
|
Li P, Wu H, Zhang H, Shi Y, Xu J, Ye Y, Xia D, Yang J, Cai J, Wu Y. Aspirin use after diagnosis but not prediagnosis improves established colorectal cancer survival: a meta-analysis. Gut 2015; 64:1419-25. [PMID: 25239119 DOI: 10.1136/gutjnl-2014-308260] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this meta-analysis was to systematically assess the survival benefit of aspirin use before or after diagnosis for patients with colorectal cancer (CRC). DESIGN Relevant studies were identified through searching PubMed, Embase and Cochrane databases before May 2014. Two investigators extracted data independently for baseline characteristics and outcomes from the included studies. Either a fixed-effects or a random-effects model was derived to composite the pooled HR for overall mortality and CRC-specific mortality of CRC. RESULTS Seven studies on postdiagnosis aspirin therapy and seven studies on prediagnosis aspirin use were finally included in this meta-analysis. The overall survival benefit associated with postdiagnosis aspirin use represented an HR of 0.84 (95% CI 0.75 to 0.94). This effect was observed both in colon cancer (HR=0.78, 95% CI 0.64 to 0.96) and in rectal cancer (HR=0.90, 95% CI 0.83 to 0.98). Besides, the survival benefit of postdiagnosis aspirin use appeared to be confined to those patients with positive prostaglandin endoperoxide synthase 2 (PTGS2, also known as cyclooxygenase-2, COX-2) expression (HR=0.65, 95% CI 0.50 to 0.85) and with mutated PIK3CA tumours (HR=0.58, 95% CI 0.37 to 0.90). Aspirin use postdiagnosis was not associated with CRC-specific mortality (HR=0.77, 95% CI 0.52 to 1.14). We observed no evidence of an association between prediagnosis aspirin use and CRC overall mortality (HR=1.01, 95% CI 0.96 to 1.06) or CRC-specific mortality (HR=0.93, 95% CI 0.82 to 1.05). CONCLUSIONS These findings provide further indication that postdiagnosis aspirin therapy improved CRC overall survival, especially for patients with positive PTGS2 (COX-2) expression and mutated PIK3CA tumours.
Collapse
Affiliation(s)
- Peiwei Li
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinming Xu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Yao Ye
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Dajing Xia
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Jun Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China Department of Biomedicine, College of Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jianting Cai
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| |
Collapse
|
27
|
Koeberle A, Werz O. Multi-target approach for natural products in inflammation. Drug Discov Today 2014; 19:1871-82. [DOI: 10.1016/j.drudis.2014.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/11/2014] [Accepted: 08/20/2014] [Indexed: 12/30/2022]
|
28
|
Traitement adjuvant du cancer colorectal : l’aspirine, une biothérapie ciblée ? ONCOLOGIE 2014. [DOI: 10.1007/s10269-014-2463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Chen XZ, Li JN, Zhang YQ, Cao ZY, Liu ZZ, Wang SQ, Liao LM, Du J. Fuzheng Qingjie recipe induces apoptosis in HepG2 cells via P38 MAPK activation and the mitochondria-dependent apoptotic pathway. Mol Med Rep 2014; 9:2381-7. [PMID: 24737008 DOI: 10.3892/mmr.2014.2138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/13/2014] [Indexed: 11/06/2022] Open
Abstract
Fuzheng Qingjie (FZQJ) recipe is a polyherbal Chinese medicine capable of suppressing tumor growth and is used as an adjuvant therapy for various types of cancer. However, its anticancer mechanisms are yet to be fully elucidated. In the present study, we explored whether p38 mitogen-activated protein kinase (MAPK) was involved in FZQJ-mediated mitochondria-dependent apoptosis in human hepatocellular carcinoma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to measure the viability of HepG2 cells. 4,6-Diamidino-2-phenylindole (DAPI) and Annexin-V fluorescein isothiocyanate (FITC) were used to analyze the apoptosis of HepG2 cells. The mitochondrial membrane potential (∆ψ) and phosphorylated P38 MAPK protein were examined by a flow cytometer following 5,5',6,6'-tetrachloro‑1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) and Alexa Fluor® 647 mouse anti-phosphorylated P38 MAPK antibody staining, respectively. The activation of caspase-9 and caspase-3 were measured using colorimetric assays. Additionally, Bcl-2 and Bax expression were examined using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis. The results demonstrated that water extract of FZQJ was able to induce apoptosis of HepG2 cells in vitro. FZQJ-induced apoptosis was accompanied by the loss of ∆ψ, downregulation of Bcl-2 and upregulation of Bax expression, and the activation of caspase-3, -9 and P38 MAPK. These results indicated that FZQJ induced apoptosis in HepG2 cells at least via P38 MAPK activation and the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Xu-Zheng Chen
