1
|
Bulliard M, Pinjusic K, Iacobucci L, Schmuziger C, Fournier N, Constam DB. Kallikrein-8 mediates furin-independent Activin-A precursor processing to stimulate tumor growth in melanoma. Nat Commun 2025; 16:2354. [PMID: 40064965 PMCID: PMC11893775 DOI: 10.1038/s41467-025-57661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Receptor binding of TGF-β and related ligands such as Activin-A requires cleavage of a furin site in their dimeric precursor proteins. Melanoma cells cleave one Activin-A subunit independently of furin and related proprotein convertases, raising questions of how this half-processed intermediate is generated and whether it influences tumor growth. Here, an siRNA library screen for proteases mediating this furin-independent "hemicleavage" identifies kallikrein (Klk)-8. While a KLK8 cleavage site in proActivin-A overlaps with the furin recognition sequence, its exposure is limited and requires prior transient acidification. Therefore, only furin efficiently converts proActivin-A to fully mature form both in tumor cells and in cell-free cleavage assays. Moreover, knockdown of Klk8 in syngeneic melanoma grafts suppresses Activin-A induced tumor growth, demonstrating that cleavage by only furin is not sufficient. Besides elucidating how Activin-A processing is regulated, our findings show that KLK8 holds promise as a target to mitigate Activin-A induced tumor growth.
Collapse
Affiliation(s)
- Manon Bulliard
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Katarina Pinjusic
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Laura Iacobucci
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Céline Schmuziger
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Nadine Fournier
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
- Translational Data Science (TDS) facility, Agora Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1015, Lausanne, Switzerland
| | - Daniel B Constam
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
2
|
Demoures B, Soulet F, Descarpentrie J, Galeano-Otero I, Sanchez Collado J, Casado M, Smani T, González A, Alves I, Lalloué F, Masri B, Rascol E, Dupuy JW, Dourthe C, Saltel F, Raymond AA, Badiola I, Evrard S, Villoutreix B, Pernot S, Siegfried G, Khatib AM. Repression of apelin Furin cleavage sites provides antimetastatic strategy in colorectal cancer. EMBO Mol Med 2025; 17:504-534. [PMID: 39962271 PMCID: PMC11904221 DOI: 10.1038/s44321-025-00196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
The adipokine apelin has been directly implicated in various physiological processes during embryogenesis and human cancers. Nevertheless, the importance of the conversion of its precursor proapelin to mature apelin in tumorigenesis remains unknown. In this study, we identify Furin as the cellular proprotein convertase responsible for proapelin cleavage. We explore the therapeutic potential of targeting proapelin cleavage sites in metastatic colorectal cancer by introducing apelin-dm, a modified variant resulting from alteration in proapelin cleavage sites. Apelin-dm demonstrates efficacy in inhibiting tumor growth, promoting cell death, suppressing angiogenesis, and early colorectal liver metastasis events. Proteomic analysis reveals reciprocal regulation between apelin and apelin-dm on proteins associated with clinical outcomes in colon cancer patients. Apelin-dm emerges as a modulator of apelin receptor dynamics, influencing affinity, internalization, and repression of apelin signaling linked to various protein kinases. Pharmacokinetic and toxicity assessments confirm the specificity, safety, and stability of apelin-dm, as well as its facile hepatic metabolism. These findings position targeting proapelin cleavage as a promising therapeutic strategy against metastatic colorectal cancer, paving the way for further clinical exploration.
Collapse
Affiliation(s)
- Béatrice Demoures
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Fabienne Soulet
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Jean Descarpentrie
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Isabel Galeano-Otero
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - José Sanchez Collado
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Maria Casado
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Department of Cell Biology and Histology, University of the Basque Country, B° Sarriena sn, 48940, Leioa, Spain
| | - Tarik Smani
- Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013, Seville, Spain
| | - Alvaro González
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Isabel Alves
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, Bordeaux, France
| | - Fabrice Lalloué
- EA3842- CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Cedex, Limoges, France
| | - Bernard Masri
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014, Paris, France
| | - Estelle Rascol
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, Bordeaux, France
| | - Jean-William Dupuy
- Bordeaux Protéome, F-33000, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Cyril Dourthe
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Frédéric Saltel
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Iker Badiola
- Department of Cell Biology and Histology, University of the Basque Country, B° Sarriena sn, 48940, Leioa, Spain
| | - Serge Evrard
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Bruno Villoutreix
- Université de Paris, Inserm UMR 1141, Robert-Debré Hospital, 75019, Paris, France
| | - Simon Pernot
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Géraldine Siegfried
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France.
| | - Abdel-Majid Khatib
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France.
- Institut Bergonié, Bordeaux, France.
| |
Collapse
|
3
|
Schofield LG, Endacott SK, Delforce SJ, Lumbers ER, Pringle KG. Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies. Curr Hypertens Rep 2024; 26:483-495. [PMID: 39093387 PMCID: PMC11455731 DOI: 10.1007/s11906-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW For a healthy pregnancy to occur, a controlled interplay between the maternal circulating renin-angiotensin-aldosterone system (RAAS), placental renin-angiotensin system (RAS) and intrarenal renin-angiotensin system (iRAS) is necessary. Functionally, both the RAAS and iRAS interact to maintain blood pressure and cardiac output, as well as fluid and electrolyte balance. The placental RAS is important for placental development while also influencing the maternal circulating RAAS and iRAS. This narrative review concentrates on the (pro)renin receptor ((P)RR) and its soluble form (s(P)RR) in the context of the hypertensive pregnancy pathology, preeclampsia. RECENT FINDINGS The (P)RR and the s(P)RR have become of particular interest as not only can they activate prorenin and renin, thus influencing levels of angiotensin II (Ang II), but s(P)RR has now been shown to directly interact with and stimulate the Angiotensin II type 1 receptor (AT1R). Levels of both placental (P)RR and maternal circulating s(P)RR are elevated in patients with preeclampsia. Furthermore, s(P)RR has been shown to increase blood pressure in non-pregnant and pregnant rats and mice. In preeclamptic pregnancies, which are characterised by maternal hypertension and impaired placental development and function, we propose that there is enhanced secretion of s(P)RR from the placenta into the maternal circulation. Due to its ability to both activate prorenin and act as an AT1R agonist, excess maternal circulating s(P)RR can act on both the maternal vasculature, and the kidney, leading to RAS over-activation. This results in dysregulation of the maternal circulating RAAS and overactivation of the iRAS, contributing to maternal hypertension, renal damage, and secondary changes to neurohumoral regulation of fluid and electrolyte balance, ultimately contributing to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia.
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia.
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia.
| |
Collapse
|
4
|
Pinjusic K, Bulliard M, Rothé B, Ansaryan S, Liu YC, Ginefra P, Schmuziger C, Altug H, Constam DB. Stepwise release of Activin-A from its inhibitory prodomain is modulated by cysteines and requires furin coexpression to promote melanoma growth. Commun Biol 2024; 7:1383. [PMID: 39448726 PMCID: PMC11502825 DOI: 10.1038/s42003-024-07053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The Activin-A precursor dimer can be cleaved by furin, but how this proteolytic maturation is regulated in vivo and how it facilitates access to signaling receptors is unclear. Here, analysis in a syngeneic melanoma grafting model shows that without furin coexpression, Activin-A failed to accelerate tumor growth, correlating with failure of one or both subunits to undergo cleavage in signal-sending cells, even though compensatory processing by host cells nonetheless sustained elevated circulating Activin-A levels. In reporter assays, furin-independent cleavage of one subunit enabled juxtacrine Activin-A signaling, whereas completion of proteolytic maturation by coexpressed furin or by recipient cells stimulated contact-independent activity, crosstalk with BMP receptors, and signal inhibition by follistatin. Mechanistically, Activin-A processing was modulated by allosteric disulfide bonds flanking the furin site. Disruption of these disulfide linkages with the prodomain enabled Activin-A binding to cognate type II receptors independently of proteolytic maturation. Stepwise proteolytic maturation is a novel mechanism to control Activin-A protein interactions and signaling.
Collapse
Affiliation(s)
- Katarina Pinjusic
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manon Bulliard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Saeid Ansaryan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Yeng-Cheng Liu
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- University of Lausanne, Department of Oncology, Ludwig Cancer Institute, Epalinges, Switzerland
| | - Céline Schmuziger
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Hatice Altug
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland.
| |
Collapse
|
5
|
Lietz S, Sokolowski LM, Barth H, Ernst K. Alpha-1 antitrypsin inhibits Clostridium botulinum C2 toxin, Corynebacterium diphtheriae diphtheria toxin and B. anthracis fusion toxin. Sci Rep 2024; 14:21257. [PMID: 39261531 PMCID: PMC11390955 DOI: 10.1038/s41598-024-71706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The bacterium Clostridium botulinum, well-known for producing botulinum neurotoxins, which cause the severe paralytic illness known as botulism, produces C2 toxin, a binary AB-toxin with ADP-ribosyltranferase activity. C2 toxin possesses two separate protein components, an enzymatically active A-component C2I and the binding and translocation B-component C2II. After proteolytic activation of C2II to C2IIa, the heptameric structure binds C2I and is taken up via receptor-mediated endocytosis into the target cells. Due to acidification of endosomes, the C2IIa/C2I complex undergoes conformational changes and consequently C2IIa forms a pore into the endosomal membrane and C2I can translocate into the cytoplasm, where it ADP-ribosylates G-actin, a key component of the cytoskeleton. This modification disrupts the actin cytoskeleton, resulting in the collapse of cytoskeleton and ultimately cell death. Here, we show that the serine-protease inhibitor α1-antitrypsin (α1AT) which we identified previously from a hemofiltrate library screen for PT from Bordetella pertussis is a multitoxin inhibitor. α1AT inhibits intoxication of cells with C2 toxin via inhibition of binding to cells and inhibition of enzyme activity of C2I. Moreover, diphtheria toxin and an anthrax fusion toxin are inhibited by α1AT. Since α1AT is commercially available as a drug for treatment of the α1AT deficiency, it could be repurposed for treatment of toxin-mediated diseases.
