1
|
Ge Y, Xiao B, Zhao R, Li B, Yang S, He KF, Gu HJ, Zuo S. CARMIL1 regulates liver cancer cell proliferation by activating the ERK/mTOR pathway through the TRIM27/p53 axis. Int Immunopharmacol 2024; 134:112139. [PMID: 38739978 DOI: 10.1016/j.intimp.2024.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Capping protein regulatory factor and myosin 1 linker 1 is termed CARMIL1. CARMIL1 is involved in several physiological processes; it forms an actin filament network and plasma membrane-bound cellular projection tissues and positively regulates the cellular components and tissues. CARMIL1 exhibits important biological functions in cancer; nonetheless, these functions have not been completely explored. We aimed to investigate the novel functions of CARMIL1 in liver cancer, particularly in cell proliferation. The cell counting kit-8, 5-ethynyl-2'-deoxyuridine, Component A experiments, and subcutaneous tumor formation model suggest that CARMIL1 is central to the proliferation of liver cancer cells both in vivo and in vitro. We extracted CARMIL1 samples from The Cancer Genome Atlas Program and analyzed its enrichment. CARMIL1 regulated the pathway activity by affecting the expression of star molecular proteins of the extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR). Moreover, it influenced the proliferation ability of liver cancer cells. Western blotting suggested that CARMIL1 downregulation could affect ERK and mTOR phosphorylation. Results of the co-immunoprecipitation demonstrated that CARMIL1 binds to tripartite motif (TRIM)27, which in turn binds to p53. Subsequently, CARMIL1 can regulate p53 stability and promote its degradation through TRIM27. Additionally, CARMIL1 inhibition enhanced the sensitivity of liver cancer cells to sorafenib. Tumor growth was significantly inhibited in the group treated with sorafenib and CARMIL1, compared with the group treated with CARMIL1 alone. Sorafenib is a first-line targeted chemotherapeutic drug for hepatocellular carcinoma treatment. It increases the long-term survival of hepatocellular carcinoma by 44%. In this study, downregulated CARMIL1 combined with sorafenib significantly reduced the tumor volume and weight of the mouse subcutaneous tumor model, indicating the potential possibility of combining CARMIL1 with sorafenib in hepatocellular carcinoma treatment. In summary, CARMIL1 promotes liver cancer cell proliferation by regulating the TRIM27/p53 axis and activating the ERK/mTOR pathway.
Collapse
Affiliation(s)
- Yuzhen Ge
- Department of Prdiatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Benli Xiao
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Rui Zhao
- Department of Liver Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Bo Li
- Department of Liver Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Sibo Yang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Kun Feng He
- Department of Prdiatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Hua Jian Gu
- Department of Prdiatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China.
| | - Shi Zuo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, PR China; Department of Liver Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China.
| |
Collapse
|
2
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Stark BC, Lanier MH, Cooper JA. CARMIL family proteins as multidomain regulators of actin-based motility. Mol Biol Cell 2017; 28:1713-1723. [PMID: 28663287 PMCID: PMC5491179 DOI: 10.1091/mbc.e17-01-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - M Hunter Lanier
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
4
|
Fujitomo T, Daigo Y, Matsuda K, Ueda K, Nakamura Y. Identification of a nuclear protein, LRRC42, involved in lung carcinogenesis. Int J Oncol 2014; 45:147-56. [PMID: 24806090 DOI: 10.3892/ijo.2014.2418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/20/2014] [Indexed: 11/06/2022] Open
Abstract
On the basis of the gene expression profiles of 120 lung cancer cases using a cDNA microarray containing 27,648 genes or expressed sequence tags (ESTs), we identified LRRC42 (Leucine-rich repeat containing 42) to be significantly upregulated in the majority of lung cancers. Northern blot analysis demonstrated that LRRC42 was expressed only in testis among normal tissues examined. Knockdown of LRRC42 expression by siRNA against LRRC42 significantly suppressed the growth of lung cancer cells. On the other hand, stable induction of LRRC42 expression significantly promoted cell growth. LRRC42, which was found to localize in the nucleus of mammalian cells, is likely to interact with and stabilize GATAD2B (GATA zinc finger domain-containing 2B) and MBD3 (Methyl-CpG-binding domain protein 3) proteins that could contribute to lung cancer cell proliferation partly through the regulation of p21Waf1/Cip1. Our findings suggest that LRRC42 overexpression as well as its interaction with LRRC42-GATAD2B might play essential roles in lung carcinogenesis, and be a promising molecular target for lung cancer therapy.
Collapse
Affiliation(s)
- Takashi Fujitomo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Koji Ueda
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama 230-0045, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
5
|
Zwolak A, Yang C, Feeser EA, Ostap EM, Svitkina T, Dominguez R. CARMIL leading edge localization depends on a non-canonical PH domain and dimerization. Nat Commun 2013; 4:2523. [PMID: 24071777 PMCID: PMC3796438 DOI: 10.1038/ncomms3523] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/28/2013] [Indexed: 12/11/2022] Open
Abstract
CARMIL is an approximately 1,370-amino-acid cytoskeletal scaffold that has crucial roles in cell motility and tissue development through interactions with cytoskeletal effectors and regulation of capping protein at the leading edge. However, the mechanism of CARMIL leading edge localization is unknown. Here we show that CARMIL interacts directly with the plasma membrane through its amino-terminal region. The crystal structure of CARMIL1-668 reveals that this region harbours a non-canonical pleckstrin homology (PH) domain connected to a 16-leucine-rich repeat domain. Lipid binding is mediated by the PH domain, but is further enhanced by a central helical domain. Small-angle X-ray scattering reveals that the helical domain mediates antiparallel dimerization, properly positioning the PH domains for simultaneous membrane interaction. In cells, deletion of the PH domain impairs leading edge localization. The results support a direct membrane-binding mechanism for CARMIL localization at the leading edge, where it regulates cytoskeletal effectors and motility.
Collapse
Affiliation(s)
- Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, 221 Leidy Laboratory, Philadelphia, PA 19104, USA
| | - Elizabeth A. Feeser
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, 221 Leidy Laboratory, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Greenberg MJ, Ostap EM. Regulation and control of myosin-I by the motor and light chain-binding domains. Trends Cell Biol 2012. [PMID: 23200340 DOI: 10.1016/j.tcb.2012.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the myosin-I family of molecular motors are expressed in many eukaryotes, where they are involved in a multitude of critical processes. Humans express eight distinct members of the myosin-I family, making it the second largest family of myosins expressed in humans. Despite the high degree of sequence conservation in the motor and light chain-binding domains (LCBDs) of these myosins, recent studies have revealed surprising diversity of function and regulation arising from isoform-specific differences in these domains. Here we review the regulation of myosin-I function and localization by the motor and LCBDs.
Collapse
Affiliation(s)
- Michael J Greenberg
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
7
|
Feeser EA, Ignacio CMG, Krendel M, Ostap EM. Myo1e binds anionic phospholipids with high affinity. Biochemistry 2010; 49:9353-60. [PMID: 20860408 PMCID: PMC2976041 DOI: 10.1021/bi1012657] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myo1e is a single-headed motor protein that has been shown to play roles in clathrin-mediated endocytosis in HeLa cells and podocyte function in the kidney. The myo1e C-terminal tail domain includes a basic region that is required for localization to clathrin-coated vesicles and contains a putative pleckstrin-homology (PH) domain that has been shown to play a role in phospholipid binding in other myosin-I proteins. We used sedimentation assays, stopped-flow fluorescence, and fluorescence microscopy to determine the membrane binding affinities, kinetics, and in vivo localization of fluorescently labeled recombinant myo1e-tail constructs. We found that the myo1e tail binds tightly to large unilamellar vesicles (LUVs) containing physiological concentrations of the anionic phospholipids phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) or phosphatidylserine. The rate of myo1e attachment to LUVs nears the diffusion limit while the calculated rate of detachment from LUVs is slow (k(diss) ≤ 0.4 s(-1)). Mutation of conserved residues in the myo1e PH domain has little effect on lipid binding in vitro or membrane localization in vivo. Soluble inositol phosphate headgroups, such as inositol 1,4,5-trisphosphate, can compete with PtdIns(4,5)P(2) for binding, but the apparent affinity for the soluble inositol phosphate is substantially lower than that for PtdIns(4,5)P(2). These results suggest that myo1e binds lipids through nonspecific electrostatic interactions rather than a stereospecific protein-phosphoinositide interaction.
