1
|
Hu S, Chen Y, Zhou Y, Cao T, Liu S, Ding C, Xie D, Liang P, Huang L, Liu H, Huang J. In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa. J Genet Genomics 2024:S1673-8527(24)00365-5. [PMID: 39725189 DOI: 10.1016/j.jgg.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo. The correctable pathogenic mutations are screened and verified, including T17M, Q344ter, and P347L. Two adRP animal models are created carrying the class 1 (Q344ter) and class 2 (T17M) mutations, and dual AAV-delivered ABE can effectively repair both mutations in vivo. The early intervention of ABE8e efficiently corrects the Q344ter mutation that causes a severe form of adRP, delays photoreceptor death, and restores retinal function and visual behavior. These results suggest that ABE is a promising alternative to treat RHO mutation-associated adRP. Our work provides an effective spacer-mediated point mutation correction therapy approach for dominantly inherited ocular disorders.
Collapse
Affiliation(s)
- Sihui Hu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yitong Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Simiao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Chenhui Ding
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Dongchun Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Huang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
2
|
Leenders M, Gaastra M, Jayagopal A, Malone KE. Prevalence Estimates and Genetic Diversity for Autosomal Dominant Retinitis Pigmentosa Due to RHO, c.68C>A (p.P23H) Variant. Am J Ophthalmol 2024; 268:340-347. [PMID: 39278389 DOI: 10.1016/j.ajo.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE To provide the most up-to-date clinical prevalence estimate for autosomal dominant retinitis pigmentosa (adRP) patients due to RHO c.68C>A, (p.P23H) in the United States, supported by two independent approaches; literature based meta-analysis of reported patients and population genetics modeling. DESIGN Systematic review and meta-analysis plus population genetics modeling. METHODS Systematic review of the literature describing RP patients attributed to RHO variants was conducted to support a meta-analysis used to estimate the clinical prevalence of the RHO P23H patients diagnosed in the US. In parallel, large-scale genetic diversity studies describing the US population and non-European cohorts of the Americas (PAGE II), were evaluated to ascertain the allele frequencies of variant RHO c.68C>A, (p.P23H). The genetic prevalence for variant RHO c.68C>A, (p.P23H) was calculated using Hardy-Weinberg equilibrium. Further demographic data, including age and average age of onset for visual impairment were incorporated into a basic distribution model to estimate clinical prevalence of genetically predisposed persons. RESULTS The estimated clinical prevalence of adRP due to RHO P23H based on literature review was approximately 2000-3000 patients. In comparison the genetic prevalence of persons with RHO c.68C>A, (p.P23H) in the United States was an estimated 6176 (90% CI: 3333-11398) and only half of them are expected to cluster with European genetic ancestry. This variant was found enriched in subgroups of African American or other non-European biogeographic ancestries. Of the estimated 6200 persons carrying this variant in the US, ∼3500 (estimate range: 1900-6500) are expected to show clinical signs of visual impairment as modeled by average age of onset previously reported for patients with this variant. CONCLUSIONS We utilized two independent approaches to estimate the total number of adRP patients due to RHO c.68C>A, (p.P23H) in the United States; systematic literature review based meta-analysis and population genetics modeling. Both approaches yielded similar, overlapping estimates of adRP patients due to RHO P23H. However, comparison of these estimates provides some indication for a diagnosis gap. Unexpectedly, this variant is present at relatively higher frequency in some predominantly non-European genetic ancestries in the US. While this genetic analysis supports our estimates of clinical prevalence of adRP due to RHO P23H in the United States, it also has implications for diagnosing potential adRP patients due to this variant, raising questions of genotype-phenotype correlation and access to genetic testing.
Collapse
Affiliation(s)
- Matthijs Leenders
- Technical University (M.L.), Delft, The Netherlands; Erasmus Medical Center (M.L.), Rotterdam, The Netherlands; GeneScape (M.L., M.G., K.E.M.), Leiden, The Netherlands
| | | | - Ash Jayagopal
- Opus Genetics (A.J.), Durham, North Carolina, USA; Ocuphire Pharma (A.J.), Farmington Hills, Michigan, USA
| | - Karen E Malone
- GeneScape (M.L., M.G., K.E.M.), Leiden, The Netherlands.
| |
Collapse
|
3
|
Tam BM, Burns P, Chiu CN, Moritz OL. Synchronized Photoactivation of T4K Rhodopsin Causes a Chromophore-Dependent Retinal Degeneration That Is Moderated by Interaction with Phototransduction Cascade Components. J Neurosci 2024; 44:e0453242024. [PMID: 39089885 PMCID: PMC11376340 DOI: 10.1523/jneurosci.0453-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Multiple mutations in the Rhodopsin gene cause sector retinitis pigmentosa in humans and a corresponding light-exacerbated retinal degeneration (RD) in animal models. Previously we have shown that T4K rhodopsin requires photoactivation to exert its toxic effect. Here we further investigated the mechanisms involved in rod cell death caused by T4K rhodopsin in mixed male and female Xenopus laevis In this model, RD was prevented by rearing animals in constant darkness but surprisingly also in constant light. RD was maximized by light cycles containing at least 1 h of darkness and 20 min of light exposure, light intensities >750 lux, and by a sudden light onset. Under conditions of frequent light cycling, RD occurred rapidly and synchronously, with massive shedding of ROS fragments into the RPE initiated within hours and subsequent death and phagocytosis of rod cell bodies. RD was minimized by reduced light levels, pretreatment with constant light, and gradual light onset. RD was prevented by genetic ablation of the retinal isomerohydrolase RPE65 and exacerbated by ablation of phototransduction components GNAT1, SAG, and GRK1. Our results indicate that photoactivated T4K rhodopsin is toxic, that cell death requires synchronized photoactivation of T4K rhodopsin, and that toxicity is mitigated by interaction with other rod outer segment proteins regardless of whether they participate in activation or shutoff of phototransduction. In contrast, RD caused by P23H rhodopsin does not require photoactivation of the mutant protein, as it was exacerbated by RPE65 ablation, suggesting that these phenotypically similar disorders may require different treatment strategies.
Collapse
Affiliation(s)
- Beatrice M Tam
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Paloma Burns
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Colette N Chiu
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| |
Collapse
|
4
|
Lin X, Liu ZL, Zhang X, Wang W, Huang ZQ, Sun SN, Jin ZB. Modeling autosomal dominant retinitis pigmentosa by using patient-specific retinal organoids with a class-3 RHO mutation. Exp Eye Res 2024; 241:109856. [PMID: 38479725 DOI: 10.1016/j.exer.2024.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP) causes progressive vision loss and is potentially incurable, accounting for 25% of adRP cases. Studies on RHO-adRP mechanism were at large based on the biochemical and cellular properties, especially class-3. Nonetheless, the absence of an appropriate model for class-3 RHO-adRP has impeded comprehensive exploration. Here, induced pluripotent stem cells (iPSCs) were generated from a healthy control and two sibling RP patients with the same point mutation, c.403C>T (p.R135W). The first three-dimensional (3D) retinal organoid model of a class-3 RHO point mutation from patient-derived iPSCs was generated. Significant defects were observed in rod photoreceptors in terms of localization, morphology, transcriptional profiling and single cell resolution, to better understand the human disease resulting from RHO mutations from a developmental perspective. This first human model of class-3 RHO-adRP provides a representation of patient's retina in vitro and displays features of RHO-adRP retinal organoids relevant for therapeutic development.
Collapse
Affiliation(s)
- Xiao Lin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhuo-Lin Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhi-Qin Huang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Shu-Ning Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
5
|
Petersen-Jones SM, Komáromy AM. Canine and Feline Models of Inherited Retinal Diseases. Cold Spring Harb Perspect Med 2024; 14:a041286. [PMID: 37217283 PMCID: PMC10835616 DOI: 10.1101/cshperspect.a041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Naturally occurring inherited retinal diseases (IRDs) in cats and dogs provide a rich source of potential models for human IRDs. In many cases, the phenotypes between the species with mutations of the homologous genes are very similar. Both cats and dogs have a high-acuity retinal region, the area centralis, an equivalent to the human macula, with tightly packed photoreceptors and higher cone density. This and the similarity in globe size to that of humans means these large animal models provide information not obtainable from rodent models. The established cat and dog models include those for Leber congenital amaurosis, retinitis pigmentosa (including recessive, dominant, and X-linked forms), achromatopsia, Best disease, congenital stationary night blindness and other synaptic dysfunctions, RDH5-associated retinopathy, and Stargardt disease. Several of these models have proven to be important in the development of translational therapies such as gene-augmentation therapies. Advances have been made in editing the canine genome, which necessitated overcoming challenges presented by the specifics of canine reproduction. Feline genome editing presents fewer challenges. We can anticipate the generation of specific cat and dog IRD models by genome editing in the future.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
6
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Li RTH, Roman AJ, Sumaroka A, Stanton CM, Swider M, Garafalo AV, Heon E, Vincent A, Wright AF, Megaw R, Aleman TS, Browning AC, Dhillon B, Cideciyan AV. Treatment Strategy With Gene Editing for Late-Onset Retinal Degeneration Caused by a Founder Variant in C1QTNF5. Invest Ophthalmol Vis Sci 2023; 64:33. [PMID: 38133503 PMCID: PMC10746929 DOI: 10.1167/iovs.64.15.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Genome editing is an emerging group of technologies with the potential to ameliorate dominant, monogenic human diseases such as late-onset retinal degeneration (L-ORD). The goal of this study was to identify disease stages and retinal locations optimal for evaluating the efficacy of a future genome editing trial. Methods Twenty five L-ORD patients (age range, 33-77 years; median age, 59 years) harboring the founder variant S163R in C1QTNF5 were enrolled from three centers in the United Kingdom and United States. Patients were examined with widefield optical coherence tomography (OCT) and chromatic perimetry under dark-adapted and light-adapted conditions to derive phenomaps of retinal disease. Results were analyzed with a model of a shared natural history of a single delayed exponential across all subjects and all retinal locations. Results Critical age for the initiation of photoreceptor loss ranged from 48 years at the temporal paramacular retina to 74 years at the inferior midperipheral retina. Subretinal deposits (sRET-Ds) became more prevalent as critical age was approached. Subretinal pigment epithelial deposits (sRPE-Ds) were detectable in the youngest patients showing no other structural or functional abnormalities at the retina. The sRPE-D thickness continuously increased, reaching 25 µm in the extrafoveal retina and 19 µm in the fovea at critical age. Loss of light sensitivity preceded shortening of outer segments and loss of photoreceptors by more than a decade. Conclusions Retinal regions providing an ideal treatment window exist across all severity stages of L-ORD.
