1
|
Poudel K, Ji Z, Njauw CN, Rajadurai A, Bhayana B, Sullivan RJ, Kim JO, Tsao H. Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against Kit K641E -mutant melanoma. Bioact Mater 2025; 46:347-364. [PMID: 39834347 PMCID: PMC11742834 DOI: 10.1016/j.bioactmat.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer nanovaccines hold the promise for personalization, precision, and pliability by integrating all the elements essential for effective immune stimulation. An effective immune response requires communication and interplay between antigen-presenting cells (APCs), tumor cells, and immune cells to stimulate, extend, and differentiate antigen-specific and non-specific anti-tumor immune cells. The versatility of nanomedicine can be adapted to deliver both immunoadjuvant payloads and antigens from the key players in immunity (i.e., APCs and tumor cells). The imperative for novel cancer medicine is particularly pressing for less common but more devastating KIT-mutated acral and mucosal melanomas that are resistant to small molecule c-kit and immune checkpoint inhibitors. To overcome this challenge, we successfully engineered nanotechnology-enabled hybrid biomimetic nanovaccine (HBNV) comprised of membrane proteins (antigens to activate immunity and homing/targeting ligand to tumor microenvironment (TME) and lymphoid organs) from fused cells (of APCs and tumor cells) and immunoadjuvant. These HBNVs are efficiently internalized to the target cells, assisted in the maturation of APCs via antigens and adjuvant, activated the release of anti-tumor cytokines/inhibited the release of immunosuppressive cytokine, showed a homotypic effect on TME and lymph nodes, activated the anti-tumor immune cells/downregulated the immunosuppressive immune cells, reprogram the tumor microenvironment, and showed successful anti-tumor therapeutic and prophylactic effects.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anpuchchelvi Rajadurai
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan J. Sullivan
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Wu Z, Zhang H, Yan J, Wei Y, Su J. Engineered biomembrane-derived nanoparticles for nanoscale theranostics. Theranostics 2023; 13:20-39. [PMID: 36593970 PMCID: PMC9800735 DOI: 10.7150/thno.76894] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, biological membrane-derived nanoparticles (NPs) have shown enormous potential as drug delivery vehicles due to their outstanding biomimetic properties. To make these NPs more adaptive to complex biological systems, some methods have been developed to modify biomembranes and endow them with more functions while preserving their inherent natures. In this review, we introduce five common approaches used for biomembrane decoration: membrane hybridization, the postinsertion method, chemical methods, metabolism engineering and gene engineering. These methods can functionalize a series of biomembranes derived from red blood cells, white blood cells, tumor cells, platelets, exosomes and so on. Biomembrane engineering could markedly facilitate the targeted drug delivery, treatment and diagnosis of cancer, inflammation, immunological diseases, bone diseases and Alzheimer's disease. It is anticipated that these membrane modification techniques will advance biomembrane-derived NPs into broader applications in the future.
Collapse
Affiliation(s)
- Ziqing Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Institute of Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Jing Yan
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Institute of Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China.,✉ Corresponding authors: Jiacan Su, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail: ; Yan Wei, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail:
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China.,Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.,✉ Corresponding authors: Jiacan Su, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail: ; Yan Wei, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail:
| |
Collapse
|
3
|
Kufe DW. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis 2021; 41:1173-1183. [PMID: 32710608 DOI: 10.1093/carcin/bgaa082] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is a highly prevalent consequence of changes in environmental and lifestyle factors that contribute to the development of cancer. The basis for this critical association has largely remained unclear. The MUC1 gene evolved in mammals to protect epithelia from the external environment. The MUC1-C subunit promotes responses found in wound healing and cancer. MUC1-C induces EMT, epigenetic reprogramming, dedifferentiation and pluripotency factor expression, which when prolonged in chronic inflammation promote cancer progression. As discussed in this review, MUC1-C also drives drug resistance and immune evasion, and is an important target for cancer therapeutics now under development.
Collapse
Affiliation(s)
- Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Song W, Feng J, Zhang XZ. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nat Commun 2019; 10:3199. [PMID: 31324770 PMCID: PMC6642123 DOI: 10.1038/s41467-019-11157-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023] Open
Abstract
Most cancer vaccines are unsuccessful in eliciting clinically relevant effects. Without using exogenous antigens and adoptive cells, we show a concept of utilizing biologically reprogrammed cytomembranes of the fused cells (FCs) derived from dendritic cells (DCs) and cancer cells as tumor vaccines. The fusion of immunologically interrelated two types of cells results in strong expression of the whole tumor antigen complexes and the immunological co-stimulatory molecules on cytomembranes (FMs), allowing the nanoparticle-supported FM (NP@FM) to function like antigen presenting cells (APCs) for T cell immunoactivation. Moreover, tumor-antigen bearing NP@FM can be bio-recognized by DCs to induce DC-mediated T cell immunoactivation. The combination of these two immunoactivation pathways offers powerful antitumor immunoresponse. Through mimicking both APCs and cancer cells, this cytomembrane vaccine strategy can develop various vaccines toward multiple tumor types and provide chances for accommodating diverse functions originating from the supporters.
Collapse
Affiliation(s)
- Wen-Long Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Mei-Zhen Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P.R. China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Wu-Yang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jing-Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Wen Song
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China. .,The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|
5
|
Shi M, Su L, Hao S, Guo X, Xiang J. Fusion Hybrid of Dendritic Cells and Engineered Tumor Cells Expressing Interleukin-12 Induces Type 1 Immune Responses against Tumor. TUMORI JOURNAL 2019; 91:531-8. [PMID: 16457153 DOI: 10.1177/030089160509100614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and Background Dendritic cell (DC)-tumor fusion hybrid vaccinees that facilitate antigen presentation represent a novel powerful strategy in cancer immunotherapy. Preclinical studies have demonstrated that IL-12 promotes specific antitumor immunity mediated by T cells in several types of tumors. In the present study, we investigated the antitumor immunity derived from vaccination of fusion hybrids between DCs and engineered J558/IL-12 myeloma cells secreting Th1 cytokine IL-12. Methods The expression vector pcDNA-IL-12 was generated and transfected into J558 myeloma cells and then bone marrow-derived DCs were fused with engineered J558/IL-12 cells. The antitumor immunity derived from vaccination of the fusion hybrid DC/J558/IL-12 was evaluated in vitro and in vivo. Results DC/J558/IL-12 cells secreted recombinant IL-12 (1.6 ng/mL), and inoculation of BALB/c mice with DC/J558/IL-12 hybrid induced a Th1 dominant immune response and resulted in tumor regression. Immunization of mice with engineered DC/J558/IL-12 hybrid elicited stronger J558 tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro as well as more potent protective immunity against J558 tumor challenge in vivo than immunization with the mixture of DCs and J558/IL-12, J558/IL-12 and J558, respectively. Furthermore, the antitumor immunity mediated by DC/J558/1L-12 tumor cell vaccination in vivo appeared to be dependent on CD8+ CTL. Conclusions These results demonstrate that the engineered fusion hybrid vaccines that combine Th1 cytokine gene-modified tumor cells with DCs may be an attractive strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Meiqing Shi
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
6
|
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Song W, Feng J, Zhang XZ. Expandable Immunotherapeutic Nanoplatforms Engineered from Cytomembranes of Hybrid Cells Derived from Cancer and Dendritic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900499. [PMID: 30907473 DOI: 10.1002/adma.201900499] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/07/2019] [Indexed: 05/18/2023]
Abstract
Using the cytomembranes (FMs) of hybrid cells acquired from the fusion of cancer and dendritic cells (DCs), this study offers a biologically derived platform for the combination of immunotherapy and traditional oncotherapy approaches. Due to the immunoactivation implicated in the cellular fusion, FMs can effectively express whole cancer antigens and immunological co-stimulatory molecules for robust immunotherapy. FMs share the tumor's self-targeting character with the parent cancer cells. In bilateral tumor-bearing mouse models, the FM-coated nanophotosensitizer causes durable immunoresponse to inhibit the rebound of primary tumors post-nanophotosensitizer-induced photodynamic therapy (PDT). The FM-induced immunotherapy displays ultrahigh antitumor effects even comparable to that of PDT. On the other hand, PDT toward primary tumors enhances the immunotherapy-caused regression of the irradiation-free distant tumors. Consequently, both the primary and the distant tumors are almost completely eliminated. This tumor-specific immunotherapy-based nanoplatform is potentially expandable to multiple tumor types and readily equipped with diverse functions owing to the flexible nanoparticle options.