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jin-Nong Li
- Department of Pharmacognosy, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - You-Quan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Zhi-Yun Cao
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhi-Zhen Liu
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Su-Qing Wang
- Department of Pharmacy, Fuzhou University, Fuzhou, Fujian 350122, P.R. China
| | - Lian-Ming Liao
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jian Du
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
30
|
Vosooghi M, Amini M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2014; 9:255-67. [PMID: 24483845 DOI: 10.1517/17460441.2014.883377] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION In the past, clinical studies had demonstrated that aspirin and NSAIDs reduce the risk of colorectal cancer. After the discovery of selective prostaglandin-endoperoxide synthase 2 (PTGS2) inhibitors, the further beneficial effects of celecoxib and some other related structures (coxibs) have been demonstrated in both in vivo and in vitro studies. AREAS COVERED The authors illustrate the role of prostaglandins following the overexpression of PTGS2 (COX-2) in signaling pathways. The authors elucidate the role of coxibs in cell proliferation, apoptosis, angiogenesis and multi-drug resistance and discuss the molecular mechanisms involved. The authors also present the strong evidence related to the usefulness of coxibs in several cancer cell lines. EXPERT OPINION There have been a number of PTGS2 (COX-2) selective inhibitors suggested as potential anticancer therapies. In recent years, the development of nanotechnology has also had an impact on chemotherapy. Indeed, nanoparticles of cytotoxic drug carriers have demonstrated potential through their accumulation in cancer cells, and targeting these nanoparticles has been under evaluation. This area could be opened up for coxib development as they are potentially important targets in cancer cells. Further research using celecoxib as a co-drug with PTGS2-overexpressed and PTGS2-independent cancer is still needed.
Collapse
Affiliation(s)
- Mohsen Vosooghi
- Tehran University of Medical Sciences, Faculty of Pharmacy, Drug Design & Development Research Center, Department of Medicinal Chemistry , Tehran , Iran
| | | |
Collapse
|
31
|
Goldfine AB, Buck JS, Desouza C, Fonseca V, Chen YDI, Shoelson SE, Jablonski KA, Creager MA. Targeting inflammation using salsalate in patients with type 2 diabetes: effects on flow-mediated dilation (TINSAL-FMD). Diabetes Care 2013; 36:4132-9. [PMID: 24130358 PMCID: PMC3836144 DOI: 10.2337/dc13-0859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test whether inhibiting inflammation with salsalate improves endothelial function in patients with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS We conducted an ancillary study to the National Institutes of Health-sponsored, multicenter, randomized, double-masked, placebo-controlled trial evaluating the safety and efficacy of salsalate in targeting inflammation to improve glycemia in patients with T2D. Flow-mediated, endothelium-dependent dilation (FMD) and endothelium-independent, nitroglycerin-mediated dilation (NMD) of the brachial artery were assessed at baseline and 3 and 6 months following randomization to either salsalate 3.5 g/day or placebo. The primary end point was change in FMD at 6 months. RESULTS A total of 88 participants were enrolled in the study, and data after randomization were available for 75. Patients in the treatment and control groups had similar ages (56 years), BMI (33 kg/m(2)), sex (64% male), ethnicity, current treatment, and baseline HbA1c (7.7% [61 mmol/mol]). In patients treated with salsalate versus placebo, HbA1c was reduced by 0.46% (5.0 mmol/mol; P < 0.001), fasting glucose by 16.1 mg/dL (P < 0.001), and white blood cell count by 430 cells/µL (P < 0.02). There was no difference in the mean change in either FMD (0.70% [95% CI -0.86 to 2.25%]; P = 0.38) or NMD (-0.59% [95% CI -2.70 to 1.51%]; P = 0.57) between the groups treated with salsalate and placebo at 6 months. Total and LDL cholesterol were 11 and 16 mg/dL higher, respectively, and urinary albumin was 2.0 µg/mg creatinine higher in the patients treated with salsalate compared with those treated with placebo (all P < 0.009). CONCLUSIONS Salsalate does not change FMD in peripheral conduit arteries in patients with T2D despite lowering HbA1c. This finding suggests that salsalate does not have an effect on vascular inflammation, inflammation does not cause endothelial dysfunction in T2D, or confounding effects of salsalate mitigate favorable effects on endothelial function.
