1
|
Rusu-Zota G, Manole OM, Galeș C, Porumb-Andrese E, Obadă O, Mocanu CV. Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms. Diagnostics (Basel) 2022; 12:1242. [PMID: 35626397 PMCID: PMC9140574 DOI: 10.3390/diagnostics12051242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma is a rare disease with four known variants: classic, epidemic, endemic and iatrogenic (transplant-related), all caused by an oncogenic virus named Human Herpes Virus 8. The viral infection in itself, along with the oncogenic properties of HHV8 and with immune system dysfunction, forms the grounds on which Kaposi's Sarcoma may develop. Infection with HHV8 occurs through saliva via close contacts, blood, blood products, solid organ donation and, rarely, vertical transmission. Chronic inflammation and oncogenesis are promoted by a mix of viral genes that directly promote cell survival and transformation or interfere with the regular cell cycle and cell signaling (of particular note: LANA-1, v-IL6, vBCL-2, vIAP, vIRF3, vGPCR, gB, K1, K8.1, K15). The most common development sites for Kaposi's sarcoma are the skin, mucocutaneous zones, lymph nodes and visceral organs, but it can also rarely appear in the musculoskeletal system, urinary system, endocrine organs, heart or eye. Histopathologically, spindle cell proliferation with slit-like vascular spaces, plasma cell and lymphocyte infiltrate are characteristic. The clinical presentation is heterogenic depending on the variant; some patients have indolent disease and others have aggressive disease. The treatment options include highly active antiretroviral therapy, surgery, radiation therapy, chemotherapy, and immunotherapy. A literature search was carried out using the MEDLINE/PubMed, SCOPUS and Google Scholar databases with a combination of keywords with the aim to provide critical, concise, and comprehensive insights into advances in the pathogenic mechanism of Kaposi's sarcoma.
Collapse
Affiliation(s)
- Gabriela Rusu-Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Oana Mădălina Manole
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania
| | - Cristina Galeș
- Department of Histology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Dermatology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Otilia Obadă
- Department of Ophthalmology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Cezar Valentin Mocanu
- Department of Anatomical Pathology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| |
Collapse
|
2
|
Indave Ruiz BI, Armon S, Watanabe R, Uttley L, White VA, Lazar AJ, Cree IA. Clonality, Mutation and Kaposi Sarcoma: A Systematic Review. Cancers (Basel) 2022; 14:1201. [PMID: 35267506 PMCID: PMC8909603 DOI: 10.3390/cancers14051201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It remains uncertain whether Kaposi sarcoma (KS) is a true neoplasm, in that it regresses after removal of the stimulus to growth (as HHV8) when immunosuppression is reduced. We aimed to summarize the available evidence on somatic mutations and clonality within KS to assess whether KS is a neoplasm or not. METHODS Medline and Web of Science were searched until September 2020 for articles on clonality or mutation in KS. Search strings were supervised by expert librarians, and two researchers independently performed study selection and data extraction. An adapted version of the QUADAS2 tool was used for methodological quality appraisal. RESULTS Of 3077 identified records, 20 publications reported on relevant outcomes and were eligible for qualitative synthesis. Five studies reported on clonality, 10 studies reported on various mutations, and 5 studies reported on chromosomal aberrations in KS. All studies were descriptive and were judged to have a high risk of bias. There was considerable heterogeneity of results with respect to clonality, mutation and cytogenetic abnormalities as well as in terms of types of lesions and patient characteristics. CONCLUSIONS While KS certainly produces tumours, the knowledge is currently insufficient to determine whether KS is a clonal neoplasm (sarcoma), or simply an aggressive reactive virus-driven lesion.
Collapse
Affiliation(s)
- Blanca Iciar Indave Ruiz
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Subasri Armon
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Reiko Watanabe
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield S1 4DA, UK;
| | - Valerie A. White
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ian A. Cree
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (S.A.); (R.W.); (V.A.W.); (I.A.C.)
