1
|
Ranjit A, Khajehpour S, Aghazadeh-Habashi A. Update on Angiotensin II Subtype 2 Receptor: Focus on Peptide and Nonpeptide Agonists. Mol Pharmacol 2021; 99:469-487. [PMID: 33795351 DOI: 10.1124/molpharm.121.000236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (Ang II) is the most dominant effector component of the renin-angiotensin system (RAS) that generally acts through binding to two main classes of G protein-coupled receptors, namely Ang II subtype 1 receptor (AT1R) and angiotensin II subtype 2 receptor (AT2R). Despite some controversial reports, the activation of AT2R generally antagonizes the effects of Ang II binding on AT1R. Studying AT2R signaling, function, and its specific ligands in cell culture or animal studies has confirmed its beneficial effects throughout the body. These characteristics classify AT2R as part of the protective arm of the RAS that, along with functions of Ang (1-7) through Mas receptor signaling, modulates the harmful effects of Ang II on AT1R in the activated classic arm of the RAS. Although Ang II is the primary ligand for AT2R, we have summarized other natural or synthetic peptide and nonpeptide agonists with critical evaluation of their structure, mechanism of action, and biologic activity. SIGNIFICANCE STATEMENT: AT2R is one of the main components of the RAS and has a significant prospective for mediating the beneficial action of the RAS through its protective arm on the body's homeostasis. Targeting AT2R offers substantial clinical application possibilities for modulating various pathological conditions. This review provided concise information regarding the AT2R peptide and nonpeptide agonists and their potential clinical applications for various diseases.
Collapse
Affiliation(s)
- Arina Ranjit
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | - Sana Khajehpour
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | | |
Collapse
|
2
|
Alexander LD, Ding Y, Alagarsamy S, Cui X. Angiotensin II stimulates fibronectin protein synthesis via a Gβγ/arachidonic acid-dependent pathway. Am J Physiol Renal Physiol 2014; 307:F287-302. [PMID: 24920755 DOI: 10.1152/ajprenal.00094.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In rabbit proximal tubular cells, ANG II type 2-receptor (AT2)-induced arachidonic acid release is PLA2 coupled and dependent of G protein βγ (Gβγ) subunits. Moreover, ANG II activates ERK1/2 and transactivates EGFR via a c-Src-dependent mechanism. Arachidonic acid has been shown to mimic this effect, at least in part, by an undetermined mechanism. In this study, we determined the effects of ANG II on fibronectin expression in cultured rabbit proximal tubule cells and elucidated the signaling pathways associated with such expression. We found that ANG II and transfection of Gβγ subunits directly increased fibronectin protein expression, and this increase was inhibited by overexpression of β-adrenergic receptor kinase (βARK)-ct or DN-Src. Moreover, ANG II-induced fibronectin protein expression was significantly abrogated by the AT2 receptor antagonist PD123319. In addition, inhibition of cystolic PLA2 diminished ANG II-induced fibronectin expression. Endogenous arachidonic acid mimicked ANG II-induced fibronectin expression. We also found that overexpression of Gβγ subunits induced c-Src, ERK1/2, and EGFR tyrosine phosphorylation, which can be inhibited by overexpression of βARK-ct or DN-Src. Gβγ also induced c-Src SH2 domain association with the EGFR. Supporting these findings, in rabbit proximal tubular epithelium, immunoblot analysis indicated that βγ expression was significant. Interestingly, arachidonic acid- and eicosatetraenoic acid-induced responses were preserved in the presence of βARK-ct. This is the first report demonstrating the regulation of EGFR, ERK1/2, c-Src, and fibronectin by Gβγ subunits in renal epithelial cells. Moreover, this work demonstrates a role for Gβγ heterotrimeric proteins in ANG II, but not arachidonic acid, signaling in renal epithelial cells.
Collapse
Affiliation(s)
- Larry D Alexander
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona; and
| | - Yaxian Ding
- Division of Nephrology and Hypertension, Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio
| | - Suganthi Alagarsamy
- Division of Nephrology and Hypertension, Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio
| | - Xiaolan Cui
- Division of Nephrology and Hypertension, Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio
| |
Collapse
|
3
|
Angiotensin II-dependent growth of vascular smooth muscle cells requires transactivation of the epidermal growth factor receptor via a cytosolic phospholipase A(2)-mediated release of arachidonic acid. Arch Biochem Biophys 2010; 498:50-6. [PMID: 20388488 DOI: 10.1016/j.abb.2010.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/19/2022]
Abstract
Angiotensin (Ang) II stimulates vascular smooth muscle cell (VSMC) growth via activation of cytosolic phospholipase A(2) (cPLA(2)), release of arachidonic acid (ArAc) and activation of mitogen-activated protein kinase (MAPK). The mechanism linking AT(1) receptor stimulation of ArAc release with MAPK activation may involve transactivation of the epidermal growth factor receptor (EGFR). In this study, Ang II increased phosphorylation of the EGFR and MAPK in cultured VSMC and these effects were attenuated by the cPLA(2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF(3)), and restored by addition of ArAc. Ang II- or ArAc-induced phosphorylation of the EGFR and MAPK were abolished by the EGFR kinase inhibitor AG1478. Ang II or ArAc also stimulated VSMC growth that was blocked by AG1478 or the MAPK kinase (MEK) inhibitor PD98059. Thus, it appears that the cPLA(2)-dependent release of ArAc may provide a mechanism for the transactivation between the AT(1) receptor and the EGFR signaling cascade.
Collapse
|
4
|
Li Y, Yamada H, Kita Y, Kunimi M, Horita S, Suzuki M, Endo Y, Shimizu T, Seki G, Fujita T. Roles of ERK and cPLA2 in the angiotensin II-mediated biphasic regulation of Na+-HCO3(-) transport. J Am Soc Nephrol 2007; 19:252-9. [PMID: 18094367 DOI: 10.1681/asn.2007030289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulation of renal proximal transport by angiotensin II (Ang II) is biphasic: low concentrations (picomolar to nanomolar) stimulate reabsorption, but higher concentrations (nanomolar to micromolar) inhibit reabsorption. Traditionally, the stimulatory effect has been attributed to activation of protein kinase C and/or a decrease in intracellular cAMP, whereas the inhibitory action has been attributed to the activation of phospholipase A2 (PLA2) and the subsequent release of arachidonic acid. The Ang II receptor subtype responsible for these effects and the intracellular signaling pathways involved are not completely understood. We isolated proximal tubules from wild-type, Ang II type 1A receptor (AT1A)-deficient, and group IVA cytosolic phospholipase A2 (cPLA2alpha)-deficient mice, and compared their responses to Ang II. In wild-type mice, we found that the stimulatory and inhibitory effects of Ang II on Na+-HCO3(-) cotransporter activity are both AT1-mediated but that ERK activation only plays a role in the former. The stimulatory effect of Ang II was also observed in AT1A-deficient mice, suggesting that this occurs through AT1B. In contrast, the inhibitory effects of Ang II appeared to be mediated by cPLA2alpha activation because high-concentration Ang II stimulated Na+-HCO3(-) cotransporter activity when cPLA2alpha activity was abrogated by pharmacological means or genetic knockout. Consistent with this observation, we found that activation of the cPLA2alpha/P450 pathway suppressed ERK activation. We conclude that Ang II activates ERK and cPLA2alpha in a concentration-dependent manner via AT1, and that the balance between ERK and cPLA2alpha activities determines the ultimate response to Ang II in intact proximal tubules.