Collapse
|
32
|
The proapoptotic effect of traditional and novel nonsteroidal anti-inflammatory drugs in mammalian and yeast cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:504230. [PMID: 23983899 PMCID: PMC3747411 DOI: 10.1155/2013/504230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have long been used to treat pain, fever, and inflammation. However, mounting evidence shows that NSAIDs, such as aspirin, have very promising antineoplastic properties. The chemopreventive, antiproliferative behaviour of NSAIDs has been associated with both their inactivation of cyclooxygenases (COX) and their ability to induce apoptosis via pathways that are largely COX-independent. In this review, the various proapoptotic pathways induced by traditional and novel NSAIDs such as phospho-NSAIDs, hydrogen sulfide-releasing NSAIDs and nitric oxide-releasing NSAIDs in mammalian cell lines are discussed, as well as the proapoptotic effects of NSAIDs on budding yeast which retains the hallmarks of mammalian apoptosis. The significance of these mechanisms in terms of the role of NSAIDs in effective cancer prevention is considered.
Collapse
|
33
|
Goldfine AB, Fonseca V, Jablonski KA, Chen YDI, Tipton L, Staten MA, Shoelson SE. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med 2013; 159:1-12. [PMID: 23817699 PMCID: PMC4128629 DOI: 10.7326/0003-4819-159-1-201307020-00003] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Short-duration studies show that salsalate improves glycemia in type 2 diabetes mellitus (T2DM). OBJECTIVE To assess 1-year efficacy and safety of salsalate in T2DM. DESIGN Placebo-controlled, parallel trial; computerized randomization and centralized allocation, with patients, providers, and researchers blinded to assignment. (ClinicalTrials.gov: NCT00799643). SETTING 3 private practices and 18 academic centers in the United States. PATIENTS Persons aged 18 to 75 years with fasting glucose levels of 12.5 mmol/L or less (≤225 mg/dL) and hemoglobin A1c (HbA1c) levels of 7.0% to 9.5% who were treated for diabetes. INTERVENTION 286 participants were randomly assigned (between January 2009 and July 2011) to 48 weeks of placebo (n = 140) or salsalate, 3.5 g/d (n = 146), in addition to current therapies, and 283 participants were analyzed (placebo, n = 137; salsalate, n = 146). MEASUREMENTS Change in hemoglobin A1c level (primary outcome) and safety and efficacy measures. RESULTS The mean HbA1c level over 48 weeks was 0.37% lower in the salsalate group than in the placebo group (95% CI, -0.53% to -0.21%; P < 0.001). Glycemia improved despite more reductions in concomitant diabetes medications in salsalate recipients than in placebo recipients. Lower circulating leukocyte, neutrophil, and lymphocyte counts show the anti-inflammatory effects of salsalate. Adiponectin and hematocrit levels increased more and fasting glucose, uric acid, and triglyceride levels decreased with salsalate, but weight and low-density lipoprotein cholesterol levels also increased. Urinary albumin levels increased but reversed on discontinuation; estimated glomerular filtration rates were unchanged. LIMITATION Trial duration and number of patients studied were insufficient to determine long-term risk-benefit of salsalate in T2DM. CONCLUSION Salsalate improves glycemia in patients with T2DM and decreases inflammatory mediators. Continued evaluation of mixed cardiorenal signals is warranted.