| |
Collapse
|
3
|
Connolly SP, McGrath J, Sui J, Muldoon EG. Rare, disseminated Kaposi sarcoma in advanced HIV with high-burden pulmonary and skeletal involvement. BMJ Case Rep 2021; 14:14/12/e245448. [PMID: 34853045 PMCID: PMC8638125 DOI: 10.1136/bcr-2021-245448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We describe the case of a 30-year-old man who presented to our institution with hypoxia and widespread pulmonary infiltrates managed initially as COVID-19 before receiving a new diagnosis of HIV-associated Kaposi sarcoma (KS) with widespread pulmonary and skeletal involvement. Initial differential diagnoses included Pneumocystis jirovecii pneumonia, disseminated mycobacterial infection and bacillary angiomatosis. A bone marrow biopsy showed heavy infiltration by spindle cells, staining strongly positive for human herpes virus-8 (HHV-8) and CD34, suggesting symptomatic, disseminated KS as the unifying diagnosis. The patient commenced cytotoxic therapy with weekly paclitaxel, with a clinical and radiological response. To our knowledge, this case is among the most severe described in the literature, which we discuss, along with how COVID-19 initially hindered developing a therapeutic allegiance with the patient.
Collapse
Affiliation(s)
- Stephen P Connolly
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland .,School of Medicine, University College Dublin, Dublin, Dublin, Ireland
| | - Jonathan McGrath
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jane Sui
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Eavan G Muldoon
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Eason AB, Sin SH, Shah M, Yuan H, Phillips DJ, Droste M, Shamshiev A, Dittmer DP. DLX1008 (brolucizumab), a single-chain anti-VEGF-A antibody fragment with low picomolar affinity, leads to tumor involution in an in vivo model of Kaposi Sarcoma. PLoS One 2020; 15:e0233116. [PMID: 32407363 PMCID: PMC7224538 DOI: 10.1371/journal.pone.0233116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi Sarcoma (KS) is among the most angiogenic cancers in humans and an AIDS-defining condition. KS-associated herpesvirus (KSHV) is necessary for KS development, as is vascular endothelial growth factor (VEGF-A). DLX1008 is a novel anti-VEGF-A antibody single-chain variable fragment (scFv) with low picomolar affinity for VEGF-A. In vivo imaging techniques were used to establish the efficacy of DLX1008 and to establish the mechanism of action; this included non-invasive imaging by ultrasound and optical fluorescence, verified by post-mortem histochemistry. The results showed that DLX1008 was efficacious in a KS mouse model. The NSG mouse xenografts suffered massive internal necrosis or involution, consistent with a lack of blood supply. We found that imaging by ultrasound was superior to external caliper measurements in the validation of the angiogenesis inhibitor DLX1008. Further development of DLX1008 against VEGF-dependent sarcomas is warranted.
Collapse
Affiliation(s)
- Anthony B. Eason
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Sang-Hoon Sin
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Mohsin Shah
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Hong Yuan
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | | | | | | | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
5
|
Lebbe C, Garbe C, Stratigos AJ, Harwood C, Peris K, Marmol VD, Malvehy J, Zalaudek I, Hoeller C, Dummer R, Forsea AM, Kandolf-Sekulovic L, Olah J, Arenberger P, Bylaite-Bucinskiene M, Vieira R, Middleton M, Levy A, Eggermont AM, Battistella M, Spano JP, Grob JJ, Pages C. Diagnosis and treatment of Kaposi's sarcoma: European consensus-based interdisciplinary guideline (EDF/EADO/EORTC). Eur J Cancer 2019; 114:117-127. [DOI: 10.1016/j.ejca.2018.12.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/28/2023]
|
6
|
Latent infection with Kaposi's sarcoma-associated herpesvirus enhances retrotransposition of long interspersed element-1. Oncogene 2019; 38:4340-4351. [PMID: 30770900 DOI: 10.1038/s41388-019-0726-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), a gamma-2 herpesvirus, is the causative agent of KS, primary effusion lymphoma (PEL), and a plasma cell variant of multicentric Castleman's disease. Although KSHV latency is detected in KS-related tumors, oncogenic pathways activated by KSHV latent infection are not fully understood. Here, we found that retrotransposition of long interspersed element-1 (L1), a retrotransposon in the human genome, was enhanced in PEL cells. Among the KSHV latent genes, viral FLICE-inhibitory protein (vFLIP) enhanced L1 retrotransposition in an NF-κB-dependent manner. Intracellular cell adhesion molecule-1 (ICAM-1), an NF-κB target, regulated the vFLIP-mediated enhancement of L1 retrotransposition. Furthermore, ICAM-1 downregulated the expression of Moloney leukemia virus 10 (MOV10), an L1 restriction factor. Knockdown of ICAM-1 or overexpression of MOV10 relieved the vFLIP-mediated enhancement of L1 retrotransposition. Collectively, during KSHV latency, vFLIP upregulates ICAM-1 in an NF-κB-dependent manner, which, in turn, downregulates MOV10 expression and thereby enhances L1 retrotransposition. Because active L1 retrotransposition can lead to genomic instability, which is commonly found in KS and PEL, activation of L1 retrotransposition during KSHV latency may accelerate oncogenic processes through enhancing genomic instability. Our results suggest that L1 retrotransposition may be a novel target for impeding tumor development in KSHV-infected patients.