Collapse
Affiliation(s)
- Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany
| | - Lena-Marie Sokolowski
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
6
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
7
|
Jiang X, Li D, Maghsoudloo M, Zhang X, Ma W, Fu J. Targeting furin, a cellular proprotein convertase, for COVID-19 prevention and therapeutics. Drug Discov Today 2024; 29:104026. [PMID: 38762086 DOI: 10.1016/j.drudis.2024.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
SARS-CoV-2 has triggered an international outbreak of the highly contagious acute respiratory disease known as COVID-19. Identifying key targets in the virus infection lifecycle is crucial for developing effective prevention and therapeutic strategies against it. Furin is a serine endoprotease that belongs to the family of proprotein convertases and plays a critical role in the entry of host cells by SARS-CoV-2. Furin can cleave a specific S1/S2 site, PRRAR, on the spike protein of SARS-CoV-2, which promotes viral transmission by facilitating membrane fusion. Hence, targeting furin could hold clinical implications for the prevention and treatment of COVID-19. This review offers an overview of furin's structure, substrates, function, and inhibitors, with a focus on its potential role in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xia Jiang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China; School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Wenzhe Ma
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Jorkesh A, Rothenberger S, Baldassar L, Grybaite B, Kavaliauskas P, Mickevicius V, Dettin M, Vascon F, Cendron L, Pasquato A. Screening of Small-Molecule Libraries Using SARS-CoV-2-Derived Sequences Identifies Novel Furin Inhibitors. Int J Mol Sci 2024; 25:5079. [PMID: 38791119 PMCID: PMC11121672 DOI: 10.3390/ijms25105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 μM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.
Collapse
Affiliation(s)
- Alireza Jorkesh
- Department of Pharmaceutical and Pharmacological Science, University of Padova, Via Marzolo, 5, 35131 Padova, Italy;
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy; (F.V.); (L.C.)
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland;
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
| | - Laura Baldassar
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.B.); (M.D.)
| | - Birute Grybaite
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (V.M.)
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (V.M.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Vytautas Mickevicius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (V.M.)
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.B.); (M.D.)
| | - Filippo Vascon
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy; (F.V.); (L.C.)
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy; (F.V.); (L.C.)
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.B.); (M.D.)
| |
Collapse
|
9
|
Nagahawatta DP, Liyanage NM, Jayawardena TU, Jayawardhana HHACK, Jeong SH, Kwon HJ, Jeon YJ. Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:280-297. [PMID: 38827130 PMCID: PMC11136918 DOI: 10.1007/s42995-023-00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 06/04/2024]
Abstract
A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has surfaced and caused global concern owing to its ferocity. SARS-CoV-2 is the causative agent of coronavirus disease 2019; however, it was only discovered at the end of the year and was considered a pandemic by the World Health Organization. Therefore, the development of novel potent inhibitors against SARS-CoV-2 and future outbreaks is urgently required. Numerous naturally occurring bioactive substances have been studied in the clinical setting for diverse disorders. The intricate infection and replication mechanism of SARS-CoV-2 offers diverse therapeutic drug targets for developing antiviral medicines by employing natural products that are safer than synthetic compounds. Marine natural products (MNPs) have received increased attention in the development of novel drugs owing to their high diversity and availability. Therefore, this review article investigates the infection and replication mechanisms, including the function of the SARS-CoV-2 genome and structure. Furthermore, we highlighted anti-SARS-CoV-2 therapeutic intervention efforts utilizing MNPs and predicted SARS-CoV-2 inhibitor design. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00215-9.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3 Canada
| | | | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333 Republic of Korea
| |
Collapse
|
10
|
Chan ED, King PT, Bai X, Schoffstall AM, Sandhaus RA, Buckle AM. The Inhibition of Serine Proteases by Serpins Is Augmented by Negatively Charged Heparin: A Concise Review of Some Clinically Relevant Interactions. Int J Mol Sci 2024; 25:1804. [PMID: 38339082 PMCID: PMC10855260 DOI: 10.3390/ijms25031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.
Collapse
Affiliation(s)
- Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul T. King
- Medicine Monash Health, Monash University, Clayton, VIC 3800, Australia
| | - Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Allen M. Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | | | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Replay, San Diego, CA 92121, USA
| |
Collapse
|
11
|
Thomas G, Couture F, Kwiatkowska A. The Path to Therapeutic Furin Inhibitors: From Yeast Pheromones to SARS-CoV-2. Int J Mol Sci 2022; 23:3435. [PMID: 35408793 PMCID: PMC8999023 DOI: 10.3390/ijms23073435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The spurious acquisition and optimization of a furin cleavage site in the SARS-CoV-2 spike protein is associated with increased viral transmission and disease, and has generated intense interest in the development and application of therapeutic furin inhibitors to thwart the COVID-19 pandemic. This review summarizes the seminal studies that informed current efforts to inhibit furin. These include the convergent efforts of endocrinologists, virologists, and yeast geneticists that, together, culminated in the discovery of furin. We describe the pioneering biochemical studies which led to the first furin inhibitors that were able to block the disease pathways which are broadly critical for pathogen virulence, tumor invasiveness, and atherosclerosis. We then summarize how these studies subsequently informed current strategies leading to the development of small-molecule furin inhibitors as potential therapies to combat SARS-CoV-2 and other diseases that rely on furin for their pathogenicity and progression.
Collapse
Affiliation(s)
- Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Frédéric Couture
- TransBIOTech, Lévis, QC G6V 6Z3, Canada;
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Intégré de Santé et de Services Sociaux de Chaudière-Appalaches, Lévis, QC G6V 3Z1, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
12
|
Identification of Kukoamine A, Zeaxanthin, and Clexane as New Furin Inhibitors. Int J Mol Sci 2022; 23:ijms23052796. [PMID: 35269938 PMCID: PMC8911046 DOI: 10.3390/ijms23052796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.
Collapse
|
13
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Devi KP, Pourkarim MR, Thijssen M, Sureda A, Khayatkashani M, Cismaru CA, Neagoe IB, Habtemariam S, Razmjouei S, Khayat Kashani HR. A perspective on the applications of furin inhibitors for the treatment of SARS-CoV-2. Pharmacol Rep 2022; 74:425-430. [PMID: 35031970 PMCID: PMC8760129 DOI: 10.1007/s43440-021-00344-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Currently, the world is facing a pandemic of the new coronavirus SARS-CoV-2 that causes COVID-19. Identifying key targets in the viral infection lifecycle is urgently needed for designing therapeutic strategies to combat the virus. Furin is a subtilisin-like proprotein convertase with diverse cellular functions. Emerging evidence suggests that furin plays a critical role in the activation and/or infectivity of SARS-CoV-2. In this perspective, we discuss the potential role of furin in the entry SARS-CoV-2 into host cells. Furthermore, we evaluate available peptide and non-peptide furin inhibitors and potential outcomes, including immune responses.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630 003, Tamil Nadu, India.
| | - Mahmoud Reza Pourkarim
- Division of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium.
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Marijn Thijssen
- Division of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Cosmin Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Sciences, Immunology and Allergology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- The Center for Advanced Medicine, Medfuture-"Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- The Department for Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, UK
| | - Soha Razmjouei
- Department of Internal Medicine, Semnan University of Medical Sciences and Health Services, Semnan, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, 1617763141, Tehran, Iran.
| |
Collapse
|
15
|
Prévost J, Medjahed H, Vézina D, Chen HC, Hahn BH, Smith AB, Finzi A. HIV-1 Envelope Glycoproteins Proteolytic Cleavage Protects Infected Cells from ADCC Mediated by Plasma from Infected Individuals. Viruses 2021; 13:2236. [PMID: 34835042 PMCID: PMC8625184 DOI: 10.3390/v13112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) is synthesized in the endoplasmic reticulum as a trimeric gp160 precursor, which requires proteolytic cleavage by a cellular furin protease to mediate virus-cell fusion. Env is conformationally flexible but controls its transition from the unbound "closed" conformation (State 1) to downstream CD4-bound conformations (States 2/3), which are required for fusion. In particular, HIV-1 has evolved several mechanisms that reduce the premature "opening" of Env which exposes highly conserved epitopes recognized by non-neutralizing antibodies (nnAbs) capable of mediating antibody-dependent cellular cytotoxicity (ADCC). Env cleavage decreases its conformational transitions favoring the adoption of the "closed" conformation. Here we altered the gp160 furin cleavage site to impair Env cleavage and to examine its impact on ADCC responses mediated by plasma from HIV-1-infected individuals. We found that infected primary CD4+ T cells expressing uncleaved, but not wildtype, Env are efficiently recognized by nnAbs and become highly susceptible to ADCC responses mediated by plasma from HIV-1-infected individuals. Thus, HIV-1 limits the exposure of uncleaved Env at the surface of HIV-1-infected cells at least in part to escape ADCC responses.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (J.P.); (H.M.); (D.V.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (J.P.); (H.M.); (D.V.)
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (J.P.); (H.M.); (D.V.)
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA; (H.-C.C.); (A.B.S.III)
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA;
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA; (H.-C.C.); (A.B.S.III)
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (J.P.); (H.M.); (D.V.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
16
|
Griffin GD. Does Covera-19 know 'when to hold 'em or 'when to fold 'em? A translational thought experiment. TRANSLATIONAL MEDICINE COMMUNICATIONS 2021; 6:12. [PMID: 34226878 PMCID: PMC8243045 DOI: 10.1186/s41231-021-00090-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 05/09/2023]
Abstract
The function of proteins depends on their structure. The structural integrity of proteins is dynamic and depends on interacting nearby neighboring moieties that influence their properties and induce folding and structural changes. The conformational changes induced by these nearby neighbors in the micro-environmental milieu at that moment are guided by chemical or electrical bonding attractions. There are few literature references that describe the potential for environmental milieu changes to disfavor SARS-CoV-2 attachment to a receptor for survival outside of a host. There are many studies on the effects of pH (acid and base balance) supporting its importance for protein structure and function, but few focus on pH role in extracellular or intracellular protein or actionable requirements of Covera-19. 'Fold 'em or Hold 'em' is seen by the various functions and effects of furin as it seeks an acidic milieu for action or compatible amino acid sequences which is currently aided by its histidine component and the structural changes of proteins as they enter or exit the host. Questions throughout the text are posed to focus on current thoughts as reviewing applicable COVID-19 translational research science in order to understand the complexities of Covid-19. The pH needs of COVID-19 players and its journey through the human host and environment as well as some efficacious readily available repurposed drugs and out-of-the box and easily available treatments are reviewed.