Collapse
Affiliation(s)
- Yuehong Li
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Li J, Zhao X, Li X, Lerea KM, Olson SC. Angiotensin II type 2 receptor-dependent increases in nitric oxide synthase expression in the pulmonary endothelium is mediated via a Gαi3/Ras/Raf/MAPK pathway. Am J Physiol Cell Physiol 2007; 292:C2185-96. [PMID: 17329403 DOI: 10.1152/ajpcell.00204.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that angiotensin II (ANG II) stimulated Src tyrosine kinase via a pertussis toxin-sensitive type 2 receptor, which, in turn, activates MAPK, resulting in an increase in nitric oxide synthase (NOS) expression in pulmonary artery endothelial cells (PAECs). The present study was designed to investigate the pathway by which ANG II activates Src leading to an increase in ERK1/ERK2 phosphorylation and an increase in NOS protein in PAECs. Transfection of PAECs with Gαi3dominant negative (DN) cDNA blocked the ANG II-dependent activation of Src, ERK1/ERK2 phosphorylation, and increase in NOS expression. ANG II stimulated an increase in tyrosine phosphorylation of sequence homology of collagen (Shc; 15 min) that was prevented when PAECs were pretreated with 4-amino-5-(4-chlorophenyl)-7-( t-butyl)pyrazolo-[3,4-d]pyrimidine (PP2), a Src inhibitor. ANG II induced a Src-dependent association between Shc and growth factor receptor-bound protein 2 (Grb2) and between Grb2 and son of sevenless (Sos), both of which were maximal at 15 min. The ANG II-dependent increase in Ras GTP binding was prevented when PAECs were pretreated with the AT2antagonist PD-123319 or with PP2 or were transfected with Src DN cDNA. ANG II-dependent activation of MAPK and the increase in endothelial NOS (eNOS) were prevented when PAECs were transfected with Ras DN cDNA or treated with FTI-277, a farnesyl transferase inhibitor. ANG II induction of Raf-1 phosphorylation was prevented when PAECs were pretreated with PD-123319 and PP2. Raf kinase inhibitor 1 prevented the ANG II-dependent increase in eNOS expression. Collectively, these data suggest that Gαi3, Shc, Grb2, Ras, and Raf-1 link Src to activation of MAPK and to the AT2-dependent increase in eNOS expression in PAECs.
Collapse
Affiliation(s)
- Jianyu Li
- Dept. of Biochemistry, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
6
|
Cui XL, Ding Y, Alexander LD, Bao C, Al-Khalili OK, Simonson M, Eaton DC, Douglas JG. Oxidative signaling in renal epithelium: Critical role of cytosolic phospholipase A2 and p38(SAPK). Free Radic Biol Med 2006; 41:213-21. [PMID: 16814101 PMCID: PMC2892205 DOI: 10.1016/j.freeradbiomed.2006.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 02/03/2006] [Indexed: 11/23/2022]
Abstract
Previous studies from this laboratory have demonstrated a critical role of cytosolic phospholipase A2 (cPLA2) and arachidonic acid in angiotensin II (Ang II) AT2 receptor-mediated signal transduction in renal epithelium. In primary proximal tubular epithelial cells exposed to hydrogen peroxide (H2O2), both the selective cPLA2 inhibitors and the cPLA2 antisense oligonucleotides significantly attenuated H2O2-induced arachidonic acid liberation and activation of p38(SAPK), ERK1/2, and Akt1. This H2O2-induced kinase activation was significantly attenuated by a Src kinase inhibitor PP2, or by transient transfection of carboxyl-terminal Src kinase (CSK) that maintained Src in the dormant form. Under basal conditions, Src coimmunoprecipitated with epidermal growth factor receptor (EGFR), while H2O2 increased EGFR phosphorylation in the complex. We observed that inhibition of EGFR kinase activity with AG1478 significantly attenuated H2O2-induced p38(SAPK) and ERK1/2 activation, but did not inhibit Akt1 activation. Furthermore, it seems that p38(SAPK) is upstream of ERK1/2 and Akt1, since a p38(SAPK) inhibitor SB203580 significantly blocked H2O2-induced activation of ERK1/2 and Akt1. Interestingly, overexpression of the dominant-negative p38(SAPK) isoform alpha inhibited ERK1/2 but not Akt1 activation. Our observations demonstrate that in these nontransformed cells, activation of cPLA2 is a converging point for oxidative stress and Ang II, which share common downstream signaling mechanisms including Src and EGFR. In addition, p38(SAPK) provides a positive input to both growth and antiapoptotic signaling pathways induced by acute oxidative stress.
Collapse
Affiliation(s)
- Xiao-Lan Cui
- Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Alexander LD, Ding Y, Alagarsamy S, Cui XL, Douglas JG. Arachidonic acid induces ERK activation via Src SH2 domain association with the epidermal growth factor receptor. Kidney Int 2006; 69:1823-32. [PMID: 16598196 DOI: 10.1038/sj.ki.5000363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within the kidney, angiotensin II type 2 (AT(2)) receptor mediates phospholipase A(2) (PLA(2)) activation, arachidonic acid release, epidermal growth factor (EGF) receptor transactivation, and mitogen-activated protein kinase activation. Arachidonic acid mimics this transactivation by an undetermined mechanism. The role of c-Src in mediating angiotensin II and arachidonic acid signaling was determined by employing immunocomplex kinase assay, Western blotting analysis, and protein immunoblotting on co-precipitated EGF receptor (EGFR) proteins and agarose conjugates of glutathione S-transferase fusion proteins containing the c-Src homology 2 (SH2) and SH3 domains. Angiotensin II induced extracellular signal-regulated kinase (ERK) activation in primary cultures of rabbit proximal tubule cells via the activation of c-Src and association of the EGFR with the c-Src SH2 domain, effects that were mimicked by arachidonic acid and its inactive analogue eicosatetraynoic acid. Inhibition of PLA(2) by mepacrine and methyl arachidonyl fluorophosphate, AT(2) receptor by PD123319, Src family kinases by, 1-(tert-butyl)-3-(4-chlorophenyl)-4-aminopyrazolo[3,4-d] pyrimidine (PP2) and c-Src by overexpression of a dominant-negative mutant of c-Src abrogated these effects. However, inhibitors of arachidonic acid metabolic pathways did not block these effects. The present work provides a new and novel paradigm for transactivation of a kinase receptor linked to a fatty acid, which may apply to activation of a variety of phospholipases and accompanying arachidonic acid release.
Collapse
Affiliation(s)
- L D Alexander
- Department of Natural Sciences, The University of Michigan-Dearborn, 48128, USA.
| | | | | | | | | |
Collapse
|
8
|
Wildroudt ML, Freeman EJ. Regulation of Akt by arachidonic acid and phosphoinositide 3-kinase in angiotensin II-stimulated vascular smooth muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:11-6. [PMID: 16461001 DOI: 10.1016/j.bbalip.2005.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Angiotensin (Ang) II stimulates cytosolic phospholipase A2(cPLA(2))-dependent release of arachidonic acid (ArAc) in vascular smooth muscle cells (VSMC). ArAc release and production of reactive oxygen species (ROS) lead to the activation of downstream kinases resulting in VSMC growth. To determine the role of Akt in this pathway, we used VSMC to link Ang II-induced ArAc release and ROS production to the activation of Akt and VSMC growth. We observed that Ang II, ArAc, or H(2)O(2) increased Akt activation. The Akt inhibitor SH6 blocked Ang II-, ArAc-, or H(2)O(2)-induced Akt activation, as did inhibition of phosphoinositide 3-kinase (PI(3)K). Inhibition of cPLA(2) blocked Ang II effects, while the ROS scavenger NaC decreased Ang II- and ArAc-induced Akt activation. Inhibition of Akt blocked the (3)H-thymidine incorporation induced by all three agonists. Thus, Ang II-induced ArAc release and ROS production leads to the PI(3)K-dependant activation of Akt and VSMC growth.