Collapse
Affiliation(s)
- Randa T. H. Li
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Alejandro J. Roman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Chloe M. Stanton
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V. Garafalo
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tomas S. Aleman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Andrew C. Browning
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Artur V. Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
9
|
Jung YH, Kwak JJ, Joo K, Lee HJ, Park KH, Kim MS, Lee EK, Byeon SH, Lee CS, Han J, Lee J, Yoon CK, Woo SJ. Clinical and genetic features of Koreans with retinitis pigmentosa associated with mutations in rhodopsin. Front Genet 2023; 14:1240067. [PMID: 37712069 PMCID: PMC10497939 DOI: 10.3389/fgene.2023.1240067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose: To investigate the clinical features, natural course, and genetic characteristics of Koreans with rhodopsin-associated retinitis pigmentosa (RHO-associated RP). Design: We conducted a retrospective, multicenter, observational cohort study. Participants: We reviewed the medical records of 42 patients with RHO-associated RP of 36 families who visited 4 hospitals in Korea. Methods: Patients with molecular confirmation of pathogenic variants of the RHO gene were included. The patients were divided into two subgroups: the generalized and sector RP groups. A central visual field of the better-seeing eye of <10° or a best-corrected visual acuity of the better-seeing eye <20/40 indicated the progression to late-stage RP. Results: The mean age at which symptoms first appeared was 26.3 ± 17.9 years (range: 8-78 years), and the mean follow-up period was 80.9 ± 68.7 months (range: 6-268 months). At the last follow-up visit, the generalized RP group showed a significantly higher rate of visual field impairment progression to late-stage RP than that of the sector RP group (22 of 35 [62.9%] vs. 0 of 7 [0.0%], p = 0.003). No cases in the sector RP group progressed to generalized RP. Best-corrected visual acuity deterioration to late-stage RP was observed only in the generalized RP group (13 of 35 patients; 37.1%), whereas no deterioration was observed in the sector RP group. We identified 16 known and three novel RHO mutations, including two missense mutations (p.T108P and p.G121R) and one deletion mutation (p.P347_A348del). The pathogenic variants were most frequently detected in exon 1 (14 of 36 [38.9%]). The most common pathogenic variants were p.P347L and T17M (5 of 36 [13.9%] families). Among 42 patients of 36 families, 35 patients of 29 families (80.6%) presented with the generalized RP phenotype, and seven patients of seven families (19.4%) presented with the sector RP phenotype. Three variants (p.T17M, p.G101E, and p.E181K) presented with both the generalized and sector RP phenotypes. Conclusion: This multicenter cohort study provided information on the clinical and genetic features of RHO-associated RP in Koreans. It is clinically important to expand the genetic spectrum and understand genotype-phenotype correlations to ultimately facilitate the development of gene therapy.
Collapse
Affiliation(s)
- Young Hoon Jung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jay Jiyong Kwak
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyuk Jun Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Seok Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Christopher Seungkyu Lee
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Ki Yoon
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
10
|
Chew LA, Iannaccone A. Gene-agnostic approaches to treating inherited retinal degenerations. Front Cell Dev Biol 2023; 11:1177838. [PMID: 37123404 PMCID: PMC10133473 DOI: 10.3389/fcell.2023.1177838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Most patients with inherited retinal degenerations (IRDs) have been waiting for treatments that are "just around the corner" for decades, with only a handful of seminal breakthroughs happening in recent years. Highlighting the difficulties in the quest for curative therapeutics, Luxturna required 16 years of development before finally obtaining United States Food and Drug Administration (FDA) approval and its international equivalents. IRDs are both genetically and phenotypically heterogeneous. While this diversity offers many opportunities for gene-by-gene precision medicine-based approaches, it also poses a significant challenge. For this reason, alternative (or parallel) strategies to identify more comprehensive, across-the-board therapeutics for the genetically and phenotypically diverse IRD patient population are very appealing. Even when gene-specific approaches may be available and become approved for use, many patients may have reached a disease stage whereby these approaches may no longer be viable. Thus, alternate visual preservation or restoration therapeutic approaches are needed at these stages. In this review, we underscore several gene-agnostic approaches that are being developed as therapeutics for IRDs. From retinal supplementation to stem cell transplantation, optogenetic therapy and retinal prosthetics, these strategies would bypass at least in part the need for treating every individual gene or mutation or provide an invaluable complement to them. By considering the diverse patient population and treatment strategies suited for different stages and patterns of retinal degeneration, gene agnostic approaches are very well poised to impact favorably outcomes and prognosis for IRD patients.
Collapse
Affiliation(s)
- Lindsey A. Chew
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Alessandro Iannaccone
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
11
|
Sakai D, Hiraoka M, Matsuzaki M, Yokota S, Hirami Y, Onishi A, Nakamura M, Takahashi M, Kurimoto Y, Maeda A. Genotype and phenotype characteristics of RHO-associated retinitis pigmentosa in the Japanese population. Jpn J Ophthalmol 2023; 67:138-148. [PMID: 36648560 DOI: 10.1007/s10384-023-00975-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To identify the genotypic and phenotypic characteristics of rhodopsin (RHO)-associated retinitis pigmentosa (RP) in the Japanese population. STUDY DESIGN Cross-sectional, single-center study METHODS: The medical records of 1336 patients with RP who underwent genetic testing at our clinic between November 2008 and September 2021 were reviewed, and patients with RHO variants were included. The patients were divided into class A and class B to assess genotype-phenotype correlations based on previous reports. The clinical findings, including best-corrected visual acuity (BCVA), OCT parameters (ellipsoid zone [EZ] width and central retinal thickness [CRT]), and presence of macular degeneration, of the 2 groups were compared. RESULTS The study included 28 patients diagnosed with RHO-associated RP (class A, 19; class B, 9). The BCVA was significantly worse in class A patients than in class B patients (P = 0.045). Superior EZ width was significantly shorter in class A than in class B patients (P = 0.016). Class A patients tended to have thinner CRT and shorter inferior EZ width than those of class B patients, although this difference was not significant. Macular degeneration was observed in 61.5% of class A and 12.5% of class B patients, demonstrating that macular degeneration can be a common complication in class A variants. CONCLUSION Patients with class A variants presented with a severer form of RP than that of patients with class B variants in the Japanese population. These results suggest that the phenotype of RHO-associated RP is linked to the location of the variants and that such a genotype-phenotype correlation is less affected by ethnicities with different genetic backgrounds.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan. .,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masakazu Hiraoka
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mitsuhiro Matsuzaki
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akishi Onishi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
12
|
Ahmed CM, Massengill MT, Ildefonso CJ, Jalligampala A, Zhu P, Li H, Patel AP, McCall MA, Lewin AS. Binocular benefit following monocular subretinal AAV injection in a mouse model of autosomal dominant retinitis pigmentosa (adRP). Vision Res 2023; 206:108189. [PMID: 36773475 DOI: 10.1016/j.visres.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
Autosomal dominant retinitis pigmentosa (adRP) is frequently caused by mutations in RHO, the gene for rhodopsin. In previous experiments in dogs with the T4R mutation in RHO, an AAV2/5 vector expressing an shRNA directed to human and dog RHO mRNA and an shRNA-resistant human RHO cDNA (AAV-RHO820-shRNA820) prevented retinal degeneration for more than eight months following injection. It is crucial, however, to determine if this RNA replacement vector acts in a mutation-independent and species-independent manner. We, therefore, injected mice transgenic for human P23H RHO with this vector unilaterally at postnatal day 30. We monitored their retinal structure by using spectral-domain optical coherence tomography (SD-OCT) and retinal function using electroretinography (ERG) for nine months. We compared these to P23H RHO transgenic mice injected unilaterally with a control vector. Though retinas continued to thin over time, compared to control injected eyes, treatment with AAV-RHO820-shRNA820 slowed the loss of photoreceptor cells and the decrease in ERG amplitudes during the nine-month study period. Unexpectedly, we also observed the preservation of retinal structure and function in the untreated contralateral eyes of AAV-RHO820-shRNA820 treated mice. PCR analysis and western blots showed that a low amount of vector from injected eyes was present in uninjected eyes. In addition, protective neurotrophic factors bFGF and GDNF were elevated in both eyes of treated mice. Our finding suggests that using this or similar RNA replacement vectors in human gene therapy may provide clinical benefit to both eyes of patients with adRP.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Michael T Massengill
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | - Archana Jalligampala
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Hong Li
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Anil P Patel
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Liu Y, Wang X, Gong R, Xu G, Zhu M. Overexpression of Rhodopsin or Its Mutants Leads to Energy Metabolism Dysfunction in 661w Cells. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 36469028 PMCID: PMC9730732 DOI: 10.1167/iovs.63.13.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a heterogeneous group of inherited disorders characterized by photoreceptor degeneration. The rhodopsin gene (RHO) is the most frequent cause of autosomal dominant RP (ADRP), yet it remains unclear how RHO mutations cause heterogeneous phenotypes. Energy failure is a main cause of the secondary cone death during RP progression; however, its role in primary rod death induced by ADRP RHO mutants is unknown. Methods Three RHO missense mutations were chosen from different clinical classes. Wild-type (WT) RHO and its mutants, P23H (class B1), R135L (class A), and G188R (class B2), were overexpressed in 661w cells, a mouse photoreceptor cell line, and their effects on oxidative phosphorylation (OXPHOS) and aerobic glycolysis were compared separately. Results Here, we report that energy failure is an early event in the cell death caused by overexpression of WT RHO and its mutants. RHO overexpression leads to OXPHOS deficiency, which might be a result of mitochondrial loss. Nonetheless, only in WT RHO and P23H groups, energy stress triggers AMP-activated protein kinase activation and metabolic reprogramming to increase glycolysis. Metabolic reprogramming impairment in R135L and G188R groups might be the reason why energy failure and cell injury are much more severe in those groups. Conclusions Our results imply that overexpression of RHO missense mutants have distinct impacts on the two energy metabolic pathways, which might be related to their heterogeneous phenotypes.