Collapse
Affiliation(s)
- Gerald Dieter Griffin
- Adjunct Faculty, School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA USA
- Adjunct Faculty, School of Pharmacy & Health Sciences, The University of the Pacific, 123 Forest Ave, Pacific Grove, CA 93950 USA
| |
Collapse
|
17
|
FURIN and placental syncytialisation: a cautionary tale. Cell Death Dis 2021; 12:635. [PMID: 34155192 PMCID: PMC8217546 DOI: 10.1038/s41419-021-03898-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
FURIN is a pro-protein convertase previously shown to be important for placental syncytialisation (Zhou et al. [1]), a process of cell fusion whereby placental cytotrophoblast cells fuse to form a multinucleated syncytium. This finding has been broadly accepted however, we have evidence suggesting the contrary. Spontaneously syncytialising term primary human trophoblast cells and BeWo choriocarcinoma cells were treated with either FURIN siRNA or negative control siRNA or the protease inhibitor, DEC-RVKR-CMK, or vehicle. Cells were then left to either spontaneously syncytialise (primary trophoblasts) or were induced to syncytialise with forskolin (BeWo). Effects on syncytialisation were measured by determining human chorionic gonadotrophin secretion and E-cadherin protein levels. We showed that FURIN is not important for syncytialisation in either cell type. However, in primary trophoblasts another protease also inhibited by DEC-RVKR-CMK, may be involved. Our results directly contrast with those published by Zhou et al. Zhou et al. however, used first trimester villous explants to study syncytialisation, and we used term primary trophoblasts. Therefore, we suggest that FURIN may be involved in syncytialisation of first trimester trophoblasts, but not term trophoblasts. What is more concerning is that our results using BeWo cells do not agree with their results, even though for the most part, we used the same experimental design. It is unclear why these experiments yielded different results, however we wanted to draw attention to simple differences in measuring syncytialisation or flaws in method reporting (including omission of cell line source and passage numbers, siRNA concentration and protein molecular weights) and choice of immunoblot loading controls, that could impact on experimental outcomes. Our study shows that careful reporting of methods by authors and thorough scrutiny by referees are vital. Furthermore, a universal benchmark for measuring syncytialisation is required so that various studies of syncytialisation can be validated.
Collapse
|
18
|
Screening for inhibitory effects of crude drugs on furin-like enzymatic activities. J Nat Med 2021; 75:1080-1085. [PMID: 33928494 PMCID: PMC8084592 DOI: 10.1007/s11418-021-01519-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a cleavage motif R-X-X-R for furin-like enzymes at the boundary of the S1/S2 subunits. The cleavage of the site by cellular proteases is essential for S protein activation and virus entry. We screened the inhibitory effects of crude drugs on in vitro furin-like enzymatic activities using a fluorogenic substrate with whole-cell lysates. Of the 124 crude drugs listed in the Japanese Pharmacopeia, aqueous ethanolic extract of Cnidii Monnieris Fructus, which is the dried fruit of Cnidium monnieri Cussion, significantly inhibited the furin-like enzymatic activities. We further fractionated the plant extract and isolated the two active compounds with the inhibitory activity, namely, imperatorin and osthole, whose IC50 values were 1.45 mM and 9.45 µM, respectively. Our results indicated that Cnidii Monnieris Fructus might exert inhibitory effects on furin-like enzymatic activities, and that imperatorin and osthole of the crude drug could be potential inhibitors of the motif cleavage.
Collapse
|
19
|
Yaron JR, Zhang L, Guo Q, Haydel SE, Lucas AR. Fibrinolytic Serine Proteases, Therapeutic Serpins and Inflammation: Fire Dancers and Firestorms. Front Cardiovasc Med 2021; 8:648947. [PMID: 33869309 PMCID: PMC8044766 DOI: 10.3389/fcvm.2021.648947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The making and breaking of clots orchestrated by the thrombotic and thrombolytic serine protease cascades are critical determinants of morbidity and mortality during infection and with vascular or tissue injury. Both the clot forming (thrombotic) and the clot dissolving (thrombolytic or fibrinolytic) cascades are composed of a highly sensitive and complex relationship of sequentially activated serine proteases and their regulatory inhibitors in the circulating blood. The proteases and inhibitors interact continuously throughout all branches of the cardiovascular system in the human body, representing one of the most abundant groups of proteins in the blood. There is an intricate interaction of the coagulation cascades with endothelial cell surface receptors lining the vascular tree, circulating immune cells, platelets and connective tissue encasing the arterial layers. Beyond their role in control of bleeding and clotting, the thrombotic and thrombolytic cascades initiate immune cell responses, representing a front line, "off-the-shelf" system for inducing inflammatory responses. These hemostatic pathways are one of the first response systems after injury with the fibrinolytic cascade being one of the earliest to evolve in primordial immune responses. An equally important contributor and parallel ancient component of these thrombotic and thrombolytic serine protease cascades are the serine protease inhibitors, termed serpins. Serpins are metastable suicide inhibitors with ubiquitous roles in coagulation and fibrinolysis as well as multiple central regulatory pathways throughout the body. Serpins are now known to also modulate the immune response, either via control of thrombotic and thrombolytic cascades or via direct effects on cellular phenotypes, among many other functions. Here we review the co-evolution of the thrombolytic cascade and the immune response in disease and in treatment. We will focus on the relevance of these recent advances in the context of the ongoing COVID-19 pandemic. SARS-CoV-2 is a "respiratory" coronavirus that causes extensive cardiovascular pathogenesis, with microthrombi throughout the vascular tree, resulting in severe and potentially fatal coagulopathies.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Qiuyun Guo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Shelley E. Haydel
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
20
|
Lewandowska-Goch MA, Kwiatkowska A, Łepek T, Ly K, Navals P, Gagnon H, Dory YL, Prahl A, Day R. Design and Structure-Activity Relationship of a Potent Furin Inhibitor Derived from Influenza Hemagglutinin. ACS Med Chem Lett 2021; 12:365-372. [PMID: 33738063 DOI: 10.1021/acsmedchemlett.0c00386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Furin plays an important role in various pathological states, especially in bacterial and viral infections. A detailed understanding of the structural requirements for inhibitors targeting this enzyme is crucial to develop new therapeutic strategies in infectious diseases, including an urgent unmet need for SARS-CoV-2 infection. Previously, we have identified a potent furin inhibitor, peptide Ac-RARRRKKRT-NH 2 (CF1), based on the highly pathogenic avian influenza hemagglutinin. The goal of this study was to determine how its N-terminal part (the P8-P5 positions) affects its activity profile. To do so, the positional-scanning libraries of individual peptides modified at the selected positions with natural amino acids were generated. Subsequently, the best substitutions were combined together and/or replaced by unnatural residues to expand our investigations. The results reveal that the affinity of CF1 can be improved (2-2.5-fold) by substituting its P5 position with the small hydrophobic residues (Ile or Val) or a basic Lys.
Collapse
Affiliation(s)
- Monika A. Lewandowska-Goch
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chirurgie/Urologie, Faculté de Médecine et Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Teresa Łepek
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Kévin Ly
- PhenoSwitch Bioscience Inc., 975 rue Léon-Trépanier, Sherbrooke, Quebec J1G 5J6, Canada
| | - Pauline Navals
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chirurgie/Urologie, Faculté de Médecine et Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Hugo Gagnon
- PhenoSwitch Bioscience Inc., 975 rue Léon-Trépanier, Sherbrooke, Quebec J1G 5J6, Canada
| | - Yves L. Dory
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Robert Day
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chirurgie/Urologie, Faculté de Médecine et Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
21
|
He Y, Sun J, Ding X, Wang Q. Mechanisms in Which Smoking Increases the Risk of COVID-19 Infection: A Narrative Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:431-437. [PMID: 34178790 PMCID: PMC8214602 DOI: 10.18502/ijph.v50i3.5582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
At present, COVID-19 continues to spread around the world. People are generally susceptible to SARS-CoV-2. The elderly, serious chronic underlying diseases, high-risk pregnancy, severe obesity and other factors are related to the progression of COVID-19 to severe, critical illness, and even death caused by deterioration of the disease. The relationship between smoking and COVID-19 seems to be controversial. The smoking rate of hospitalized COVID-19 patients is significantly lower than that of the general population. Therefore, smoking can reduce COVID-19 infection and protect the respiratory tract. Subsequently, many scholars have carried out research on this, thinking that this is a wrong and misleading conclusion. According to WHO, smoking is significantly related to the severity of COVID-19, which is one of the important risk factors for the deterioration and poor prognosis of COVID-19. This article reviews the mechanism of smoking increasing the risk of COVID-19 infection.
Collapse
Affiliation(s)
- Yue He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoqian Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiang Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
22
|
Tang T, Jaimes JA, Bidon MK, Straus MR, Daniel S, Whittaker GR. Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin. ACS Infect Dis 2021; 7:264-272. [PMID: 33432808 PMCID: PMC7839419 DOI: 10.1021/acsinfecdis.0c00701] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 12/26/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses its spike (S) protein to mediate viral entry into host cells. Cleavage of the S protein at the S1/S2 and/or S2' site(s) is associated with viral entry, which can occur at either the cell plasma membrane (early pathway) or the endosomal membrane (late pathway), depending on the cell type. Previous studies show that SARS-CoV-2 has a unique insert at the S1/S2 site that can be cleaved by furin, which appears to expand viral tropism to cells with suitable protease and receptor expression. Here, we utilize viral pseudoparticles and protease inhibitors to study the impact of the S1/S2 cleavage on infectivity. Our results demonstrate that S1/S2 cleavage is essential for early pathway entry into Calu-3 cells, a model lung epithelial cell line, but not for late pathway entry into Vero E6 cells, a model cell line. The S1/S2 cleavage was found to be processed by other proteases beyond furin. Using bioinformatic tools, we also analyze the presence of a furin S1/S2 site in related CoVs and offer thoughts on the origin of the insertion of the furin-like cleavage site in SARS-CoV-2.