Collapse
Affiliation(s)
- Elizabeth A. Feeser
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Cherry Mae G. Ignacio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - E. Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
8
|
Zwolak A, Uruno T, Piszczek G, Hammer JA, Tjandra N. Molecular basis for barbed end uncapping by CARMIL homology domain 3 of mouse CARMIL-1. J Biol Chem 2010; 285:29014-26. [PMID: 20630878 DOI: 10.1074/jbc.m110.134221] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Capping protein (CP) is a ubiquitously expressed, 62-kDa heterodimer that binds the barbed end of the actin filament with approximately 0.1 nm affinity to prevent further monomer addition. CARMIL is a multidomain protein, present from protozoa to mammals, that binds CP and is important for normal actin dynamics in vivo. The CARMIL CP binding site resides in its CAH3 domain (CARMIL homology domain 3) located at or near the protein's C terminus. CAH3 binds CP with approximately 1 nm affinity, resulting in a complex with weak capping activity (30-200 nm). Solution assays and single-molecule imaging show that CAH3 binds CP already present on the barbed end, causing a 300-fold increase in the dissociation rate of CP from the end (i.e. uncapping). Here we used nuclear magnetic resonance (NMR) to define the molecular interaction between the minimal CAH3 domain (CAH3a/b) of mouse CARMIL-1 and CP. Specifically, we show that the highly basic CAH3a subdomain is required for the high affinity interaction of CAH3 with a complementary "acidic groove" on CP opposite its actin-binding surface. This CAH3a-CP interaction orients the CAH3b subdomain, which we show is also required for potent anti-CP activity, directly adjacent to the basic patch of CP, shown previously to be required for CP association to and high affinity interaction with the barbed end. The importance of specific residue interactions between CP and CAH3a/b was confirmed by site-directed mutagenesis of both proteins. Together, these results offer a mechanistic explanation for the barbed end uncapping activity of CARMIL, and they identify the basic patch on CP as a crucial regulatory site.
Collapse
Affiliation(s)
- Adam Zwolak
- Laboratory of Molecular Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
9
|
Zwolak A, Fujiwara I, Hammer JA, Tjandra N. Structural basis for capping protein sequestration by myotrophin (V-1). J Biol Chem 2010; 285:25767-81. [PMID: 20538588 DOI: 10.1074/jbc.m110.135848] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Capping protein (CP) is a ubiquitously expressed, heterodimeric 62-kDa protein that binds the barbed end of the actin filament with high affinity to block further filament elongation. Myotrophin (V-1) is a 13-kDa ankyrin repeat-containing protein that binds CP tightly, sequestering it in a totally inactive complex in vitro. Here, we elucidate the molecular interaction between CP and V-1 by NMR. Specifically, chemical shift mapping and intermolecular paramagnetic relaxation enhancement experiments reveal that the ankyrin loops of V-1, which are essential for V-1/CP interaction, bind the basic patch near the joint of the alpha tentacle of CP shown previously to drive most of the association of CP with and affinity for the barbed end. Consistently, site-directed mutagenesis of CP shows that V-1 and the strong electrostatic binding site for CP on the barbed end compete for this basic patch on CP. These results can explain how V-1 inactivates barbed end capping by CP and why V-1 is incapable of uncapping CP-capped actin filaments, the two signature biochemical activities of V-1.
Collapse
Affiliation(s)
- Adam Zwolak
- Laboratory of Molecular Biophysics, HLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
10
|
Zhang J, Yin Y, Wang Y, Peng X. Identification of rice Al-responsive genes by semi-quantitative polymerase chain reaction using sulfite reductase as a novel endogenous control. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:505-514. [PMID: 20537046 DOI: 10.1111/j.1744-7909.2010.00931.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Based on the evidence that Al resistance is an inducible process and rice is an Al-resistant crop, identification of Al-responsive genes from rice may help to further clone Al-resistant genes in plants. Semi-quantitative and real-time polymerase chain reaction (PCR) is widely applied in gene transcriptional analyses, particularly for those genes with low transcript abundance. Normalization with proper endogenous control (EC) genes is critical for these two approaches in terms of reliability and precision. We first noticed that the expression of several commonly-used EC genes was depressed under Al stress, while sulfite reductase gene (SR) was stable throughout the Al treatment. The reliability of SR as an EC gene was further tested by analyzing the expression of a number of genes in response to Al challenge. Except for the consistent results obtained for the four previously-identified genes, nine additional genes were newly defined as Al-responsive in this study. Collectively, our results suggest that SR can be used as a novel EC gene for semi-quantitative and real-time PCR analysis of Al responsive genes, and that activated transport of silicon and stimulated metabolism of carotenoid and terpenoid could be involved in Al resistance in rice plants.
Collapse
Affiliation(s)
- Jianjun Zhang
- Laboratory of Molecular Plant Physiology, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | |
Collapse
|
11
|
Liang Y, Niederstrasser H, Edwards M, Jackson CE, Cooper JA. Distinct roles for CARMIL isoforms in cell migration. Mol Biol Cell 2010; 20:5290-305. [PMID: 19846667 DOI: 10.1091/mbc.e08-10-1071] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Molecular mechanisms for cell migration, especially how signaling and cytoskeletal systems are integrated, are not understood well. Here, we examined the role of CARMIL (capping protein, Arp2/3, and Myosin-I linker) family proteins in migrating cells. Vertebrates express three conserved genes for CARMIL, and we examined the functions of the two CARMIL genes expressed in migrating human cultured cells. Both isoforms, CARMIL1 and 2, were necessary for cell migration, but for different reasons. CARMIL1 localized to lamellipodia and macropinosomes, and loss of its function caused loss of lamellipodial actin, along with defects in protrusion, ruffling, and macropinocytosis. CARMIL1-knockdown cells showed loss of activation of Rac1, and CARMIL1 was biochemically associated with the GEF Trio. CARMIL2, in contrast, colocalized with vimentin intermediate filaments, and loss of its function caused a distinctive multipolar phenotype. Loss of CARMIL2 also caused decreased levels of myosin-IIB, which may contribute to the polarity phenotype. Expression of one CARMIL isoform was not able to rescue the knockdown phenotypes of the other. Thus, the two isoforms are both important for cell migration, but they have distinct functions.