Collapse
Affiliation(s)
- Maria L Wildroudt
- Kent State University, School of Biomedical Sciences, Cunningham Hall A229, Kent, OH 44242, USA
| | | |
Collapse
|
9
|
Abstract
In 1989, the development of specific angiotensin receptor antagonists which distinguish between two angiotensin receptor subtypes (AT1 and AT2) led to a breakthrough in angiotensin research. It turned out, that the AT1 receptor was almost entirely responsible for the "classical" actions of angiotensin II related to the regulation of blood pressure as well as volume and electrolyte balance. However, actions and signal transduction mechanisms coupled to the AT2 receptor remained enigmatic for a long time. The present review summarizes the current knowledge of AT2 receptor distribution, signaling and function with an emphasis on growth/anti-growth, differentiation and the regeneration of neuronal tissue.
Collapse
Affiliation(s)
- U M Steckelings
- Center for Cardiovascular Research, Institut für Pharmakologie und Toxikologie, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany.
| | | | | |
Collapse
|
10
|
De Souza AM, Lopes AG, Pizzino CP, Fossari RN, Miguel NCO, Cardozo FP, Abi-Abib R, Fernandes MS, Santos DPA, Caruso-Neves C. Angiotensin II and angiotensin-(1-7) inhibit the inner cortex Na+ -ATPase activity through AT2 receptor. ACTA ACUST UNITED AC 2005; 120:167-75. [PMID: 15177935 DOI: 10.1016/j.regpep.2004.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/02/2004] [Accepted: 03/09/2004] [Indexed: 01/27/2023]
Abstract
In the present paper, the modulation of the basolateral membrane (BLM) Na+ -ATPase activity of inner cortex from pig kidney by angiotensin II (Ang II) and angiotensin-(1-7) (Ang-(1-7)) was evaluated. Ang II and Ang-(1-7) inhibit the Na+ -ATPase activity in a dose-dependent manner (from 10(-11) to 10(-5) M), with maximal effect obtained at 10(-7) M for both peptides. Pharmacological evidences demonstrate that the inhibitory effects of Ang II and Ang-(1-7) are mediated by AT2 receptor: The effect of both polypeptides is completely reversed by 10(-8) M PD 123319, a selective AT2 receptor antagonist, but is not affected by either (10(-12) - 10(-5) M) losartan or (10(-10)-10(-7) M) A779, selective antagonists for AT1 and AT(1-7) receptors, respectively. The following results suggest that a PTX-insensitive, cholera toxin (CTX)-sensitive G protein/adenosine 3',5'-cyclic monophosphate (cAMP)/PKA pathway is involved in this process: (1) the inhibitory effect of both peptides is completely reversed by 10(-9) M guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS; an inhibitor of the G protein activity), and mimicked by 10(-10) M guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS; an activator of the G protein activity); (2) the effects of both peptides are mimicked by CTX but are not affected by PTX; (3) Western blot analysis reveals the presence of the Gs protein in the isolated basolateral membrane fraction; (4) (10(-10)-10(-6) M) cAMP has a similar and non-additive effect to Ang II and Ang-(1-7); (5) PKA inhibitory peptide abolishes the effects of Ang II and Ang-(1-7); and (6) both angiotensins stimulate PKA activity.
Collapse
Affiliation(s)
- A M De Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-Bloco G, 21949-900, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wilms H, Rosenstiel P, Unger T, Deuschl G, Lucius R. Neuroprotection with angiotensin receptor antagonists: a review of the evidence and potential mechanisms. Am J Cardiovasc Drugs 2005; 5:245-53. [PMID: 15984907 DOI: 10.2165/00129784-200505040-00004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The peptide hormone angiotensin (A)-II, the major effector peptide of the renin-angiotensin system (RAS), is well established to play a pivotal role in the systemic regulation of blood pressure, fluid, and electrolyte homeostasis. Recent biochemical and neurophysiologic studies have documented local intrinsic angiotensin-generating systems in organs and tissues such as the brain, retina, bone marrow, liver, and pancreas. The locally generated angiotensin peptides have multiple and novel actions including stimulating cell growth and anti-proliferative and/or antiapoptotic actions. In the mammalian brain, all components of the RAS are present including angiotensin receptor subtypes 1 (AT(1)) and 2 (AT(2)). A-II exerts most of its well defined physiologic and pathophysiologic actions, including those on the central and peripheral nervous system, through its AT(1) receptor subtype. While the AT(1) receptor is responsible for the classical effects of A-II, it has been found that the AT(2) receptor is linked to totally different signalling mechanisms and this has revealed hitherto unknown functions of A-II. AT(2) receptors are expressed at low density in many healthy adult tissues, but are upregulated in a variety of human diseases. This receptor not only contributes to stroke-related pathologic mechanisms (e.g. hypertension, atherothrombosis, and cardiac hypertrophy) but may also be involved in post-ischemic damage to the brain. It has been reported that the AT(2) receptor regulates several functions of nerve cells, e.g. ionic fluxes, cell differentiation, and neuronal tissue regeneration, and also modulates programmed cell death. In this article, we review the experimental evidence supporting the notion that blockade of brain AT(1) receptors can be beneficial with respect to stroke incidence and outcome. We further delineate how AT(2) receptors could be involved in neuronal regeneration following brain injury such as stroke or CNS trauma. The current review is focussed on some of the new functions arising from the locally formed A-II with particular attention to its emerging neuroprotective role in the brain.
Collapse
Affiliation(s)
- Henrik Wilms
- Clinic of Neurology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | |
Collapse
|
12
|
Siragy HM, Carey RM. The Angiotensin Receptors: AT1 and AT2. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Abstract
The renin angiotensin system plays an important role in the control of body fluid and electrolyte homeostasis and blood pressure regulation. Angiotensin II is the most effector hormone of this system and functions mainly through stimulation of its subtype receptors, namely, the AT1 and AT2 receptors. Most of the known physiological and pathologic effects of angiotensin II are mediated through stimulation of the AT1 receptor. The knowledge about the involvement of the AT2 receptor in physiological and pathologic processes is still evolving. In the kidney, both the AT1 and AT2 receptors contribute to the regulation of renal hemodynamic and tubular functions. Also, these receptors regulate renal cellular growth and matrix formation. However, AT2 receptor possesses functions that counteract the effects of the AT1 receptor. The balance between the AT1 and AT2 receptors can determine the renal status in health and disease.