Collapse
Affiliation(s)
- Allison B Goldfine
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Moon HG, Kang CS, Choi JP, Choi DS, Choi HI, Choi YW, Jeon SG, Yoo JY, Jang MH, Gho YS, Kim YK. Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback. Exp Mol Med 2013; 45:e6. [PMID: 23306703 PMCID: PMC3584657 DOI: 10.1038/emm.2013.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Allsup J, Billinton N, Scott H, Walmsley RM. Applicability domain of the GADD45a reporter assays: non-steroidal anti-inflammatory drugs do not produce misleading genotoxicity results. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx50029b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Gentz SHL, Bertollo CM, Souza-Fagundes EM, da Silva AM. Implication of eIF2α kinase GCN2 in induction of apoptosis and endoplasmic reticulum stress-responsive genes by sodium salicylate. ACTA ACUST UNITED AC 2012; 65:430-40. [PMID: 23356852 DOI: 10.1111/jphp.12002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Sodium salicylate (NaSal) can disturb cell viability by affecting the activity of multiple cellular molecules. In this work, we investigated the involvement of stress-responsive kinase GCN2 in regulating cell death and expression of stress genes in mouse embryonic fibroblasts (MEFs) upon exposure to NaSal. METHODS Cell viability was assayed using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) method, and apoptosis was evaluated by annexin V and propidium iodide staining. A polymerase chain reaction (PCR) array approach was used to analyse differential expression of a panel of 84 endoplasmic reticulum (ER) stress-associated genes. Gene reporter assays were carried out to determine activity of ER stress element (ERSE), and the protein levels of activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP) were determined by western blot. KEY FINDINGS NaSal treatment resulted in reduction of cellular viability and induction of apoptosis in wild-type but not Gcn2(-/-) cells. Many genes with important functions in protein synthesis/degradation, transcriptional regulation and apoptosis were induced by NaSal and most of these were dependent on GCN2. The activation of ERSE within Ddit3 and the production of CHOP and ATF6 induced by NaSal required GCN2. CONCLUSIONS Our data provide evidence for the involvement of GCN2 in apoptosis and gene expression triggered by NaSal, and contributes to the understanding of molecular events occurring in NaSal-treated cells.
Collapse
Affiliation(s)
- Solange H L Gentz
- Laboratory of Inflammatory Genes, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
37
|
Zaorsky NG, Buyyounouski MK, Li T, Horwitz EM. Aspirin and statin nonuse associated with early biochemical failure after prostate radiation therapy. Int J Radiat Oncol Biol Phys 2012; 84:e13-7. [PMID: 22652109 DOI: 10.1016/j.ijrobp.2012.02.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022]
Abstract
PURPOSE To present the largest retrospective series investigating the effect of aspirin and statins, which are hypothesized to have antineoplastic properties, on biochemical failure (nadir plus 2 ng/mL) after prostate radiation therapy (RT). METHODS AND MATERIALS Between 1989 and 2006, 2051 men with clinically localized prostate cancer received definitive RT alone (median dose, 76 Gy). The rates of aspirin use and statin use (defined as any use at the time of RT or during follow-up) were 36% and 34%, respectively. The primary endpoint of the study was an interval to biochemical failure (IBF) of less than 18 months, which has been shown to be the single strongest predictor of distant metastasis, prostate cancer survival, and overall survival after RT. Patient demographic characteristics and tumor staging factors were assessed with regard to associations with the endpoint. Univariate analysis was performed with the χ(2) test for categorical variables and the Wilcoxon test for continuous variables. Multivariable analysis was performed with a multiple logistic regression. RESULTS The median follow-up was 75 months. Univariate analysis showed that an IBF of less than 18 months was associated with aspirin nonuse (P<.0001), statin nonuse (P<.0001), anticoagulant nonuse (P=.0006), cardiovascular disease (P=.0008), and prostate-specific antigen (continuous) (P=.008) but not with Gleason score, age, RT dose, or T stage. On multivariate analysis, only aspirin nonuse (P=.0012; odds ratio, 2.052 [95% confidence interval, 1.328-3.172]) and statin nonuse (P=.0002; odds ratio, 2.465 [95% confidence interval, 1.529-3.974]) were associated with an IBF of less than 18 months. CONCLUSIONS In patients who received RT for prostate cancer, aspirin or statin nonuse was associated with early biochemical failure, a harbinger of distant metastasis and death. Further study is needed to confirm these findings and to determine the optimal dosing and schedule, as well as the relative benefits and risks, of both therapies in combination with RT.