Collapse
|
7
|
Mariggiò G, Koch S, Schulz TF. Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0275. [PMID: 28893942 PMCID: PMC5597742 DOI: 10.1098/rstb.2016.0275] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany .,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
8
|
Abstract
: The search for the etiologic agent for Kaposi sarcoma led to the discovery of Kaposi sarcoma-associated herpesvirus (KSHV) in 1994. KSHV, also called human herpesvirus-8, has since been shown to be the etiologic agent for several other tumors and diseases, including primary effusion lymphoma (PEL), an extracavitary variant of PEL, KSHV-associated diffuse large B-cell lymphoma, a form of multicentric Castleman disease, and KSHV inflammatory cytokine syndrome. KSHV encodes several genes that interfere with innate and specific immunity, thwart apoptosis, enhance cell proliferation and cytokine production, and promote angiogenesis, and these play important roles in disease pathogenesis. HIV is an important cofactor in Kaposi sarcoma pathogenesis, and widespread use of antiretroviral therapy has reduced Kaposi sarcoma incidence. However, Kaposi sarcoma remains the second most frequent tumor arising in HIV-infected patients in the United States and is particularly common in sub-Saharan Africa. KSHV prevalence varies substantially in different populations. KSHV is secreted in saliva, and public health measures to reduce its spread may help reduce the incidence of KSHV-associated diseases. Although there have been advances in the treatment of Kaposi sarcoma, KSHV-multicentric Castleman disease, and PEL, improved therapies are needed, especially those that are appropriate for Kaposi sarcoma in resource-poor regions.
Collapse
|
9
|
McAllister SC, Hanson RL, Grissom KN, Botto S, Moses AV. An In Vitro Model for Studying Cellular Transformation by Kaposi Sarcoma Herpesvirus. J Vis Exp 2017. [PMID: 28872106 DOI: 10.3791/54828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Kaposi sarcoma (KS) is an unusual tumor composed of proliferating spindle cells that is initiated by infection of endothelial cells (EC) with KSHV, and develops most often in the setting of immunosuppression. Despite decades of research, optimal treatment of KS remains poorly defined and clinical outcomes are especially unfavorable in resource-limited settings. KS lesions are driven by pathological angiogenesis, chronic inflammation, and oncogenesis, and various in vitro cell culture models have been developed to study these processes. KS arises from KSHV-infected cells of endothelial origin, so EC-lineage cells provide the most appropriate in vitro surrogates of the spindle cell precursor. However, because EC have a limited in vitro lifespan, and as the oncogenic mechanisms employed by KSHV are less efficient than those of other tumorigenic viruses, it has been difficult to assess the processes of transformation in primary or telomerase-immortalized EC. Therefore, a novel EC-based culture model was developed that readily supports transformation following infection with KSHV. Ectopic expression of the E6 and E7 genes of human papillomavirus type 16 allows for extended culture of age- and passage-matched mock- and KSHV-infected EC and supports the development of a truly transformed (i.e., tumorigenic) phenotype in infected cell cultures. This tractable and highly reproducible model of KS has facilitated the discovery of several essential signaling pathways with high potential for translation into clinical settings.