Collapse
Affiliation(s)
- Wen-Long Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Mei-Zhen Zou
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wu-Yang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing-Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wen Song
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
7
|
Panchamoorthy G, Jin C, Raina D, Bharti A, Yamamoto M, Adeebge D, Zhao Q, Bronson R, Jiang S, Li L, Suzuki Y, Tagde A, Ghoroghchian PP, Wong KK, Kharbanda S, Kufe D. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight 2018; 3:99880. [PMID: 29925694 DOI: 10.1172/jci.insight.99880] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly overexpressed on the surface of diverse human carcinomas and is an attractive target for the development of mAb-based therapeutics. However, attempts at targeting the shed MUC1 N-terminal subunit have been unsuccessful. We report here the generation of mAb 3D1 against the nonshed oncogenic MUC1 C-terminal (MUC1-C) subunit. We show that mAb 3D1 binds with low nM affinity to the MUC1-C extracellular domain at the restricted α3 helix. mAb 3D1 reactivity is selective for MUC1-C-expressing human cancer cell lines and primary cancer cells. Internalization of mAb 3D1 into cancer cells further supported the conjugation of mAb 3D1 to monomethyl auristatin E (MMAE). The mAb 3D1-MMAE antibody-drug conjugate (ADC) (a) kills MUC1-C-positive cells in vitro, (b) is nontoxic in MUC1-transgenic (MUC1.Tg) mice, and (c) is active against human HCC827 lung tumor xenografts. Humanized mAb (humAb) 3D1 conjugated to MMAE also exhibited antitumor activity in (a) MUC1.Tg mice harboring syngeneic MC-38/MUC1 tumors, (b) nude mice bearing human ZR-75-1 breast tumors, and (c) NCG mice engrafted with a patient-derived triple-negative breast cancer. These findings and the absence of associated toxicities support clinical development of humAb 3D1-MMAE ADCs as a therapeutic for the many cancers with MUC1-C overexpression.
Collapse
Affiliation(s)
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ajit Bharti
- Departments of Medicine and Pathology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Masaaki Yamamoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis Adeebge
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Qing Zhao
- Departments of Medicine and Pathology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Roderick Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirley Jiang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Linjing Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yozo Suzuki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashujit Tagde
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - P Peter Ghoroghchian
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Surender Kharbanda
- Genus Oncology, Boston, Massachusetts, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Taylor-Papadimitriou J, Burchell JM, Graham R, Beatson R. Latest developments in MUC1 immunotherapy. Biochem Soc Trans 2018; 46:659-668. [PMID: 29784646 PMCID: PMC6008591 DOI: 10.1042/bst20170400] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Currently, there is renewed interest in attempting to recruit the host immune system to eliminate cancers, and within this renewed activity, MUC1 continues to arouse interest. MUC1 has been considered a possible therapeutic target for the past 30 years as it is up-regulated, aberrantly glycosylated and its polarization is lost in many adenocarcinomas. Moreover, MUC1 is expressed by some haematopoietic cancers, including acute myeloid leukaemia and myeloma. Although multiple clinical trials have been initiated and immune responses have been documented, effective clinical benefit worthy of approval for general application has not as yet been achieved. However, this does not appear to have quelled the interest in MUC1 as a therapeutic target, as shown by the increase in the number of MUC1-based clinical trials initiated in 2017 ( Figure 1). As with all translational studies, incorporating new relevant research findings into therapeutic strategy is difficult. Decisions are made to commit to a specific strategy based on the information and data available when the trial is initiated. However, the time required for preclinical studies and early trials can render the founding concept not always appropriate for proceeding to a larger definitive trial. Here, we summarize the attempts made, to date, to bring MUC1 into the world of cancer immunotherapy and discuss how research findings regarding MUC1 structure and function together with expanded knowledge of its interactions with the tumour environment and immune effector cells could lead to improved therapeutic approaches. ppbiost;46/3/659/BST20170400CF1F1BST-2017-0400CF1Figure 1.Number of MUC1-targeted trials initiated each year.
Collapse
Affiliation(s)
- Joyce Taylor-Papadimitriou
- Breast Cancer Biology Lab, School of Cancer and Pharmaceutical Sciences, King's College London, London, U.K.
| | - Joy M Burchell
- Breast Cancer Biology Lab, School of Cancer and Pharmaceutical Sciences, King's College London, London, U.K
| | - Rosalind Graham
- Breast Cancer Biology Lab, School of Cancer and Pharmaceutical Sciences, King's College London, London, U.K
| | - Richard Beatson
- Breast Cancer Biology Lab, School of Cancer and Pharmaceutical Sciences, King's College London, London, U.K
| |
Collapse
|
9
|
Vaccine therapy in hematologic malignancies. Blood 2018; 131:2640-2650. [DOI: 10.1182/blood-2017-11-785873] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Abstract
Immune-based therapy has emerged as a paradigm shift in cancer therapy with dramatic responses observed in previously incurable disease. Cancer vaccines are being developed to disrupt tumor-associated tolerance and activate and selectively expand tumor-specific lymphocytes within the native effector cell repertoire while maintaining immune-regulatory protection against autoimmunity. Although individual antigen approaches result in immune response with a suggestion of clinical effect in some settings, broader efficacy may be dependent on presentation of multiple antigens that capture clonal diversity presented in the context of functionally potent antigen-presenting cells. The use of whole cell–based strategies such as dendritic cell/tumor fusions have yielded provocative results in single-arm studies and are currently being explored in multicenter randomized trials. The posttransplant setting is a potentially promising platform for vaccination due to cytoreduction and relative depletion of inhibitory accessory cells fostering greater immune responsiveness. Integration of these efforts with other immunotherapeutic strategies and agents that target the tumor microenvironment is being studied in an effort to generate durable immunologic responses with clinically meaningful impact on disease.
Collapse
|
10
|
Rajabi H, Hiraki M, Kufe D. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells. Oncogene 2018; 37:2079-2088. [PMID: 29379165 PMCID: PMC5908737 DOI: 10.1038/s41388-017-0096-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.
Collapse
Affiliation(s)
- Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Masayuki Hiraki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
von Mensdorff-Pouilly S, Snijdewint FG, Verstraeten AA, Verheijen RH, Kenemans P. Human MUC1 Mucin: A Multifaceted Glycoprotein. Int J Biol Markers 2018; 15:343-56. [PMID: 11192832 DOI: 10.1177/172460080001500413] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human MUC1 mucin, a membrane-bound glycoprotein, is a major component of the ductal cell surface of normal glandular cells. MUC1 is overexpressed and aberrantly glycosylated in carcinoma cells. The role MUC1 plays in cancer progression represents two sides of one coin: on the one hand, loss of polarity and overexpression of MUC1 in cancer cells interferes with cell adhesion and shields the tumor cell from immune recognition by the cellular arm of the immune system, thus favoring metastases; on the other hand, MUC1, in essence a self-antigen, is displaced and altered in malignancy and induces immune responses. Tumor-associated MUC1 has short carbohydrate sidechains and exposed epitopes on its peptide core; it gains access to the circulation and comes into contact with the immune system provoking humoral and cellular immune responses. Natural antibodies to MUC1 present in the circulation of cancer patients may be beneficial to the patient by restricting tumor growth and dissemination: early stage breast cancer patients with a humoral response to MUC1 have a better disease-specific survival. Several MUC1 peptide vaccines, differing in vectors, carrier proteins and adjuvants, have been tested in phase I clinical trials. They are capable of inducing predominantly humoral responses to the antigen, but evidence that these immune responses may be effective against the tumor in humans is still scarce.
Collapse
Affiliation(s)
- S von Mensdorff-Pouilly
- Department of Obstetrics and Gynecology, Academic Hospital Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Rosenblatt J, Stone RM, Uhl L, Neuberg D, Joyce R, Levine JD, Arnason J, McMasters M, Luptakova K, Jain S, Zwicker JI, Hamdan A, Boussiotis V, Steensma DP, DeAngelo DJ, Galinsky I, Dutt PS, Logan E, Bryant MP, Stroopinsky D, Werner L, Palmer K, Coll M, Washington A, Cole L, Kufe D, Avigan D. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med 2017; 8:368ra171. [PMID: 27928025 DOI: 10.1126/scitranslmed.aag1298] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/30/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
We developed a personalized cancer vaccine in which patient-derived acute myeloid leukemia (AML) cells are fused with autologous dendritic cells, generating a hybridoma that potently stimulates broad antitumor responses. We report results obtained from the first 17 AML patients, who achieved remission after chemotherapy and were then serially vaccinated to target minimal residual disease and prevent relapse. Vaccination was well tolerated and induced inflammatory responses at the site of administration, characterized by the dense infiltration of T cells. Vaccination was also associated with a marked rise in circulating T cells recognizing whole AML cells and leukemia-specific antigens that persisted for more than 6 months. Twelve of 17 vaccinated patients (71%; 90% confidence interval, 52 to 89%) remain alive without recurrence at a median follow-up of 57 months. The results demonstrate that personalized vaccination of AML patients in remission induces the expansion of leukemia-specific T cells and may be protective against disease relapse.