Collapse
Affiliation(s)
- Tiffany Tang
- Robert Frederick Smith School of Chemical and
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Javier A. Jaimes
- Department of Microbiology and Immunology,
Cornell University, Ithaca, New York 14853, United
States
| | - Miya K. Bidon
- Robert Frederick Smith School of Chemical and
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Marco R. Straus
- Department of Microbiology and Immunology,
Cornell University, Ithaca, New York 14853, United
States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Gary R. Whittaker
- Department of Microbiology and Immunology,
Cornell University, Ithaca, New York 14853, United
States
| |
Collapse
|
23
|
Bhullar KS, Drews SJ, Wu J. Translating bioactive peptides for COVID-19 therapy. Eur J Pharmacol 2021; 890:173661. [PMID: 33098835 PMCID: PMC7577279 DOI: 10.1016/j.ejphar.2020.173661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 (Coronavirus disease 2019) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. This virus has emerged as a threat to global health, social stability, and the global economy. This pandemic continues to cause rampant mortality worldwide with the dire urgency to develop novel therapeutic agents. To meet this task, this article discusses advances in the research and potential application of bioactive peptides for possible mitigation of infection by SARS-CoV-2. Growing insight into the molecular biology of SARS-CoV-2 has revealed potential druggable targets for bioactive peptides. Bioactive peptides with unique amino acid sequences can mitigate such targets including, type II transmembrane serine proteases (TMPRSS2) inhibition, furin cleavage, and renin-angiotensin-aldosterone system (RAAS) members. Based on current evidence and structure-function analysis, multiple bioactive peptides present potency to neutralize the virus. To date, no SARS-CoV-2-explicit drug has been reported, but we here introduce bioactive peptides in the perspective of their potential activity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Steven J Drews
- Canadian Blood Services, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
24
|
Jairajpuri M, Ansari S. Using serpins cysteine protease cross-specificity to possibly trap SARS-CoV-2 Mpro with reactive center loop chimera. Clin Sci (Lond) 2020; 134:2235-2241. [PMID: 32869854 PMCID: PMC7463295 DOI: 10.1042/cs20200767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 01/20/2023]
Abstract
Human serine protease inhibitors (serpins) are the main inhibitors of serine proteases, but some of them also have the capability to effectively inhibit cysteine proteases. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease (Mpro) is a chymotrypsin-type cysteine protease that is needed to produce functional proteins essential for virus replication and transcription. Serpin traps its target proteases by presenting a reactive center loop (RCL) as protease-specific cleavage site, resulting in protease inactivation. Mpro target sites with its active site serine and other flanking residues can possibly interact with serpins. Alternatively, RCL cleavage site of serpins with known evidence of inhibition of cysteine proteases can be replaced by Mpro target site to make chimeric proteins. Purified chimeric serpin can possibly inhibit Mpro that can be assessed indirectly by observing the decrease in ability of Mpro to cleave its chromogenic substrate. Chimeric serpins with best interaction and active site binding and with ability to form 1:1 serpin-Mpro complex in human plasma can be assessed by using SDS/PAGE and Western blot analysis with serpin antibody. Trapping SARS-CoV-2 Mpro cysteine protease using cross-class serpin cysteine protease inhibition activity is a novel idea with significant therapeutic potential.
Collapse
Affiliation(s)
| | - Shoyab Ansari
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
25
|
Morosin SK, Delforce SJ, Lumbers ER, Pringle KG. Cleavage of the soluble (pro)renin receptor (sATP6AP2) in the placenta. Placenta 2020; 101:49-56. [PMID: 32920451 DOI: 10.1016/j.placenta.2020.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The (pro)renin receptor (ATP6AP2) is cleaved and released as soluble ATP6AP2 (sATP6AP2). The sATP6AP2 is detected in plasma and urine and is elevated in women with gestational diabetes and preeclampsia. The source and cleavage pathway of sATP6AP2 in pregnancy is unknown. The syncytiotrophoblast is the major placental secretory layer and is in direct contact with maternal blood. Both FURIN and Site 1 protease (MBTPS1) cleave sATP6AP2 in non-placental cells. We postulated that ATP6AP2 was cleaved by FURIN and/or MBTPS1 and that sATP6AP2 is secreted by the placental syncytiotrophoblast. METHODS Term primary trophoblast cells were transfected with FURIN siRNA, negative control siRNA or vehicle. In a separate experiment, primary trophoblasts were treated with a pro-protein convertase inhibitor (DEC-RVKR-CMK), an MBTPS1 inhibitor (PF 429242) or vehicle. Trophoblasts were left to spontaneously syncytialise before cells and supernatants were collected and intracellular and extracellular sATP6AP2 levels analysed by immunoblot. RESULTS sATP6AP2 is secreted by placental trophoblasts. Levels of intra and extra-cellular sATP6AP2 decrease with syncytialisation (P = 0.01 and P = 0.02, respectively), as do FURIN mRNA (P = 0.0003) and protein (P = 0.0007). FURIN siRNA decreased FURIN mRNA and protein levels (both P < 0.0001). Neither FURIN siRNA or PF 429242 affected sATP6AP2 levels. DEC-RVKR-CMK significantly decreased extracellular sATP6AP2 protein levels (P = 0.02). DISCUSSION Soluble ATP6AP2 is secreted by placental trophoblasts and levels decrease with syncytialisation. DEC-RVKR-CMK, a broad inhibitor of pro-protein convertases reduced extracellular sATP6AP2 levels, but FURIN siRNA and MBTPS1 inhibition had no effect. Hence, a convertase other than FURIN or MBTPS1 is most likely responsible for placental sATP6AP2 secretion.
Collapse
Affiliation(s)
- Saije K Morosin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia.
| |
Collapse
|
26
|
Kaur G, Lungarella G, Rahman I. SARS-CoV-2 COVID-19 susceptibility and lung inflammatory storm by smoking and vaping. JOURNAL OF INFLAMMATION-LONDON 2020; 17:21. [PMID: 32528233 PMCID: PMC7284674 DOI: 10.1186/s12950-020-00250-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
The current pandemic of COVID-19 has caused severe morbidity and mortality across the globe. People with a smoking history have severe disease outcomes by COVID-19 infection. Epidemiological studies show that old age and pre-existing disease conditions (hypertension and diabetes) result in severe disease outcome and mortality amongst COVID-19 patients. Evidences suggest that the S1 domain of the SARS-CoV-2 (causative agent of COVID-19) membrane spike has a high affinity towards the angiotensin-converting enzyme 2 (ACE2) receptor found on the host’s lung epithelium. Likewise, TMPRSS2 protease has been shown to be crucial for viral activation thus facilitating the viral engulfment. The viral entry has been shown to cause ‘cytokine storm’ involving excessive production of pro-inflammatory cytokines/chemokines including IL-6, TNF-α, IFN-γ, IL-2, IL-7, IP-10, MCP-3 or GM-CSF, which is augmented by smoking. Future research could target these inflammatory-immunological responses to develop effective therapy for COVID-19. This mini-review provides a consolidated account on the role of inflammation and immune responses, proteases, and epithelial permeability by smoking and vaping during SARS-CoV2 infection with future directions of research, and provides a list of the potential targets for therapies particularly controlling cytokine storms in the lung.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
27
|
Glinsky GV. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells. Biomedicines 2020; 8:E129. [PMID: 32455629 PMCID: PMC7277789 DOI: 10.3390/biomedicines8050129] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Genes required for SARS-CoV-2 entry into human cells, ACE2 and FURIN, were employed as baits to build genomic-guided molecular maps of upstream regulatory elements, their expression and functions in the human body, and pathophysiologically relevant cell types. Repressors and activators of the ACE2 and FURIN genes were identified based on the analyses of gene silencing and overexpression experiments as well as relevant transgenic mouse models. Panels of repressors (VDR; GATA5; SFTPC; HIF1a) and activators (HMGA2; INSIG1; RUNX1; HNF4a; JNK1/c-FOS) were then employed to identify existing drugs manifesting in their effects on gene expression signatures of potential coronavirus infection mitigation agents. Using this strategy, vitamin D and quercetin have been identified as putative 2019 coronavirus disease (COVID-19) mitigation agents. Quercetin has been identified as one of top-scoring candidate therapeutics in the supercomputer SUMMIT drug-docking screen and Gene Set Enrichment Analyses (GSEA) of expression profiling experiments (EPEs), indicating that highly structurally similar quercetin, luteolin, and eriodictyol could serve as scaffolds for the development of efficient inhibitors of SARS-CoV-2 infection. In agreement with this notion, quercetin alters the expression of 98 of 332 (30%) of human genes encoding protein targets of SARS-CoV-2, thus potentially interfering with functions of 23 of 27 (85%) of the SARS-CoV-2 viral proteins in human cells. Similarly, Vitamin D may interfere with functions of 19 of 27 (70%) of the SARS-CoV-2 proteins by altering expression of 84 of 332 (25%) of human genes encoding protein targets of SARS-CoV-2. Considering the potential effects of both quercetin and vitamin D, the inference could be made that functions of 25 of 27 (93%) of SARS-CoV-2 proteins in human cells may be altered. GSEA and EPEs identify multiple drugs, smoking, and many disease conditions that appear to act as putative coronavirus infection-promoting agents. Discordant patterns of testosterone versus estradiol impacts on SARS-CoV-2 targets suggest a plausible molecular explanation of the apparently higher male mortality during the coronavirus pandemic. Estradiol, in contrast with testosterone, affects the expression of the majority of human genes (203 of 332; 61%) encoding SARS-CoV-2 targets, thus potentially interfering with functions of 26 of 27 SARS-CoV-2 viral proteins. A hypothetical tripartite combination consisting of quercetin/vitamin D/estradiol may affect expression of 244 of 332 (73%) human genes encoding SARS-CoV-2 targets. Of major concern is the ACE2 and FURIN expression in many human cells and tissues, including immune cells, suggesting that SARS-CoV-2 may infect a broad range of cellular targets in the human body. Infection of immune cells may cause immunosuppression, long-term persistence of the virus, and spread of the virus to secondary targets. Present analyses and numerous observational studies indicate that age-associated vitamin D deficiency may contribute to the high mortality of older adults and the elderly. Immediate availability for targeted experimental and clinical interrogations of potential COVID-19 pandemic mitigation agents, namely vitamin D and quercetin, as well as of the highly selective (Ki, 600 pm) intrinsically specific FURIN inhibitor (a1-antitrypsin Portland (a1-PDX), is considered an encouraging factor. Observations reported in this contribution are intended to facilitate follow-up targeted experimental studies and, if warranted, randomized clinical trials to identify and validate therapeutically viable interventions to combat the COVID-19 pandemic. Specifically, gene expression profiles of vitamin D and quercetin activities and their established safety records as over-the-counter medicinal substances strongly argue that they may represent viable candidates for further considerations of their potential utility as COVID-19 pandemic mitigation agents. In line with the results of present analyses, a randomized interventional clinical trial evaluating effects of estradiol on severity of the coronavirus infection in COVID19+ and presumptive COVID19+ patients and two interventional randomized clinical trials evaluating effects of vitamin D on prevention and treatment of COVID-19 were listed on the ClinicalTrials.gov website.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0435, La Jolla, CA 92093-0435, USA
| |
Collapse
|
28
|
Design and characterization of α1-antitrypsin variants for treatment of contact system-driven thromboinflammation. Blood 2020; 134:1658-1669. [PMID: 31366623 DOI: 10.1182/blood.2019000481] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/22/2019] [Indexed: 01/15/2023] Open
Abstract
The contact system produces the inflammatory peptide bradykinin and contributes to experimental thrombosis. C1 esterase-inhibitor (C1INH) deficiency or gain-of-function mutations in factor XII (FXII) cause hereditary angioedema, a life-threatening tissue swelling disease. C1INH is a relatively weak contact system enzyme inhibitor. Although α1-antitrypsin (α1AT) does not naturally inhibit contact system enzymes, a human mutation (M358R; α1AT-Pittsburgh) changes it into a powerful broad-spectrum enzyme inhibitor. It blocks the contact system, but also thrombin and activated protein C (APC), making it an unattractive candidate for therapeutic contact system blockade. We adapted the reactive center loop of α1AT-Pittsburgh (AIPR/S) to overcome these obstacles. Two α1AT variants (SMTR/S and SLLR/S) strongly inhibit plasma kallikrein, activated FXII, and plasmin. α1AT-SMTR/S no longer inhibits thrombin, but residually inhibits APC. In contrast, α1AT-SLLR/S residually inhibits thrombin, but no longer APC. Additional modification at the P1' position (S→V) eliminates residual inhibition of thrombin and APC for both variants, while retaining their properties as contact system inhibitors. Both α1AT-SMTR/V and -SLLR/V are superior to C1INH in reducing bradykinin production in plasma. Owing to their capacity to selectively block contact system-driven coagulation, both variants block vascular occlusion in an in vivo model for arterial thrombosis. Furthermore, both variants block acute carrageenan-induced tissue edema in mice. Finally, α1AT-SLLR/V, our most powerful candidate, suppresses epithelial leakage of the gut in a mouse model of colitis. Our findings confirm that redesign of α1AT strongly alters its inhibitory behavior and can be used for the treatment of contact system-mediated thrombosis and inflammation.