Collapse
Affiliation(s)
- Yang Liu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ruowen Gong
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Gezhi Xu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Min Zhu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
14
|
Gupta PR, Kheir W, Peng B, Duan J, Chiang JPW, Iannaccone A. Identification of numerous novel disease-causing variants in patients with inherited retinal diseases, combining careful clinical-functional phenotyping with systematic, broad NGS panel-based genotyping. Mol Vis 2022; 28:203-219. [PMID: 36284670 PMCID: PMC9514548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/14/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose The widespread consensus is that genotyping is essential for patients with inherited retinal disease (IRD). Given the numerous ongoing gene therapy clinical trials for IRDs, identifying the pathogenic mutation in these patients has potential important therapeutic implications. In this study, we demonstrate how we identified with a high degree of confidence numerous novel disease-causing mutations, deletions, and duplications in a large consecutive IRD case series by using a judicious combination of careful, in-depth clinical-functional phenotyping to guide and integrate our genotyping approach. Methods We conducted a retrospective analysis of data between November 2016 and March 2018 from the Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases IRD patient database, which encompassed 378 IRD cases that had not yet been previously genotyped. With the exception of some patients who presented with classical clinical-functional phenotypes that allowed for targeted gene testing, all other subjects systematically underwent next-generation sequencing-based broad, IRD-focused panel testing. Most cases were also tested for parental allele phase. Results were reviewed vis-à-vis the clinical-functional phenotypes for reconciliation and potential addition of supplemental testing such as deletion/duplication microarrays or copy number variant (CNV) analysis. Supplemental testing was driven by an IRD specialist-laboratory consensus, and decisions were clinically or genetically driven or both. Results By judiciously using this two-way approach and leveraging to its full potential the benefits of careful, in-depth clinical-functional phenotyping by an experienced IRD specialist, more than 80% of the cases in this series were successfully genotyped. We also identified with a high degree of confidence 52 novel disease-causing mutations, deletions, and duplications. Conclusions The combination of meticulous, expert clinical-functional phenotyping studies with systematic next-generation sequencing panel-based genotyping and microarray deletion/duplication testing or CNV analysis as applicable in accordance with the above-mentioned consensus was extremely effective at the diagnostic end, reduced costs, and saved time. IRD specialist-laboratory two-way interactions and case discussions would augment the efficacy of this approach and improve the diagnostic yield in successfully solving and genotyping IRD cases.
Collapse
Affiliation(s)
- Priya R. Gupta
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC
| | - Wajiha Kheir
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC,,Current affiliation: Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
| | - Bo Peng
- Molecular Vision Laboratory, Hillsboro, OR
| | - Jie Duan
- Molecular Vision Laboratory, Hillsboro, OR
| | | | - Alessandro Iannaccone
- Duke Eye Center, Department of Ophthalmology, Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Durham, NC
| |
Collapse
|
15
|
Lewin AS, Smith WC. Gene Therapy for Rhodopsin Mutations. Cold Spring Harb Perspect Med 2022; 12:a041283. [PMID: 35940643 PMCID: PMC9435570 DOI: 10.1101/cshperspect.a041283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in RHO, the gene for rhodopsin, account for a large fraction of autosomal-dominant retinitis pigmentosa (adRP). Patients fall into two clinical classes, those with early onset, pan retinal photoreceptor degeneration, and those who experience slowly progressive disease. The latter class of patients are candidates for photoreceptor-directed gene therapy, while former may be candidates for delivery of light-responsive proteins to interneurons or retinal ganglion cells. Gene therapy for RHO adRP may be targeted to the mutant gene at the DNA or RNA level, while other therapies preserve the viability of photoreceptors without addressing the underlying mutation. Correcting the RHO gene and replacing the mutant RNA show promise in animal models, while sustaining viable photoreceptors has the potential to delay the loss of central vision and may preserve photoreceptors for gene-directed treatments.
Collapse
Affiliation(s)
- Alfred S Lewin
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - W Clay Smith
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
16
|
Burgess FR, Hall HN, Megaw R. Emerging Gene Manipulation Strategies for the Treatment of Monogenic Eye Disease. Asia Pac J Ophthalmol (Phila) 2022; 11:380-391. [PMID: 36041151 DOI: 10.1097/apo.0000000000000545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic eye diseases, representing a wide spectrum of simple and complex conditions, are one of the leading causes of visual loss in children and working adults, and progress in the field has led to changes in disease investigation, diagnosis, and management. The past 15 years have seen the emergence of novel therapies for these previously untreatable conditions to the extent that we now have a licensed therapy for one form of genetic eye disease and many more in clinical trial. This is a systematic review of published and ongoing clinical trials of gene therapies for monogenic eye diseases. Databases of clinical trials and the published literature were searched for interventional studies of gene therapies for eye diseases. Standard methodological procedures were used to assess the relevance of search results. A total of 59 registered clinical trials are referenced, showing the significant level of interest in the potential for translation of these therapies from bench to bedside. The breadth of therapy design is encouraging, providing multiple possible therapeutic mechanisms. Some fundamental questions regarding gene therapy for genetic eye diseases remain, such as optimal dosing, the relative benefits of adeno-associated virus (AAV)-packaging and the potential for a significant inflammatory response to the therapy itself. As a result, despite the promise of the eye as a target, it has proven difficult to deliver clinically effective gene therapies to the eye. Despite setbacks, the licensing of Luxturna (voretigene neparvovec, Novartis) for the treatment of RPE65-mediated Leber congenital amaurosis (LCA) is a major advance in efforts to treat these rare, but devastating, causes of visual loss.
Collapse
Affiliation(s)
- Frederick R Burgess
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- Ophthalmology Department, School of Medicine, University of St Andrews, UK
| | - Hildegard Nikki Hall
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| |
Collapse
|
17
|
Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:155-178. [PMID: 35595348 DOI: 10.1016/bs.pmbts.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.
Collapse
|
18
|
Verra DM, Spinnhirny P, Sandu C, Grégoire S, Acar N, Berdeaux O, Brétillon L, Sparrow JR, Hicks D. Intrinsic differences in rod and cone membrane composition: implications for cone degeneration. Graefes Arch Clin Exp Ophthalmol 2022; 260:3131-3148. [PMID: 35524799 DOI: 10.1007/s00417-022-05684-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features. METHODS Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl-/- mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed. RESULTS Abca4 mRNA and Abca4 protein content was significantly higher (50-300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 ("ELOngation of Very Long chain fatty acids 4") antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods). CONCLUSIONS Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.