Collapse
Affiliation(s)
- Helmy M Siragy
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, 22908, USA.
| |
Collapse
|
14
|
Alexander LD, Alagarsamy S, Douglas JG. Cyclic stretch-induced cPLA2 mediates ERK 1/2 signaling in rabbit proximal tubule cells. Kidney Int 2004; 65:551-63. [PMID: 14717925 DOI: 10.1111/j.1523-1755.2004.00405.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent evidence from this laboratory have demonstrated a critical role of phospholipase A2 (PLA2) and arachidonic acid in angiotensin II type 2 (AT2) receptor-mediated kinase activation in renal epithelium independent of phosphoinositide- specific phospholipase C (PLC) and without the necessity of eicosanoid biosynthesis. In the present study, we investigated whether cyclic stress phosphorylates and activates the mitogen-activated protein kinase (MAPK) pathway and whether PLA2 activation mediates mechanotransduction in renal epithelial cells. The rational for studying kidney epithelial cells relates to their similarity to podocytes, which undergo mechanical stretch related to changes in intraglomerular pressure. METHODS To produce strain or stretch, primary cultures of rabbit proximal tubular cell cells are grown in tissue culture wells having a collagen-coated Silastic deformable membrane bottoms and applying vacuum to the well to generate alternating cycles of stretch and relaxation (30 cycles/min). RESULTS We found that cyclic stretching of rabbit proximal tubular cells caused a time- and intensity-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) in proximal tubular cells as detected by its phosphorylation. In addition, mechanical stretch induced PLA2 activation and a subsequent rapid release of arachidonic acid. Inhibition of PLA2 by mepacrine and methyl arachidonyl fluorophosphonate ketone (AACOCF3) attenuated both arachidonic acid release and ERK 1/2 activation by cyclic stretch, supporting the importance of PLA2 as a mediator of mechanotransduction in renal proximal tubular cells. A requirement for extracellular Ca2+ and stretch-activated Ca2+ channels was also documented. Complete inhibition of ERK 1/2 by PD98059, a MAPK kinase (MEK) inhibitor, did not suppress stretch- induced PLA2 activation and arachidonic acid release, suggesting the later events were upstream of ERK 1/2. Cyclic stretch also caused rapid phosphorylation of the EGF receptor kinase and c-Src. Furthermore, arachidonic acid itself induced time- and dose-dependent phosphorylation of c-Src. In addition, the c-Src inhibitor PP2 and selective EGF receptor kinase inhibitor AG1478 attenuated both ERK 1/2 and EGF receptor phosphorylation by cyclic stretch. CONCLUSION PLA2 dependence for ERK 1/2 activation in response to cyclic stretch in proximal tubular epithelial cells was established in this report. In addition, these findings indicate cyclic stretch increased the tyrosine phosphorylation of the EGF receptor and c-Src and that c-Src acts upstream of the EGF receptor to mediate its phosphorylation, whereby both are critical for stretch- induced ERK 1/2 activation in rabbit proximal tubular cells. These observations documents for the first time a mechanism of mechanical stretch-induced kinase activation mediated by stretch activated Ca2+ channels and PLA2-dependent release of arachidonic acid.
Collapse
Affiliation(s)
- Larry D Alexander
- Department of Medicine, Division of Nephrology and Hypertension, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106-4982, USA.
| | | | | |
Collapse
|
15
|
Volpe M, Musumeci B, De Paolis P, Savoia C, Morganti A. Angiotensin II AT2 receptor subtype: an uprising frontier in cardiovascular disease? J Hypertens 2003; 21:1429-43. [PMID: 12872031 DOI: 10.1097/00004872-200308000-00001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in the regulation of fluid, electrolyte balance and blood pressure, and is a modulator of cellular growth and proliferation. Biological actions of RAS are linked to the binding of the effector molecule, angiotensin II (AngII), to specific membrane receptors, mostly the AT1 subtype and, to a lesser extent, other subtypes. Following the identification and characterization of the AT2 subtype receptor, it has been proposed that a complex interaction between AngII and its receptors may play an important role in the effects of RAS. In this paper current information on AngII subtype receptors--their structure, regulation and intracellular signalling--are reviewed, with a particular emphasis on the potential relevance for cardiovascular pathophysiology. In addition, we discuss modulation of expression of the AT2 receptor and its interaction with the AT1 receptor subtype, as well as the potential effects of this receptor on blood pressure regulation. A better understanding of the integrated effects of the AngII subtype receptors may help to elucidate the function of the RAS, as well as their participation in the mechanisms of cardiovascular disease and attendant therapeutic implications.
Collapse
Affiliation(s)
- Massimo Volpe
- Cattedra di Cardiologia, II Facoltà di Medicina, Dipartimento di Medicina Sperimentale e Patologia, Università La Sapienza, Rome, Italy.
| | | | | | | | | |
Collapse
|
16
|
Burgermeister E, Endl J, Scheuer WV. Activation of cytosolic phospholipase A2 in human T-lymphocytes involves inhibitor-kappaB and mitogen-activated protein kinases. Eur J Pharmacol 2003; 466:169-80. [PMID: 12679154 DOI: 10.1016/s0014-2999(03)01492-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The group IV 85 kDa cytosolic phospholipase A(2) regulates many aspects of innate immunity. However, the function of this enzyme in T-cells remains controversial. We show here that human peripheral blood lymphocytes and Jurkat cells express cytosolic phospholipase A(2) and produce prostaglandin A(2) and leukotriene B(4). Selective inhibitors of this enzyme suppressed Ca(2+)-ionophore-, mitogen- and T-cell receptor-mediated expression of interleukin-2 at the level of transcription from the promoter. Activation of mitogen-activated protein kinases (MAPK), degradation of inhibitor-kappaBalpha and transactivation by nuclear factor-kappaB (NFkappaB) were impaired as was the antigen-, lectin- and interleukin-2-driven proliferation of T-cells in vitro. Ligands of peroxisome proliferator-activated receptor-gamma (PPARgamma) induced rapid phosphorylation of MAPK in human monocytic but not in Jurkat cells. These data indicated that in T-cells, eicosanoids generated upon signal-activated cytosolic phospholipase A(2) promote NFkappaB-dependent interleukin-2 transcription via a PPARgamma-independent mechanism involving the MAPK-pathway.