Collapse
Affiliation(s)
- Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
38
|
Raza H, John A. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells. PLoS One 2012; 7:e36325. [PMID: 22558435 PMCID: PMC3340360 DOI: 10.1371/journal.pone.0036325] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/30/2012] [Indexed: 12/27/2022] Open
Abstract
We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.
Collapse
Affiliation(s)
- Haider Raza
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates.
| | | |
Collapse
|
39
|
Abstract
Background: The preventive role of non-steroid anti-inflammatory drugs (NSAIDs) and aspirin, in particular, on colorectal cancer is well established. More recently, it has been suggested that aspirin may also have a therapeutic role. Aim of the present observational population-based study was to assess the therapeutic effect on overall survival of aspirin/NSAIDs as adjuvant treatment used after the diagnosis of colorectal cancer patients. Methods: Data concerning prescriptions were obtained from PHARMO record linkage systems and all patients diagnosed with colorectal cancer (1998–2007) were selected from the Eindhoven Cancer Registry (population-based cancer registry). Aspirin/NSAID use was classified as none, prediagnosis and postdiagnosis and only postdiagnosis. Patients were defined as non-user of aspirin/NSAIDs from the date of diagnosis of the colorectal cancer to the date of first use of aspirin or NSAIDs and user from first use to the end of follow-up. Poisson regression was performed with user status as time-varying exposure. Results: In total, 1176 (26%) patients were non-users, 2086 (47%) were prediagnosis and postdiagnosis users and 1219 (27%) were only postdiagnosis users (total n=4481). Compared with non-users, a survival gain was observed for aspirin users; the adjusted rate ratio (RR) was 0.77 (95% confidence interval (CI) 0.63–0.95; P=0.015). Stratified for colon and rectal, the survival gain was only present in colon cancer (adjusted RR 0.65 (95%CI 0.50–0.84; P=0.001)). For frequent users survival gain was larger (adjusted RR 0.61 (95%CI 0.46–0.81; P=0.001). In rectal cancer, aspirin use was not associated with survival (adjusted RR 1.10 (95%CI 0.79–1.54; P=0.6). The NSAIDs use was associated with decreased survival (adjusted RR 1.93 (95%CI 1.70–2.20; P<0.001). Conclusion: Aspirin use initiated or continued after diagnosis of colon cancer is associated with a lower risk of overall mortality. These findings strongly support initiation of a placebo-controlled trial that investigates the role of aspirin as adjuvant treatment in colon cancer patients.
Collapse
|
40
|
Hossain MA, Kim DH, Jang JY, Kang YJ, Yoon JH, Moon JO, Chung HY, Kim GY, Choi YH, Copple BL, Kim ND. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol 2011; 40:1298-304. [PMID: 22179060 PMCID: PMC3584583 DOI: 10.3892/ijo.2011.1304] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/29/2011] [Indexed: 12/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer.
Collapse
Affiliation(s)
- Mohammad Akbar Hossain
- Division of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhou X, Huang SY, Feng JX, Gao YY, Zhao L, Lu J, Huang BQ, Zhang Y. SOX7 is involved in aspirin-mediated growth inhibition of human colorectal cancer cells. World J Gastroenterol 2011; 17:4922-7. [PMID: 22171135 PMCID: PMC3235637 DOI: 10.3748/wjg.v17.i44.4922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/21/2011] [Accepted: 06/28/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To confirm the role of sex-determining region Y-box 7 (Sox7) in aspirin-mediated growth inhibition of COX-independent human colorectal cancer cells.
METHODS: The cell survival percentage was examined by MTT (Moto-nuclear cell direc cytotoxicity) assay. SOX7 expression was assessed by using reverse transcription-polymerase chain reaction and Western blotting. SB203580 was used to inhibit the p38MAPK signal pathway. SOX7 promoter activity was detected by Luciferase reporter assay.