Collapse
Affiliation(s)
- Yun Liang
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
12
|
Fujiwara I, Remmert K, Hammer JA. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3. J Biol Chem 2009; 285:2707-20. [PMID: 19926785 DOI: 10.1074/jbc.m109.031203] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bulk solution assays have shown that the isolated CARMIL homology 3 (CAH3) domain from mouse and Acanthamoeba CARMIL rapidly and potently restores actin polymerization when added to actin filaments previously capped with capping protein (CP). To demonstrate this putative uncapping activity directly, we used total internal reflection microscopy to observe single, CP-capped actin filaments before and after the addition of the CAH3 domain from mouse CARMIL-1 (mCAH3). The addition of mCAH3 rapidly restored the polymerization of individual capped filaments, consistent with uncapping. To verify uncapping, filaments were capped with recombinant mouse CP tagged with monomeric green fluorescent protein (mGFP-CP). Restoration of polymerization upon the addition of mCAH3 was immediately preceded by the complete dissociation of mGFP-CP from the filament end, confirming the CAH3-driven uncapping mechanism. Quantitative analyses showed that the percentage of capped filaments that uncapped increased as the concentration of mCAH3 was increased, reaching a maximum of approximately 90% at approximately 250 nm mCAH3. Moreover, the time interval between mCAH3 addition and uncapping decreased as the concentration of mCAH3 increased, with the half-time of CP at the barbed end decreasing from approximately 30 min without mCAH3 to approximately 10 s with a saturating amount of mCAH3. Finally, using mCAH3 tagged with mGFP, we obtained direct evidence that the complex of CP and mCAH3 has a small but measurable affinity for the barbed end, as inferred from previous studies and kinetic modeling. We conclude that the isolated CAH3 domain of CARMIL (and presumably the intact molecule as well) possesses the ability to uncap CP-capped actin filaments.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
13
|
Purification of capping protein using the capping protein binding site of CARMIL as an affinity matrix. Protein Expr Purif 2009; 67:113-9. [PMID: 19427903 DOI: 10.1016/j.pep.2009.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 11/23/2022]
Abstract
Capping protein (CP) is a ubiquitously expressed, heterodimeric actin binding protein that is essential for normal actin dynamics in cells. The existing methods for purifying native CP from tissues and recombinant CP from bacteria are time-consuming processes that involve numerous conventional chromatographic steps and functional assays to achieve a homogeneous preparation of the protein. Here, we report the rapid purification of Acanthamoeba CP from amoeba extracts and recombinant mouse CP from E. coli extracts using as an affinity matrix GST-fusion proteins containing the CP binding site from Acanthamoeba CARMIL and mouse CARMIL-1, respectively. This improved method for CP purification should facilitate the in vitro analysis of CP structure, function, and regulation.
Collapse
|
14
|
Vanderzalm PJ, Pandey A, Hurwitz ME, Bloom L, Horvitz HR, Garriga G. C. elegans CARMIL negatively regulates UNC-73/Trio function during neuronal development. Development 2009; 136:1201-10. [PMID: 19244282 PMCID: PMC2685937 DOI: 10.1242/dev.026666] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2009] [Indexed: 01/11/2023]
Abstract
Whereas many molecules that promote cell and axonal growth cone migrations have been identified, few are known to inhibit these processes. In genetic screens designed to identify molecules that negatively regulate such migrations, we identified CRML-1, the C. elegans homolog of CARMIL. Although mammalian CARMIL acts to promote the migration of glioblastoma cells, we found that CRML-1 acts as a negative regulator of neuronal cell and axon growth cone migrations. Genetic evidence indicates that CRML-1 regulates these migrations by inhibiting the Rac GEF activity of UNC-73, a homolog of the Rac and Rho GEF Trio. The antagonistic effects of CRML-1 and UNC-73 can control the direction of growth cone migration by regulating the levels of the SAX-3 (a Robo homolog) guidance receptor. Consistent with the hypothesis that CRML-1 negatively regulates UNC-73 activity, these two proteins form a complex in vivo. Based on these observations, we propose a role for CRML-1 as a novel regulator of cell and axon migrations that acts through inhibition of Rac signaling.
Collapse
Affiliation(s)
| | - Amita Pandey
- Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael E. Hurwitz
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Laird Bloom
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gian Garriga
- Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Cooper JA, Sept D. New insights into mechanism and regulation of actin capping protein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:183-206. [PMID: 18544499 DOI: 10.1016/s1937-6448(08)00604-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The heterodimeric actin capping protein, referred to here as "CP," is an essential element of the actin cytoskeleton, binding to the barbed ends of actin filaments and regulating their polymerization. In vitro, CP has a critical role in the dendritic nucleation process of actin assembly mediated by Arp2/3 complex, and in vivo, CP is important for actin assembly and actin-based process of morphogenesis and differentiation. Recent studies have provided new insight into the mechanism of CP binding the barbed end, which raises new possibilities for the dynamics of CP and actin in cells. In addition, a number of molecules that bind and regulate CP have been discovered, suggesting new ideas for how CP may integrate into diverse processes of cell physiology.
Collapse
Affiliation(s)
- John A Cooper
- Department of Cell Biology, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
16
|
Hwang KJ, Mahmoodian F, Ferretti JA, Korn ED, Gruschus JM. Intramolecular interaction in the tail of Acanthamoeba myosin IC between the SH3 domain and a putative pleckstrin homology domain. Proc Natl Acad Sci U S A 2007; 104:784-9. [PMID: 17215368 PMCID: PMC1783391 DOI: 10.1073/pnas.0610231104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 466-aa tail of the heavy chain of Acanthamoeba myosin IC (AMIC) comprises an N-terminal 220-residue basic region (BR) followed by a 56-residue Gly/Pro/Ala-rich region (GPA1), a 55-residue Src homology 3 (SH3) domain, and a C-terminal 135-residue Gly/Pro/Ala-rich region (GPA2). Cryo-electron microscopy of AMIC had shown previously that the AMIC tail is folded back on itself, suggesting the possibility of interactions between its N- and C-terminal regions. We now show specific differences between the NMR spectrum of bacterially expressed full-length tail and the sum of the spectra of individually expressed BR and GPA1-SH3-GPA2 (GSG) regions. These results are indicative of interactions between the two subdomains in the full-length tail. From the NMR data, we could assign many of the residues in BR and GSG that are involved in these interactions. By combining homology modeling with the NMR data, we identify a putative pleckstrin homology (PH) domain within BR, and show that the PH domain interacts with the SH3 domain.
Collapse
Affiliation(s)
| | - Fatemeh Mahmoodian
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Edward D. Korn
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed at:
National Institutes of Health, Building 50, Room 2517, Bethesda, MD 20892. E-mail:
| | | |
Collapse
|
17
|
O'Day DH, Suhre K, Myre MA, Chatterjee-Chakraborty M, Chavez SE. Isolation, characterization, and bioinformatic analysis of calmodulin-binding protein cmbB reveals a novel tandem IP22 repeat common to many Dictyostelium and Mimivirus proteins. Biochem Biophys Res Commun 2006; 346:879-88. [PMID: 16777069 DOI: 10.1016/j.bbrc.2006.05.204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/27/2006] [Indexed: 11/20/2022]
Abstract
A novel calmodulin-binding protein cmbB from Dictyostelium discoideum is encoded in a single gene. Northern analysis reveals two cmbB transcripts first detectable at 4 h during multicellular development. Western blotting detects an approximately 46.6 kDa protein. Sequence analysis and calmodulin-agarose binding studies identified a "classic" calcium-dependent calmodulin-binding domain (179IPKSLRSLFLGKGYNQPLEF198) but structural analyses suggest binding may not involve classic alpha-helical calmodulin-binding. The cmbB protein is comprised of tandem repeats of a newly identified IP22 motif ([I,L]Pxxhxxhxhxxxhxxxhxxxx; where h = any hydrophobic amino acid) that is highly conserved and a more precise representation of the FNIP repeat. At least eight Acanthamoeba polyphaga Mimivirus proteins and over 100 Dictyostelium proteins contain tandem arrays of the IP22 motif and its variants. cmbB also shares structural homology to YopM, from the plague bacterium Yersenia pestis.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Acanthamoeba CARMIL was previously shown to co-purify with capping protein (CP) and to bind pure CP. Here we show that this interaction inhibits the barbed end-capping activity of CP. Even more strikingly, this interaction drives the uncapping of actin filaments previously capped with CP. These activities are CP-specific; CARMIL does not inhibit the capping activities of either gelsolin or CapG and does not uncap gelsolin-capped filaments. Although full-length (FL) CARMIL (residues 1-1121) possesses both anti-CP activities, C-terminal fragments like glutathione S-transferase (GST)-P (940-1121) that contain the CARMIL CP binding site are at least 10 times more active. We localized the full activities of GST-P to its C-terminal 51 residues (1071-1121). This sequence contains a stretch of 25 residues that is highly conserved in CARMIL proteins from protozoa, flies, worms, and vertebrates (CARMIL Homology domain 3; CAH3). Point mutations showed that the majority of the most highly conserved residues within CAH3 are critical for the anti-CP activity of GST-AP (862-1121). Finally, we found that GST-AP binds CP approximately 20-fold more tightly than does FL-CARMIL. This observation together with the elevated activities of C-terminal fragments relative to FL-CARMIL suggests that FL-CARMIL might exist primarily in an autoinhibited state. Consistent with this idea, proteolytic cleavage of FL-CARMIL with thrombin generated an approximately 14-kDa C-terminal fragment that expresses full anti-CP activities. We propose that, after some type of physiological activation event, FL-CARMIL could function in vivo as a potent CP antagonist. Given the pivotal role that CP plays in determining the global actin phenotype of cells, our results suggest that CARMIL may play an important role in the physiological regulation of actin assembly.