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Biological Regulation, The Weizmann Institute of Science, I-76100 Rehovot, Israel
| | | | | |
Collapse
|
17
|
Cussac D, Schaak S, Denis C, Paris H. alpha 2B-adrenergic receptor activates MAPK via a pathway involving arachidonic acid metabolism, matrix metalloproteinases, and epidermal growth factor receptor transactivation. J Biol Chem 2002; 277:19882-8. [PMID: 11891218 DOI: 10.1074/jbc.m110142200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the mechanisms whereby alpha(2B)-adrenergic receptor (alpha(2B)-AR) promotes MAPK activation in a clone of the renal tubular cell line, LLC-PK1, transfected with the rat nonglycosylated alpha(2)-AR gene. Treatment of LLC-PK1-alpha(2B) with UK14304 or dexmedetomidine caused arachidonic acid (AA) release and ERK2 phosphorylation. AA release was abolished by prior treatment of the cells with pertussis toxin, quinacrine, or methyl arachidonyl fluorophosphonate but not by the addition of the MEK inhibitor U0126. The effects of alpha(2)-agonists on MAPK phosphorylation were mimicked by cell exposure to exogenous AA. On the other hand, quinacrine abolished the effects of UK14304, but not of AA, suggesting that AA released through PLA2 is responsible for MAPK activation by alpha(2B)-AR. The effects of alpha(2)-agonists or AA were PKC-independent and were attenuated by indomethacin and nordihydroguaiaretic acid. Treatment with batimastat, CRM 197, or tyrphostin AG1478 suppressed MAPK phosphorylation promoted by alpha(2)-agonist or AA. Furthermore, conditioned culture medium from UK14304-treated LLC-PK1-alpha(2B) induced MAPK phosphorylation in wild-type LLC-PK1. Based on these data, we propose a model whereby activation of MAPK by alpha(2B)-AR is mediated through stimulation of PLA2, AA release, generation of AA derivatives, activation of matrix metalloproteinases, release of heparin-binding EGF-like growth factor, transactivation of epidermal growth factor receptor, and recruitment of Shc. Whether this pathway is particular to alpha(2B)-AR and LLC-PK1 or whether it can be extended to other cell types and/or other G-protein-coupled receptors remains to be established.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Arachidonic Acid/metabolism
- Bacterial Proteins/pharmacology
- Brimonidine Tartrate
- Butadienes/pharmacology
- Cell Line
- Cell Nucleus/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- ErbB Receptors/metabolism
- MAP Kinase Signaling System
- Matrix Metalloproteinases/metabolism
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Nitriles/pharmacology
- Pertussis Toxin
- Phosphorylation
- Protein Binding
- Proteins/metabolism
- Quinacrine/pharmacology
- Quinazolines
- Quinoxalines/pharmacology
- Rats
- Receptors, Adrenergic, alpha-2/metabolism
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Swine
- Transcriptional Activation
- Tyrphostins/pharmacology
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- Daniel Cussac
- INSERM, Unité 388, Institut L. Bugnard, CHU Rangueil, 31403 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
18
|
Rosenstiel P, Gallinat S, Arlt A, Unger T, Sievers J, Lucius R. Angiotensin AT2 receptor ligands: do they have potential as future treatments for neurological disease? CNS Drugs 2002; 16:145-53. [PMID: 11888335 DOI: 10.2165/00023210-200216030-00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In addition to the systemic renin-angiotensin system (RAS), a local RAS has been identified. Recent research has focused on this latter system and has investigated the effects of locally generated angiotensin II, especially in the kidney, heart and CNS. In the mammalian brain, all components of the RAS are present including angiotensin AT(1) and AT(2) receptor subtypes. While the AT(1) receptor is responsible for the classical effects of angiotensin II, it has been found that the AT(2) receptor displays totally different signalling mechanisms and this has revealed hitherto unknown functions of angiotensin II. AT(2) receptors are expressed at low density in many healthy adult tissues, but are up-regulated in pathological circumstances, e.g. stroke or nerve lesion. Evidence has now emerged that the actions of angiotensin II that are exerted via the AT(2) receptor are directly opposed to those mediated by the AT(1 )receptor. For example, the AT(2) receptor has antiproliferative properties and therefore opposes the growth-promoting effect linked to AT(1) receptor stimulation. It has been reported that the AT(2) receptor regulates several functions of nerve cells, e.g. ionic fluxes, cell differentiation and axonal regeneration, but also modulates programmed cell death. It is possible that a more extensive knowledge of the AT(2) receptor could contribute to the understanding of the clinically beneficial effects of AT(1) receptor antagonists, as this treatment may unmask AT(2) receptor activity. This review presents selected aspects of advances in AT(2) receptor pharmacology, molecular biology and signal transduction with particular reference to possible novel therapeutic options for CNS diseases.
Collapse
Affiliation(s)
- Philip Rosenstiel
- Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Cussac D, Schaak S, Gales C, Flordellis C, Denis C, Paris H. alpha(2B)-Adrenergic receptors activate MAPK and modulate proliferation of primary cultured proximal tubule cells. Am J Physiol Renal Physiol 2002; 282:F943-52. [PMID: 11934705 DOI: 10.1152/ajprenal.0108.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rat proximal tubule, the alpha(2B)-adrenergic receptor (alpha(2B)-AR) enhances Na(+) reabsorption by increasing the activity of Na(+)/H(+) exchanger isoform NHE3. The mechanisms involved are unclear, and inhibition of cAMP production remains controversial. In this study, we reinvestigated alpha(2B)-AR signaling pathways using rat proximal tubule cells (PTC) in primary culture and LLC-PK(1) cells permanently transfected with the RNG gene (rat nonglycosylated alpha(2)-AR). Binding experiments indicated that PTC express substantial amounts of alpha(2B)-AR (130 fmol/mg protein), and only RNG transcripts were detected. In both cell types, the alpha(2B)-AR is coupled to G protein, and its stimulation by dexmedetomidine, but not by UK-14304, provoked a significant inhibition of the accumulation of cAMP induced by forskolin or parathyroid hormone. Exposure to alpha(2)-agonists increased arachidonic acid release and caused extracellular signal-regulated kinase (ERK)1/2 phosphorylation, which correlated with enhanced mitogen-activated protein kinse (MAPK) activity and nuclear translocation. MAPK phosphorylation was blunted by pertussis toxin but not by protein kinase C desensitization, and it coincided with transient phosphorylation of Shc. Finally, treatment with UK-14304 accelerated cell growth. Further studies will be necessary to clarify the precise mechanism of MAPK activation, but the present data suggest that alpha(2B)-AR may play a positive role during tubular regeneration.
Collapse
Affiliation(s)
- Daniel Cussac
- Unit 388, Institut L. Bugnard, Centre Hospitalier Universitaire Rangueil, 31403 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Recent studies have indicated that arachidonic acid is primarily metabolized by cytochrome P-450 (CYP) enzymes in the brain, lung, kidney, and peripheral vasculature to 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) and that these compounds play critical roles in the regulation of renal, pulmonary, and cardiac function and vascular tone. EETs are endothelium-derived vasodilators that hyperpolarize vascular smooth muscle (VSM) cells by activating K(+) channels. 20-HETE is a vasoconstrictor produced in VSM cells that reduces the open-state probability of Ca(2+)-activated K(+) channels. Inhibitors of the formation of 20-HETE block the myogenic response of renal, cerebral, and skeletal muscle arterioles in vitro and autoregulation of renal and cerebral blood flow in vivo. They also block tubuloglomerular feedback responses in vivo and the vasoconstrictor response to elevations in tissue PO(2) both in vivo and in vitro. The formation of 20-HETE in VSM is stimulated by angiotensin II and endothelin and is inhibited by nitric oxide (NO) and carbon monoxide (CO). Blockade of the formation of 20-HETE attenuates the vascular responses to angiotensin II, endothelin, norepinephrine, NO, and CO. In the kidney, EETs and 20-HETE are produced in the proximal tubule and the thick ascending loop of Henle. They regulate Na(+) transport in these nephron segments. 20-HETE also contributes to the mitogenic effects of a variety of growth factors in VSM, renal epithelial, and mesangial cells. The production of EETs and 20-HETE is altered in experimental and genetic models of hypertension, diabetes, uremia, toxemia of pregnancy, and hepatorenal syndrome. Given the importance of this pathway in the control of cardiovascular function, it is likely that CYP metabolites of arachidonic acid contribute to the changes in renal function and vascular tone associated with some of these conditions and that drugs that modify the formation and/or actions of EETs and 20-HETE may have therapeutic benefits.