Collapse
Affiliation(s)
- Daniela M Verra
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Perrine Spinnhirny
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Cristina Sandu
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Stéphane Grégoire
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Olivier Berdeaux
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Lionel Brétillon
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Janet R Sparrow
- Departments of Ophthalmology, and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - David Hicks
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France.
| |
Collapse
|
19
|
Amamoto R, Wallick GK, Cepko CL. Retinoic acid signaling mediates peripheral cone photoreceptor survival in a mouse model of retina degeneration. eLife 2022; 11:76389. [PMID: 35315776 PMCID: PMC8940176 DOI: 10.7554/elife.76389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Retinitis Pigmentosa (RP) is a progressive, debilitating visual disorder caused by mutations in a diverse set of genes. In both humans with RP and mouse models of RP, rod photoreceptor dysfunction leads to loss of night vision, and is followed by secondary cone photoreceptor dysfunction and degeneration, leading to loss of daylight color vision. A strategy to prevent secondary cone death could provide a general RP therapy to preserve daylight color vision regardless of the underlying mutation. In mouse models of RP, cones in the peripheral retina survive long-term, despite complete rod loss. The mechanism for such peripheral cone survival had not been explored. Here, we found that active retinoic acid (RA) signaling in peripheral Muller glia is necessary for the abnormally long survival of these peripheral cones. RA depletion by conditional knockout of RA synthesis enzymes, or overexpression of an RA degradation enzyme, abrogated the extended survival of peripheral cones. Conversely, constitutive activation of RA signaling in the central retina promoted long-term cone survival. These results indicate that RA signaling mediates the prolonged peripheral cone survival in the rd1 mouse model of retinal degeneration, and provide a basis for a generic strategy for cone survival in the many diseases that lead to loss of cone-mediated vision.
Collapse
Affiliation(s)
- Ryoji Amamoto
- Department of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Grace K Wallick
- Department of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Constance L Cepko
- Department of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
20
|
Raming K, Gliem M, Charbel Issa P, Birtel J, Herrmann P, Holz FG, Pfau M, Hess K. Visual Dysfunction and Structural Correlates in Sorsby Fundus Dystrophy. Am J Ophthalmol 2022; 234:274-284. [PMID: 34352251 DOI: 10.1016/j.ajo.2021.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To elucidate morphological determinants of rod and cone dysfunction in Sorsby fundus dystrophy (SFD), and to systematically compare visual function tests for interventional trials. DESIGN Prospective cross-sectional study. METHODS Patients with SFD (n = 16) and controls (n = 20) underwent visual function testing (best-corrected visual acuity [BCVA] and low luminance visual acuity [LLVA], contrast sensitivity, mesopic and dark-adapted (DA) fundus-controlled perimetry [FCP], rod-mediated dark adaptation [RMDA]), and multimodal imaging. Vision-related quality of life was evaluated. FCP and RMDA thresholds were analyzed using mixed models and structure-function correlation using machine learning (ML). Longitudinal data of 1 patient with high-dose vitamin A supplementation were available. RESULTS Although photopic BCVA was normative in SFD, LLVA was impaired (0.30 LogMAR [0.20; 0.45] vs 0.20 LogMAR [0.03; 0.28], P < .05). Scotopic visual function exhibited a delayed rod-intercept time (21 minutes [12.15; 21] vs 4.05 minutes [3.22; 5.36], P < .001), and marked DA cyan mean sensitivity loss (-11.80 dB [-3.47; -19.85]), paralleled by a reduced vision-related quality of life. ML-based structure-function correlation allowed prediction of mesopic, DA cyan, and red sensitivity with high accuracy (cross-validated mean absolute error: 4.36, 7.77, and 5.31 dB, respectively), whereas RMDA could be slowed even in the absence of fundus alterations on multimodal imaging. After high-dose vitamin A supplementation, RMDA and DA thresholds improved markedly. CONCLUSIONS Patients with SFD exhibit severely impaired scotopic visual function even in the absence of funduscopic alterations on multimodal imaging. In contrast to BCVA, scotopic visual function tests are suitable to quantify dysfunction in the early stages. Improvement of scotopic dysfunction after (off-label) high-dose vitamin A intake, as observed in one patient in our study, is compatible with the hypothesized local deficiency of vitamin A secondary to Bruch's membrane alterations.
Collapse
Affiliation(s)
- Kristin Raming
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Center for Rare Diseases (K.R., P.H., F.G.H., K.H.), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Boehringer Ingelheim GmbH (M.G.), Ingelheim am Rhein, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital (P.C.I., J.B.,), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (P.C.I., J.B.), Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Johannes Birtel
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Oxford Eye Hospital (P.C.I., J.B.,), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (P.C.I., J.B.), Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philipp Herrmann
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Center for Rare Diseases (K.R., P.H., F.G.H., K.H.), University of Bonn, Bonn, Germany
| | - Frank G Holz
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Center for Rare Diseases (K.R., P.H., F.G.H., K.H.), University of Bonn, Bonn, Germany
| | - Maximilian Pfau
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Ophthalmic Genetics and Visual Function Branch (M.P.), National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristina Hess
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Center for Rare Diseases (K.R., P.H., F.G.H., K.H.), University of Bonn, Bonn, Germany; Division of Epidemiology and Clinical Applications (K.H.), National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
21
|
Patel TP, Vongsachang H, Schilling A, Kong X, Singh MS. Spatial Characteristics of Peripheral Visual Islands in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2022; 63:26. [PMID: 35175279 PMCID: PMC8857617 DOI: 10.1167/iovs.63.2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is typified by progressive peripheral visual field (pVF) loss in patterns that can vary between individuals. Greater understanding of pVF preservation may inform research on therapeutic targets. However, characteristics of retained pVF are incompletely understood. We aimed to evaluate the spatial characteristics of retained pVF in RP. Methods We developed a computational platform to generate a probability map of the spatial distribution of retained pVF loci using the Goldmann V4e isopter. RP subjects were grouped into cross-sectional and longitudinal datasets. Probability maps of retained pVF were generated for categories of symptomatic disease duration (SDD). We applied a mathematical model to determine the anatomical correlate of the retained pVF. Results A total of 152 subjects were included. The mean age was 46.7 years. SDD was <20 years (47.4%), 20 to 40 years (39.5%), or >40 years (13.2%). Longitudinal data (3.2–5.7 years of follow up) were available for 65 subjects. In the cross-sectional dataset, retained pVF loci were most likely to be located between the 50° and 80° isoeccentric meridians and between the 30° to 50° radial axes. In the longitudinal dataset, inferotemporal pVF loci were the most likely to be preserved over time. The area of pVF retention corresponded anatomically to the pre-equatorial superonasal retina. Conclusions Semiautomated quantitation of pVF may be a useful tool to analyze spatial characteristics of VF in RP. Retinal cells in the superonasal periphery may be resilient to RP-related functional decline. Understanding the cellular and molecular basis of pVF resilience in the retina may inform efforts to develop treatment modalities for RP.
Collapse
Affiliation(s)
- Tapan P Patel
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Hursuong Vongsachang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Andrew Schilling
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Xiangrong Kong
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
22
|
New insights into the molecular mechanism of rhodopsin retinitis pigmentosa from the biochemical and functional characterization of G90V, Y102H and I307N mutations. Cell Mol Life Sci 2022; 79:58. [PMID: 34997336 PMCID: PMC8741697 DOI: 10.1007/s00018-021-04086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Mutations in the photoreceptor protein rhodopsin are known as one of the leading causes of retinal degeneration in humans. Two rhodopsin mutations, Y102H and I307N, obtained in chemically mutagenized mice, are currently the subject of increased interest as relevant models for studying the process of retinal degeneration in humans. Here, we report on the biochemical and functional characterization of the structural and functional alterations of these two rhodopsin mutants and we compare them with the G90V mutant previously analyzed, as a basis for a better understanding of in vivo studies. This mechanistic knowledge is fundamental to use it for developing novel therapeutic approaches for the treatment of inherited retinal degeneration in retinitis pigmentosa. We find that Y102H and I307N mutations affect the inactive–active equilibrium of the receptor. In this regard, the mutations reduce the stability of the inactive conformation but increase the stability of the active conformation. Furthermore, the initial rate of the functional activation of transducin, by the I307N mutant is reduced, but its kinetic profile shows an unusual increase with time suggesting a profound effect on the signal transduction process. This latter effect can be associated with a change in the flexibility of helix 7 and an indirect effect of the mutation on helix 8 and the C-terminal tail of rhodopsin, whose potential role in the functional activation of the receptor has been usually underestimated. In the case of the Y102H mutant, the observed changes can be associated with conformational alterations affecting the folding of the rhodopsin intradiscal domain, and its presumed involvement in the retinal binding process by the receptor.