Collapse
Affiliation(s)
| | | | - Lynne Uhl
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Robin Joyce
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - James D Levine
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jon Arnason
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | - Salvia Jain
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Ayad Hamdan
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | - Emma Logan
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | - Kristen Palmer
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Max Coll
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Leandra Cole
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
13
|
Bouillez A, Adeegbe D, Jin C, Hu X, Tagde A, Alam M, Rajabi H, Wong KK, Kufe D. MUC1-C promotes the suppressive immune microenvironment in non-small cell lung cancer. Oncoimmunology 2017; 6:e1338998. [PMID: 28932637 DOI: 10.1080/2162402x.2017.1338998] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022] Open
Abstract
The cancer immune microenvironment is of importance for the effectiveness of immunotherapy; however, its dysregulation is poorly understood. The MUC1-C oncoprotein is aberrantly overexpressed in non-small cell lung cancer (NSCLC) and has been linked to the induction of PD-L1. The present work investigated the effects of targeting MUC1-C in an immuno-competent MUC1 transgenic (MUC1.Tg) mouse model. We show that Lewis Lung Carcinoma cells expressing MUC1-C (LLC/MUC1) exhibit upregulation of PD-L1 and suppression of interferon-γ (IFN-γ). In studies of LLC/MUC1 cells growing in vitro and as tumors in MUC1.Tg mice, treatment with the MUC1-C inhibitor, GO-203, was associated with the downregulation of PD-L1 and induction of IFN-γ. The results further demonstrate that targeting MUC1-C results in enhanced effector function of CD8+ tumor-infiltrating lymphocytes (TILs) as evidenced by increased expression of the activation marker CD69, the degranulation marker CD107α, and granzyme B. Notably, targeting MUC1-C was also associated with marked increases in TIL-mediated killing of LLC/MUC1 cells. Analysis of gene expression data sets further showed that overexpression of MUC1 in NSCLCs correlates negatively with CD8, IFNG and GZMB, and that decreases in CD8 and IFNG are associated with poor clinical outcomes. These findings in LLC/MUC1 tumors and in NSCLCs indicate that MUC1-C→PD-L1 signaling promotes the suppression of CD8+ T-cell activation and that MUC1-C is a potential target for reprogramming of the tumor microenvironment.
Collapse
Affiliation(s)
- Audrey Bouillez
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dennis Adeegbe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xiufeng Hu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ashujit Tagde
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maroof Alam
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kwok-Kin Wong
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Abstract
Mucin1 (MUC1) is a transmembrane oncogenic protein that plays a central role in malignant transformation and disease evolution, including cell proliferation, survival, self-renewal, and metastatic invasion. MUC1 has been shown to interact with diverse effectors such as β-catenin, receptor tyrosine kinases, and c-Abl, which are of importance in the pathogenesis of various hematological malignancies. In myeloid leukemia, MUC1 has been shown to have an essential role in leukemia stem-cell function, the induction of reactive oxygen species (ROS), and the promotion of terminal myeloid differentiation. As such, MUC1 is an attractive therapeutic target in hematologic malignancies. Targeting MUC1 has been shown to be an effective approach for inducing cell death in tumor in in vivo and in vitro models. Furthermore, MUC1 inhibition is synergistic with other therapeutic agents in the treatment of hematologic disorders. This review will explore the role of MUC1 in hematological malignancies, and strategies for targeting this oncoprotein.
Collapse
Affiliation(s)
- Dina Stroopinsky
- a Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Donald Kufe
- b Dana Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - David Avigan
- a Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
15
|
Prospective immunotherapies in childhood sarcomas: PD1/PDL1 blockade in combination with tumor vaccines. Pediatr Res 2016; 79:371-7. [PMID: 26595537 DOI: 10.1038/pr.2015.246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022]
Abstract
Progress has slowed substantially in improving survival rates for pediatric sarcomas, particularly in refractory and metastatic disease. Significant progress has been made in the field of tumor vaccines for such malignancies, which target established tumor antigens. While tumor vaccines have demonstrated safety and improved survival rates, they are inadequate in mediating the regression of established tumor masses and metastases. Programmed cell death ligand 1 (PDL1) is a cell-surface protein induced in a number of adult malignancies. By acting on the corresponding T-cell receptor PD1, PDL1 is able to suppress cytotoxic T-cell-mediated tumor responses. Recent therapeutics blocking this interaction have shown promise in various adult cancers by restoring a functional T-cell response and by directing this response toward an activated, rather than regulatory, T-cell phenotype. We shall discuss the current state of tumor vaccines targeting pediatric sarcomas, review PD1-PDL1 interactions and current therapies targeting these interactions in adult malignancies, and discuss recent studies in which tumor vaccines, combined with PDL1 blockades, produced superior tumor regression compared with the vaccine alone. These studies provide a compelling case for investigation of PDL1 expression and its inhibition in pediatric sarcomas, while continuing to utilize tumor vaccines in tandem to achieve superior clinical outcomes.
Collapse
|
16
|
Lakshminarayanan V, Supekar NT, Wei J, McCurry DB, Dueck AC, Kosiorek HE, Trivedi PP, Bradley JM, Madsen CS, Pathangey LB, Hoelzinger DB, Wolfert MA, Boons GJ, Cohen PA, Gendler SJ. MUC1 Vaccines, Comprised of Glycosylated or Non-Glycosylated Peptides or Tumor-Derived MUC1, Can Circumvent Immunoediting to Control Tumor Growth in MUC1 Transgenic Mice. PLoS One 2016; 11:e0145920. [PMID: 26788922 PMCID: PMC4720451 DOI: 10.1371/journal.pone.0145920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/05/2015] [Indexed: 01/21/2023] Open
Abstract
It remains challenging to produce decisive vaccines against MUC1, a tumor-associated antigen widely expressed by pancreas, breast and other tumors. Employing clinically relevant mouse models, we ruled out such causes as irreversible T-cell tolerance, inadequate avidity, and failure of T-cells to recognize aberrantly glycosylated tumor MUC1. Instead, every tested MUC1 preparation, even non-glycosylated synthetic 9mer peptides, induced interferon gamma-producing CD4+ and CD8+ T-cells that recognized glycosylated variants including tumor-associated MUC1. Vaccination with synthetic peptides conferred protection as long as vaccination was repeated post tumor challenge. Failure to revaccinate post challenge was associated with down-regulated tumor MUC1 and MHC molecules. Surprisingly, direct admixture of MUC1-expressing tumor with MUC1-hyperimmune T-cells could not prevent tumor outgrowth or MUC1 immunoediting, whereas ex vivo activation of the hyperimmune T-cells prior to tumor admixture rendered them curative. Therefore, surrogate T-cell preactivation outside the tumor bed, either in culture or by repetitive vaccination, can overcome tumor escape.
Collapse
Affiliation(s)
- Vani Lakshminarayanan
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Nitin T. Supekar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Jie Wei
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Dustin B. McCurry
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Amylou C. Dueck
- Biostatistics, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Heidi E. Kosiorek
- Biostatistics, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Priyanka P. Trivedi
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Judy M. Bradley
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Cathy S. Madsen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Latha B. Pathangey
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | | | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| | - Peter A. Cohen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| | - Sandra J. Gendler
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Department of Biochemistry/Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| |
Collapse
|
17
|
Chiang CLL, Balint K, Coukos G, Kandalaft LE. Potential approaches for more successful dendritic cell-based immunotherapy. Expert Opin Biol Ther 2015; 15:569-82. [DOI: 10.1517/14712598.2015.1000298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Acres B, Lacoste G, Limacher JM. Targeted Immunotherapy Designed to Treat MUC1-Expressing Solid Tumour. Curr Top Microbiol Immunol 2015; 405:79-97. [PMID: 25702159 DOI: 10.1007/82_2015_429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several approaches to antigen-specific immunotherapy of cancer antigen-specific immunotherapy of cancer have been tested clinically. In this chapter, we will describe studies done with the antigen MUC1. Tested MUC1 therapeutic vaccines include the following: monoclonal antibodies (MAbs) specific for MUC1; synthetic and recombinant polypeptides from the protein sequence of MUC1; dendritic cells carrying MUC1; RNA and DNA vaccinations; and recombinant viruses carrying the MUC1 DNA sequence. Chemotherapy of cancer aims to be toxic to the cancer cells with manageable side effects to the patient. In contrast, antigen-specific immunotherapy of cancer aims to treat the patient, such that the patient is then able to control and eventually eliminate their cancer cells. It is therefore important to know the immune status of each cancer patient prior to therapy.