RESULTS: SOX7 was upregulated by aspirin and was involved in aspirin-mediated growth inhibition of SW480 human colorectal cancer cells. The p38MAPK pathway played a role in aspirin-induced SOX7 expression, during which the AP1 transcription factors c-Jun and c-Fos upregulated SOX7 promoter activities.
RESULTS: SOX7 is upregulated by aspirin and is involved in aspirin-mediated growth inhibition of human colorectal cancer SW480 cells.
Collapse
|
42
|
Abstract
This perspective discusses the clinical trial reported by Burn and colleagues in this issue of the journal (beginning on page 655), which assessed aspirin and resistant starch for the prevention of colorectal adenomas in patients with familial adenomatous polyposis (FAP). The findings are examined in the context of previous clinical trials of aspirin in patients with sporadic adenomas and of sulindac or celecoxib in patients with FAP. This newly reported work raises important considerations of a role for aspirin in the clinical management of FAP patients and adds to considerations of a role for aspirin in the chemoprevention of colorectal cancer among broader populations.
Collapse
Affiliation(s)
- Andrew T Chan
- Massachusetts General Hospital, Department of Medicine, Gastrointestinal Unit, Boston, MA 02114, USA.
| |
Collapse
|
43
|
Feng H, Yin SH, Tang AZ. Blocking caspase-3-dependent pathway preserves hair cells from salicylate-induced apoptosis in the guinea pig cochlea. Mol Cell Biochem 2011; 353:291-303. [PMID: 21503676 DOI: 10.1007/s11010-011-0798-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
In the present study, we aim to explore whether the caspase-3-dependent pathway is involved in the apoptotic cell death that occurs in the hair cells (HCs) of guinea pig cochlea following a salicylate treatment. Guinea pigs received sodium salicylate (Na-SA), at a dose of 200 mg·kg(-1)·d(-1) i.p., as a vehicle for 5 consecutive days. In some experiments, N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (zDEVD-FMK), a specific apoptosis inhibitor, was directly applied into the cochlea via the round window niche (RWN) prior to salicylate treatment for determination of caspase-3 activation. Alterations in auditory function were evaluated with auditory brainstem responses (ABR) thresholds. Caspase-3 activity was determined by measuring the proteolytic cleavage product of caspase-3 (N-terminated peptide substrate). DNA fragmentation within the nuclei was examined with a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Ultrastructure variation in the target cell was assessed by electron microscopy (EM). Salicylate treatment initiated an obvious elevation in ABR thresholds with a maximum average shift of 60 dB sound pressure level (SPL), and caused significant apoptosis in both inner (IHCs) and outer (OHCs) hair cells resulted from an evident increasing in immunoreactivity to caspase-3 protease. Transmission electron microscopy (TEM) displayed chromatin condensation and nucleus margination accompanied by cell body shrinkage in the OHCs, but not in the IHCs. Scanning electron microscopy (SEM) showed breakdown, fusion, and loss in the stereociliary bundles at the apex of OHCs rather than IHCs. zDEVD-FMK pretreatment prior to salicylate injection substantially attenuated an expression of the apoptotic protease and protected HCs against apoptotic death, followed by a moderate relief in the thresholds of ABR, an alleviation in the submicroscopic structure was also identified. In particular, disorientation and insertion in the hair bundles at the apex of OHCs was exhibited though no classic apoptotic change found. The above changes were either prevented or significantly attenuated by zDEVD-FMK. These findings indicate that salicylate could damage cochlear hair cells via inducing apoptosis associated with caspase-3 activation.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/toxicity
- Apoptosis/drug effects
- Auditory Threshold/drug effects
- Caspase 3/metabolism
- Caspase Inhibitors
- Cysteine Proteinase Inhibitors/pharmacology
- DNA Fragmentation/drug effects
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/enzymology
- Hair Cells, Auditory/ultrastructure
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/enzymology
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/enzymology
- Hair Cells, Auditory, Outer/ultrastructure
- Immunohistochemistry
- In Situ Nick-End Labeling
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Oligopeptides/pharmacology
- Salicylates/toxicity
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Hao Feng