Collapse
Affiliation(s)
- Takehito Uruno
- Laboratory of Cell Biology, Section on Molecular Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rm. 2523, 9000 Rockville Pike, Bethesda, MD 20892-8017, USA
| | | | | |
Collapse
|
19
|
Liu CI, Cheng TL, Chen SZ, Huang YC, Chang WT. LrrA, a novel leucine-rich repeat protein involved in cytoskeleton remodeling, is required for multicellular morphogenesis in Dictyostelium discoideum. Dev Biol 2005; 285:238-51. [PMID: 16051212 DOI: 10.1016/j.ydbio.2005.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 05/07/2005] [Accepted: 05/25/2005] [Indexed: 12/17/2022]
Abstract
Cell sorting by differential cell adhesion and movement is a fundamental process in multicellular morphogenesis. We have identified a Dictyostelium discoideum gene encoding a novel protein, LrrA, which composes almost entirely leucine-rich repeats (LRRs) including a putative leucine zipper motif. Transcription of lrrA appeared to be developmentally regulated with robust expression during vegetative growth and early development. lrrA null cells generated by homologous recombination aggregated to form loose mounds, but subsequent morphogenesis was blocked without formation of the apical tip. The cells adhered poorly to a substratum and did not form tight cell-cell agglomerates in suspension; in addition, they were unable to polarize and exhibit chemotactic movement in the submerged aggregation and Dunn chamber chemotaxis assays. Fluorescence-conjugated phalloidin staining revealed that both vegetative and aggregation competent lrrA(-) cells contained numerous F-actin-enriched microspikes around the periphery of cells. Quantitative analysis of the fluorescence-stained F-actin showed that lrrA(-) cells exhibited a dramatically increase in F-actin as compared to the wild-type cells. When developed together with wild-type cells, lrrA(-) cells were unable to move to the apical tip and sorted preferentially to the rear and lower cup regions. These results indicate that LrrA involves in cytoskeleton remodeling, which is needed for normal chemotactic aggregation and efficient cell sorting during multicellular morphogenesis, particularly in the formation of apical tip.
Collapse
Affiliation(s)
- Chia-I Liu
- Department of Biochemistry, National Cheng Kung University Medical College, Tainan 701, Taiwan, ROC
| | | | | | | | | |
Collapse
|
20
|
Matsuzaka Y, Okamoto K, Mabuchi T, Iizuka M, Ozawa A, Oka A, Tamiya G, Kulski JK, Inoko H. Identification, expression analysis and polymorphism of a novel RLTPR gene encoding a RGD motif, tropomodulin domain and proline/leucine-rich regions. Gene 2005; 343:291-304. [PMID: 15588584 DOI: 10.1016/j.gene.2004.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/01/2004] [Accepted: 09/10/2004] [Indexed: 11/20/2022]
Abstract
We describe the isolation and characterization of a full-length cDNA encoded by a gene that was significantly down-regulated in the affected skin of patients with psoriasis vulgaris. The cDNA was isolated from a keratinocyte cDNA library and its sequence was found to correspond to a hypothetical locus recorded in GenBank with the accession number . The nucleotide sequence of the full-length cDNA was found to have an open reading frame of 1365 amino acids and to span approximately 12 kb of genomic DNA with 39 exons on chromosome 16q22. The deduced amino acid sequence contains four distinct structural regions, an RGD motif, a leucine-rich repeat (LRR) region, a tropomodulin domain, and a proline-rich domain. The gene was consequently designated as RLTPR (RGD, leucine-rich repeat, tropomodulin and proline-rich containing protein). The RLTPR hypothetical protein has a functional domain organization similar to Acan125, a myosin-binding protein expressed by Acanthamoeba castellanni. RT-PCR with RLTPR PCR primers amplified products from cDNAs prepared from all of the 30 different tissues that we examined including thymus, spleen, colon, skin, skin keratinocytes, skin fibroblasts and fetal skin. During the course of screening the human keratinocyte cDNA library, some alternative splicing was also detected in three regions of the RLTPR gene. In addition, sequence analysis of the RLTPR genes from eight psoriasis patients and eight healthy controls revealed a number of synonymous and nonsynonymous SNPs that may be useful markers for future disease association studies.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakane T, Satoh T, Inada Y, Nakayama J, Itoh F, Chiba S. Molecular cloning and expression of HRLRRP, a novel heart-restricted leucine-rich repeat protein. Biochem Biophys Res Commun 2004; 314:1086-92. [PMID: 14751244 DOI: 10.1016/j.bbrc.2003.12.202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated a novel leucine-rich repeat protein (LRRP) cDNA from E13 mouse embryos by the in silico approach. The cDNA encoded a protein of 274 amino acids having 7 leucine-rich repeat motifs at the center of the protein. An in vitro transcription/translation study showed that the cDNA coded for a peptide of approximately 31kDa. Northern blot analysis suggested that the mRNA of this novel LRRP was expressed only in the heart, although RT-PCR indicated slight expression in skeletal muscle as well. The transcripts of this gene and Nkx-2.5/Csx were detected in the early stage of cardiac differentiation of P19CL6 embryonal carcinoma cells treated with 1% dimethyl sulfoxide. The fusion protein made between it and GFP was detected at a high level in mitochondria and a low level in the nuclei of COS7 cells. The nuclei of the adult mouse heart were strongly stained with the antibody raised against the synthetic peptide of the protein. Therefore, we designated the gene as heart-restricted leucine-rich repeat protein (HRLRRP) and assume that mouse HRLRRP may play important roles in cardiac development and/or cardiac function.