Collapse
Affiliation(s)
| | - Gisele Lacoste
- Department of Medical Affairs, Transgene SA, 400 Blvd Gonthier d'Andernach, Parc d'Innovation CS80166, 67405, Illkirch-Graffenstaden Cedex, France.
| | - Jean-Marc Limacher
- Department of Medical Affairs, Transgene SA, 400 Blvd Gonthier d'Andernach, Parc d'Innovation CS80166, 67405, Illkirch-Graffenstaden Cedex, France
| |
Collapse
|
19
|
Lee SJ, Shin SJ, Lee MH, Lee MG, Kang TH, Park WS, Soh BY, Park JH, Shin YK, Kim HW, Yun CH, Jung ID, Park YM. A potential protein adjuvant derived from Mycobacterium tuberculosis Rv0652 enhances dendritic cells-based tumor immunotherapy. PLoS One 2014; 9:e104351. [PMID: 25102137 PMCID: PMC4125215 DOI: 10.1371/journal.pone.0104351] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 07/13/2014] [Indexed: 01/05/2023] Open
Abstract
A key factor in dendritic cell (DC)-based tumor immunotherapy is the identification of an immunoadjuvant capable of inducing DC maturation to enhance cellular immunity. The efficacy of a 50S ribosomal protein L7/L12 (rplL) from Mycobacterium tuberculosis Rv0652, as an immunoadjuvant for DC-based tumor immunotherapy, and its capacity for inducing DC maturation was investigated. In this study, we showed that Rv0652 is recognized by Toll-like receptor 4 (TLR4) to induce DC maturation, and pro-inflammatory cytokine production (TNF-alpha, IL-1beta, and IL-6) that is partially modulated by both MyD88 and TRIF signaling pathways. Rv0652-activated DCs could activate naïve T cells, effectively polarize CD4+ and CD8+ T cells to secrete IFN-gamma, and induce T cell-mediated-cytotoxicity. Immunization of mice with Rv0652-stimulated ovalbumin (OVA)-pulsed DCs resulted in induction of a potent OVA-specific CD8+ T cell response, slowed tumor growth, and promoted long-term survival in a murine OVA-expressing E.G7 thymoma model. These findings suggest that Rv0652 enhances the polarization of T effector cells toward a Th1 phenotype through DC maturation, and that Rv0652 may be an effective adjuvant for enhancing the therapeutic response to DC-based tumor immunotherapy.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/immunology
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Animals
- Bacterial Proteins/chemistry
- Bacterial Proteins/pharmacology
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Immunity, Cellular/genetics
- Immunity, Cellular/immunology
- Immunotherapy
- Mice, Knockout
- Mycobacterium tuberculosis/chemistry
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
Collapse
Affiliation(s)
- Seung Jun Lee
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Moon Hee Lee
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Min-Goo Lee
- Department of Physiology, College of Medicine, Korea University, Seoul, South Korea
| | - Tae Heung Kang
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Byoung Yul Soh
- Department of Biochemistry, College of Medicine, Seonam University, Namwon, Jeonbuk, South Korea
| | - Jung Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental & Bioresources Sciences, Chonbuk National University, Iksan, South Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Han Wool Kim
- Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - In Duk Jung
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
- * E-mail: (IDJ); (YMP)
| | - Yeong-Min Park
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
- * E-mail: (IDJ); (YMP)
| |
Collapse
|
20
|
Li X, Wang Y, Zhao Y, Yang H, Tong A, Zhao C, Shi H, Li Y, Wang Z, Wei Y. Immunotherapy of tumor with vaccine based on basic fibroblast growth factor-activated fibroblasts. J Cancer Res Clin Oncol 2014; 140:271-80. [PMID: 24322179 DOI: 10.1007/s00432-013-1547-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/31/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE Cancer-associated fibroblasts play a key role in tumor progression. It is conceivable that the breaking of immune tolerance of "self-antigens" associated with tumor cells and tumor stromal is an attractive approach for tumor immunotherapy. To test this concept, we used basic fibroblast growth factor (bFGF) to activate normal fibroblasts and used these activated fibroblasts as one vaccine against tumor. METHODS Normal fibroblasts were treated with bFGF; their expressions of a-SMA and FAP were assessed by Western blot. We immunized mice with bFGF-activated fibroblasts. Auto-antibodies were assessed by flow cytometric and Western blot analysis. The deposition of auto-antibodies within the tumor tissues was assessed. The inhibition of proliferation of tumor cells and fibroblasts by purified immunoglobulins was investigated. The anti-tumor effects of purified immunoglobulins and lymphocytes of immunized mice were assessed. RESULTS The bFGF-activated fibroblasts were effective in affording protection from tumor onset, growth, and prolonging survival of tumor-bearing mice. The immunized sera exhibited positive staining for fibroblasts and tumor cells in FCAS and Western blot analysis. The purified immunoglobulins of immunized serum could inhibit the proliferation of tumor cells and fibroblasts in vitro and had the anti-tumor activity in vivo. There was the deposition of auto-antibodies within the tumor tissues. Adoptive transfer of lymphocytes of immunized mice revealed that cellular immune response is also involved. The anti-tumor activity could be abrogated by the depletion of CD4(+), CD8(+) T lymphocytes and NK cells. CONCLUSIONS In summary, bFGF-activated fibroblasts could induce an autoimmune response which was simultaneously against both cancer-associated fibroblasts and tumor cells in a cross-reaction.
Collapse
Affiliation(s)
- Xiuying Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610017, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang CK, Apostolopoulos V. Strategies used for MUC1 immunotherapy: preclinical studies. Expert Rev Vaccines 2014; 7:951-62. [DOI: 10.1586/14760584.7.7.951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic cell-based vaccines: barriers and opportunities. Future Oncol 2013; 8:1273-99. [PMID: 23130928 DOI: 10.2217/fon.12.125] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have several characteristics that make them an ideal vehicle for tumor vaccines, and with the first US FDA-approved DC-based vaccine in use for the treatment of prostate cancer, this technology has become a promising new therapeutic option. However, DC-based vaccines face several barriers that have limited their effectiveness in clinical trials. A major barrier includes the activation state of the DC. Both DC lineage and maturation signals must be selected to optimize the antitumor response and overcome immunosuppressive effects of the tumor microenvironment. Another barrier to successful vaccination is the selection of target antigens that will activate both CD8(+) and CD4(+) T cells in a potent, immune-specific manner. Finally, tumor progression and immune dysfunction limit vaccine efficacy in advanced stages, which may make DC-based vaccines more efficacious in treating early-stage disease. This review underscores the scientific basis and advances in the development of DC-based vaccines, focuses on current barriers to success and highlights new research opportunities to address these obstacles.
Collapse
Affiliation(s)
- Jessica A Cintolo
- Department of Surgery & Harrison Department of Surgical Research, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
23
|
Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, Dey BR, Somaiya P, Mills H, Campigotto F, Weller E, Joyce R, Levine JD, Tzachanis D, Richardson P, Laubach J, Raje N, Boussiotis V, Yuan YE, Bisharat L, Held V, Rowe J, Anderson K, Kufe D, Avigan D. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 2013; 19:3640-8. [PMID: 23685836 DOI: 10.1158/1078-0432.ccr-13-0282] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A multiple myeloma vaccine has been developed whereby patient-derived tumor cells are fused with autologous dendritic cells, creating a hybridoma that stimulates a broad antitumor response. We report on the results of a phase II trial in which patients underwent vaccination following autologous stem cell transplantation (ASCT) to target minimal residual disease. EXPERIMENTAL DESIGN Twenty-four patients received serial vaccinations with dendritic cell/myeloma fusion cells following posttransplant hematopoietic recovery. A second cohort of 12 patients received a pretransplant vaccine followed by posttransplant vaccinations. Dendritic cells generated from adherent mononuclear cells cultured with granulocyte macrophage colony-stimulating factor, interleukin-4, and TNF-α were fused with autologous bone marrow-derived myeloma fusion cells using polyethylene glycol. Fusion cells were quantified by determining the percentage of cells that coexpress dendritic cell and myeloma fusion antigens. RESULTS The posttransplant period was associated with reduction in general measures of cellular immunity; however, an increase in CD4 and CD8(+) myeloma-specific T cells was observed after ASCT that was significantly expanded following posttransplant vaccination. Seventy-eight percent of patients achieved a best response of complete response (CR)+very good partial response (VGPR) and 47% achieved a CR/near CR (nCR). Remarkably, 24% of patients who achieved a partial response following transplant were converted to CR/nCR after vaccination and at more than 3 months posttransplant, consistent with a vaccine-mediated effect on residual disease. CONCLUSIONS The posttransplant period for patients with multiple myeloma provides a unique platform for cellular immunotherapy in which vaccination with dendritic cell/myeloma fusion fusions resulted in the marked expansion of myeloma-specific T cells and cytoreduction of minimal residual disease.
Collapse
|
24
|
Abstract
A promising cancer vaccine involves the fusion of dendritic cells (DCs) with tumor cells such that a broad array of tumor antigens are presented in the context of DC-mediated costimulation and stimulatory cytokines. In diverse animal models, vaccination with DC/tumor fusions results in protection from an otherwise lethal challenge of tumor cells and eradication of established disease. In phase I clinical studies, vaccination with DC/tumor fusions was well tolerated, and induced immunologic responses in the majority of patients and clinical responses in a subset. Vaccine efficacy may be blunted by the immunosuppressive milieu characteristic of patients with malignancy, including the increased presence of regulatory T cells, and inhibitory pathways such as the PD-1/PDL-1 pathway. A current focus of research interest lies in enhancing response to cancer vaccines, by combining vaccination with tumor cytoreduction, regulatory T-cell depletion, and blockade of critical inhibitory pathways.