Collapse
|
29
|
Yakala GK, Cabrera-Fuentes HA, Crespo-Avilan GE, Rattanasopa C, Burlacu A, George BL, Anand K, Mayan DC, Corlianò M, Hernández-Reséndiz S, Wu Z, Schwerk AMK, Tan ALJ, Trigueros-Motos L, Chèvre R, Chua T, Kleemann R, Liehn EA, Hausenloy DJ, Ghosh S, Singaraja RR. FURIN Inhibition Reduces Vascular Remodeling and Atherosclerotic Lesion Progression in Mice. Arterioscler Thromb Vasc Biol 2020; 39:387-401. [PMID: 30651003 PMCID: PMC6393193 DOI: 10.1161/atvbaha.118.311903] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Atherosclerotic coronary artery disease is the leading cause of death worldwide, and current treatment options are insufficient. Using systems-level network cluster analyses on a large coronary artery disease case-control cohort, we previously identified PCSK3 (proprotein convertase subtilisin/kexin family member 3; FURIN) as a member of several coronary artery disease-associated pathways. Thus, our objective is to determine the role of FURIN in atherosclerosis. Approach and Results- In vitro, FURIN inhibitor treatment resulted in reduced monocyte migration and reduced macrophage and vascular endothelial cell inflammatory and cytokine gene expression. In vivo, administration of an irreversible inhibitor of FURIN, α-1-PDX (α1-antitrypsin Portland), to hyperlipidemic Ldlr-/- mice resulted in lower atherosclerotic lesion area and a specific reduction in severe lesions. Significantly lower lesional macrophage and collagen area, as well as systemic inflammatory markers, were observed. MMP2 (matrix metallopeptidase 2), an effector of endothelial function and atherosclerotic lesion progression, and a FURIN substrate was significantly reduced in the aorta of inhibitor-treated mice. To determine FURIN's role in vascular endothelial function, we administered α-1-PDX to Apoe-/- mice harboring a wire injury in the common carotid artery. We observed significantly decreased carotid intimal thickness and lower plaque cellularity, smooth muscle cell, macrophage, and inflammatory marker content, suggesting protection against vascular remodeling. Overexpression of FURIN in this model resulted in a significant 67% increase in intimal plaque thickness, confirming that FURIN levels directly correlate with atherosclerosis. Conclusions- We show that systemic inhibition of FURIN in mice decreases vascular remodeling and atherosclerosis. FURIN-mediated modulation of MMP2 activity may contribute to the atheroprotection observed in these mice.
Collapse
Affiliation(s)
- Gopala K Yakala
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.).,Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (H.A.C.-F.).,Department of Microbiology, Kazan Federal University, Russian Federation (H.A.C.-F.).,Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Nuevo Leon, México (H.A.C.-F.)
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.)
| | - Chutima Rattanasopa
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.).,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.)
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania (A.B.)
| | - Benjamin L George
- National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.)
| | - Kaviya Anand
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - David Castaño Mayan
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Maria Corlianò
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.)
| | - Zihao Wu
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Anne M K Schwerk
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden (A.M.K.S., R.K.)
| | - Amberlyn L J Tan
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Laia Trigueros-Motos
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Raphael Chèvre
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Tricia Chua
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden (A.M.K.S., R.K.).,Department of Vascular Surgery, Leiden University Medical Center, the Netherlands (R.K.)
| | - Elisa A Liehn
- National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.).,Institute of Molecular Cardiovascular Research, RWTH, Aachen, Germany (E.A.L.).,Human Genetic Laboratory, University of Medicine, Craiova, Romania (E.A.L.)
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.).,Yong Loo Lin School of Medicine, National University Singapore (D.J.H.).,The Hatter Cardiovascular Institute, University College London, United Kingdom (D.J.H.).,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, United Kingdom (D.J.H.).,Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (D.J.H.)
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.)
| | - Roshni R Singaraja
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| |
Collapse
|
30
|
Hofman ZLM, Clark CC, Sanrattana W, Nosairi A, Parr NMJ, Živkovic M, Krause K, Mahnke NA, Scheffel J, Hack CE, Maurer M, de Maat S, Maas C. A mutation in the kringle domain of human factor XII that causes autoinflammation, disturbs zymogen quiescence, and accelerates activation. J Biol Chem 2019; 295:363-374. [PMID: 31771982 DOI: 10.1074/jbc.ra119.009788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Coagulation factor XII (FXII) drives production of the inflammatory peptide bradykinin. Pathological mutations in the F12 gene, which encodes FXII, provoke acute tissue swelling in hereditary angioedema (HAE). Interestingly, a recently identified F12 mutation, causing a W268R substitution, is not associated with HAE. Instead, FXII-W268R carriers experience cold-inducible urticarial rash, arthralgia, fever, and fatigue. Here, we aimed to investigate the molecular characteristics of the FXII-W268R variant. We expressed wild type FXII (FXII-WT), FXII-W268R, and FXII-T309R (which causes HAE), as well as other FXII variants in HEK293 freestyle cells. Using chromogenic substrate assays, immunoblotting, and ELISA, we analyzed expression media, cell lysates, and purified proteins for FXII activation. Recombinant FXII-W268R forms increased amounts of intracellular cleavage products that are also present in expression medium and display enzymatic activity. The active site-incapacitated variant FXII-W268R/S544A reveals that intracellular fragmentation is largely dependent on autoactivation. Purified FXII-W268R is highly sensitive to activation by plasma kallikrein and plasmin, compared with FXII-WT or FXII-T309R. Furthermore, binding studies indicated that the FXII-W268R variant leads to the exposure of a plasminogen-binding site that is cryptic in FXII-WT. In plasma, recombinant FXII-W268R spontaneously triggers high-molecular-weight kininogen cleavage. Our findings suggest that the W268R substitution influences FXII protein conformation and exposure of the activation loop, which is concealed in FXII-WT. This results in intracellular autoactivation and constitutive low-grade secretion of activated FXII. These findings help to explain the chronically increased contact activation in carriers of the FXII-W268R variant.
Collapse
Affiliation(s)
- Zonne L M Hofman
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Chantal C Clark
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Wariya Sanrattana
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Aziz Nosairi
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Naomi M J Parr
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Minka Živkovic
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Karoline Krause
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Niklas A Mahnke
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Scheffel
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - C Erik Hack
- Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Steven de Maat
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
31
|
Bai X, Bai A, Honda JR, Eichstaedt C, Musheyev A, Feng Z, Huitt G, Harbeck R, Kosmider B, Sandhaus RA, Chan ED. Alpha-1-Antitrypsin Enhances Primary Human Macrophage Immunity Against Non-tuberculous Mycobacteria. Front Immunol 2019; 10:1417. [PMID: 31293581 PMCID: PMC6606736 DOI: 10.3389/fimmu.2019.01417] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Rationale: The association between non-tuberculous mycobacterial lung disease and alpha-1-antitrypsin (AAT) deficiency is likely due, in part, to underlying emphysema or bronchiectasis. But there is increasing evidence that AAT itself enhances host immunity against microbial pathogens and thus deficiency could compromise host protection. Objectives: The goal of this project is to determine if AAT could augment macrophage activity against non-tuberculous mycobacteria. Methods: We compared the ability of monocyte-derived macrophages cultured in autologous plasma that were obtained immediately before and soon after AAT infusion—given to individuals with AAT deficiency—to control an ex vivo Mycobacterium intracellulare infection. Measurements and Main Results: We found that compared to pre-AAT infused monocyte-derived macrophages plus plasma, macrophages, and contemporaneous plasma obtained after a session of AAT infusion were significantly better able to control M. intracellulare infection; the reduced bacterial burden was linked with greater phagosome-lysosome fusion and increased autophagosome formation/maturation, the latter due to AAT inhibition of both M. intracellulare–induced nuclear factor-kappa B activation and A20 expression. While there was a modest increase in apoptosis in the M. intracellulare-infected post-AAT infused macrophages and plasma, inhibiting caspase-3 in THP-1 cells, monocyte-derived macrophages, and alveolar macrophages unexpectedly reduced the M. intracellulare burden, indicating that apoptosis impairs macrophage control of M. intracellulare and that the host protective effects of AAT occurred despite inducing apoptosis. Conclusion: AAT augments macrophage control of M. intracellulare infection through enhancing phagosome-lysosome fusion and autophagy.