Collapse
Affiliation(s)
- Tokio Nakane
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Asahi 3-1-1, 390-8621, Matsumoto, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Remmert K, Olszewski TE, Bowers MB, Dimitrova M, Ginsburg A, Hammer JA. CARMIL Is a Bona Fide Capping Protein Interactant. J Biol Chem 2004; 279:3068-77. [PMID: 14594951 DOI: 10.1074/jbc.m308829200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CARMIL, also known as Acan 125, is a multidomain protein that was originally identified on the basis of its interaction with the Src homology 3 (SH3) domain of type I myosins from Acanthamoeba. In a subsequent study of CARMIL from Dictyostelium, pull-down assays indicated that the protein also bound capping protein and the Arp2/3 complex. Here we present biochemical evidence that Acanthamoeba CARMIL interacts tightly with capping protein. In biochemical preparations, CARMIL copurified extensively with two polypeptides that were shown by microsequencing to be the alpha- and beta-subunits of Acanthamoeba capping protein. The complex between CARMIL and capping protein, which is readily demonstratable by chemical cross-linking, can be completely dissociated by size exclusion chromatography at pH 5.4. Analytical ultracentrifugation, surface plasmon resonance and SH3 domain pull-down assays indicate that the dissociation constant of capping protein for CARMIL is approximately 0.4 microm or lower. Using CARMIL fusion proteins, the binding site for capping protein was shown to reside within the carboxyl-terminal, approximately 200 residue, proline-rich domain of CARMIL. Finally, chemical cross-linking, analytical ultracentrifugation, and rotary shadowed electron microscopy revealed that CARMIL is asymmetric and that it exists in a monomer <--> dimer equilibrium with an association constant of 1.0 x 10(6) m(-1). Together, these results indicate that CARMIL self-associates and interacts with capping protein with affinities that, given the cellular concentrations of the proteins ( approximately 1 and 2 microm for capping protein and CARMIL, respectively), indicate that both activities should be physiologically relevant.
Collapse
Affiliation(s)
- Kirsten Remmert
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Ever since the discovery of class I myosins, the first nonmuscle myosins, about 30 years ago, the history of unconventional myosins has been linked to the organization and working of actin filaments. It slowly emerged from studies of class I myosins in lower eukaryotes that they are involved in mechanisms of endocytosis. Most interestingly, a flurry of recent findings assign a more active role to class I myosins in regulating the spatial and temporal organization of actin filament nucleation and elongation. The results highlight the multiple links between class I myosins and the major actin nucleator, the Arp2/3 complex, and its newly described activators. Two additional types of unconventional myosins, myosinIX, and Dictyostelium discoideum MyoM, have recently been tied to the signaling pathways controlling actin cytoskeleton remodeling. The present review surveys the links between these three classes of molecular motors and the complex cellular processes of endocytosis and actin dynamics, and concentrates on a working model accounting for the function of class I myosins via recruitment of the machinery responsible for actin nucleation and elongation.
Collapse
Affiliation(s)
- Thierry Soldati
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
24
|
Kong HH, Pollard TD. Intracellular localization and dynamics of myosin-II and myosin-IC in live Acanthamoeba by transient transfection of EGFP fusion proteins. J Cell Sci 2002; 115:4993-5002. [PMID: 12432085 DOI: 10.1242/jcs.00159] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We developed a reliable method for transient transfection of Acanthamoeba using Superfect (Qiagen) and a vector with the Acanthamoeba ubiquitin promoter and enhanced green fluorescent protein (EGFP) as the reporter gene. The transfection efficiency was 3% for profilin-I-EGFP and EGFP-myosin-II tail, and less than 0.5% for larger constructs such as full length myosin-II or myosin-IC. Profilin-I-EGFP was distributed throughout the cytoplasm as observed previously with rhodamine-labeled profilin, while EGFP alone accumulated in the nucleus. EGFP fused to full length myosin-II or to the C-terminal 256 residues of the myosin-II tail concentrated in fluorescent spots similar to thick filaments and minifilaments identified previously in fixed cells with fluorescent antibodies. Thick filaments were located in the dorsal cytoplasm and along the lateral margins of the back half of the cell. Thick filaments formed behind the leading edge and moved continuously towards the rear of the cell, where they disassembled. If phosphorylation of the myosin-II heavy chain was prevented by mutation of all three phosphorylated serines to alanine, thick filaments of unphosphorylated myosin-II accumulated around vesicles of various sizes. EGFP-myosin-IC was spread throughout the cytoplasm but concentrated transiently around contractile vacuoles and macropinocytosis cups providing that the construct included both the head and a tail with the SH3 domain.
Collapse
Affiliation(s)
- Hyun-Hee Kong
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
Abstract
Myosin-I is the single-headed member of the myosin superfamily that associates with lipid membranes. Biochemical experiments have shown that myosin-I membrane binding is the result of electrostatic interactions between the basic tail domain and acidic phospholipids. To better understand the dynamics of myosin-I membrane association, we measured the rates of association and dissociation of a recombinant myo1c tail domain (which includes three IQ domains and bound calmodulins) to and from large unilamellar vesicles using fluorescence resonance energy transfer. The apparent second-order rate constant for lipid-tail association in the absence of calcium is fast with nearly every lipid-tail collision resulting in binding. The rate of binding is decreased in the presence of calcium. Time courses of myo1c-tail dissociation are best fit by two exponential rates: a fast component that has a rate that depends on the ratio of acidic phospholipid to myo1c-tail (phosphatidylserine (PS)/tail) and a slow component that predominates at high PS/tail ratios. The dissociation rate of the slow component is slower than the myo1c ATPase rate, suggesting that myo1c is able to stay associated with the lipid membrane during multiple catalytic cycles of the motor. Calcium significantly increases the lifetimes of the membrane-bound state, resulting in dissociation rates 0.001 s(-1).
Collapse
Affiliation(s)
- Nanyun Tang
- Pennsylvania Muscle Institute and the Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | |
Collapse
|
26
|
Krieger I, Kostyukova A, Yamashita A, Nitanai Y, Maéda Y. Crystal structure of the C-terminal half of tropomodulin and structural basis of actin filament pointed-end capping. Biophys J 2002; 83:2716-25. [PMID: 12414704 PMCID: PMC1302356 DOI: 10.1016/s0006-3495(02)75281-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tropomodulin is the unique pointed-end capping protein of the actin-tropomyosin filament. By blocking elongation and depolymerization, tropomodulin regulates the architecture and the dynamics of the filament. Here we report the crystal structure at 1.45-A resolution of the C-terminal half of tropomodulin (C20), the actin-binding moiety of tropomodulin. C20 is a leucine-rich repeat domain, and this is the first actin-associated protein with a leucine-rich repeat. Binding assays suggested that C20 also interacts with the N-terminal fragment, M1-M2-M3, of nebulin. Based on the crystal structure, we propose a model for C20 docking to the actin subunit at the pointed end. Although speculative, the model is consistent with the idea that a tropomodulin molecule competes with an actin subunit for a pointed end. The model also suggests that interactions with tropomyosin, actin, and nebulin are all possible sources of influences on the dynamic properties of pointed-end capping by tropomodulin.
Collapse
Affiliation(s)
- Inna Krieger
- Laboratory for Structural Biochemistry, RIKEN Harima Institute at SPring-8, Mikazuki, Sayo, Hyogo, Japan 679-5148
| | | | | | | | | |
Collapse
|
27
|
Abstract
Tropomodulin (Tmod) stabilizes the actin-tropomyosin filament by capping the slow-growing end (P-end). The N- and C-terminal halves play distinct roles; the N-terminal half interacts with the N-terminal region of tropomyosin, whereas the C-terminal half interacts with actin. Our previous study (A. Kostyukova, K. Maeda, E. Yamauchi, I. Krieger, and Y. Maéda Y., 2000, Eur. J. Biochem. 267:6470-6475) suggested that the two halves are also structurally distinct from each other. We have now studied the folding properties of the two halves, by circular dichroism spectroscopy and by differential scanning calorimetry of the expressed chicken E-type tropomodulin and its large fragments. The results showed that the C-terminal half represents a single, independently folded unit that melts cooperatively through a two-state transition. In contrast, the N-terminal half lacks a definite tertiary structure in solution. The binding of N11, a fragment that corresponds to the first 91 amino acids of the tropomodulin, to tropomyosin substantially stabilized the tropomyosin. This may indicate that the flexible structure of the N-terminal half of tropomodulin in solution is required for binding to tropomyosin and that the N-terminal half acquires its tertiary structure upon binding to tropomyosin.