Collapse
|
23
|
Roberts PA. Mathematical Models of Retinitis Pigmentosa: The Trophic Factor Hypothesis. J Theor Biol 2021; 534:110938. [PMID: 34687673 DOI: 10.1016/j.jtbi.2021.110938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Retinitis pigmentosa (RP) is the term used to denote a group of inherited retinal-degenerative conditions that cause progressive sight loss. Individuals with this condition lose their light-sensitive photoreceptor cells, known as rods and cones, over a period of years to decades; degeneration starting in the retinal periphery, and spreading peripherally and centrally over time. RP is a rod-cone dystrophy, meaning that rod health and function are affected earlier and more severely than that of cones. Rods degenerate due to an underlying mutation, whereas the reasons for cone degeneration are unknown. A number of mechanisms have been proposed to explain secondary cone loss and the spatio-temporal patterns of retinal degeneration in RP. One of the most promising is the trophic factor hypothesis, which suggests that rods produce a factor necessary for cone survival, such that, when rods degenerate, cone degeneration follows. In this paper we formulate and analyse mathematical models of human RP under the trophic factor hypothesis. These models are constructed as systems of reaction-diffusion partial differential equations in one spatial dimension, and are solved and analysed using a combination of numerical and analytical methods. We predict the conditions under which cones will degenerate following the loss of a patch of rods from the retina, the critical trophic factor treatment rate required to prevent cone degeneration following rod loss and the spatio-temporal patterns of cone loss that would result if the trophic factor mechanism alone were responsible for retinal degeneration.
Collapse
Affiliation(s)
- Paul A Roberts
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Brighton BN1 9QG, UK.
| |
Collapse
|
24
|
Iannaccone A, Alekseev O. Choosing Outcome Measures and Assessing Efficacy of Therapeutic Interventions in Inherited Retinal Diseases: The Importance of Natural History Studies. Int Ophthalmol Clin 2021; 61:47-61. [PMID: 34584044 DOI: 10.1097/iio.0000000000000380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Massengill MT, Lewin AS. Gene Therapy for Rhodopsin-associated Autosomal Dominant Retinitis Pigmentosa. Int Ophthalmol Clin 2021; 61:79-96. [PMID: 34584046 PMCID: PMC8478325 DOI: 10.1097/iio.0000000000000383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Kaplan HJ, Wang W, Piri N, Dean DC. Metabolic rescue of cone photoreceptors in retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:331-335. [PMID: 35070660 PMCID: PMC8757513 DOI: 10.4103/tjo.tjo_46_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022] Open
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. It is a leading cause of visual disability, with an incidence of ~1 in 7000 persons. Although most RP is nonsyndromic, 20%-30% of patients with RP also have an associated nonocular condition. The gene mutations responsible for RP occur overwhelmingly in rod photoreceptors. Visual loss frequently begins with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors. Although the visual disability from rod dysfunction is significant, it is the subsequent loss of central vision later in life due to cone degeneration that is catastrophic. Until recently, the reason for cone dysfunction in RP was unknown. However, it is now recognized that cones degenerate, losing outer segment (OS) synthesis and inner segment (IS) disassembly because of glucose starvation following rod demise. Rod OS phagocytosis by the apical microvilli of retinal pigment epithelium is necessary to transport glucose from the choriocapillaris to the subretinal space. Although cones lose OS with the onset of rod degeneration in RP, regardless of the gene mutation in rods, cone nuclei remain viable for years (i.e. enter cone dormancy) so that therapies aimed at reversing glucose starvation can prevent and/or recover cone function and central vision.
Collapse
Affiliation(s)
- Henry J Kaplan
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Niloofar Piri
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Douglas C Dean
- Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| |
Collapse
|
27
|
Krishnan AK, Roman AJ, Swider M, Jacobson SG, Cideciyan AV. Macular Rod Function in Retinitis Pigmentosa Measured With Scotopic Microperimetry. Transl Vis Sci Technol 2021; 10:3. [PMID: 34473224 PMCID: PMC8419874 DOI: 10.1167/tvst.10.11.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose To investigate the validity and reliability of macular rod photoreceptor function measurement with a microperimeter. Methods Macular sensitivity in dark-adapted retinitis pigmentosa (RP) patients (22 eyes; 9–67 years of age) and controls (five eyes; 22–55 years of age) was assessed with a modified Humphrey field analyzer (mHFA), as well as a scotopic microperimeter (Nidek MP-1S). Sensitivity loss (SL) was estimated at rod-mediated locations. All RP eyes were re-evaluated at a second visit 6 months later. The dynamic range of the MP-1S was expanded with a range of neutral-density filters (NDFs). Results In controls, a 4 NDF was used at all macular locations tested. In patients with RP, 0 to 3 NDFs were used, depending on the local disease severity. At rod-mediated locations (n = 281), SL estimates obtained with the MP-1S were highly correlated (r = 0.80) with those of the mHFA. The inter-perimeter difference of SL averaged less than 3 decibels (dB) with all NDFs, except those with most severe locations evaluated with a 0 NDF, where the difference averaged more than 6 dB. The results were similar on the second visit. Conclusions The MP-1S estimates of SL are highly correlated with those of the mHFA over a wide range of disease severity replicated at two visits; however, there was an unexplained bias in the magnitude of SL estimated by the MP-1S especially at loci with severe disease. Translational Relevance MP-1S scotopic microperimetry can be used to evaluate changes to macular rod function, but evaluation of treatment potential by quantitative comparison of SL to retinal structure will be more challenging.
Collapse
Affiliation(s)
- Arun K Krishnan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Roman AJ, Cideciyan AV, Wu V, Garafalo AV, Jacobson SG. Full-field stimulus testing: Role in the clinic and as an outcome measure in clinical trials of severe childhood retinal disease. Prog Retin Eye Res 2021; 87:101000. [PMID: 34464742 DOI: 10.1016/j.preteyeres.2021.101000] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
Disease mechanisms have become better understood in previously incurable forms of early-onset severe retinal dystrophy, such as Leber congenital amaurosis (LCA). This has led to novel treatments and clinical trials that have shown some success. Standard methods to measure vision were difficult if not impossible to perform in severely affected patients with low vision and nystagmus. To meet the need for visual assays, we devised a psychophysical method, which we named full-field stimulus testing (FST). From early versions based on an automated perimeter, we advanced FST to a more available light-emitting diode platform. The journey from invention to use of such a technique in our inherited retinal degeneration clinic is reviewed and many of the lessons learned over the 15 years of application of FST are explained. Although the original purpose and application of FST was to quantify visual thresholds in LCA, there are rare opportunities for FST also to be used beyond LCA to measure aspects of vision in other inherited retinal degenerations; examples are given. The main goal of the current review, however, remains to enable investigators studying and treating LCA to understand how to best use FST and how to reduce artefact and confounding complexities so the test results become more valuable to the understanding of LCA diseases and results of novel interventions.
Collapse
Affiliation(s)
- Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Wu
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Cideciyan AV, Krishnan AK, Roman AJ, Sumaroka A, Swider M, Jacobson SG. Measures of Function and Structure to Determine Phenotypic Features, Natural History, and Treatment Outcomes in Inherited Retinal Diseases. Annu Rev Vis Sci 2021; 7:747-772. [PMID: 34255540 DOI: 10.1146/annurev-vision-032321-091738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherited retinal diseases (IRDs) are at the forefront of innovative gene-specific treatments because of the causation by single genes, the availability of microsurgical access for treatment delivery, and the relative ease of quantitative imaging and vision measurement. However, it is not always easy to choose a priori, from scores of potential measures, an appropriate subset to evaluate efficacy outcomes considering the wide range of disease stages with different phenotypic features. This article reviews measurements of visual function and retinal structure that our group has used over the past three decades to understand the natural history of IRDs. We include measures of light sensitivity, retinal structure, mapping of natural fluorophores, evaluation of pupillary light reflex, and oculomotor control. We provide historical context and examples of applicability. We also review treatment trial outcomes using these measures of function and structure. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Arun K Krishnan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Alejandro J Roman
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Alexander Sumaroka
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Malgorzata Swider
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
30
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
31
|
Li S, Hu Y, Li Y, Hu M, Wang W, Ma Y, Cai Y, Wei M, Yao Y, Wang Y, Dong K, Gu Y, Zhao H, Bao J, Qiu Z, Zhang M, Hu X, Xue T. Generation of nonhuman primate retinitis pigmentosa model by in situ knockout of RHO in rhesus macaque retina. Sci Bull (Beijing) 2021; 66:374-385. [PMID: 36654417 DOI: 10.1016/j.scib.2020.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 01/20/2023]
Abstract
Retinitis pigmentosa (RP) is a form of inherited retinal degenerative diseases that ultimately involves the macula, which is present in primates but not in the rodents. Therefore, creating nonhuman primate (NHP) models of RP is of critical importance to study its mechanism of pathogenesis and to evaluate potential therapeutic options in the future. Here we applied adeno-associated virus (AAV)-delivered CRISPR/SaCas9 technology to knockout the RHO gene in the retinae of the adult rhesus macaque (Macaca mulatta) to investigate the hypothesis whether non-germline mutation of the RHO gene is sufficient to recapitulate RP. Through a series of studies, we were able to demonstrate successful somatic editing of the RHO gene and reduced RHO protein expression. More importantly, the mutant macaque retinae displayed clinical RP phenotypes, including photoreceptor degeneration, retinal thinning, abnormal rod subcellular structures, and reduced photoresponse. Therefore, we suggest somatic editing of the RHO gene is able to phenocopy RP, and the reduced time span in generating NHP mutant accelerates RP research and expands the utility of NHP model for human disease study.
Collapse
Affiliation(s)
- Shouzhen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yingzhou Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Yunqin Li
- Second People's Hospital of Yunnan Province, Yunnan Eye Institute, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650223, China
| | - Min Hu
- Second People's Hospital of Yunnan Province, Yunnan Eye Institute, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650223, China
| | - Wenchao Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuqian Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yuan Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Min Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yichuan Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yun Wang
- Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Kai Dong
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yonghao Gu
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Huan Zhao
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Jin Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zilong Qiu
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China.