Collapse
Affiliation(s)
- Xiyuan Bai
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Academic Affairs, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - An Bai
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Jennifer R Honda
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | | | - Ariel Musheyev
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Zhihong Feng
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gwen Huitt
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Ronald Harbeck
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, United States.,Department of Physiology, Temple University, Philadelphia, PA, United States
| | - Robert A Sandhaus
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Edward D Chan
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Academic Affairs, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO, United States
| |
Collapse
|
32
|
Cox TC, Lidral AC, McCoy JC, Liu H, Cox LL, Zhu Y, Anderson RD, Moreno Uribe LM, Anand D, Deng M, Richter CT, Nidey NL, Standley JM, Blue EE, Chong JX, Smith JD, Kirk EP, Venselaar H, Krahn KN, van Bokhoven H, Zhou H, Cornell RA, Glass IA, Bamshad MJ, Nickerson DA, Murray JC, Lachke SA, Thompson TB, Buckley MF, Roscioli T. Mutations in GDF11 and the extracellular antagonist, Follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans. Hum Mutat 2019; 40:1813-1825. [PMID: 31215115 DOI: 10.1002/humu.23793] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Cleft lip with or without cleft palate (CL/P) is generally viewed as a complex trait with multiple genetic and environmental contributions. In 70% of cases, CL/P presents as an isolated feature and/or deemed nonsyndromic. In the remaining 30%, CL/P is associated with multisystem phenotypes or clinically recognizable syndromes, many with a monogenic basis. Here we report the identification, via exome sequencing, of likely pathogenic variants in two genes that encode interacting proteins previously only linked to orofacial clefting in mouse models. A variant in GDF11 (encoding growth differentiation factor 11), predicting a p.(Arg298Gln) substitution at the Furin protease cleavage site, was identified in one family that segregated with CL/P and both rib and vertebral hypersegmentation, mirroring that seen in Gdf11 knockout mice. In the second family in which CL/P was the only phenotype, a mutation in FST (encoding the GDF11 antagonist, Follistatin) was identified that is predicted to result in a p.(Cys56Tyr) substitution in the region that binds GDF11. Functional assays demonstrated a significant impact of the specific mutated amino acids on FST and GDF11 function and, together with embryonic expression data, provide strong evidence for the importance of GDF11 and Follistatin in the regulation of human orofacial development.
Collapse
Affiliation(s)
- Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington.,Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington.,Department of Oral & Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri
| | | | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Huan Liu
- Department of Anatomy and Cell Biology and Anatomy, University of Iowa, Iowa City, Iowa
| | - Liza L Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington.,Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington.,Department of Oral & Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ying Zhu
- New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - Ryan D Anderson
- Department of Oral & Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri
| | - Lina M Moreno Uribe
- Department of Orthodontics & the Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Mei Deng
- Birth Defects Research Laboratory, University of Washington, Seattle, Washington
| | - Chika T Richter
- Department of Orthodontics & the Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa
| | - Nichole L Nidey
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Edwin P Kirk
- New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, New South Wales, Australia
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Katy N Krahn
- UVA Center for Advanced Medical Analytics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Cognitive Neurosciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Robert A Cornell
- Department of Anatomy and Cell Biology and Anatomy, University of Iowa, Iowa City, Iowa
| | - Ian A Glass
- Birth Defects Research Laboratory, University of Washington, Seattle, Washington.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Michael F Buckley
- New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Tony Roscioli
- New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia.,Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Ginefra P, Filippi BGH, Donovan P, Bessonnard S, Constam DB. Compartment-Specific Biosensors Reveal a Complementary Subcellular Distribution of Bioactive Furin and PC7. Cell Rep 2019; 22:2176-2189. [PMID: 29466742 DOI: 10.1016/j.celrep.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/13/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Furin trafficking, and that of related proprotein convertases (PCs), may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN). Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Bruno G H Filippi
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Prudence Donovan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Sylvain Bessonnard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
34
|
Izaguirre G, Arciniega M, Quezada AG. Specific and Selective Inhibitors of Proprotein Convertases Engineered by Transferring Serpin B8 Reactive-Site and Exosite Determinants of Reactivity to the Serpin α1PDX. Biochemistry 2019; 58:1679-1688. [PMID: 30848586 DOI: 10.1021/acs.biochem.8b01295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The molecular determinants of substrate specificity and selectivity in the proprotein convertase (PC) family of proteases are poorly understood. Here we demonstrate that the natural serpin family inhibitor, serpin B8, is a specific and selective inhibitor of furin relative to the other PCs of the constitutive protein secretion pathway, PC4, PC5, PACE4, and PC7 (PC4-PC7, respectively), and identify reactive-site (P6-P5' residues) and exosite elements of the serpin that contribute to this specificity and selectivity through studies of chimeras of serpin B8 and α1PDX, an engineered serpin inhibitor of furin. Kinetic studies revealed that the specificity and selectivity of the serpin chimeras for inhibiting PCs were determined by P6-P5 and P3-P2 residue-dependent recognition of the P4Arg-X-X-P1Arg PC consensus sequence and exosite-dependent recognition of the reactive loop P2' residue of the chimeras by the PCs. Both productive and nonproductive binding of the chimeras to PC4-PC7 but not to furin contributed to a decreased specificity for inhibiting PC4-PC7 and an increased selectivity for inhibiting furin. Molecular dynamics simulations suggested that nonproductive binding of the chimeras to the PCs was correlated with a greater conformational variability of the catalytic sites of PC4-PC7 relative to that of furin. Our findings suggest a new approach for designing selective inhibitors of PCs using α1PDX as a scaffold, as evidenced by our ability to engineer highly specific and selective inhibitors of furin and PC4-PC7.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- Department of Periodontics, College of Dentistry , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Marcelino Arciniega
- Department of Biochemistry and Structural Biology, Institute of Cellular Physiology , National Autonomous University of Mexico , Mexico City 04510 , Mexico
| | - Andrea G Quezada
- Department of Biochemistry and Structural Biology, Institute of Cellular Physiology , National Autonomous University of Mexico , Mexico City 04510 , Mexico
| |
Collapse
|
35
|
Kim HS, McKnite A, Christian JL. Proteolytic Activation of Bmps: Analysis of Cleavage in Xenopus Oocytes and Embryos. Methods Mol Biol 2019; 1891:115-133. [PMID: 30414129 DOI: 10.1007/978-1-4939-8904-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Bone morphogenetic proteins (Bmps) are synthesized as inactive precursors that are cleaved to generate active ligands, along with prodomain fragments that can modulate growth factor activity. Here we provide three protocols that can be used to examine the process of proteolytic activation of Bmps. The first protocol describes how to generate radiolabeled Bmp precursor proteins in Xenopus oocytes and then analyze the time course of precursor cleavage by recombinant enzymes in vitro. The second protocol details how to analyze cleavage of radiolabeled precursor proteins in Xenopus oocytes over time using pulse-chase analysis and autoradiography. This protocol can also be used to analyze folding and cleavage of radiolabeled precursor proteins at steady state. Finally, the third protocol details methods for isolating Bmp cleavage products from the blastocoele of Xenopus embryos and then analyzing them on immunoblots.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Division of Hematology and Hematologic Malignancies, Department of Neurobiology, Anatomy and Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Autumn McKnite
- Division of Hematology and Hematologic Malignancies, Department of Neurobiology, Anatomy and Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jan L Christian
- Division of Hematology and Hematologic Malignancies, Department of Neurobiology, Anatomy and Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
36
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. The Antiviral Potential of Host Protease Inhibitors. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122247 DOI: 10.1007/978-3-319-75474-1_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replication of numerous pathogenic viruses depends on host proteases, which therefore emerged as potential antiviral drug targets. In some cases, e.g., for influenza viruses, their function during the viral propagation cycle is relatively well understood, where they cleave and activate viral surface glycoproteins. For other viruses, e.g., Ebola virus, the function of host proteases during replication is still not clear. Host proteases may also contribute to the pathogenicity of virus infection by activating proinflammatory cytokines. For some coronaviruses, human proteases can also serve in a nonproteolytical fashion simply as receptors for virus entry. However, blocking of such protein-protein contacts is challenging, because receptor surfaces are often flat and difficult to address with small molecules. In contrast, many proteases possess well-defined binding pockets. Therefore, they can be considered as well-druggable targets, especially, if they are extracellularly active. The number of their experimental crystal structures is steadily increasing, which is an important prerequisite for a rational structure-based inhibitor design using computational chemistry tools in combination with classical medicinal chemistry approaches. Moreover, host proteases can be considered as stable targets, and their inhibition should prevent rapid resistance developments, which is often observed when addressing viral proteins. Otherwise, the inhibition of host proteases can also affect normal physiological processes leading to a higher probability of side effects and a narrow therapeutic window. Therefore, they should be preferably used in combination therapies with additional antiviral drugs. This strategy should provide a stronger antiviral efficacy, allow to use lower drug doses, and minimize side effects. Despite numerous experimental findings on their antiviral activity, no small-molecule inhibitors of host proteases have been approved for the treatment of virus infections, so far.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
37
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
38
|
Dahms SO, Hardes K, Steinmetzer T, Than ME. X-ray Structures of the Proprotein Convertase Furin Bound with Substrate Analogue Inhibitors Reveal Substrate Specificity Determinants beyond the S4 Pocket. Biochemistry 2018; 57:925-934. [PMID: 29314830 DOI: 10.1021/acs.biochem.7b01124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proprotein convertase furin is a highly specific serine protease modifying and thereby activating proteins in the secretory pathway by proteolytic cleavage. Its substrates are involved in many diseases, including cancer and infections caused by bacteria and viruses. Understanding furin's substrate specificity is crucially important for the development of pharmacologically applicable inhibitors. Using protein X-ray crystallography, we investigated the extended substrate binding site of furin in complex with three peptide-derived inhibitors at up to 1.9 Å resolution. The structure of the protease bound with a hexapeptide inhibitor revealed molecular details of its S6 pocket, which remained completely unknown so far. The arginine residue at P6 induced an unexpected turnlike conformation of the inhibitor backbone, which is stabilized by intra- and intermolecular H-bonds. In addition, we confirmed the binding of arginine to the previously proposed S5 pocket (S51). An alternative S5 site (S52) could be utilized by shorter side chains as demonstrated for a 4-aminomethyl-phenylacetyl residue, which shows steric properties similar to those of a lysine side chain. Interestingly, we also observed binding of a peptide with citrulline at P4 substituting for the highly conserved arginine. The structural data might indicate an unusual protonation state of Asp264 maintaining the interaction with uncharged citrulline. The herein identified molecular interaction sites at P5 and P6 can be utilized to improve next-generation furin inhibitors. Our data will also help to predict furin substrates more precisely on the basis of the additional specificity determinants observed for P5 and P6.