Collapse
Affiliation(s)
- A S Kostyukova
- Laboratory for Structural Biochemistry, RIKEN Harima Institute at SPring8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | |
Collapse
|
28
|
Jung G, Remmert K, Wu X, Volosky JM, III JAH. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 2001; 153:1479-97. [PMID: 11425877 PMCID: PMC2150732 DOI: 10.1083/jcb.153.7.1479] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Accepted: 05/11/2001] [Indexed: 11/22/2022] Open
Abstract
Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the alpha and beta subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH(2)-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end-directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans, Drosophila, mouse, and man, be named CARMIL proteins, for capping protein, Arp2/3, and myosin I linker.
Collapse
Affiliation(s)
- Goeh Jung
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Kirsten Remmert
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Xufeng Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Joanne M. Volosky
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - John A. Hammer III
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
29
|
Barzik M, Carl UD, Schubert WD, Frank R, Wehland J, Heinz DW. The N-terminal domain of Homer/Vesl is a new class II EVH1 domain. J Mol Biol 2001; 309:155-69. [PMID: 11491285 DOI: 10.1006/jmbi.2001.4640] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular activities controlled by signal transduction processes such as cell motility and cell growth depend on the tightly regulated assembly of multiprotein complexes. Adapter proteins that specifically interact with their target proteins are key components required for the formation of these assemblies. Ena/VASP-homology 1 (EVH1) domains are small constituents of large modular proteins involved in microfilament assembly that specifically recognize proline-rich regions. EVH1 domain-containing proteins are present in neuronal cells, like the Homer/Vesl protein family that is involved in memory-generating processes. Here, we describe the crystal structure of the murine EVH1 domain of Vesl 2 at 2.2 A resolution. The small globular protein consists of a seven-stranded antiparallel beta-barrel with a C-terminal alpha-helix packing alongside the barrel. A shallow groove running parallel with beta-strand VI forms an extended peptide-binding site. Using peptide library screenings, we present data that demonstrate the high affinity of the Vesl 2 EVH1 domain towards peptide sequences containing a proline-rich core sequence (PPSPF) that requires additional charged amino acid residues on either side for specific binding. Our functional data, substantiated by structural data, demonstrate that the ligand-binding of the Vesl EVH1 domain differs from the interaction characteristics of the previously examined EVH1 domains of the Evl/Mena proteins. Analogous to the Src homology 3 (SH3) domains that bind their cognate ligands in two distinct directions, we therefore propose the existence of two distinct classes of EVH1 domains.
Collapse
Affiliation(s)
- M Barzik
- Department of Structural Biology and German National Center of Biotechnology (GBF), Braunschweig
| | | | | | | | | | | |
Collapse
|
30
|
de la Roche MA, Côté GP. Regulation of Dictyostelium myosin I and II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:245-61. [PMID: 11257438 DOI: 10.1016/s0304-4165(01)00110-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.
Collapse
Affiliation(s)
- M A de la Roche
- Department of Biochemistry, Queen's University, K7L 3N6, Kingston, Ont., Canada
| | | |
Collapse
|
31
|
Chen ZY, Hasson T, Zhang DS, Schwender BJ, Derfler BH, Mooseker MS, Corey DP. Myosin-VIIb, a novel unconventional myosin, is a constituent of microvilli in transporting epithelia. Genomics 2001; 72:285-96. [PMID: 11401444 DOI: 10.1006/geno.2000.6456] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse myosin-VIIb, a novel unconventional myosin, was cloned from the inner ear and kidney. The human myosin-VIIb (HGMW-approved symbol MYO7B) sequence and exon structure were then deduced from a human BAC clone. The mouse gene was mapped to chromosome 18, approximately 0.5 cM proximal to D18Mit12. The human gene location at 2q21.1 was deduced from the map location of the BAC and confirmed by fluorescence in situ hybridization. Myosin-VIIb has a conserved myosin head domain, five IQ domains, two MyTH4 domains coupled to two FERM domains, and an SH3 domain. A phylogenetic analysis based on the MyTH4 domains suggests that the coupled MyTH and FERM domains were duplicated in myosin evolution before separation into different classes. Myosin-VIIb is expressed primarily in kidney and intestine, as shown by Northern and immunoblot analyses. An antibody to myosin-VIIb labeled proximal tubule cells of the kidney and enterocytes of the intestine, specifically the distal tips of apical microvilli on these transporting epithelial cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Transport
- Blotting, Northern
- Blotting, Western
- Chromosome Mapping
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Epithelium/chemistry
- Exons
- Female
- Genes/genetics
- Immunohistochemistry
- Intestines/chemistry
- Introns
- Kidney/chemistry
- Mice
- Mice, Inbred BALB C
- Microvilli/chemistry
- Molecular Sequence Data
- Myosins/genetics
- Myosins/metabolism
- Phylogeny
- Protein Isoforms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- Z Y Chen
- Department of Neurology, Howard Hughes Medical Institute, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- N Osherov
- Division of Pathology and Laboratory Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
33
|
Liu X, Brzeska H, Korn ED. Functional analysis of tail domains of Acanthamoeba myosin IC by characterization of truncation and deletion mutants. J Biol Chem 2000; 275:24886-92. [PMID: 10840041 DOI: 10.1074/jbc.m004287200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acanthamoeba myosin IC has a single 129-kDa heavy chain and a single 17-kDa light chain. The heavy chain comprises a 75-kDa catalytic head domain with an ATP-sensitive F-actin-binding site, a 3-kDa neck domain, which binds a single 17-kDa light chain, and a 50-kDa tail domain, which binds F-actin in the presence or absence of ATP. The actin-activated MgATPase activity of myosin IC exhibits triphasic actin dependence, apparently as a consequence of the two actin-binding sites, and is regulated by phosphorylation of Ser-329 in the head. The 50-kDa tail consists of a basic domain, a glycine/proline/alanine-rich (GPA) domain, and a Src homology 3 (SH3) domain, often referred to as tail homology (TH)-1, -2, and -3 domains, respectively. The SH3 domain divides the TH-3 domain into GPA-1 and GPA-2. To define the functions of the tail domains more precisely, we determined the properties of expressed wild type and six mutant myosins, an SH3 deletion mutant and five mutants truncated at the C terminus of the SH3, GPA-2, TH-1, neck and head domains, respectively. We found that both the TH-1 and GPA-2 domains bind F-actin in the presence of ATP. Only the mutants that retained an actin-binding site in the tail exhibited triphasic actin-dependent MgATPase activity, in agreement with the F-actin-cross-linking model, but truncation reduced the MgATPase activity at both low and high actin concentrations. Deletion of the SH3 domain had no effect. Also, none of the tail domains, including the SH3 domain, affected either the K(m) or V(max) for the phosphorylation of Ser-329 by myosin I heavy chain kinase.
Collapse
Affiliation(s)
- X Liu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
34
|
Telliez JB, Bean KM, Lin LL. LRDD, a novel leucine rich repeat and death domain containing protein. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1478:280-8. [PMID: 10825539 DOI: 10.1016/s0167-4838(00)00029-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Death domains (DD) and leucine rich repeats (LRR) are two different types of protein interaction motifs. Death domains are found predominantly in proteins involved in signaling and are involved in homo- and heteromultimerization. Leucine rich repeats are found in proteins with diverse cellular functions, like cell adhesion and cellular signaling, and mediate reversible protein-protein interactions. In this paper we report the cloning of a new human gene called LRDD (leucine repeat death domain containing protein). LRDD encodes a protein of 83 kDa with six LRRs at the N-terminus and a DD at the C-terminus. LRDD appears to be processed into two fragments of about 33 and 55 kDa, containing LRRs and DD respectively. Interestingly, LRDD is shown to interact with two other death domain containing proteins, FADD and MADD, presumably through death domain interactions. LRDD may represent a new type of adapter protein that could be involved in signaling or other cellular functions.