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China.
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
32
|
Hess K, Gliem M, Charbel Issa P, Birtel J, Müller PL, von der Emde L, Herrmann P, Holz FG, Pfau M. Mesopic and Scotopic Light Sensitivity and Its Microstructural Correlates in Pseudoxanthoma Elasticum. JAMA Ophthalmol 2021; 138:1272-1279. [PMID: 33090206 DOI: 10.1001/jamaophthalmol.2020.4335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Correlates for Bruch membrane alterations are needed for interventional trials targeting the Bruch membrane in pseudoxanthoma elasticum (PXE). Objectives To quantify mesopic and scotopic light sensitivity and identify its microstructural correlates associated with a diseased Bruch membrane in patients with PXE. Design, Setting, and Participants A prospective, single-center, cross-sectional case-control study was conducted at a tertiary referral center from January 31, 2018, to February 20, 2020. Twenty-two eyes of 22 patients with PXE and 40 eyes of 40 healthy individuals were included. Data analysis was completed March 15, 2020. Exposures Mesopic and dark-adapted 2-color fundus-controlled perimetry (microperimetry) and multimodal retinal imaging including spectral-domain optical coherence tomography (SD-OCT) and OCT angiography were performed. Perimetry thresholds were analyzed using mixed models, and structure-function correlation with SD-OCT data was performed using machine learning. Main Outcomes and Measures Observed dark-adapted cyan sensitivity loss as measure of rod photoreceptor dysfunction, as well as mean absolute error between predicted and observed retinal sensitivity to assess the accuracy of structure-function correlation. Results Of the 22 patients with PXE included in this study, 15 were women (68%); median age was 56.5 years (interquartile range, 50.4-61.2). These patients exhibited mesopic (estimate, 5.13 dB; 95% CI, 2.89-7.38 dB), dark-adapted cyan (estimate, 9.08 dB; 95% CI, 6.34-11.82 dB), and dark-adapted red (estimate, 7.05 dB; 95% CI, 4.83-9.27 dB) sensitivity losses. This sensitivity loss was also evident in 9 eyes with nonneovascular PXE (mesopic: estimate, 3.21 dB; 95% CI, 1.28-5.14 dB; dark-adapted cyan: 5.93 dB; 95% CI, 3.59-8.27 dB; and dark-adapted red testing: 4.84 dB; 95% CI, 2.88-6.80 dB), showing a distinct centrifugal pattern of sensitivity loss with preserved function toward the periphery. Retinal function could be predicted from microstructure with high accuracy (mean absolute errors, of 4.91 dB for mesopic, 5.44 dB for dark-adapted cyan, and 4.99 dB for dark-adapted red). The machine learning-based analysis highlighted an association of a thinned inner retina and putative separation of the pigment-epithelium-photoreceptor complex with sensitivity loss. Conclusions and Relevance In this study, among 22 patients with PXE, those with and without choroidal neovascularization exhibited reductions of retinal sensitivity being most pronounced in dark-adapted cyan testing. This finding suggests that pathologic characteristics of this Bruch membrane disease may be dominated by rod photoreceptor degeneration and/or dysfunction. A putative pigment-epithelium-photoreceptor separation may further impair rod function, while inner retinal abnormalities appear to be correlated with overall dysfunction.
Collapse
Affiliation(s)
- Kristina Hess
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University of Bonn, Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University of Bonn, Bonn, Germany.,Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom
| | | | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University of Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Biomedical Data Science, Stanford University, Stanford, California
| |
Collapse
|
33
|
Verdina T, Greenstein VC, Tsang SH, Murro V, Mucciolo DP, Passerini I, Mastropasqua R, Cavallini GM, Virgili G, Giansanti F, Sodi A. Clinical and genetic findings in Italian patients with sector retinitis pigmentosa. Mol Vis 2021; 27:78-94. [PMID: 33688152 PMCID: PMC7937404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/03/2021] [Indexed: 10/25/2022] Open
Abstract
Purpose To describe clinical and genetic features in a series of Italian patients with sector retinitis pigmentosa (sector RP). Methods Fifteen patients with sector RP were selected from the database of Hereditary Retinal Degenerations Referring Center of Careggi Hospital (Florence, Italy). Eleven patients from five independent pedigrees underwent genetic analysis with next-generation sequencing (NGS) confirmed with Sanger sequencing. The diagnosis of sector RP was based on the detection of topographically limited retinal abnormalities consistent with corresponding sectorial visual field defects. Best-corrected visual acuity (BCVA), fundus color pictures as well as fundus autofluorescence (FAF), spectral domain-optical coherence tomography (SD-OCT), full-field electroretinography (ERG), and 30-2 Humphrey visual field (VF) data were retrospectively collected and analyzed. Results For the 30 eyes, the mean BCVA was 0.05 ± 0.13 logMAR, and the mean refractive error was -0.52 ± 1.89 D. The inferior retina was the most affected sector (86.7%), and the VF defect corresponded to the affected sector. FAF showed a demarcation line of increased autofluorescence between the healthy and affected retina, corresponding on SD-OCT to an interruption of the ellipsoid zone (EZ) band in the diseased retina. Dark-adapted ERG amplitudes were decreased in comparison to normative values. In five unrelated families, the sector RP phenotype was associated with sequence variants in the RHO gene. The same mutation c.568G>A p.(Asp190Asn) was found in nine patients of four families. Conclusions Typical sector RP is a mild form of RP characterized by preserved visual acuity with limited retinal involvement and, generally, a more favorable prognosis than other forms of RP.
Collapse
Affiliation(s)
- Tommaso Verdina
- Institute of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Stephen H. Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Dario Pasquale Mucciolo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Rodolfo Mastropasqua
- Institute of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy
| | - Gian Maria Cavallini
- Institute of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianni Virgili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Fabrizio Giansanti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
34
|
Otte B, Andrews C, Lacy G, Branham K, Musch DC, Jayasundera KT. Clinical trial design for neuroprotection in RHO autosomal dominant retinitis pigmentosa; outcome measure considerations. Ophthalmic Genet 2021; 42:170-177. [PMID: 33406961 DOI: 10.1080/13816810.2020.1867752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To identify structural and functional outcome measures among patients with Rho-positive autosomal dominant Retinitis Pigmentosa (adRP) to aid neuroprotection trial design.Methods: This was a retrospective cohort study of 52 patients with Rho-positive adRP. We measured Goldmann Visual Fields (GVF) constriction in four sectors (nasal, temporal, inferior, superior), and sectoral Ellipsoid Zone (EZ) width degeneration using Spectral Domain Optical Coherence Tomography (OCT) scans. Disease progression trajectories were projected using mixed effects modeling.Results: Superior GVF was most constricted at presentation and had the shallowest trajectory (less steep negative slope); Inferior GVF was less constricted (corrected p < .001) and had a steeper negative slope (corrected p = .019) than superior GVF. Temporal EZ was most stable on OCT with a relatively shallow negative trajectory (corrected p = .011).Conclusions: Patients' superior visual fields presented with more constriction and subsequently had a shallow negative slope suggesting the corresponding inferior retina may be "burned out" at presentation. Targeted therapies for adRP will likely show a greater efficacy signal if delivered to the superior and nasal retina, which may demonstrate more change on OCT and GVF over the course of a neuroprotection trial.Translational Relevance: Mixed effects analysis of sectoral visual field constriction and EZ degeneration in Rho-positive adRP can prove useful in monitoring therapeutic efficacy and identifying targets for local therapies.
Collapse
Affiliation(s)
- Benjamin Otte
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chris Andrews
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabrielle Lacy
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David C Musch
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kanishka T Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Piri N, Grodsky J, Kaplan H. Gene therapy for retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:348-351. [PMID: 35070662 PMCID: PMC8757518 DOI: 10.4103/tjo.tjo_47_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022] Open
Abstract
Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RP) is the most common cause of RP in North America. There is no proven cure for the disease, and multiple approaches are being studied. Gene therapy is an evolving field in medicine and ophthalmology. In this review, we will go over the basic concept of gene therapy and the different types of gene therapy that are currently being studied to treat this disease.