Collapse
Affiliation(s)
- Richard J Roman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
21
|
Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG. Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 2001; 281:H2337-65. [PMID: 11709400 DOI: 10.1152/ajpheart.2001.281.6.h2337] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) is a pleiotropic vasoactive peptide that binds to two distinct receptors: the ANG II type 1 (AT(1)) and type 2 (AT(2)) receptors. Activation of the renin-angiotensin system (RAS) results in vascular hypertrophy, vasoconstriction, salt and water retention, and hypertension. These effects are mediated predominantly by AT(1) receptors. Paradoxically, other ANG II-mediated effects, including cell death, vasodilation, and natriuresis, are mediated by AT(2) receptor activation. Our understanding of ANG II signaling mechanisms remains incomplete. AT(1) receptor activation triggers a variety of intracellular systems, including tyrosine kinase-induced protein phosphorylation, production of arachidonic acid metabolites, alteration of reactive oxidant species activities, and fluxes in intracellular Ca(2+) concentrations. AT(2) receptor activation leads to stimulation of bradykinin, nitric oxide production, and prostaglandin metabolism, which are, in large part, opposite to the effects of the AT(1) receptor. The signaling pathways of ANG II receptor activation are a focus of intense investigative effort. We critically appraise the literature on the signaling mechanisms whereby AT(1) and AT(2) receptors elicit their respective actions. We also consider the recently reported interaction between ANG II and ceramide, a lipid second messenger that mediates cytokine receptor activation. Finally, we discuss the potential physiological cross talk that may be operative between the angiotensin receptor subtypes in relation to health and cardiovascular disease. This may be clinically relevant, inasmuch as inhibitors of the RAS are increasingly used in treatment of hypertension and coronary heart disease, where activation of the RAS is recognized.
Collapse
Affiliation(s)
- C Berry
- Department of Medicine and Therapeutics, Western Infirmary, University of Glasgow, G11 6NT Glasgow, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Alexander LD, Cui XL, Falck JR, Douglas JG. Arachidonic acid directly activates members of the mitogen-activated protein kinase superfamily in rabbit proximal tubule cells. Kidney Int 2001; 59:2039-53. [PMID: 11380805 DOI: 10.1046/j.1523-1755.2001.00718.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND To explore the roles of eicosanoids in arachidonic acid-induced mitogen-activated protein kinase (MAPK) signal transduction, we have shown that exposure of proximal tubular cells to arachidonic acid induces phosphorylation of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), two members of the MAPK superfamily. We observed that ketoconazole, an inhibitor of the cytochrome P450 pathway, blocked ERK but not JNK activation. METHODS Direct regulation of arachidonic acid on mitogen-activated protein kinase (MAPK) signaling pathways was evaluated more directly by utilizing specific enzyme inhibitors of the cytochrome P450 metabolic pathway and by comparing the relative efficacy of arachidonic acid versus its cytochrome P450 metabolites (exogenous and endogenous), eicosatetraynoic acid (ETYA), and other fatty acids on the phosphorylation of members of the MAPK superfamily (ERKs, JNK, and p38(MAPK)), by utilizing early passage rabbit proximal tubular epithelial cells. RESULTS Arachidonic acid activated p38(MAPK), a third member of the MAPK superfamily, in a time- and concentration-dependent manner. Studies designed to evaluate the ability of arachidonic acid and its cytochrome P450 metabolites (endogenously and exogenously) to stimulate ERKs, JNK, and p38(MAPK) found four conclusions. First, the metabolites of arachidonic acid generated endogenously by cytochrome P450 2C1 significantly augmented basal ERK activity, whereas the metabolites generated by the 2C2 isozyme significantly augmented basal p38(MAPK) activity. However, their effects were less profound than arachidonic acid itself. In contrast, there were no significant effects with transfection of either isozyme on basal JNK activity. Second, a variety of exogenous cytochrome P450 products were less potent than arachidonic acid on a molar basis in stimulating the activity of all three MAPKs. Third, ketoconazole and 17-octadecynoic acid, inhibitors of the cytochrome P450 pathway, as well as PPOH and DDMS, inhibitors of the epoxygenase and omega-hydroxylase pathways, respectively, failed to significantly reduce the effects of arachidonic acid to activate ERK and p38(MAPK) (JNK was not evaluated). Finally, arachidonic acid, its inactive analog ETYA, and other fatty acids with differing chain lengths and degrees of saturation stimulated the activity of all three MAPKs. CONCLUSIONS These observations substantiate a role for arachidonic acid and other fatty acids in signaling linked to the MAPK superfamily in rabbit proximal tubular epithelium without the necessity of conversion to cytochrome P450 metabolites.
Collapse
Affiliation(s)
- L D Alexander
- Department of Medicine, Division of Hypertension, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106-4982, USA
| | | | | | | |
Collapse
|
23
|
Liu F, Gesek FA. alpha(1)-Adrenergic receptors activate NHE1 and NHE3 through distinct signaling pathways in epithelial cells. Am J Physiol Renal Physiol 2001; 280:F415-25. [PMID: 11181403 DOI: 10.1152/ajprenal.2001.280.3.f415] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na+/H+ exchanger (NHE) regulates intracellular pH, cell volume, Na+ absorption and H+ secretion in epithelial cells of the renal proximal tubule (PT). alpha(1)-Adrenergic receptors (ARs) increase NHE activity in PT cells. The purpose of this study was to determine the mechanism of alpha(1)-AR activation of NHE isoforms expressed in PT cells. Northern and Western blotting demonstrate transcripts and protein expression of NHE1 and NHE3 in PT cells. An anti-NHE1 antibody predominately labels protein expressed at basal and lateral membranes. In contrast, NHE3 protein is expressed exclusively at the apical membrane. To determine NHE isoforms regulated by alpha(1)-ARs, antisense oligodeoxynucleotides (AS-ODNs) specific for NHE1 and NHE3 isoforms were introduced into cells with streptolysin O permeabilization. Cells incubated with AS-ODNs a total of three times exhibited a reduction in protein expression of ~85%. Na uptake and changes in intracellular pH (pH(i)) were used as measures of NHE activity in PT cells. alpha(1)-AR stimulation increased Na uptake from 8.5 to 13.8 nmol. min(-1). mg protein(-1). AS-ODNs to NHE3 significantly reduced alpha(1)-AR stimulated Na uptake and increases in pH(i); no effect was observed in sense-ODN-treated cells. Inhibition of NHE1 but not NHE3 expression abolishes amiloride-suppressible NHE activity. alpha(1)-AR stimulation of NHE1 is inhibited by the protein kinase C (PKC) inhibitor calphostin C whereas NHE3 activity is abolished by the mitogen-activated protein kinase (MAPK) inhibitor PD-98059. In PT cells transfected with MAPK kinase MEKK1(COOH), a truncated version of MEKK1 that activates MAPK, NHE3 but not NHE1 activity is stimulated. We conclude that alpha(1)-ARs activate distinct signaling pathways to regulate specific NHE isoforms localized on opposite membranes in polarized renal epithelial cells. alpha(1)-AR activation of NHE1 is regulated by PKC whereas NHE3 is controlled by MAPK and serves to separately regulate pH(i), Na absorption, and proton excretion in PT cells.