Collapse
Affiliation(s)
- J B Telliez
- Small Molecule Drug Discovery Group, Genetics Institute, Inc., 87 CambridgePark Drive, 02140, Cambridge, MA 02140, USA
| | | | | |
Collapse
|
35
|
Barylko B, Binns DD, Albanesi JP. Regulation of the enzymatic and motor activities of myosin I. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:23-35. [PMID: 10722874 DOI: 10.1016/s0167-4889(00)00006-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myosins I were the first unconventional myosins to be purified and they remain the best characterized. They have been implicated in various motile processes, including organelle translocation, ion channel gating and cytoskeletal reorganization but their exact cellular functions are still unclear. All members of the myosin I family, from yeast to man, have three structural domains: a catalytic head domain that binds ATP and actin; a tail domain believed to be involved in targeting the myosins to specific subcellular locations and a junction or neck domain that connects them and interacts with light chains. In this review we discuss how each of these three domains contributes to the regulation of myosin I enzymatic activity, motor activity and subcellular localization.
Collapse
Affiliation(s)
- B Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235-9041, USA.
| | | | | |
Collapse
|
36
|
Zot HG, Bhaskara V, Liu L. Acan125 binding to the SH3 domain of acanthamoeba myosin-IC. Arch Biochem Biophys 2000; 375:161-4. [PMID: 10683262 DOI: 10.1006/abbi.1999.1648] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The domain organization of Acanthamoeba myosin-I, an oligomodular motor protein, includes a potentially important protein interaction module that is mostly uncharacterized. The Src homology 3, SH3, domain of myosin-I binds Acan125, a protein containing at least two consensus ligand binding domains: C-terminal SH3 binding motifs (PXXP) and N-terminal leucine-rich repeats. We report the first affinities determined for an SH3 domain of any myosin, namely, K(d) = 7 microM for a 21-residue synthetic peptide based on the PXXP domain sequence and K(d) = 0.15 microM for the PXXP domain included in the C-terminus of Acan125. These values are consistent with affinities reported for peptides and proteins that associate with SH3. By deletional analysis we show that only the PXXP domain is required for Acan125 to interact with the SH3 domain of Acanthamoeba myosin-IC (AmyoC(SH3)). The synthetic peptide described above at a concentration near the K(d) for SH3 binding blocked the interaction between native AmyoC and Acan125, mapping the interaction to the PXXP domain of Acan125 and the SH3 domain of myosin-I. These results are consistent with prototypical SH3 binding and suggest that a PXXP module is both necessary and sufficient to interact with an SH3 module of myosin-I.
Collapse
Affiliation(s)
- H G Zot
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, 48197, USA.
| | | | | |
Collapse
|
37
|
Lechler T, Shevchenko A, Shevchenko A, Li R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 2000; 148:363-73. [PMID: 10648569 PMCID: PMC2174278 DOI: 10.1083/jcb.148.2.363] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1999] [Accepted: 12/06/1999] [Indexed: 11/22/2022] Open
Abstract
The generation of cortical actin filaments is necessary for processes such as cell motility and cell polarization. Several recent studies have demonstrated that Wiskott-Aldrich syndrome protein (WASP) family proteins and the actin-related protein (Arp) 2/3 complex are key factors in the nucleation of actin filaments in diverse eukaryotic organisms. To identify other factors involved in this process, we have isolated proteins that bind to Bee1p/Las17p, the yeast WASP-like protein, by affinity chromatography and mass spectroscopic analysis. The yeast type I myosins, Myo3p and Myo5p, have both been identified as Bee1p-interacting proteins. Like Bee1p, these myosins are essential for cortical actin assembly as assayed by in vitro reconstitution of actin nucleation sites in permeabilized yeast cells. Analysis using this assay further demonstrated that the motor activity of these myosins is required for the polymerization step, and that actin polymerization depends on phosphorylation of myosin motor domain by p21-activated kinases (PAKs), downstream effectors of the small guanosine triphosphatase, Cdc42p. The type I myosins also interact with the Arp2/3 complex through a sequence at the end of the tail domain homologous to the Arp2/3-activating region of WASP-like proteins. Combined deletions of the Arp2/3-interacting domains of Bee1p and the type I myosins abolish actin nucleation sites at the cortex, suggesting that these proteins function redundantly in the activation of the Arp2/3 complex.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Anna Shevchenko
- Peptide and Protein Group, European Molecular Biology Laboratory (EMBL), 69012 Heidelberg, Germany
| | - Andrej Shevchenko
- Peptide and Protein Group, European Molecular Biology Laboratory (EMBL), 69012 Heidelberg, Germany
| | - Rong Li
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
38
|
Affiliation(s)
- L M Machesky
- School of Biosciences, Division of Molecular and Cell Biology, University of Birmingham, Birmingham B15 2TT United Kingdom.
| |
Collapse
|
39
|
Lee WL, Ostap EM, Zot HG, Pollard TD. Organization and ligand binding properties of the tail of Acanthamoeba myosin-IA. Identification of an actin-binding site in the basic (tail homology-1) domain. J Biol Chem 1999; 274:35159-71. [PMID: 10574999 DOI: 10.1074/jbc.274.49.35159] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Acanthamoeba myosin-IA heavy chain gene encodes a 134-kDa protein with a catalytic domain, three potential light chain binding sites, and a tail with separately folded tail homology (TH) -1, -2, and -3 domains. TH-1 is highly resistant to trypsin digestion despite consisting of 15% lysine and arginine. TH-2/3 is resistant to alpha-chymotrypsin digestion. The peptide link between TH-1 and TH-2/3 is cleaved by trypsin, alpha-chymotrypsin, and endo-AspN but not V8 protease. The CD spectra of TH-2/3 indicate predominantly random structure, turns, and beta-strands but no alpha-helix. The hydrodynamic properties of TH-2/3 (Stokes' radius of 3.0 nm, sedimentation coefficient of 1.8 S, and molecular mass of 21.6 kDa) indicate that these domains are as long as the whole myosin-I tail in reconstructions of electron micrographs. Furthermore, separately expressed and purified TH-1 binds with high affinity to TH-2/3. Thus we propose that TH-1 and TH-2/3 are arranged side by side in the myosin-IA tail. Separate TH-1, TH-2, and TH-2/3 each binds muscle actin filaments with high affinity. Salt inhibits TH-2/3 binding to muscle actin but not amoeba actin filaments. TH-1 enhances binding of TH-2/3 to muscle actin filaments at physiological salt concentration, indicating that TH-1 and TH-2/3 cooperate in actin binding. An intrinsic fluorescence assay shows that TH-2/3 also binds with high affinity to the protein Acan125 similar to the SH3 domain of myosin-IC. Phylogenetic analysis of SH3 sequences suggests that myosin-I acquired SH3 domain after the divergence of the genes for myosin-I isoforms.