Collapse
Affiliation(s)
- David Avigan
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
25
|
PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011; 34:409-18. [PMID: 21577144 DOI: 10.1097/cji.0b013e31821ca6ce] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have developed a cancer vaccine in which autologous tumor is fused with dendritic cells (DCs) resulting in the presentation of tumor antigens in the context of DC-mediated costimulation. In clinical trials, immunologic responses have been observed, however responses may be muted by inhibitory pathways. The PD1/PDL1 pathway is an important element contributing to tumor-mediated immune suppression. In this study, we demonstrate that myeloma cells and DC/tumor fusions strongly express PD-L1. Compared with a control population of normal volunteers, increased PD-1 expression was observed on T cells isolated from patients with myeloma. It is interesting to note that after autologous transplantation, T-cell expression of PD-1 returned to levels seen in normal controls. We examined the effect of PD-1 blockade on T-cell response to DC/tumor fusions ex vivo. Presence of CT-011, an anti-PD1 antibody, promoted the vaccine-induced T-cell polarization towards an activated phenotype expressing Th1 compared with Th2 cytokines. A concomitant decrease in regulatory T cells and enhanced killing in a cytotoxicity assay was observed. In summary, we demonstrate that PD-1 expression is increased in T cells of patients with active myeloma, and that CT-011 enhances activated T-cell responses after DC/tumor fusion stimulation.
Collapse
|
26
|
Landuzzi L, Antognoli A, Nicoletti G, Croci S, Palladini A, Ianzano ML, Murgo A, Stivani V, Grosso V, Nanni P, De Giovanni C, Lollini PL. HER-2/neu tolerant and non-tolerant mice for fine assessment of antimetastatic potency of dendritic cell-tumor cell hybrid vaccines. Vaccine 2011; 29:4690-7. [PMID: 21569812 DOI: 10.1016/j.vaccine.2011.04.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/24/2011] [Accepted: 04/26/2011] [Indexed: 01/20/2023]
Abstract
Main obstacles to cancer vaccine efficacy are pre-existing antigenic load and immunoescape mechanisms, including tolerance against self tumor-associated antigens. Here we explored the role of tolerance in an antimetastatic vaccine approach based on dendritic cell-tumor cell (DC-TC) hybrids, thanks to the comparison between BALB-neuT mice, transgenic for and tolerant to rat HER-2/neu, with their non-tolerant strain of origin BALB/c. Allogeneic DC-TC hybrid vaccine displayed a high antimetastatic activity in non-tolerant mice, but was far less effective in tolerant mice, even with intensified vaccine schedule. Tolerant BALB-neuT mice revealed a reduced ability to mount polarized Th1 responses. A further attempt to increase the antimetastatic activity by using LPS-matured DC hybrids failed. Allogeneic LPS-matured DC-TC hybrids induced high IFN-γ levels, but concomitantly also the highest production of IL-4 and IL-10 suggesting activation of mechanisms sustaining regulatory cells able to blunt vaccine efficacy. Our data in tolerant versus non-tolerant hosts suggest that clinical translation of effective DC-based strategies could benefit from more extensive investigations in tolerant transgenic models.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Laboratory of Experimental Oncology, Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Immunologic monitoring of cellular responses by dendritic/tumor cell fusion vaccines. J Biomed Biotechnol 2011; 2011:910836. [PMID: 21541197 PMCID: PMC3085507 DOI: 10.1155/2011/910836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/11/2010] [Accepted: 02/27/2011] [Indexed: 12/22/2022] Open
Abstract
Although dendritic cell (DC)- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST) and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.
Collapse
|
28
|
Zheng R, Shu S. Immune response to cancer and its regulation in regional lymph nodes. J Surg Oncol 2011; 103:550-4. [DOI: 10.1002/jso.21692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Weng D, Song B, Durfee J, Sugiyama V, Wu Z, Koido S, Calderwood SK, Gong J. Induction of cytotoxic T lymphocytes against ovarian cancer-initiating cells. Int J Cancer 2011; 129:1990-2001. [PMID: 21154809 DOI: 10.1002/ijc.25851] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 11/30/2010] [Indexed: 01/02/2023]
Abstract
The majority of patients with stage III/IV ovarian carcinoma that respond initially to standard therapies ultimately undergo relapse due to the survival of small populations of cells with tumor-initiating potential. These ovarian cancer (OVCA)-initiating cells (OCIC) are sometimes called cancer stem cells (CSC) because they express stem cell markers, and can survive conventional therapies such as chemotherapy, which usually target rapidly replicating tumor cells, and give rise to recurrent tumors that are more chemo-resistant and more aggressive. Thus, it would be desirable to develop a therapy that could selectively target OCIC and be used to complement the conventional therapies. In this study, we isolated a subset of OVCA cells with a CD44(+) phenotype in samples from patients with OVCA that possess CSC properties including the formation of spheroids in culture, self-renewal and the ability to be engrafted in immune-compromised mice. We next explored the use of immunotherapy using fusions of dendritic cells and OCIC to specifically target the OCIC subpopulations. Fusion cells (FCs) prepared in this way activated T cells to express elevated levels of IFN-γ with enhanced killing of CD44(+) OVCA cells. We envision a combined approach where conventional therapies such as chemotherapy kill the bulk of tumor cells, whereas OCIC-reactive cytotoxic T lymphocytes target the resistant OCIC fraction. A combined therapy such as this may represent a promising approach for the treatment of OVCA.
Collapse
Affiliation(s)
- Desheng Weng
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118,USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jung ID, Jeong SK, Lee CM, Noh KT, Heo DR, Shin YK, Yun CH, Koh WJ, Akira S, Whang J, Kim HJ, Park WS, Shin SJ, Park YM. Enhanced Efficacy of Therapeutic Cancer Vaccines Produced by Co-Treatment with Mycobacterium tuberculosis Heparin-Binding Hemagglutinin, a Novel TLR4 Agonist. Cancer Res 2011; 71:2858-70. [DOI: 10.1158/0008-5472.can-10-3487] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Koido S, Hara E, Homma S, Ohkusa T, Gong J, Tajiri H. Cancer immunotherapy by fusions of dendritic cells and tumor cells. Immunotherapy 2011; 1:49-62. [PMID: 20635973 DOI: 10.2217/1750743x.1.1.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic cells (DCs) are potent professional antigen-presenting cells and play a critical role in the induction of primary immune responses. DC-based vaccination represents a potentially powerful strategy for cancer immunotherapy. Thus, the use of cancer vaccines to eliminate residual tumor cells is a promising area of investigation. The immunotherapy of tumor antigen-loaded DCs has now been demonstrated in cancer patients and some clinical responses without any significant toxicity. Fusions of DCs and tumor cells represent an alternative but promising approach to overcome the inability of tumor antigens to induce a sustainable T-cell response. This review deals with recent progress in the immunotherapy of cancer with fusions of DCs and tumor cells.
Collapse
Affiliation(s)
- Shigeo Koido
- Department of Internal Medicine, The Jikei University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Rosenblatt J, Vasir B, Uhl L, Blotta S, Macnamara C, Somaiya P, Wu Z, Joyce R, Levine JD, Dombagoda D, Yuan YE, Francoeur K, Fitzgerald D, Richardson P, Weller E, Anderson K, Kufe D, Munshi N, Avigan D. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 2011; 117:393-402. [PMID: 21030562 PMCID: PMC3031474 DOI: 10.1182/blood-2010-04-277137] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/13/2010] [Indexed: 12/14/2022] Open
Abstract
We have developed a tumor vaccine in which patient-derived myeloma cells are chemically fused with autologous dendritic cells (DCs) such that a broad spectrum of myeloma-associated antigens are presented in the context of DC-mediated costimulation. We have completed a phase 1 study in which patients with multiple myeloma underwent serial vaccination with the DC/multiple myeloma fusions in conjunction with granulocyte-macrophage colony-stimulating factor. DCs were generated from adherent mononuclear cells cultured with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-α and fused with myeloma cells obtained from marrow aspirates. Vaccine generation was successful in 17 of 18 patients. Successive cohorts were treated with 1 × 10(6), 2 × 10(6), and 4 × 10(6) fusion cells, respectively, with 10 patients treated at the highest dose level. Vaccination was well tolerated, without evidence of dose-limiting toxicity. Vaccination resulted in the expansion of circulating CD4 and CD8 lymphocytes reactive with autologous myeloma cells in 11 of 15 evaluable patients. Humoral responses were documented by SEREX (Serologic Analysis of Recombinant cDNA Expression Libraries) analysis. A majority of patients with advanced disease demonstrated disease stabilization, with 3 patients showing ongoing stable disease at 12, 25, and 41 months, respectively. Vaccination with DC/multiple myeloma fusions was feasible and well tolerated and resulted in antitumor immune responses and disease stabilization in a majority of patients.