Collapse
Affiliation(s)
- Shane C McAllister
- Division of Pediatric Infectious Diseases, University of Minnesota Medical School;
| | - Ryan L Hanson
- Division of Pediatric Infectious Diseases, University of Minnesota Medical School
| | - Kyleen N Grissom
- Division of Pediatric Infectious Diseases, University of Minnesota Medical School
| | - Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University
| | - Ashlee V Moses
- Vaccine and Gene Therapy Institute, Oregon Health and Science University;
| |
Collapse
|
10
|
Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J Microbiol 2017; 55:319-329. [PMID: 28455586 DOI: 10.1007/s12275-017-7075-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the latest addition to the human herpesvirus family. Unlike alpha- and beta-herpesvirus subfamily members, gamma-herpesviruses, including Epstein-Barr virus (EBV) and KSHV, cause various tumors in humans. KSHV primarily infects endothelial and B cells in vivo, and is associated with at least three malignancies: Kaposi's sarcoma and two B cell lymphomas, respectively. Although KSHV readily infects endothelial cells in vitro and thus its pathogenic mechanisms have been extensively studied, B cells had been refractory to KSHV infection. As such, functions of KSHV genes have mostly been elucidated in endothelial cells in the context of viral infection but not in B cells. Whether KSHV oncogenes, defined in endothelial cells, play the same roles in the tumorigenesis of B cells remains an open question. Only recently, through a few ground-breaking studies, B cell infection models have been established. In this review, those models will be compared and contrasted and putative mechanisms of KSHV-induced B cell transformation will be discussed.
Collapse
|
11
|
Teo CG. Conceptual Emergence of Human Herpesvirus 8 (Kaposi’s Sarcoma-associated Herpesvirus) as an Oral Herpesvirus. Adv Dent Res 2016; 19:85-90. [PMID: 16672556 DOI: 10.1177/154407370601900117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recognition of the various clinico-epidemiologic forms of Kaposi’s sarcoma, a disease putatively caused by an infectious agent, did not provide ready clues as to how that agent might be transmitted, although fecal and sexual routes were implicated. Application of serologic and genome-detection assays, and cell-culture studies following the identification of human herpesvirus 8 as the causative agent now implicate that virus as one that is orally shed. While oral transmission of the virus might account for the viral endemicity in Africa and Mediterranean countries, why it is particularly prevalent among male homosexuals in the West remains more difficult to explain. Such explanation may be sought from behavioral studies into the role saliva plays in sexual interactions.
Collapse
Affiliation(s)
- C G Teo
- Virus Reference Department, Centre for Infections, Health Protection Agency, 61 Colindale Ave., London NW9 5HT, UK.
| |
Collapse
|
12
|
Abere B, Schulz TF. KSHV non-structural membrane proteins involved in the activation of intracellular signaling pathways and the pathogenesis of Kaposi's sarcoma. Curr Opin Virol 2016; 20:11-19. [DOI: 10.1016/j.coviro.2016.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
|
13
|
Schulz TF, Cesarman E. Kaposi Sarcoma-associated Herpesvirus: mechanisms of oncogenesis. Curr Opin Virol 2015; 14:116-28. [PMID: 26431609 DOI: 10.1016/j.coviro.2015.08.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Kaposi Sarcoma-associated Herpesvirus (KSHV, HHV8) causes three human malignancies, Kaposi Sarcoma (KS), an endothelial tumor, as well as Primary Effusion Lymphoma (PEL) and the plasma cell variant of Multicentric Castleman's Disease (MCD), two B-cell lymphoproliferative diseases. All three cancers occur primarily in the context of immune deficiency and/or HIV infection, but their pathogenesis differs. KS most likely results from the combined effects of an endotheliotropic virus with angiogenic properties and inflammatory stimuli and thus represents an interesting example of a cancer that arises in an inflammatory context. Viral and cellular angiogenic and inflammatory factors also play an important role in the pathogenesis of MCD. In contrast, PEL represents an autonomously growing malignancy that is, however, still dependent on the continuous presence of KSHV and the action of several KSHV proteins.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany; German Centre of Infection Research, Hannover-Braunschweig Site, Hannover, Germany.