Collapse
Affiliation(s)
- F Liu
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
24
|
Blume A, Kaschina E, Unger T. Angiotensin II type 2 receptors: signalling and pathophysiological role. Curr Opin Nephrol Hypertens 2001; 10:239-46. [PMID: 11224700 DOI: 10.1097/00041552-200103000-00013] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The signalling mechanisms and biological significance of the angiotensin II type 2 receptor have long been unknown. In recent years, studies, first in cell culture models but now increasingly also in vivo, have shed some light on the molecular events occurring after a stimulation of the receptor with its ligand as well as on its physiological effects and its significance for pathophysiological processes. There is increasing evidence that the angiotensin II type 2 receptor is involved in different pathophysiological processes, such as myocardial infarction, heart and kidney failure, and stroke.
Collapse
Affiliation(s)
- A Blume
- Institute of Pharmacology, University of Kiel, Germany
| | | | | |
Collapse
|
25
|
Higashida H, Zhang J, Hashii M, Shintaku M, Higashida C, Takeda Y. Angiotensin II stimulates cyclic ADP-ribose formation in neonatal rat cardiac myocytes. Biochem J 2000; 352 Pt 1:197-202. [PMID: 11062073 PMCID: PMC1221447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
To examine the role of cyclic ADP-ribose (cADP-ribose) as a second messenger downstream of angiotensin II (Ang II) receptor activation in the heart, ADP-ribosyl cyclase activity was measured in a crude membrane fraction of ventricular myocytes. Ang II at 10-100 nM increased ADP-ribosyl cyclase activity by 40-90% in the ventricular muscle of neonatal (2-4-day-old) rats, but not in fetal or adult hearts. This increase was inhibited by the Ang II antipeptide. Stimulation of ADP-ribosyl cyclase was reproduced by GTP and guanosine 5'-[gamma-thio]triphosphate, and prevented by guanosine 5'-[beta-thio]diphosphate. Prior treatment of the rats with cholera toxin A and B subunits also blocked the Ang II-induced activation. The density of Ang II receptors detected as [(3)H]Ang II binding was higher in neonatal than adult rats. These results demonstrate the existence of a signalling pathway from Ang II receptors to membrane-bound ADP-ribosyl cyclase in the ventricular muscle cell and suggest that the Ang II-induced increase in cADP-ribose synthesis is involved in the regulation of cardiac function and development.
Collapse
Affiliation(s)
- H Higashida
- Department of Biochemical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Chen ZJ, Miao ZH, Vetter M, Dulin N, Liu S, Che D, Hughes B, Murad F, Douglas J, Chang CH. Molecular cloning of a regulatory protein for membrane-bound guanylate cyclase GC-A. Biochem Biophys Res Commun 2000; 278:106-11. [PMID: 11071862 DOI: 10.1006/bbrc.2000.3761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of membrane-bound guanylate cyclase GC-A by atrial natriuretic factor (ANF) may require the involvement of accessory proteins. To identify these postulated proteins, we isolated a 1. 0-kb cDNA clone from a rat brain expression library using a polyclonal antiserum against mastoparan. The 1.0-kb cDNA encodes a protein of 111 amino acids. Expression of this cDNA in COS-7 cells potentiated ANF-stimulated GC-A activity. Therefore, the 1.0-kb gene encodes a guanylate cyclase regulatory protein (GCRP). Fluorescence microscopy studies using the fusion protein of GCRP with green fluorescence protein (GFP) indicated that GCRP was present in the cytosol in PC12 cells, but translocated toward the plasma membrane in the presence of ANF. Coimmunoprecipitation experiments indicate that GCRP associates with GC-A in the presence of ANF. These results suggest that ANF induces the association of GCRP with GC-A and this association contributes to the activation of GC-A.
Collapse
Affiliation(s)
- Z J Chen
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cui XL, Jin WW, Ding YX, Alexander LD, Hopfer U, Douglas JG. Ca(2+)-dependent activation of c-jun NH(2)-terminal kinase in primary rabbit proximal tubule epithelial cells. Am J Physiol Cell Physiol 2000; 279:C403-9. [PMID: 10913007 PMCID: PMC3014607 DOI: 10.1152/ajpcell.2000.279.2.c403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work from this laboratory demonstrated that arachidonic acid activates c-jun NH(2)-terminal kinase (JNK) through oxidative intermediates in a Ca(2+)-independent manner (Cui X and Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci USA 94: 3771-3776, 1997.). We now report that JNK can also be activated via a Ca(2+)-dependent mechanism by agents that increase the cytosolic Ca(2+) concentration (Ca(2+) ionophore A(23187), Ca(2+)-ATPase inhibitor thapsigargin) or deplete intracellular Ca(2+) stores [intracellular Ca(2+) chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM]. The activation of JNK by BAPTA-AM occurs despite a decrease in cytosolic Ca(2+) concentration as detected by the indicator dye fura 2, but appears to be related to Ca(2+) metabolism, because modification of BAPTA with two methyl groups increases not only the chelation affinity for Ca(2+), but also the potency for JNK activation. BAPTA-AM stimulates Ca(2+) influx across the plasma membrane, and the resulting local Ca(2+) increases are probably involved in activation of JNK because Ca(2+) influx inhibitors (SKF-96365, nifedipine) and lowering of the free extracellular Ca(2+) concentration with EGTA reduce the BAPTA-induced JNK activation.
Collapse
Affiliation(s)
- X L Cui
- Division of Hypertension, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Ohio 44106-4982, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Ogborn MR, Nitschmann E, Weiler HA, Bankovic-Calic N. Modification of polycystic kidney disease and fatty acid status by soy protein diet. Kidney Int 2000; 57:159-66. [PMID: 10620197 DOI: 10.1046/j.1523-1755.2000.00835.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Modification of polycystic kidney disease and fatty acid status by soy protein diet. BACKGROUND Previous studies have demonstrated that soy protein can slow progression of renal injury in the Han:SPRD-cy rat. We undertook a study to establish whether this benefit was independent of any nutritional deprivation, and whether or not it was associated with changes in polyunsaturated fatty acid status that have been previously linked to the anti-inflammatory or antineoplastic potential of soy diets. METHODS Male Han:SPRD-cy rats were pair fed a 20% casein or 20% soy protein diet for six weeks from weaning. Tissue was harvested for analysis of cystic change, cell proliferation, macrophage infiltration, and fibrosis. Renal and hepatic tissues were also harvested for lipid analysis using gas chromatography. RESULTS Animals thrived on both diets. Soy protein feeding was associated with reduced cystic change (4.3 vs. 7.0 mL/kg, P < 0.0001), epithelial cell proliferation (15.7 vs. 21.0 cells/mm epithelium, P < 0.0001), macrophage infiltration (25.3 vs. 43.5 cells/high-power field, P < 0.0001), and fibrosis (0.6 vs. 1.07 mL/kg, P < 0.0001). The soy diet prevented a significant elevation in serum creatinine in diseased versus normal animals. Soy feeding was associated with higher renal and hepatic linoleic acid content and higher hepatic alpha-linolenic acid, but lower hepatic arachidonic acid content. CONCLUSIONS Isocaloric soy protein feeding ameliorates both epithelial and interstitial changes in the Han:SPRD-cy rat independent of a hypocholesterolemic effect. The histologic benefit is associated with changes in polyunsaturated fatty acid metabolism that may influence both inflammatory and proliferative pathways.