Collapse
|
33
|
Abstract
Multiple myeloma is still a fatal disease. Despite advances in high-dose chemotherapy and stem-cell transplantation and the development of novel therapeutics, relapse of the underlying disease remains the primary cause of treatment failure. Strategies for posttransplantation immunomodulation are desirable for eradication of remaining tumor cells. To this end, immunotherapy aimed at inducing myeloma-specific immunity in patients has been explored. Idiotype protein, secreted by myeloma cells, has been the primary target for immunotherapy as it is the best defined tumor-specific antigen. This chapter focuses on novel immunotherapies that are being developed to treat patients with myeloma. I will discuss potential myeloma antigens, antigen-specific T cells, and their function on myeloma tumor cells, and T-cell-based and antibody-based immunotherapies for myeloma. Furthermore, clinical studies of T-cell-based immunotherapy in the form of vaccination, allogeneic stem-cell transplantation and donor lymphocyte infusions, with or without donor vaccination using patient-derived idiotype, and future application of donor-derived or patient-derived, antigen-specific T-cell infusion in this disease are also discussed. Based on the specificity of the immune effector molecules and cells, immunotherapies with specific T cells or therapeutic antibodies may represent novel strategies for the treatment of multiple myeloma in the near future.
Collapse
|
34
|
Regulation of tumor immunity by tumor/dendritic cell fusions. Clin Dev Immunol 2010; 2010:516768. [PMID: 21048993 PMCID: PMC2964897 DOI: 10.1155/2010/516768] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
Abstract
The goal of cancer vaccines is to induce antitumor immunity that ultimately will reduce tumor burden in tumor environment. Several strategies involving dendritic cells- (DCs)- based vaccine incorporating different tumor-associated antigens to induce antitumor immune responses against tumors have been tested in clinical trials worldwide. Although DCs-based vaccine such as fusions of whole tumor cells and DCs has been proven to be clinically safe and is efficient to enhance antitumor immune responses for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens (TAAs), only a limited success has occurred in clinical trials. This paper reviews tumor immune escape and current strategies employed in the field of tumor/DC fusions vaccine aimed at enhancing activation of TAAs-specific cytotoxic T cells in tumor microenvironment.
Collapse
|
35
|
Yuan S, Shi C, Liu L, Han W. MUC1-based recombinant Bacillus Calmette-Guerin vaccines as candidates for breast cancer immunotherapy. Expert Opin Biol Ther 2010; 10:1037-48. [PMID: 20420512 DOI: 10.1517/14712598.2010.485185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD The challenge in breast cancer vaccine development is to find the best combination of antigen, adjuvant and delivery system to produce a strong and long-lasting immune response. Mucin 1 (MUC1) is a potential candidate target for breast cancer immunotherapy. Bacillus Calmette-Guerin (BCG) is used widely in human vaccines. Furthermore, it can potentially offer unique advantages for developing a safe and effective multi-vaccine vehicle. Due to these properties, the development of MUC1 based recombinant BCG (rBCG) vaccines for breast cancer immunotherapy has gained great momentum in recent years. AREAS COVERED IN THIS REVIEW Our aim is to discuss the recent progress in MUC1-based breast cancer immunotherapy and to highlight the advantages of MUC1-based rBCG vaccines as the new breast cancer vaccines. WHAT THE READER WILL GAIN Several promising MUC1-based rBCG vaccines have been shown to induce MUC1-specific antitumor immune responses in pre-clinical studies. This review updates and evaluates this very important and rapidly developing field, and provides a critical perspective and information source for its potential clinical applications. TAKE HOME MESSAGE MUC1-based rBCG vaccines have been shown to elicit an effective anti-tumor immune response in vivo demonstrating its potential utility in breast cancer treatment.
Collapse
Affiliation(s)
- Shifang Yuan
- Fourth Military Medical University, Xijing Hospital, Department of Vascular and Endocrine Surgery, Xi'an, 710032, People's Republic of China.
| | | | | | | |
Collapse
|
36
|
Antigen-specific polyclonal cytotoxic T lymphocytes induced by fusions of dendritic cells and tumor cells. J Biomed Biotechnol 2010; 2010:752381. [PMID: 20379390 PMCID: PMC2850552 DOI: 10.1155/2010/752381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 01/21/2010] [Accepted: 02/01/2010] [Indexed: 01/26/2023] Open
Abstract
The aim of cancer vaccines is induction of tumor-specific cytotoxic T lymphocytes (CTLs) that can reduce the tumor mass. Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Thus, DCs-based vaccination represents a potentially powerful strategy for induction of antigen-specific CTLs. Fusions of DCs and whole tumor cells represent an alternative approach to deliver, process, and subsequently present a broad spectrum of antigens, including those known and unidentified, in the context of costimulatory molecules. Once DCs/tumor fusions have been infused back into patient, they migrate to secondary lymphoid organs, where the generation of antigen-specific polyclonal CTL responses occurs. We will discuss perspectives for future development of DCs/tumor fusions for CTL induction.
Collapse
|
37
|
Abstract
Although cancer vaccines with defined antigens are commonly used, the use of whole tumor cell preparations in tumor immunotherapy is a very promising approach and can obviate some important limitations in vaccine development. Whole tumor cells are a good source of TAAs and can induce simultaneous CTLs and CD4(+) T helper cell activation. We review current approaches to prepare whole tumor cell vaccines, including traditional methods of freeze-thaw lysates, tumor cells treated with ultraviolet irradiation, and RNA electroporation, along with more recent methods to increase tumor cell immunogenicity with HOCl oxidation or infection with replication-incompetent herpes simplex virus.
Collapse
|
38
|
Cancer vaccine by fusions of dendritic and cancer cells. Clin Dev Immunol 2010; 2009:657369. [PMID: 20182533 PMCID: PMC2825547 DOI: 10.1155/2009/657369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/09/2009] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived costimulatory molecules. DCs/tumor fusion vaccine stimulates potent antitumor immunity in the animal tumor models. In the human studies, T cells stimulated by DC/tumor fusion cells are effective in lysis of tumor cells that are used as the fusion partner. In the clinical trials, clinical and immunological responses were observed in patients with advanced stage of malignant tumors after being vaccinated with DC/tumor fusion cells, although the antitumor effect is not as vigorous as in the animal tumor models. This review summarizes recent advances in concepts and techniques that are providing new impulses to DCs/tumor fusions-based cancer vaccination.
Collapse
|
39
|
Rosenblatt J, Wu Z, Vasir B, Zarwan C, Stone R, Mills H, Friedman T, Konstantinopoulos PA, Spentzos D, Ghebremichael M, Stevenson K, Neuberg D, Levine JD, Joyce R, Tzachanis D, Boussiotis V, Kufe D, Avigan D. Generation of tumor-specific T lymphocytes using dendritic cell/tumor fusions and anti-CD3/CD28. J Immunother 2010; 33:155-66. [PMID: 20145548 PMCID: PMC2938173 DOI: 10.1097/cji.0b013e3181bed253] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adoptive immunotherapy with tumor-specific T cells represents a promising treatment strategy for patients with malignancy. However, the efficacy of T-cell therapy has been limited by the ability to expand tumor-reactive cells with an activated phenotype that effectively target malignant cells. We have developed an anticancer vaccine in which patient-derived tumor cells are fused with autologous dendritic cells (DCs), such that a wide array of tumor antigens are presented in the context of DC-mediated costimulation. In this study, we demonstrate that DC/tumor fusions induce T cells that react with tumor and are dramatically expanded by subsequent ligation of the CD3/CD28 costimulatory complex. These T cells exhibit a predominantly activated phenotype as manifested by an increase in the percentage of cells expressing CD69 and interferon gamma. In addition, the T cells upregulate granzyme B expression and are highly effective in lysing autologous tumor targets. Targeting of tumor-specific antigen was demonstrated by the expansion of T cells with specificity for the MUC1 tetramer. Stimulation with anti-CD3/CD28 followed by DC/tumor fusions or either agent alone failed to result in a similar expansion of tumor-reactive T cells. Consistent with these findings, spectratyping analysis demonstrates selective expansion of T-cell clones as manifested by considerable skewing of the Vbeta repertoire following sequential stimulation with DC/tumor fusions and anti-CD3/CD28. Gene expression analysis was notable for the upregulation of inflammatory pathways. These findings indicate that stimulation with DC/tumor fusions provides a unique platform for subsequent expansion with anti-CD3/CD28 in adoptive T-cell therapy of cancer.