Collapse
Affiliation(s)
- W L Lee
- BCMB Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
40
|
Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD, Miller W, Touchman JW, Jin L, Sullivan SL, Sellers JR, Camper SA, Lloyd RV, Kachar B, Friedman TB, Fridell RA. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 1999; 61:243-58. [PMID: 10552926 DOI: 10.1006/geno.1999.5976] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in myosin XV are responsible for congenital profound deafness DFNB3 in humans and deafness and vestibular defects in shaker 2 mice. By combining direct cDNA analyses with a comparison of 95.2 kb of genomic DNA sequence from human chromosome 17p11.2 and 88.4 kb from the homologous region on mouse chromosome 11, we have determined the genomic and mRNA structures of the human (MYO15) and mouse (Myo15) myosin XV genes. Our results indicate that full-length myosin XV transcripts contain 66 exons, are >12 kb in length, and encode 365-kDa proteins that are unique among myosins in possessing very long approximately 1200-aa N-terminal extensions preceding their conserved motor domains. The tail regions of the myosin XV proteins contain two MyTH4 domains, two regions with similarity to the membrane attachment FERM domain, and a putative SH3 domain. Northern and dot blot analyses revealed that myosin XV is expressed in the pituitary gland in both humans and mice. Myosin XV transcripts were also observed by in situ hybridization within areas corresponding to the sensory epithelia of the cochlea and vestibular systems in the developing mouse inner ear. Immunostaining of adult mouse organ of Corti revealed that myosin XV protein is concentrated within the cuticular plate and stereocilia of cochlear sensory hair cells. These results indicate a likely role for myosin XV in the formation or maintenance of the unique actin-rich structures of inner ear sensory hair cells.
Collapse
Affiliation(s)
- Y Liang
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), 5 Research Court, Rockville, Maryland, 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dai J, Ting-Beall HP, Hochmuth RM, Sheetz MP, Titus MA. Myosin I contributes to the generation of resting cortical tension. Biophys J 1999; 77:1168-76. [PMID: 10423462 PMCID: PMC1300408 DOI: 10.1016/s0006-3495(99)76968-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The amoeboid myosin I's are required for cellular cortical functions such as pseudopod formation and macropinocytosis, as demonstrated by the finding that Dictyostelium cells overexpressing or lacking one or more of these actin-based motors are defective in these processes. Defects in these processes are concomitant with changes in the actin-filled cortex of various Dictyostelium myosin I mutants. Given that the amoeboid myosin I's possess both actin- and membrane-binding domains, the mutant phenotypes could be due to alterations in the generation and/or regulation of cell cortical tension. This has been directly tested by analyzing mutant Dictyostelium that either lacks or overexpresses various myosin I's, using micropipette aspiration techniques. Dictyostelium cells lacking only one myosin I have normal levels of cortical tension. However, myosin I double mutants have significantly reduced (50%) cortical tension, and those that mildly overexpress an amoeboid myosin I exhibit increased cortical tension. Treatment of either type of mutant with the lectin concanavalin A (ConA) that cross-links surface receptors results in significant increases in cortical tension, suggesting that the contractile activity of these myosin I's is not controlled by this stimulus. These results demonstrate that myosin I's work cooperatively to contribute substantially to the generation of resting cortical tension that is required for efficient cell migration and macropinocytosis.
Collapse
Affiliation(s)
- J Dai
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
42
|
Soldati T, Geissler H, Schwarz EC. How many is enough? Exploring the myosin repertoire in the model eukaryote Dictyostelium discoideum. Cell Biochem Biophys 1999; 30:389-411. [PMID: 10403058 DOI: 10.1007/bf02738121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cytoplasm of eukaryotic cells is a very complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. It is crucial to understand how organelles and macro-complexes of RNA and/or proteins are transported to and/or maintained at their specific cellular locations. The importance of filamentous-actin-directed myosin-powered cargo transport was only recently realized, and after an initial explosion in the identification of new molecules, the field is now concentrating on their functional dissection. Direct connections of myosins to a variety of cellular tasks are now slowly emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport, etc. Unconventional myosins have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark of eukaryotism. The genome of S. cerevisiae encodes only five myosins, whereas a mammalian cell has the capacity to express between two and three dozen myosins. Why is it so crucial to arrive at this final census? The main questions that we would like to discuss are the following. How many distinct myosin-powered functions are carried out in a typical higher eukaryote? Or, in other words, what is the minimal set of myosins essential to accomplish the multitude of tasks related to motility and intracellular dynamics in a multicellular organism? And also, as a corollary, what is the degree of functional redundancy inside a given myosin class? In that respect, the choice of a model organism suitable for such an investigation is more crucial than ever. Here we argue that Dictyostelium discoideum is affirming its position as an ideal system of intermediate complexity to study myosin-powered trafficking and is or will soon become the second eukaryote for which complete knowledge of the whole repertoire of myosins is available.
Collapse
Affiliation(s)
- T Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | |
Collapse
|
43
|
Swanson JA, Johnson MT, Beningo K, Post P, Mooseker M, Araki N. A contractile activity that closes phagosomes in macrophages. J Cell Sci 1999; 112 ( Pt 3):307-16. [PMID: 9885284 DOI: 10.1242/jcs.112.3.307] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies of Fc-mediated phagocytosis by mouse macrophages identified a contractile activity at the distal margins of forming phagosomes. Time-lapse video microscopic analysis of macrophages containing rhodamine-labeled actin and fluorescein dextran showed that actin was concentrated at the distal margins of closing phagosomes. Phagocytosis-related contractile activities were observed when one IgG-opsonized erythrocyte was engaged by two macrophages. Both cells extended pseudopodia until they met midway around the erythrocyte. It was then constricted and pulled into two phagosomes, which remained interconnected by a string of erythrocyte membrane. Butanedione monoxime, an uncompetitive inhibitor of class II and perhaps other myosins, and wortmannin and LY294002, inhibitors of phosphoinositide 3-kinase, prevented the constrictions without inhibiting the initial pseudopod extension. Immunofluorescence microscopy showed the presence of myosins IC, II, V and IXb in phagosomes. Of these, only myosin IC was concentrated around the strings connecting shared erythrocytes, suggesting that myosin IC mediates the purse-string-like contraction that closes phagosomes. The sequential processes of pseudopod extension and contraction can explain how macropinosomes and spacious phagosomes form without guidance from a particle surface.
Collapse
Affiliation(s)
- J A Swanson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Soldati T, Schwarz EC, Geissler H. Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling. PROTOPLASMA 1999; 209:28-37. [PMID: 18987792 DOI: 10.1007/bf01415698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/1998] [Accepted: 12/09/1998] [Indexed: 05/27/2023]
Abstract
The cytoplasm of eukaryotic cells is a complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. The actin cytoskeleton is essential for the maintenance of cell shape and locomotion, and also provides tracks for active intracellular transport. Myosins, the actin-dependent motor proteins form a superfamily of at least 15 structural classes and have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark feature of eukaryotes. Direct connections of myosins to a variety of cellular tasks are now emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport. Recent studies reveal that myosins also play an essential role in many aspects of signal transduction and neurosensation.
Collapse
Affiliation(s)
- T Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
45
|
Novak KD, Titus MA. The myosin I SH3 domain and TEDS rule phosphorylation site are required for in vivo function. Mol Biol Cell 1998; 9:75-88. [PMID: 9436992 PMCID: PMC25221 DOI: 10.1091/mbc.9.1.75] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The class I myosins play important roles in controlling many different types of actin-based cell movements. Dictyostelium cells either lacking or overexpressing amoeboid myosin Is have significant defects in cortical activities such as pseudopod extension, cell migration, and macropinocytosis. The existence of Dictyostelium null mutants with strong phenotypic defects permits complementation analysis as a means of exploring important functional features of the myosin I heavy chain. Mutant Dictyostelium cells lacking two myosin Is exhibit profound defects in growth, endocytosis, and rearrangement of F-actin. Expression of the full-length myoB heavy chain in these cells fully rescues the double mutant defects. However, mutant forms of the myoB heavy chain in which a serine at the consensus phosphorylation site has been altered to an alanine or in which the C-terminal SH3 domain has been removed fail to complement the null phenotype. The wild-type and mutant forms of the myoB heavy chain appeared to be properly localized when they were expressed in the myosin I null mutants. These results suggest that the amoeboid myosin I consensus phosphorylation site and SH3 domains do not play a role in the localization of myosin I, but are absolutely required for in vivo function.
Collapse
Affiliation(s)
- K D Novak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|