Collapse
Affiliation(s)
- Sven O Dahms
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria.,Protein Crystallography Group, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) , Beutenbergstrasse 11, 07745 Jena, Germany
| | - Kornelia Hardes
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, D-35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, D-35032 Marburg, Germany
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) , Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
39
|
Osadchuk TV, Shybyryn OV, Kibirev VK. Chemical structure and properties of low-molecular furin inhibitors. UKRAINIAN BIOCHEMICAL JOURNAL 2018; 88:5-25. [PMID: 29235831 DOI: 10.15407/ubj88.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The review is devoted to the analysis of the relationship between a chemical structure and properties of low-molecular weight inhibitors of furin, the most studied proprotein convertase, which is involved in the development of some pathologies, such as oncologic diseases, viral and bacterial infections, etc. The latest data concerning the influence of peptides, pseudo-peptides, aromatic and heterocyclic compounds, some natural ones such as flavonoids, coumarins, and others on enzyme inactivation are considered. The power of furin inhibition is shown to rise with the increasing number of positively charged groups in the structure of these compounds. Peptidomimetics (Ki = 5-8 pM) are shown to be the most effective furin inhibitors. The synthesized substances, however, have not been used in practical application yet. Nowadays it is very important to find more selective inhibitors, improve their stability, bioavailability and safety for the human organism.
Collapse
|
40
|
Dobranowski P, Ban F, Contreras-Sanz A, Cherkasov A, Black PC. Perspectives on the discovery of NOTCH2-specific inhibitors. Chem Biol Drug Des 2017; 91:691-706. [PMID: 29078041 DOI: 10.1111/cbdd.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
The Notch pathway is a cell-cell communication system where membrane-bound ligands interact with the extracellular region of Notch receptors to induce intracellular, downstream effects on gene expression. Aberrant Notch signaling promotes tumorigenesis, and the Notch pathway has tremendous potential for novel targeting strategies in cancer treatment. While γ-secretase inhibitors as Notch-inhibiting agents are already promising in clinical trials, they are highly non-specific with adverse side-effects. One of the underlying challenges is that two of the four known human Notch paralogs, NOTCH1 and 2, share very high structural similarity but play opposing roles in some tumorigenesis pathways. This perspective explores the feasibility of developing Notch-specific small molecule inhibitors targeting the anti-NOTCH2 antibody-binding epitopes or the "S2-Leu-plug-binding site" using a computer-aided drug discovery approach.
Collapse
Affiliation(s)
- Peter Dobranowski
- Department of Pediatrics, British Columbia Children's Hospital Research, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Fuqiang Ban
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Alberto Contreras-Sanz
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Peter C Black
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Willson JA, Muir CA, Evered CL, Cepeda MA, Damjanovski S. Stable expression of α1-antitrypsin Portland in MDA-MB-231 cells increased MT1-MMP and MMP-9 levels, but reduced tumour progression. J Cell Commun Signal 2017; 12:479-488. [PMID: 28849349 DOI: 10.1007/s12079-017-0407-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/16/2017] [Indexed: 11/29/2022] Open
Abstract
The membrane bound matrix metalloproteinase MT1-MMP plays roles in modulating cell movement, independent of its abilities to remodel the extracellular matrix. Unlike many MMPs, MT1-MMP is activated in the Golgi prior to secretion by a pro-protein convertase, primarily furin. Regulation of the activation of pro-MT1-MMP has been methodically investigated, as altering the level of the active protein has broad implications in both activating other pro-MMPs, including pro-MMP-2, and many subsequent remodelling events. Our previous work in MCF-7 cells has demonstrated that modest, and not extremely high, levels of active MT1-MMP manifests into altered cell morphology and movement. At this low but optimal amount of MT1-MMP protein, changes to MT1-MMP levels are always mirrored by MMP-9 and pERK levels, and always opposite to MMP-2 levels. In this study, stable expression of the furin inhibitor α1-antitrypsin Portland (α1-PDX) in MDA-MB-231 cells increased overall MT1-MMP levels, but cells maintained a 21% proportion of pro-MT1-MMP. The increase in MT1-MMP was mirrored by increases in MMP-9 and pERK, but a decrease in MMP-2. These changes were associated with increased NF-κB transcription. In vitro analysis showed that α1-PDX decreased cell protrusions and migration, and this manifested as decreased tumourigenesis when examined in vivo using a chick CAM assay.
Collapse
Affiliation(s)
- J A Willson
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - C A Muir
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - C L Evered
- Ontario Veterinary College, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - M A Cepeda
- Department of Urology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55902, USA
| | - S Damjanovski
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
42
|
Klein-Szanto AJ, Bassi DE. Proprotein convertase inhibition: Paralyzing the cell's master switches. Biochem Pharmacol 2017; 140:8-15. [PMID: 28456517 DOI: 10.1016/j.bcp.2017.04.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
Proprotein convertases are serine proteases responsible for the cleavage and subsequent activation of protein substrates, many of them relevant for the development of an ample variety of diseases. Seven of the PCs, including furin and PACE4, recognize and hydrolyze the C-terminal end of the general sequence RXRR/KXR, whereas PCSK-9 recognizes a series of non-basic amino acids. In some systems, PC-mediated substrate activation results in the development of pathological processes, such as cancer, endocrinopathies, and cardiovascular and infectious diseases. After establishing PCs as relevant contributors to disease processes, research efforts were directed towards the development of inhibition strategies, including small and large molecules, anti-sense therapies, and antibody-based therapies. Most of these inhibitors mimic the consensus sequence of PCs, blocking the active site in a competitive manner. The most promising inhibitors were designed as bioengineered proteins; however, some non-protein and peptidomimetic agents have also proved to be effective. These efforts led to the design of pre-clinical studies and clinical trials utilizing inhibitors to PCs. Although the initial studies were performed using non-selective PCs inhibitors, such as CMK, the search for more specific, and compartmentalized selective inhibitors resulted in specific activities ascribed to some, but not all of the PCs. For instance, PACE4 inhibitors were effective in decreasing prostate cancer cell proliferation, and neovascularization. Decreased metastatic ovarian cancer utilizing furin inhibitors represents one of the major endeavors, currently in a phase II trial stage. Antibodies targeting PCSK-9 decreased significantly the levels of HDL-cholesterol, in a phase III trial. The study of Proprotein convertases has reached a stage of maturity. New strategies based on the alteration of their activity at the cellular and clinical level represent a promising experimental pharmacology field. The development of allosteric inhibitors, or specific agents directed against individual PCs is one of the challenges to be unraveled in the future.
Collapse
Affiliation(s)
| | - Daniel E Bassi
- Fox Chase Cancer Center, 333 Cotman Ave, Philadelphia 19111, USA.
| |
Collapse
|
43
|
PACE4 is an important driver of ZR-75-1 estrogen receptor-positive breast cancer proliferation and tumor progression. Eur J Cell Biol 2017; 96:469-475. [PMID: 28347547 DOI: 10.1016/j.ejcb.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is the most frequent and deadly malignancy in women worldwide. Despite national screening programs combined with new treatments relapse rate remain high and new therapies are needed. From previous work, we identified PACE4, a member of the proprotein convertase (PCs) family of endoproteases, as a novel therapeutic target in prostate cancer. In the present study we asked the question if PACE4 could also be a potential target in breast cancer. In clinical samples of breast adenocarcinoma, we observed a specific overexpression of PACE4 in the estrogen-receptor (ER) positive subtype. We therefore looked for a breast cancer cell line model which would be representative and thus focused on the ZR-75-1 since it both expresses PACE4 and is estrogen-receptor positive. We compared stable knockdowns of furin, PACE4 and PC7 in the estrogen-receptor-positive cell line ZR-75-1 to evaluate their respective contribution to cell growth and tumor progression. PACE4 was the only PC displaying an impact on cell growth. A PACE4 peptide-based inhibitor (C23) was tested and shown to decrease proliferation of ZR-75-1 cells in cell based assays. C23 also had potent effects of tumor progression in vivo on xenografts of the ZR-75-1 cell line in athymic nude mice. Thus, PACE4-silencing and systemic administration of a PACE4 inhibitor resulted in hindered tumor progression with reduction in proliferative indices and increased cell quiescence assessed with biomarkers. Our results suggest that PACE4 is a promising target for estrogen-receptor-positive breast cancer.
Collapse
|
44
|
Colon S, Bhave G. Proprotein Convertase Processing Enhances Peroxidasin Activity to Reinforce Collagen IV. J Biol Chem 2016; 291:24009-24016. [PMID: 27697841 PMCID: PMC5104926 DOI: 10.1074/jbc.m116.745935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
The basement membrane (BM) is a form of extracellular matrix that underlies cell layers in nearly all animal tissues. Type IV collagen, a major constituent of BMs, is critical for tissue development and architecture. The enzyme peroxidasin (Pxdn), an extracellular matrix-associated protein, catalyzes the formation of structurally reinforcing sulfilimine cross-links within the collagen IV network, an event essential to basement membrane integrity. Although the catalytic function of Pxdn is known, the regulation of its activity remains unclear. In this work we show through N-terminal sequencing, pharmacologic studies, and mutational analysis that proprotein convertases (PCs) proteolytically process human Pxdn at Arg-1336, a location relatively close to its C terminus. PC processing enhances the enzymatic activity of Pxdn and facilitates the formation of sulfilimine cross-links in collagen IV. Thus, PC processing of Pxdn is a key regulatory step that contributes to its function and, therefore, supports BM integrity and homeostasis.