Collapse
|
40
|
Alvarez E, Moga E, Barquinero J, Sierra J, Briones J. Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response. Gene Ther 2009; 17:469-77. [PMID: 20010627 DOI: 10.1038/gt.2009.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fusion of dendritic cells and tumor cells (FCs) constitutes a promising tool for generating an antitumor response because of their capacity to present tumor antigens and provide appropriate costimulatory signals. CD40-CD40L interaction has an important role in the maturation and survival of dendritic cells and provides critical help for T-cell priming. In this study, we sought to improve the effectiveness of FC vaccines in a murine model of B-cell lymphoma by engineering FCs to express CD40L by means of an adenovirus encoding CD40L (Adv-CD40L). Before transduction with Adv-CD40L, no CD40L expression was detected in FCs, DCs or tumor cells. The surface expression of CD40L in FC transduced with Adv-CD40L (FC-CD40L) ranged between 50 and 60%. FC-CD40L showed an enhanced expression of CD80, CD86, CD54 and MHC class II molecules and elicited a strong in vitro immune response in a syngeneic mixed lymphocyte reaction. Furthermore, FC-CD40L showed enhanced migration to secondary lymphoid organs. Splenocytes from mice treated with FC-CD40L had a dramatic increase in the production of IL-17, IL-6 and IFN-gamma, compared with controls. Treatment with the FC-CD40L vaccine induced regression of established tumors and increased survival. Our data demonstrate that FC transduced with Adv-CD40L enhances the antitumor effect of FC vaccines in a murine lymphoma model and this is associated with an increased Th17-type immune response.
Collapse
Affiliation(s)
- E Alvarez
- Department of Hematology, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | |
Collapse
|
41
|
Zhou J, Weng D, Zhou F, Pan K, Song H, Wang Q, Wang H, Wang H, Li Y, Huang L, Zhang H, Huang W, Xia J. Patient-derived renal cell carcinoma cells fused with allogeneic dendritic cells elicit anti-tumor activity: in vitro results and clinical responses. Cancer Immunol Immunother 2009; 58:1587-97. [PMID: 19221746 PMCID: PMC11030900 DOI: 10.1007/s00262-009-0668-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
Renal cell carcinoma (RCC) has been shown to be susceptible to immunotherapeutic treatment strategies. In the present study, patient-derived tumor cells were fused with allogeneic dendritic cells (DC) to elicit anti-tumor activity against RCC. DC from HLA-A2+ healthy donors were fused with primary RCC cells from ten patients. Phenotype of fusion cells were characterized by flow cytometer and confocal microscopy. In vitro, T cell proliferation, IFN-gamma secretion and cytotoxic T lymphocytes (CTL) activity elicited by allogeneic DC/RCC fusion cells were assessed. Clinically, ten patients were vaccinated with allogeneic DC/RCC fusion vaccine. The adverse effects and toxicity were observed. The clinical response was evaluated by CT scans. After fusion, the created hybrids expressed both tumor associated antigen and DC-derived molecules and could stimulate the proliferation and IFN-gamma secretion of T cells as well as elicit strong CTL activity against RCC cells in vitro. In vivo, no serious adverse effects, toxicity, or signs of autoimmune disease were observed after vaccination therapy. Percentage of T lymphocyte subsets in peripheral blood of patients was increased significantly. One of ten patients exhibited a partial response with regression of lung metastases. Six patients showed stable disease with stabilization of previously progressive disease (follow up 1.5 years). The PR and SD responses, exhibited by 7/10 patients who received the allogeneic DC/RCC fusion vaccine treatment, suggest that this approach is safe and can elicit immunological responses in a significant portion of patients with RCC.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Desheng Weng
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Fangjian Zhou
- Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ke Pan
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Haifeng Song
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Qijing Wang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Huan Wang
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Hui Wang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yongqiang Li
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Lixi Huang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Huakun Zhang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Wei Huang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Jianchuan Xia
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| |
Collapse
|
42
|
Effective anti-tumor responses induced by recombinant bacillus Calmette–Guérin vaccines based on different tandem repeats of MUC1 and GM-CSF. Eur J Cancer Prev 2009; 18:416-23. [DOI: 10.1097/cej.0b013e32832c3882] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Kaminski ER, Goddard RV, Prentice AG. Dendritic Cells and their Potential Therapeutic Role in Haematological Malignancy. Leuk Lymphoma 2009; 44:1657-66. [PMID: 14692516 DOI: 10.1080/1042819031000090219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The generation of an effective immune response is dependent on the efficient capture and presentation of antigen by antigen-presenting cells. The most potent antigen-presenting cells are dendritic cells (DC). These cells have the capability of activating naive helper and cytotoxic T cells. In recent years it has been demonstrated that in vivo responses to a number of solid tumours can be generated by DC pulsed with either purified tumour antigen or whole tumour cell lysate. In addition, a number of in vivo studies using DC have also been attempted in solid tumours, with some encouraging results. In haematological malignancies, there is now strong evidence that previous T cell anergy can be reversed and significant anti-tumour immune responses generated, in vitro, against the majority of leukaemias. As far as in vivo studies in haematological malignancies are concerned, although T cell responses have been demonstrated in the majority of cases and some dramatic early clinical responses reported, overall results appear disappointing. However, considering the fact that many of these studies were performed in patients with advanced disease and that such therapeutic strategies are still in their infancy, the overall results are actually quite encouraging. Although there is a real potential for DC immunotherapy in the future, it is important to be realistic about the limitations and obstacles to its development. It is highly unlikely that any form of immunotherapy is going to be effective in advanced disease due to the physical bulk of tumour, the immunosuppressive effects of tumours themselves and to any secondary immunosuppression following standard cancer therapy. The potential for immunotherapy is likely to lie either in adjunctive therapy or for treating minimal residual disease. Even in those situations, one of the major obstacles to be overcome is the state of immunological anergy or tolerance that many tumours seem able to induce. Indeed, there is evidence that, under certain circumstances, DC themselves can present antigen in such a way as to produce this state of anergy. Although, in vitro manipulation of DC and T cells can generate tumour-specific T cells from previously "anergic" cells, once reintroduced in vivo, these cells will be re-exposed to the tumour environment with the risk of being rendered anergic again.
Collapse
Affiliation(s)
- E R Kaminski
- Plymouth Post-graduate Medical School, Derriford Combined Laboratories, Derriford Hospital, Plymouth PL6 8DH, UK.
| | | | | |
Collapse
|
44
|
Gong J, Koido S, Calderwood SK. Cell fusion: from hybridoma to dendritic cell-based vaccine. Expert Rev Vaccines 2008; 7:1055-68. [PMID: 18767954 DOI: 10.1586/14760584.7.7.1055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The deployment of dendritic cell (DC) and tumor cell fusions is increasing in tumor immunotherapy. In animal and human studies, fusion cell vaccines have been shown to possess the elements essential for processing and presenting tumor antigens to host immune cells, for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens. Moreover, fusion cell vaccines provide protection against challenge with tumor cells and mediate regression of established tumors. Despite these unique features of fusion cell vaccines and the observation of tumor eradication in animal studies, limited success has occurred in clinical trials. This article reviews the methods used for optimizing the preparation and selection of DC-tumor fusion cells and analyzes factors influencing the success or failure of fusion cell-mediated immunotherapy. In addition, we discuss the challenges facing effective fusion cell vaccine production, including factors in preparation, selection and quality control of fusion cell vaccines, as well as approaches for enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Jianlin Gong
- Department of Medicine, Boston University Medical School, Boston, MA 02118, USA.
| | | | | |
Collapse
|
45
|
Ding C, Wang L, Marroquin J, Yan J. Targeting of antigens to B cells augments antigen-specific T-cell responses and breaks immune tolerance to tumor-associated antigen MUC1. Blood 2008; 112:2817-25. [PMID: 18669871 PMCID: PMC2556617 DOI: 10.1182/blood-2008-05-157396] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/20/2008] [Indexed: 12/23/2022] Open
Abstract
B cells are antibody (Ab)-secreting cells as well as potent antigen (Ag)-presenting cells that prime T-cell activation, which evokes great interest in their use for vaccine development. Here, we targeted ovalbumin (OVA) to B cells via CD19 and found that a single low dose of anti-CD19-OVA conjugates, but not isotype mAb-OVA, stimulated augmented CD4 and CD8 T-cell proliferation and expansion. Administration of TLR9 agonist CpG could significantly enhance long-term T-cell survival. Similar results were obtained when the tumor-associated Ag MUC1 was delivered to B cells. MUC1 transgenic (Tg) mice were previously found to lack effective T-cell help and produce low-titer of anti-MUC1 Abs after vaccination. Targeting MUC1 to B cells elicited high titer of anti-MUC1 Abs with different isotypes, predominantly IgG2a and IgG2b, in MUC1 Tg mice. The isotype switching of anti-MUC1 Ab was CD4 dependent. In addition, IFN-gamma-producing CD8 T cells and in vivo cytolytic activity were significantly increased in these mice. The mice also showed significant resistance to MUC1(+) lymphoma cell challenge both in the prophylactic and therapeutic settings. We conclude that Ags targeting to B cells stimulate CD4 and CD8 T-cell responses as well as Th-dependent humoral immune responses.