Collapse
|
36
|
Arsiwalla TA, Cornish EE, Nguyen PV, Korsakova M, Ali H, Saakova N, Fraser CL, Jamieson RV, Grigg JR. Assessing Residual Cone Function in Retinitis Pigmentosa Patients. Transl Vis Sci Technol 2020; 9:29. [PMID: 33364083 PMCID: PMC7746956 DOI: 10.1167/tvst.9.13.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose The purpose of this study was to investigate cone function deterioration in patients with retinitis pigmentosa (RP) using full field electroretinogram (ffERG), pattern electroretinogram (pERG), and optical coherence tomography (OCT) and their correlation with visual acuity (VA). Methods Clinical records (2008–2018) of patients with RP undergoing repeat electrophysiology were reviewed. Results of ffERG (30 Hz flicker and fused flicker amplitude [FFAmp]), pERG [p50 and n95], and macular OCT (ellipsoid zone [EZ] and outer segment thickness) were collected. Results One hundred twenty-six eyes from 63 patients (33 women, mean age 35 years) were included. The mean decline in VA was 0.11 ± 0.14 logarithm of minimum angle of resolution (logMAR). The FFAmp decreased by 3.01 ± 5.9 µV with global cone function deteriorating by 18.7% annually. The percentage change in FFAmp (RE [r = 0.553], LE [r = 0.531]), and 30 Hz flicker amplitude (RE [r = 0.615], LE [r = 0.529]) strongly correlated with VA (P < 0.00001). The pERG p50 (15 and 30 degrees) change analyzed in 34 patients showed reduction by 23% and 23.4%, respectively. The percentage change in p50 30 degrees (r = 0.397) correlated with VA and EZ layer (P < 0.05). The EZ layer change was calculated in 45 patients and the shortening and thinning rate was 4.3% and 4.4% annually, respectively. The EZ length percentage change correlated with VA (RE [r = 0.34] and LE [r = 0.466; P < 0.05). Conclusions We quantified the decline in cone function in patients with RP utilizing ffERG and FFAmp measures of residual cone function. These parameters correlated with VA and OCT when measurable. These objective measures may assist in monitoring disease progression. Translational Relevance Residual cone function provides an objective estimate of residual visual function, which aids in counselling patients regarding prognosis.
Collapse
Affiliation(s)
- Tasneem A Arsiwalla
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Eye Hospital Foundation, University of Sydney, Sydney, New South Wales, Australia
| | - Elisa E Cornish
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney Eye Hospital Foundation, University of Sydney, Sydney, New South Wales, Australia
| | - Phuc Vuong Nguyen
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Maria Korsakova
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Haipha Ali
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nonna Saakova
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Clare L Fraser
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Robyn V Jamieson
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
| | - John R Grigg
- Save Sight Institute, The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Pappalardo J, Heath Jeffery RC, Thompson JA, Charng J, Chelva ES, Constable IJ, McLaren TL, Lamey TM, De Roach JN, Chen FK. Progressive sector retinitis pigmentosa due to c.440G>T mutation in SAG in an Australian family. Ophthalmic Genet 2020; 42:62-70. [PMID: 33047631 DOI: 10.1080/13816810.2020.1832533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Heterozygous c.440 G > T mutation in the S-antigen visual arrestin (SAG) gene has been described as a cause of autosomal dominant retinitis pigmentosa (adRP) in a series of patients of Hispanic origin. This study presents the early and late clinical features and disease progression rates in an Australian family with SAG adRP. MATERIALS AND METHODS An observational case series of four family members with adRP. They were examined clinically, with multi-modal retinal imaging and electroretinography (ERG) to ascertain phenotype. Disease progression rate was measured using optical coherence tomography (OCT) and fundus autofluorescence (FAF). A retinal dystrophy panel was used for the proband and cascade testing with targeted Sanger sequencing was conducted in other available family members. RESULTS The proband presented at 36 years of age with profoundly reduced full-field ERG responses despite a sector RP phenotype. This progressed to a classic RP pattern over several decades leaving a small residual island of central visual field. The horizontal span of the residual outer nuclear layer and the area of hyperautofluorescent ring contracted at a rate of 8-11% and 9-14% per year, respectively. DNA sequencing confirmed the segregation of SAG c.440 G > T mutation with disease. CONCLUSION SAG adRP presents with a reduced full-field ERG response consistent with a rod-cone dystrophy in mid-life despite a sector RP phenotype. Centripetal progression of the disease into the macula can be tracked by OCT and FAF imaging.
Collapse
Affiliation(s)
- Juanita Pappalardo
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia , Nedlands, Australia
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia , Nedlands, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital , Perth, Australia
| | - Jason Charng
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia , Nedlands, Australia
| | - Enid S Chelva
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital , Perth, Australia
| | - Ian J Constable
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia , Nedlands, Australia
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia , Nedlands, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital , Perth, Australia
| | - Tina M Lamey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia , Nedlands, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital , Perth, Australia
| | - John N De Roach
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia , Nedlands, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital , Perth, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia , Nedlands, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital , Perth, Australia.,Department of Ophthalmology, Royal Perth Hospital , Perth, Australia.,Department of Ophthalmology, Perth Children's Hospital , Nedlands, Australia
| |
Collapse
|
38
|
Sectoral activation of glia in an inducible mouse model of autosomal dominant retinitis pigmentosa. Sci Rep 2020; 10:16967. [PMID: 33046772 PMCID: PMC7552392 DOI: 10.1038/s41598-020-73749-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of blinding disorders caused by diverse mutations, including in rhodopsin (RHO). Effective therapies have yet to be discovered. The I307N Rho mouse is a light-inducible model of autosomal dominant RP. Our purpose was to describe the glial response in this mouse model to educate future experimentation. I307N Rho mice were exposed to 20,000 lx of light for thirty minutes to induce retinal degeneration. Immunofluorescence staining of cross-sections and flat-mounts was performed to visualize the response of microglia and Müller glia. Histology was correlated with spectral-domain optical coherence tomography imaging (SD-OCT). Microglia dendrites extended between photoreceptors within two hours of induction, withdrew their dendrites between twelve hours and one day, appeared ameboid by three days, and assumed a ramified morphology by one month. Glial activation was more robust in the inferior retina and modulated across the boundary of light damage. SD-OCT hyper-reflectivity overlapped with activated microglia. Finally, microglia transiently adhered to the RPE before which RPE cells appeared dysmorphic. Our data demonstrate the spatial and temporal pattern of glial activation in the I307N Rho mouse, and correlate these patterns with SD-OCT images, assisting in interpretation of SD-OCT images in preclinical models and in human RP.
Collapse
|
39
|
Meng D, Ragi SD, Tsang SH. Therapy in Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Mol Ther 2020; 28:2139-2149. [PMID: 32882181 PMCID: PMC7545001 DOI: 10.1016/j.ymthe.2020.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP) is a hereditary degenerative disorder in which mutations in the gene encoding RHO, the light-sensitive G protein-coupled receptor involved in phototransduction in rods, lead to progressive loss of rods and subsequently cones in the retina. Clinical phenotypes are diverse, ranging from mild night blindness to severe visual impairments. There is currently no cure for RHO-adRP. Although there have been significant advances in gene therapy for inherited retinal diseases, treating RHO-adRP presents a unique challenge since it is an autosomal dominant disease caused by more than 150 gain-of-function mutations in the RHO gene, rendering the established gene supplementation strategy inadequate. This review provides an update on RNA therapeutics and therapeutic editing genome surgery strategies and ongoing clinical trials for RHO-adRP, discussing mechanisms of action, preclinical data, current state of development, as well as risk and benefit considerations. Potential outcome measures useful for future clinical trials are also addressed.
Collapse
Affiliation(s)
- Da Meng
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sara D Ragi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY 10032, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA.
| |
Collapse
|
40
|
Foote KG, Wong JJ, Boehm AE, Bensinger E, Porco TC, Roorda A, Duncan JL. Comparing Cone Structure and Function in RHO- and RPGR-Associated Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2020; 61:42. [PMID: 32343782 PMCID: PMC7401955 DOI: 10.1167/iovs.61.4.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To study cone structure and function in patients with retinitis pigmentosa (RP) owing to mutations in rhodopsin (RHO), expressed in rod outer segments, and mutations in the RP-GTPase regulator (RPGR) gene, expressed in the connecting cilium of rods and cones. Methods Four eyes of 4 patients with RHO mutations, 5 eyes of 5 patients with RPGR mutations, and 4 eyes of 4 normal subjects were studied. Cone structure was studied with confocal and split-detector adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral-domain optical coherence tomography. Retinal function was measured using a 543-nm AOSLO-mediated adaptive optics microperimetry (AOMP) stimulus. The ratio of sensitivity to cone density was compared between groups using the Wilcoxon rank-sum test. Results AOMP sensitivity/cone density in patients with RPGR mutations was significantly lower than normal (P< 0.001) and lower than patients with RHO mutations (P< 0.015), whereas patients with RHO mutations were similar to normal (P> 0.9). Conclusions Retinal sensitivity/cone density was lower in patients with RPGR mutations than normal and lower than patients with RHO mutations, perhaps because cones express RPGR and degenerate primarily, whereas cones in eyes with RHO mutations die secondary to rod degeneration. High-resolution microperimetry can reveal differences in cone degeneration in patients with different forms of RP.