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, 22# Shuangyong Road, Nanning, 530021 Guangxi, People's Republic of China
| | | | | |
Collapse
|
44
|
Lin L, Tan RX. Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev 2011; 111:2734-60. [PMID: 21250668 DOI: 10.1021/cr100061j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lan Lin
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
45
|
Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct 2011; 2:515-20. [DOI: 10.1039/c1fo10128e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Moon HG, Tae YM, Kim YS, Gyu Jeon S, Oh SY, Song Gho Y, Zhu Z, Kim YK. Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy 2010; 65:1093-103. [PMID: 20337611 DOI: 10.1111/j.1398-9995.2010.02352.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Allergen-specific T-cell responses orchestrate airway inflammation, which is a characteristic of asthma. Recent evidence suggests that noneosinophilic asthma can be developed by mixed Th1 and Th17 cell responses when exposed to lipopolysaccharide (LPS)-containing allergens. OBJECTIVE To evaluate the therapeutic or adverse effects of acetyl salicylic acid (ASA) on the expression of Th1-type and Th17-type inflammation induced by airway exposure to LPS-containing allergens. METHODS Th1 + Th17 asthma and Th2 asthma mouse models were generated by intranasal sensitization with ovalbumin (OVA) and LPS and intraperitoneal sensitization with OVA and alum, respectively. Therapeutic or adverse effects were evaluated after allergen challenge using pharmacologic and transgenic approaches. RESULTS Lung infiltration of eosinophils was enhanced in OVA/LPS-sensitized mice by ASA treatment, which was accompanied by the enhanced production of eotaxin. These changes were associated with the down-regulation of Th17 cell response, which was partly dependent on adenosine receptor A1 and A3 subtypes, but up-regulation of allergen-specific IL-13 production from T cells. Lung inflammation induced by LPS-containing allergen was markedly reduced in IL-13-deficient mice in the context of ASA treatment, but not without ASA. Meanwhile, adenosine levels in the lung were enhanced by ASA treatment. Moreover, lung infiltration of eosinophils induced by ASA treatment was reversed by co-treatment of a xanthine oxidase inhibitor (allopurinol). CONCLUSION These findings suggest that ASA changes Th17-type into Th2-type inflammation mainly via the adenosine and uric acid metabolic pathway in the lung.
Collapse
Affiliation(s)
- H-G Moon
- Department of Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu HF, Hu HC, Chao JI. Oxaliplatin down-regulates survivin by p38 MAP kinase and proteasome in human colon cancer cells. Chem Biol Interact 2010; 188:535-45. [PMID: 20708607 DOI: 10.1016/j.cbi.2010.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/24/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022]
Abstract
Oxaliplatin, a platinum derivative cancer drug, has been used for treating human colorectal cancers. Survivin has been proposed as a cancer target, which highly expressed in most cancer cells but not normal adult cells. In this study, we investigated the regulation of survivin expression by exposure to oxaliplatin in human colon cancer cells. Oxaliplatin (3-9μM for 24h) markedly induced cytotoxicity, proliferation inhibition and apoptosis in the human RKO colon cancer cells. The survivin protein expression of RKO cells is dramatically reduced by oxaliplatin; however, the survivin gene expression is slightly altered. The survivin blockage of oxaliplatin elevated caspase-3 activation and apoptosis in RKO cells. Over-expression of survivin proteins by transfection with a survivin-expressed vector resisted the oxaliplatin-induced cancer cell death. Meantime, oxaliplatin elicited the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB202190, a specific p38 MAP kinase inhibitor, restored the survivin protein level and attenuated oxaliplatin-induced cancer cell death. In addition, oxaliplatin increased the levels of phospho-p53 (Ser-15) and total p53 proteins. Inhibition of p53 expression by a specific p53 inhibitor pifithrin-α reduced the phosphorylated p38 MAP kinase and active caspase-3 proteins in the oxaliplatin-exposed RKO cells. In contrast, SB202190 did not alter the oxaliplatin-induced p53 protein level. Furthermore, treatment with a specific proteasome inhibitor MG132 restored survivin protein level in the oxaliplatin-treated colon cancer cells. Taken together, our results demonstrate for the first time that survivin is down-regulated by p38 MAP kinase and proteasome degradation pathway after treatment with oxaliplatin in the human colon cancer cells.