Collapse
Affiliation(s)
- Chuanlin Ding
- Tumor Immunobiology Program, James Graham Brown Cancer Center, University of Louisville, KY, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Vasir B, Wu Z, Crawford K, Rosenblatt J, Zarwan C, Bissonnette A, Kufe D, Avigan D. Fusions of dendritic cells with breast carcinoma stimulate the expansion of regulatory T cells while concomitant exposure to IL-12, CpG oligodeoxynucleotides, and anti-CD3/CD28 promotes the expansion of activated tumor reactive cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:808-21. [PMID: 18566447 DOI: 10.4049/jimmunol.181.1.808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccination of patients with dendritic cell (DC)/breast carcinoma fusions stimulated antitumor immune responses in a majority of patients with metastatic disease but only a subset demonstrate evidence of tumor regression. To define the factors that limit vaccine efficacy, we examined the biological characteristics of DC/breast carcinoma fusions as APCs and the nature of the vaccine-mediated T cell response. We demonstrate that fusion of DCs with breast carcinoma cells up-regulates expression of costimulatory and maturation markers and results in high levels of expression of IL-12 consistent with their role as activated APCs. Fusion cells also express the chemokine receptor CCR7, consistent with their ability to migrate to the draining lymph node. However, DC/breast cancer fusions stimulate a mixed T cell response characterized by the expansion of both activated and regulatory T cell populations, the latter of which is characterized by expression of CTLA-4, FOXP3, IL-10, and the suppression of T cell responses. Our results demonstrate that IL-12, IL-18, and TLR 9 agonist CpG oligodeoxynucleotides reduce the level of fusion-mediated regulatory T cell expansion. Our results also demonstrate that sequential stimulation with DC/breast carcinoma fusions and anti-CD3/CD28 results in the marked expansion of activated tumor-specific T cells. These findings suggest that DC/breast carcinoma fusions are effective APCs, but stimulate inhibitory T cells that limit vaccine efficacy. In contrast, exposure to TLR agonists, stimulatory cytokines, and anti-CD3/CD28 enhances vaccine efficacy by limiting the regulatory T cell response and promoting expansion of activated effector cells.
Collapse
Affiliation(s)
- Baldev Vasir
- Dana-Farber Cancer Institute, Dana-Farber/Harvard Cancer Center, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Cell surface mucins are large transmembrane glycoproteins involved in diverse functions ranging from shielding the airway epithelium against pathogenic infection to regulating cellular signaling and transcription. Although hampered by the relatively recent characterization of cell surface mucins and the difficulties inherent in working with molecules of their size, numerous studies have placed the tethered mucins in the thick of normal and diseased lung physiology. This review focuses on the three best-characterized cell surface mucins expressed in the respiratory tract: MUC1, MUC4, and MUC16.
Collapse
Affiliation(s)
- Christine L Hattrup
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AR 85259, USA
| | | |
Collapse
|
49
|
Avigan DE, Vasir B, George DJ, Oh WK, Atkins MB, McDermott DF, Kantoff PW, Figlin RA, Vasconcelles MJ, Xu Y, Kufe D, Bukowski RM. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 2007; 30:749-61. [PMID: 17893567 DOI: 10.1097/cji.0b013e3180de4ce8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, we assessed the feasibility, toxicity, immunologic response, and clinical efficacy of vaccination with allogeneic dendritic cell (DC)/tumor fusions in patients with metastatic renal cell carcinoma (RCC). Patients with stage IV RCC with accessible tumor lesions or independent therapeutic indications for nephrectomy were eligible for enrollment. Tumors were processed into single cell suspensions and cryopreserved. DCs were generated from adherent peripheral blood mononuclear cells isolated from normal volunteers and cultured with granulocyte macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha. DCs were fused to patient derived RCC with serial electrical pulses. Patients received up to 3 vaccinations at a fixed dose of 4x10(7) to 1x10(8) cells administered at 6-week intervals. Twenty-four patients underwent vaccination. Twenty-one and 20 patients were evaluable for immunologic and clinical response, respectively. DCs demonstrated a characteristic phenotype with prominent expression of HLA class II and costimulatory molecules. A mean fusion efficiency of 20% was observed, determined by the percent of cells coexpressing DC and tumor antigens. No evidence of significant treatment related toxicity or auto-immunity was observed. Vaccination resulted in antitumor immune responses in 10/21 evaluable patients as manifested by an increase in CD4 and/or CD8 T-cell expression of interferon-gamma after ex vivo exposure to tumor lysate. Two patients demonstrated a partial clinical response by Response Evaluation Criteria in Solid Tumors criteria and 8 patients had stabilization of their disease. Vaccination of patients with RCC with allogeneic DC/tumor fusions was feasible, well tolerated, and resulted in immunologic and clinical responses in a subset of patients.
Collapse
Affiliation(s)
- David E Avigan
- Beth Israel Deaconess Medical Center and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tamir A, Basagila E, Kagahzian A, Jiao L, Jensen S, Nicholls J, Tate P, Stamp G, Farzaneh F, Harrison P, Stauss H, George AJT, Habib N, Lechler RI, Lombardi G. Induction of tumor-specific T-cell responses by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors. Cancer Immunol Immunother 2007; 56:2003-16. [PMID: 17333181 PMCID: PMC11031039 DOI: 10.1007/s00262-007-0299-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 02/07/2007] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dendritic cells (DCs) are the most effective antigen-presenting cells. In the last decade, the use of DCs for immunotherapy of cancer patients has been vastly increased. High endocytic capacity together with a unique capability of initiating primary T-cell responses have made DCs the most potent candidates for this purpose. Although DC vaccination occasionally leads to tumor regression, clinical efficacy, and immunogenicity of DCs in clinical trials has not been yet clarified. The present study evaluated the safety and effectiveness of tumor-lysate loaded DC vaccines in advanced colorectal cancer (CRC) patients with carcinoembryonic antigen (CEA) positive tumors. RESULTS Six patients HLA-A*0201-positive were vaccinated with autologous DCs loaded with tumor lysates (TL) together with tetanus toxoid antigen, hepatitis B, and influenza matrix peptides. Two additional patients were injected with DCs that were generated from their sibling or parent with one haplotype mismatch. All patients received the vaccines every 2 weeks, with a total of three intra-nodal injections per patient. The results indicated that DC vaccination was safe and well tolerated by the patients. Specific immune responses were detected and in some patients, transient stabilization or even reduction of CEA levels were observed. The injection of haplotype mismatched HLA-A*0201-positive DCs resulted in some enhancement of the anti-tumor response in vitro and led to stabilization/reduction of CEA levels in the serum, compared to the use of autologous DCs. CONCLUSION Altogether, these results suggest that TL-pulsed DCs may be an effective vaccine method in CRC patients. Elimination of regulatory mechanisms as well as adjustment of the vaccination protocol may improve the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Ayala Tamir
- Department of Immunology, Imperial College at Hammersmith Hospital, London, UK
- Present Address: Research Department, Puget Sound Blood Center, Seattle, WA 98104 USA
| | - Ernesto Basagila
- Liver Surgery Section, Department of Surgical Oncology and Technology, Imperial College at Hammersmith Hospital, London, UK
| | - Arash Kagahzian
- Liver Surgery Section, Department of Surgical Oncology and Technology, Imperial College at Hammersmith Hospital, London, UK
| | - Long Jiao
- Liver Surgery Section, Department of Surgical Oncology and Technology, Imperial College at Hammersmith Hospital, London, UK
| | - Steen Jensen
- Liver Surgery Section, Department of Surgical Oncology and Technology, Imperial College at Hammersmith Hospital, London, UK
| | - Joanna Nicholls
- Liver Surgery Section, Department of Surgical Oncology and Technology, Imperial College at Hammersmith Hospital, London, UK
| | - Paul Tate
- Department of Radiology, Imperial College at Hammersmith Hospital, London, UK
| | - Gordon Stamp
- Department of Histopathology, Faculty of Medicine, Imperial College at Hammersmith Hospital, London, UK
| | - Farzin Farzaneh
- Department of Molecular Biology, King’s College London, Guy’s Hospital Campus, London, UK
| | - Phillip Harrison
- Department of Medicine, King’s College London, Guy’s Hospital Campus, London, UK
| | - Hans Stauss
- Department of Immunology, Imperial College at Hammersmith Hospital, London, UK
| | - Andrew J. T. George
- Department of Immunology, Imperial College at Hammersmith Hospital, London, UK
| | - Nagy Habib
- Liver Surgery Section, Department of Surgical Oncology and Technology, Imperial College at Hammersmith Hospital, London, UK
| | - Robert I. Lechler
- Immunoregulation Laboratory, Department of Nephrology and Transplantation, Guy’s Hospital, King’s College London, Guy’s King’s and St. Thomas School of Medicine, 5th Floor Thomas Guy House, SE1 9RT London, UK
| | - Giovanna Lombardi
- Immunoregulation Laboratory, Department of Nephrology and Transplantation, Guy’s Hospital, King’s College London, Guy’s King’s and St. Thomas School of Medicine, 5th Floor Thomas Guy House, SE1 9RT London, UK
| |
Collapse
|