Collapse
|
41
|
Carullo G, Federico S, Relitti N, Gemma S, Butini S, Campiani G. Retinitis Pigmentosa and Retinal Degenerations: Deciphering Pathways and Targets for Drug Discovery and Development. ACS Chem Neurosci 2020; 11:2173-2191. [PMID: 32589402 DOI: 10.1021/acschemneuro.0c00358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a group of retinopathies generally caused by genetic mutations. Retinitis pigmentosa (RP) represents one of the most studied IRDs. RP leads to intense vision loss or blindness resulting from the degeneration of photoreceptor cells. To date, RP is mainly treated with palliative supplementation of vitamin A and retinoids, gene therapies, or surgical interventions. Therefore, a pharmacologically based therapy is an urgent need requiring a medicinal chemistry approach, to validate molecular targets able to deal with retinal degeneration. This Review aims at outlining the recent research efforts in identifying new drug targets for RP, especially focusing on the neuroprotective role of the Wnt/β-catenin/GSK3β pathway and apoptosis modulators (in particular PARP-1) but also on growth factors such as VEGF and BDNF. Furthermore, the role of spatiotemporally expressed G protein-coupled receptors (GPR124) in the retina and the emerging function of histone deacetylase inhibitors in promoting retinal neuroprotection will be discussed.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
42
|
Rod function deficit in retained photoreceptors of patients with class B Rhodopsin mutations. Sci Rep 2020; 10:12552. [PMID: 32724127 PMCID: PMC7387454 DOI: 10.1038/s41598-020-69456-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
A common inherited retinal disease is caused by mutations in RHO expressed in rod photoreceptors that provide vision in dim ambient light. Approximately half of all RHO mutations result in a Class B phenotype where mutant rods are retained in some retinal regions but show severe degeneration in other regions. We determined the natural history of dysfunction and degeneration of retained rods by serially evaluating patients. Even when followed for more than 20 years, rod function and structure at some retinal locations could remain unchanged. Other locations showed loss of both vision and photoreceptors but the rate of rod vision loss was greater than the rate of photoreceptor degeneration. This unexpected divergence in rates with disease progression implied the development of a rod function deficit beyond loss of cells. The divergence of progression rates was also detectable over a short interval of 2 years near the health-disease transition in the superior retina. A model of structure–function relationship supported the existence of a large rod function deficit which was also most prominent near regions of health-disease transition. Our studies support the realistic therapeutic goal of improved night vision for retinal regions specifically preselected for rod function deficit in patients.
Collapse
|
43
|
Orlans HO, Barnard AR, Patrício MI, McClements ME, MacLaren RE. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Hum Gene Ther 2020; 31:730-742. [DOI: 10.1089/hum.2020.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Harry O. Orlans
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Maria I. Patrício
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
44
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
45
|
|
46
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|
47
|
Zhao Y, Shen Y. Light-Induced Retinal Ganglion Cell Damage and the Relevant Mechanisms. Cell Mol Neurobiol 2020; 40:1243-1252. [PMID: 32107750 DOI: 10.1007/s10571-020-00819-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
While light is the basic element for inducing vision and modulating circadian rhythms, excessive light has been reported to have a negative effect on the survival of various types of retinal cells. Among them photoreceptors and retinal pigment epithelial (RPE) cells degeneration after light exposure is widely observed, but light-induced retinal ganglion cell (RGC) damage achieves relatively little attention. The purpose of this article is to summarize the experimental evidence for the possible negative effects of excessive light on RGCs. By searching the database, twenty-six related articles have been included. Taken together, excessive light may insult RGCs through the three main ways: (i) directly action on RGC mitochondria, as well as DNA, resulting in an upregulation of reactive oxygen species (ROS) and subsequently caspase-dependent or -independent cell death; (ii) mediation in gliotransmitters or relevant receptors of retinal glial cells; and (iii) a secondary event to photoreceptors and RPE cells degeneration and subsequent retinal remodeling. So RGCs can certainly be injured by excessive light, especially when they are already energetically compromised in some diseases. And more attentions should be paid to this topic to take timely measures to protect these frail RGCs from being damaged by excessive light.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Comprehensive Geno- and Phenotyping in a Complex Pedigree Including Four Different Inherited Retinal Dystrophies. Genes (Basel) 2020; 11:genes11020137. [PMID: 32013026 PMCID: PMC7073860 DOI: 10.3390/genes11020137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are characterized by high clinical and genetic heterogeneity. A precise characterization is desirable for diagnosis and has impact on prognosis, patient counseling, and potential therapeutic options. Here, we demonstrate the effectiveness of the combination of in-depth retinal phenotyping and molecular genetic testing in complex pedigrees with different IRDs. Four affected Caucasians and two unaffected relatives were characterized including multimodal retinal imaging, functional testing, and targeted next-generation sequencing. A considerable intrafamilial phenotypic and genotypic heterogeneity was identified. While the parents of the index family presented with rod-cone dystrophy and ABCA4-related retinopathy, their two sons revealed characteristics in the spectrum of incomplete congenital stationary night blindness and ocular albinism, respectively. Molecular testing revealed previously described variants in RHO, ABCA4, and MITF as well as a novel variant in CACNA1F. Identified variants were verified by intrafamilial co-segregation, bioinformatic annotations, and in silico analysis. The coexistence of four independent IRDs caused by distinct mutations and inheritance modes in one pedigree is demonstrated. These findings highlight the complexity of IRDs and underscore the need for the combination of extensive molecular genetic testing and clinical characterization. In addition, a novel variant in the CACNA1F gene is reported associated with incomplete congenital stationary night blindness.
Collapse
|
49
|
Coussa RG, Basali D, Maeda A, DeBenedictis M, Traboulsi EI. Sector retinitis pigmentosa: Report of ten cases and a review of the literature. Mol Vis 2019; 25:869-889. [PMID: 31908405 PMCID: PMC6937219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/28/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To describe the genotypes and phenotypes of ten patients with sector retinitis pigmentosa (RP). We also review previously reported mutations associated with sector RP and provide a discussion of possible underlying pathophysiological mechanisms. METHODS Patients underwent detailed ophthalmologic examinations, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography (SD-OCT), as well as visual field and electroretinographic testing. All patients underwent genetic testing to identify the molecular etiology of their disease. RESULTS A total of ten patients were studied. Among these patients, nine had mutations in RHO (c.677T>C; p.Leu226Pro (novel), c.68C>A; p.Pro23His, c.808A>C; p.Ser270Arg, c.44A>G; p.Asn15Ser, and c.325G>A; p.Gly109Arg), and one patient had a mutation in RPGR (c.3092_3093delAG; p.Glu1031Glyfs*47). All patients with missense mutations in RHO had visual acuities (VAs) better than 20/30 and showed a retained foveal ellipsoid zone and overlying retinal structures. The patient with the c.3092_3093delAG deletion in RPGR had VA of 20/60 oculus dexter (OD) and 20/400 oculus sinister (OS), as well as significant foveal thinning and contour atrophy. All patients showed pigmentary changes, or marked atrophy along the inferior arcades, or both. This pattern of degeneration corresponded to hypo- and hyperFAF and superior visual defects. CONCLUSIONS Sector RP is an uncommon form of RP in which only one or two retinal quadrants display clinical pathological signs. The great majority of cases result from mutations in RHO. The present data confirmed previously reported phenotypic manifestations of sector RP. Inferior retinal quadrants are possibly more severely affected due to greater light exposure.
Collapse
Affiliation(s)
- Razek Georges Coussa
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Diana Basali
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Akiko Maeda
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Meghan DeBenedictis
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Elias I. Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
50
|
Stefanov A, Novelli E, Strettoi E. Inner retinal preservation in the photoinducible I307N rhodopsin mutant mouse, a model of autosomal dominant retinitis pigmentosa. J Comp Neurol 2019; 528:1502-1522. [PMID: 31811649 PMCID: PMC7187456 DOI: 10.1002/cne.24838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Rod‐cone degenerations, for example, retinitis pigmentosa are leading causes of blindness worldwide. Despite slow disease progression in humans, vision loss is inevitable; therefore, development of vision restoration strategies is crucial. Among others, promising approaches include optogenetics and prosthetic implants, which aim to bypass lost photoreceptors (PRs). Naturally, the efficacy of these therapeutic strategies will depend on inner retinal structural and functional preservation. The present study shows that in photoinducible I307N rhodopsin mice (Translational Vision Research Model 4 [Tvrm4]), a 12k lux light exposure eliminates PRs in the central retina in 1 week, but interneurons and their synapses are maintained for as long as 9 weeks postinduction. Despite bipolar cell dendritic retraction and moderate loss of horizontal cells, the survival rate of various cell types is very high. Significant preservation of conventional synapses and gap junctions in the inner plexiform layer is also observed. We found the number of synaptic ribbons to gradually decline and their ultrastructure to become transiently abnormal, although based on our findings intrinsic retinal architecture is maintained despite complete loss of PRs. Unlike common rodent models of PR degeneration, where the disease phenotype often interferes with retinal development, in Tvrm4 mice, the degenerative process can be induced after retinal development is complete. This time course more closely mimics the timing of disease onset in affected patients. Stability of the inner retina found in these mutants 2 months after PR degeneration suggests moderate, stereotyped remodeling in the early stages of the human disease and represents a promising finding for prompt approaches of vision restoration.
Collapse
Affiliation(s)
- Antonia Stefanov
- Institute of Neuroscience, Italian National Research Council - CNR, Pisa, Italy.,Regional Doctoral School of Neuroscience, University of Florence, Florence, Italy
| | - Elena Novelli
- Institute of Neuroscience, Italian National Research Council - CNR, Pisa, Italy
| | - Enrica Strettoi
- Institute of Neuroscience, Italian National Research Council - CNR, Pisa, Italy
| |
Collapse
|