Collapse
Affiliation(s)
- Selene Colon
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- the Department of Biological Sciences, Tennessee State University, Nashville, Tennessee 37209
- the Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and
| | - Gautam Bhave
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232,
- the Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and
- the Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
45
|
Siner JI, Samelson-Jones BJ, Crudele JM, French RA, Lee BJ, Zhou S, Merricks E, Raymer R, Nichols TC, Camire RM, Arruda VR. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models. JCI Insight 2016; 1:e89371. [PMID: 27734034 DOI: 10.1172/jci.insight.89371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Processing by the proprotein convertase furin is believed to be critical for the biological activity of multiple proteins involved in hemostasis, including coagulation factor VIII (FVIII). This belief prompted the retention of the furin recognition motif (amino acids 1645-1648) in the design of B-domain-deleted FVIII (FVIII-BDD) products in current clinical use and in the drug development pipeline, as well as in experimental FVIII gene therapy strategies. Here, we report that processing by furin is in fact deleterious to FVIII-BDD secretion and procoagulant activity. Inhibition of furin increases the secretion and decreases the intracellular retention of FVIII-BDD protein in mammalian cells. Our new variant (FVIII-ΔF), in which this recognition motif is removed, efficiently circumvents furin. FVIII-ΔF demonstrates increased recombinant protein yields, enhanced clotting activity, and higher circulating FVIII levels after adeno-associated viral vector-based liver gene therapy in a murine model of severe hemophilia A (HA) compared with FVIII-BDD. Moreover, we observed an amelioration of the bleeding phenotype in severe HA dogs with sustained therapeutic FVIII levels after FVIII-ΔF gene therapy at a lower vector dose than previously employed in this model. The immunogenicity of FVIII-ΔF did not differ from that of FVIII-BDD as a protein or a gene therapeutic. Thus, contrary to previous suppositions, FVIII variants that can avoid furin processing are likely to have enhanced translational potential for HA therapy.
Collapse
Affiliation(s)
- Joshua I Siner
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Benjamin J Samelson-Jones
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie M Crudele
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert A French
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin J Lee
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shanzhen Zhou
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Robin Raymer
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Rodney M Camire
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism. Proc Natl Acad Sci U S A 2016; 113:11196-11201. [PMID: 27647913 DOI: 10.1073/pnas.1613630113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proprotein convertases (PCs) are highly specific proteases required for the proteolytic modification of many secreted proteins. An unbalanced activity of these enzymes is connected to pathologies like cancer, atherosclerosis, hypercholesterolaemia, and infectious diseases. Novel protein crystallographic structures of the prototypical PC family member furin in different functional states were determined to 1.8-2.0 Å. These, together with biochemical data and modeling by molecular dynamics calculations, suggest essential elements underlying its unusually high substrate specificity. Furin shows a complex activation mechanism and exists in at least four defined states: (i) the "off state," incompatible with substrate binding as seen in the unliganded enzyme; (ii) the active "on state" seen in inhibitor-bound furin; and the respective (iii) calcium-free and (iv) calcium-bound forms. The transition from the off to the on state is triggered by ligand binding at subsites S1 to S4 and appears to underlie the preferential recognition of the four-residue sequence motif of furin. The molecular dynamics simulations of the four structural states reflect the experimental observations in general and provide approximations of the respective stabilities. Ligation by calcium at the PC-specific binding site II influences the active-site geometry and determines the rotamer state of the oxyanion hole-forming Asn295, and thus adds a second level of the activity modulation of furin. The described crystal forms and the observations of different defined functional states may foster the development of new tools and strategies for pharmacological intervention targeting furin.
Collapse
|
47
|
Wu C, Song Z, Liu H, Pan J, Jiang H, Liu C, Yan Z, Feng H, Sun S. Inhibition of furin results in increased growth, invasiveness and cytokine production of synoviocytes from patients with rheumatoid arthritis. Joint Bone Spine 2016; 84:433-439. [PMID: 27450196 DOI: 10.1016/j.jbspin.2016.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis play a key role by local production of cytokines and proteolytic enzymes that degrade the extracellular matrix and cartilage. These synoviocytes acquire phenotypic characteristics commonly observed in transformed cells, like anchorage-independent growth, increased proliferation and invasiveness, and insensitivity to apoptosis. Furin is a ubiquitous proprotein convertase that is capable of cleaving precursors of a wide variety of proteins. In patients with rheumatoid arthritis, furin is reported to be highly expressed in the synovial pannus compared with healthy persons. However, the mechanisms are poorly understood. This study is to explore the effect of furin overexpression in rheumatoid synoviocytes. METHODS In this study, RNA interference was used to knock down furin expression and to assess the resultant effects on biological behaviors of synoviocytes, such as cell proliferation, invasion, migration, cell cycle and cell apoptosis. In addition, the production of inflammatory cytokines was evaluated. RESULTS The results showed that the inhibition of furin enhanced proliferation, invasion, and migration of synoviocytes in vitro. Cell cycle was accelerated and cell death was affected by furin knockdown. Also, the inhibition of furin increased interleukin-1β and tumor necrosis factor-α secretion of synoviocytes. CONCLUSIONS Inhibition of furin enhances invasive phenotype of synoviocytes from patients with rheumatoid arthritis, implying a protective role of furin. Agents targeting upregulation of furin may have therapeutic potential for rheumatoid arthritis.
Collapse
Affiliation(s)
- Changshun Wu
- Department of Bone and Joint Surgery, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, PR China
| | - Zezhong Song
- Department of Bone and Joint Surgery, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, PR China
| | - Huiling Liu
- Cancer Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, PR China
| | - Jihong Pan
- Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, PR China
| | - Huiyu Jiang
- Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, PR China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, PR China
| | - Zexing Yan
- Department of Bone and Joint Surgery, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, PR China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, PR China.
| | - Shui Sun
- Department of Bone and Joint Surgery, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, PR China
| |
Collapse
|
48
|
Vishwanatha KS, Bäck N, Lam TT, Mains RE, Eipper BA. O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking. J Biol Chem 2016; 291:9835-50. [PMID: 26961877 DOI: 10.1074/jbc.m115.711838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 01/08/2023] Open
Abstract
Peptidylglycine α-amidating monooxygenase (PAM) (EC 1.14.17.3) catalyzes peptide amidation, a crucial post-translational modification, through the sequential actions of its monooxygenase (peptidylglycine α-hydroxylating monooxygenase) and lyase (peptidyl-α-hydroxyglycine α-amidating lyase (PAL)) domains. Alternative splicing generates two different regions that connect the protease-resistant catalytic domains. Inclusion of exon 16 introduces a pair of Lys residues, providing a site for controlled endoproteolytic cleavage of PAM and the separation of soluble peptidylglycine α-hydroxylating monooxygenase from membrane-associated PAL. Exon 16 also includes two O-glycosylation sites. PAM-1 lacking both glycosylation sites (PAM-1/OSX; where OSX is O-glycan-depleted mutant of PAM-1) was stably expressed in AtT-20 corticotrope tumor cells. In PAM-1/OSX, a cleavage site for furin-like convertases was exposed, generating a shorter form of membrane-associated PAL. The endocytic trafficking of PAM-1/OSX differed dramatically from that of PAM-1. A soluble fragment of the cytosolic domain of PAM-1 was produced in the endocytic pathway and entered the nucleus; very little soluble fragment of the cytosolic domain was produced from PAM-1/OSX. Internalized PAM-1/OSX was rapidly degraded; unlike PAM-1, very little internalized PAM-1/OSX was detected in multivesicular bodies. Blue native PAGE analysis identified high molecular weight complexes containing PAM-1; the ability of PAM-1/OSX to form similar complexes was markedly diminished. By promoting the formation of high molecular weight complexes, O-glycans may facilitate the recycling of PAM-1 through the endocytic compartment.
Collapse
Affiliation(s)
| | - Nils Bäck
- the Department of Anatomy, Faculty of Medicine, University of Helsinki, Fin-00014, Helsinki, Finland, and
| | - TuKiet T Lam
- the W. M. Keck Foundation Biotechnology Resource Laboratory, Yale/Keck MS and Proteomics Resource, Yale/NIDA Neuroproteomics Center, Yale University, New Haven, Connecticut 06511
| | | | - Betty A Eipper
- From the Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030,
| |
Collapse
|
49
|
Bessonnard S, Mesnard D, Constam DB. PC7 and the related proteases Furin and Pace4 regulate E-cadherin function during blastocyst formation. J Cell Biol 2015; 210:1185-97. [PMID: 26416966 PMCID: PMC4586756 DOI: 10.1083/jcb.201503042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Targeted deletion of PC7 and the related proprotein convertases Furin and Pace4, combined with live imaging of their activities, unmasks their overlapping and complementary functions in morula compaction and ICM formation in mouse blastocysts and in E-cadherin precursor processing. The first cell differentiation in mammalian embryos segregates polarized trophectoderm cells from an apolar inner cell mass (ICM). This lineage decision is specified in compacted morulae by cell polarization and adhesion acting on the Yes-associated protein in the Hippo signaling pathway, but the regulatory mechanisms are unclear. We show that morula compaction and ICM formation depend on PC7 and the related proprotein convertases (PCs) Furin and Pace4 and that these proteases jointly regulate cell–cell adhesion mediated by E-cadherin processing. We also mapped the spatiotemporal activity profiles of these proteases by live imaging of a transgenic reporter substrate in wild-type and PC mutant embryos. Differential inhibition by a common inhibitor revealed that all three PCs are active in inner and outer cells, but in partially nonoverlapping compartments. E-cadherin processing by multiple PCs emerges as a novel mechanism to modulate cell–cell adhesion and fate allocation.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Daniel Mesnard
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Cruz L, Biryukov J, Conway MJ, Meyers C. Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection. Viruses 2015; 7:5813-30. [PMID: 26569287 PMCID: PMC4664983 DOI: 10.3390/v7112910] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Infections by high-risk human papillomaviruses (HPV) are the causative agents for the development of cervical cancer. As with other non-enveloped viruses, HPVs are taken up by the cell through endocytosis following primary attachment to the host cell. Through studies using recombinant pseudovirus particles (PsV), many host cellular proteins have been implicated in the process. The proprotein convertase furin has been demonstrated to cleave the minor capsid protein, L2, post-attachment to host cells and is required for infectious entry by HPV16 PsV. In contrast, using biochemical inhibition by a furin inhibitor and furin-negative cells, we show that tissue-derived HPV16 native virus (NV) initiates infection independent of cellular furin. We show that HPV16 L2 is cleaved during virion morphogenesis in differentiated tissue. In addition, HPV45 is also not dependent on cellular furin, but two other alpha papillomaviruses, HPV18 and HPV31, are dependent on the activity of cellular furin for infection.
Collapse
Affiliation(s)
- Linda Cruz
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Jennifer Biryukov
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Michael J Conway
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|