Collapse
Affiliation(s)
- Huei-Fang Liu
- Department of Biological Science and Technology, National Chiao Tung University, Taiwan, Republic of China
| | | | | |
Collapse
|
48
|
Büyükgüzel E, Hyršl P, Büyükgüzel K. Eicosanoids mediate hemolymph oxidative and antioxidative response in larvae of Galleria mellonella L. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:176-83. [DOI: 10.1016/j.cbpa.2010.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 01/24/2010] [Accepted: 01/24/2010] [Indexed: 11/26/2022]
|
49
|
Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. Gastroenterology 2010; 138:2029-2043.e10. [PMID: 20420944 PMCID: PMC2947820 DOI: 10.1053/j.gastro.2010.01.057] [Citation(s) in RCA: 411] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 02/07/2023]
Abstract
Colorectal cancer has been strongly associated with a Western lifestyle. In the past several decades, much has been learned about the dietary, lifestyle, and medication risk factors for this malignancy. Although there is controversy about the role of specific nutritional factors, consideration of dietary pattern as a whole appears useful for formulating recommendations. For example, several studies have shown that high intake of red and processed meats, highly refined grains and starches, and sugars is related to increased risk of colorectal cancer. Replacing these factors with poultry, fish, and plant sources as the primary source of protein; unsaturated fats as the primary source of fat; and unrefined grains, legumes and fruits as the primary source of carbohydrates is likely to lower risk of colorectal cancer. Although a role for supplements, including vitamin D, folate, and vitamin B6, remains uncertain, calcium supplementation is likely to be at least modestly beneficial. With respect to lifestyle, compelling evidence indicates that avoidance of smoking and heavy alcohol use, prevention of weight gain, and maintenance of a reasonable level of physical activity are associated with markedly lower risks of colorectal cancer. Medications such as aspirin and nonsteroidal anti-inflammatory drugs and postmenopausal hormones for women are associated with substantial reductions in colorectal cancer risk, though their utility is affected by associated risks. Taken together, modifications in diet and lifestyle should substantially reduce the risk of colorectal cancer and could complement screening in reducing colorectal cancer incidence.
Collapse
|
50
|
Iglesias-Serret D, Piqué M, Barragán M, Cosialls AM, Santidrián AF, González-Gironès DM, Coll-Mulet L, de Frias M, Pons G, Gil J. Aspirin induces apoptosis in human leukemia cells independently of NF-kappaB and MAPKs through alteration of the Mcl-1/Noxa balance. Apoptosis 2010; 15:219-29. [PMID: 19936928 DOI: 10.1007/s10495-009-0424-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in most cell types. In this study we examined the mechanism of aspirin-induced apoptosis in human leukemia cells. We analyzed the role of nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPKs) pathways. Furthermore, we studied the changes induced by aspirin in some genes involved in the control of apoptosis at mRNA level, by performing reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA), and at protein level by Western blot. Our results show that aspirin induced apoptosis in leukemia Jurkat T cells independently of NF-kappaB. Although aspirin induced p38 MAPK and c-Jun N-terminal kinase activation, selective inhibitors of these kinases did not inhibit aspirin-induced apoptosis. We studied the regulation of Bcl-2 family members in aspirin-induced apoptosis. Aspirin increased the mRNA levels of some pro-apoptotic members, such as BIM, NOXA, BMF or PUMA, but their protein levels did not change. In contrast, aspirin decreased the protein levels of Mcl-1. Interestingly, in the presence of aspirin the protein levels of Noxa remained high. This alteration of the Mcl-1/Noxa balance was also found in other leukemia cell lines and primary chronic lymphocytic leukemia cells (CLL). Furthermore, in CLL cells aspirin induced an increase in the protein levels of Noxa. Knockdown of Noxa or Puma significantly attenuated aspirin-induced apoptosis. These results indicate that aspirin induces apoptosis through alteration of the Mcl-1/ Noxa balance.
Collapse
Affiliation(s)
- Daniel Iglesias-Serret
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, Campus de Bellvitge, C/Feixa Llarga s/n, Pavelló de Govern, 4a planta, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|