Collapse
Affiliation(s)
- M R Ogborn
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Recent studies of genetically engineered animals have established a role for the angiotensin II (AT2) receptor in cardiovascular, renal and central functions, as well as in developmental processes. This review summarizes new insights into major AT2 signaling pathways--activation of protein phosphatases, the nitric oxide-cGMP system and phospholipase A2--which have been related to specific cellular responses or functions of this receptor.
Collapse
Affiliation(s)
- S Nouet
- CNRS UPR415, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, 75014 Paris, France
| | | |
Collapse
|
30
|
Wang D, Yu X, Brecher P. Nitric oxide inhibits angiotensin II-induced activation of the calcium-sensitive tyrosine kinase proline-rich tyrosine kinase 2 without affecting epidermal growth factor receptor transactivation. J Biol Chem 1999; 274:24342-8. [PMID: 10446212 DOI: 10.1074/jbc.274.34.24342] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study, we showed that nitric oxide donors and N-acetylcysteine, either alone or in combination, inhibited the activation of several mitogen-activated protein kinases by angiotensin II in rat cardiac fibroblasts (Wang, D., Yu, X., and Brecher, P. (1998) J. Biol. Chem. 273, 33027-33034). In the present study, we have focused on the mechanism by which nitric oxide exerts this effect on the activation of extracellular signal-regulated kinase (ERK). We contrasted the effects of nitric oxide on ERK activation by angiotensin II and epidermal growth factor (EGF), since the transactivation of the EGF receptor has been implicated as a response to angiotensin II. We found that nitric oxide inhibited ERK activation by angiotensin II but did not inhibit the relatively slight but significant transactivation of the EGF receptor by angiotensin II. The tyrphostin AG1478, known to inhibit EGF receptor phosphorylation, also inhibited the angiotensin II and EGF-induced activation of ERK, the phosphorylation of the EGF receptor, and the subsequent association of Shc and Grb2. Nitric oxide did not affect either EGF receptor phosphorylation or Shc-Grb2 activation induced by either Ang II or EGF. However, the activation of the calcium-sensitive tyrosine kinase PYK2, which occurred in response to angiotensin II, but not EGF, was inhibited by nitric oxide. The data suggested that PYK2 activation may be an important inhibitory site in signaling pathways affected by nitric oxide.
Collapse
Affiliation(s)
- D Wang
- Whitaker Cardiovascular Institute and Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
31
|
Abstract
The angiotensin AT2 receptor subtype was recently cloned and pharmacologically characterized but its function still remains elusive and controversial. It is a member of the G-protein coupled receptor superfamily with a minimal sequence homology with the AT1 receptor, responsible for the known effect of angiotensin II. The AT2 receptor displays a totally different signaling mechanisms from the AT1 receptor and involves various phosphatases. It is expressed at low density in adult tissues but up-regulated in pathological circumstances. Clearly, the AT2 receptor has antiproliferative properties and therefore opposes the growth promoting effect linked to the AT1 receptor stimulation. It is also reported that the AT2 receptor regulates ionic fluxes, affects differentiation and nerve regeneration, has anti-angiogenic and anti-fibrotic properties and stimulates apoptosis. However, the results, although suggestive, are sometimes equivocal. Obviously, the AT2 receptor plays a role in the pathogenesis and remodeling of cardiovascular and renal diseases. A more extensive knowledge of the AT2 receptor could therefore contribute to the understanding of the clincial beneficial effects of the AT1 receptor antagonists.
Collapse
|
32
|
Dulin NO, Sorokin A, Douglas JG. Arachidonate-induced tyrosine phosphorylation of epidermal growth factor receptor and Shc-Grb2-Sos association. Hypertension 1998; 32:1089-93. [PMID: 9856979 DOI: 10.1161/01.hyp.32.6.1089] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-Protein tyrosine phosphorylation induced by arachidonic acid (AA), an important lipid second messenger, was investigated in rabbit renal proximal tubule epithelial cells. AA stimulated tyrosine phosphorylation of a number of proteins with estimated molecular weights of 42, 44, 52, 56, 85, and 170/180 kDa. The phosphoproteins pp44 and pp42 were identified as 2 isoforms of mitogen-activated protein kinase (MAPK). Phosphorylation of MAPK in response to AA was transient, dose-dependent, and accompanied by an increase in its activity. The mechanism of AA-induced MAPK activation in RTE cells was protein kinase C-independent and involved tyrosine phosphorylation of adaptor protein Shc and its association with Grb2-Sos complex. Moreover, stimulation of RTE cells with AA resulted in significant phosphorylation of epidermal growth factor (EGF) receptor and its association with Shc. The effect of AA on EGF receptor phosphorylation, its association with Shc, and MAPK activation was similar to the effect of 1 ng/mL EGF. Tyrphostin AG1478, a specific inhibitor of EGF receptor tyrosine kinase activity, completely blocked the effects of AA and EGF but not phorbol ester on MAPK phosphorylation. These data suggest that in renal tubular epithelial cells, the mechanism of AA-induced MAPK activation involves tyrosine phosphorylation of EGF receptor and its association with Shc and Grb2-Sos complex. Given the critical role of AA in signaling linked to G protein-coupled receptors (GPCRs), these observations provide a mechanism for cross talk between GPCRs linked to phospholipases and the tyrosine kinase receptor signaling cascades.
Collapse
Affiliation(s)
- N O Dulin
- Division of Hypertension, Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Ohio 44106-4982, USA
| | | | | |
Collapse
|
33
|
Dulin NO, Alexander LD, Harwalkar S, Falck JR, Douglas JG. Phospholipase A2-mediated activation of mitogen-activated protein kinase by angiotensin II. Proc Natl Acad Sci U S A 1998; 95:8098-102. [PMID: 9653146 PMCID: PMC20935 DOI: 10.1073/pnas.95.14.8098] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/1997] [Accepted: 05/07/1998] [Indexed: 02/08/2023] Open
Abstract
In renal proximal tubule epithelial cells, a membrane-associated phospholipase A2 (PLA2) is a major signaling pathway linked to angiotensin II (Ang II) type 2 receptor (AT2). The current studies were designed to test the hypothesis that membrane-associated PLA2-induced release of arachidonic acid (AA) and/or its metabolites may serve as an upstream mediator of Ang II-induced mitogen-activated protein kinase (MAPK) activation. Ang II stimulated transient dose-dependent phosphorylation of MAPK with a maximum at 1 microM (10 min). Inhibition of PLA2 by mepacrine diminished both AA release and MAPK phosphorylation, induced by Ang II. Furthermore, AA itself induced time- and dose-dependent phosphorylation of MAPK, supporting the importance of PLA2 as a mediator of Ang II signaling. The effects of both Ang II and AA on MAPK phosphorylation were protein kinase C independent and abolished by the inhibitor of cytochrome P450 isoenzyme, ketoconazole. Moreover, 5,6-epoxyeicosatrienoic acid and 14,15-epoxyeicosatrienoic acid, the cytochrome P450-dependent metabolites of AA, significantly stimulated MAPK activity in renal proximal tubule epithelial cells. These observations document a mechanism of Ang II-induced MAPK phosphorylation, mediated by PLA2-dependent release of AA and cytochrome P450-dependent production of epoxy derivatives of AA.
Collapse
Affiliation(s)
- N O Dulin
- Division of Hypertension, Department of Medicine, Case Western Reserve University School of Medicine/University Hospitals of Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106-4982, USA
| | | | | | | | | |
Collapse
|