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
14
|
Yuan D, XiuJuan W, Yan Z, JunQin L, Fang X, Shirong Y, Xiaojing K, Yanyan F, Weidong W, Dong L, Qingli L, DeZhi Z, XiongMing P. Use of X-Chromosome Inactivation Pattern to Analyze the Clonality of 14 Female Cases of Kaposi Sarcoma. Med Sci Monit Basic Res 2015; 21:116-22. [PMID: 26076995 PMCID: PMC4482332 DOI: 10.12659/msmbr.894089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Kaposi sarcoma (KS) has features of both neoplastic growth and hyperplastic proliferation. It is the most common tumor seen in patients with HIV infection. Whether KS is a real tumor or a benign hyperplastic disease is not known. Material/Methods Tissues from KS and cutaneous hemangioma lesion DNA were extracted, and then digested with methylation-sensitive restriction endonuclease HpaII. Human androgen receptor gene (HUMARA) was amplified with PCR method and the product was separated on 10% denaturing polyacrylamide gels and stained with ethylene dibromide (EB) to show the polymorphism of HUMARA. Phosphoglycerate kinase (PGK) was amplified and the product was digested by BStXI, agarose gel and EB stained to show the polymorphism of PGK. Finally, we analyzed the clonality of KS. Results In the 14 patients with KS, heterozygosity of the HUMARA gene was observed in 12 (85.7%) cases. Loss of heterozygosity of HUMARA gene on X-chromosome (without HpaII digestion there were 2 bands, after HpaII digestion there were just 1 of the bands), representing monoclonal origin, was present in 11 cases of Kaposi sarcoma. Heterozygosity of the PGK gene was observed in 5 (35.7%) cases, which all represent monoclonal origin. There was no significant difference according to country, stage, or HIV and HHV-8 (P>0.05). Conclusions The current findings suggest that Kaposi sarcoma is a clonal neoplasm, not a reactive proliferation.
Collapse
Affiliation(s)
- Ding Yuan
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Wu XiuJuan
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Zhang Yan
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Liang JunQin
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Xiang Fang
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Yu Shirong
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Kang Xiaojing
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Feng Yanyan
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Wu Weidong
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Luo Dong
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Lu Qingli
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Zhang DeZhi
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| | - Pu XiongMing
- Department of Dermatology and Venereology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
15
|
Gramolelli S, Schulz TF. The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol 2015; 235:368-80. [PMID: 25212381 DOI: 10.1002/path.4441] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 01/07/2023]
Abstract
Kaposi sarcoma (KS) is an unusual vascular tumour caused by an oncogenic-herpesvirus, Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV 8). KS lesions are characterized by an abundant inflammatory infiltrate, the presence of KSHV-infected endothelial cells that show signs of aberrant differentiation, as well as faulty angiogenesis/ vascularization. Here we discuss the molecular mechanisms that lead to the development of these histological features of KS, with an emphasis on the viral proteins that are responsible for their development.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany; German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | |
Collapse
|
16
|
Uppal T, Banerjee S, Sun Z, Verma SC, Robertson ES. KSHV LANA--the master regulator of KSHV latency. Viruses 2014; 6:4961-98. [PMID: 25514370 PMCID: PMC4276939 DOI: 10.3390/v6124961] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV), like other human herpes viruses, establishes a biphasic life cycle referred to as dormant or latent, and productive or lytic phases. The latent phase is characterized by the persistence of viral episomes in a highly ordered chromatin structure and with the expression of a limited number of viral genes. Latency Associated Nuclear Antigen (LANA) is among the most abundantly expressed proteins during latency and is required for various nuclear functions including the recruitment of cellular machineries for viral DNA replication and segregation of the replicated genomes to daughter cells. LANA achieves these functions by recruiting cellular proteins including replication factors, chromatin modifying enzymes and cellular mitotic apparatus assembly. LANA directly binds to the terminal repeat region of the viral genome and associates with nucleosomal proteins to tether to the host chromosome. Binding of LANA to TR recruits the replication machinery, thereby initiating DNA replication within the TR. However, other regions of the viral genome can also initiate replication as determined by Single Molecule Analysis of the Replicated DNA (SMARD) approach. Recent, next generation sequence analysis of the viral transcriptome shows the expression of additional genes during latent phase. Here, we discuss the newly annotated latent genes and the role of major latent proteins in KSHV biology.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Sagarika Banerjee
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Ablanedo-Terrazas Y, Alvarado-de la Barrera C, Ormsby CE, Ruiz-Cruz M, Reyes-Terán G. Intralesional bevacizumab in patients with human immunodeficiency virus-associated Kaposi's sarcoma in the upper airway. Laryngoscope 2014; 125:E132-7. [PMID: 25345840 DOI: 10.1002/lary.24988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/05/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES/HYPOTHESIS The aim of this study was to evaluate the efficacy and safety of intralesional bevacizumab, a monoclonal antibody against vascular endothelial growth factor, in patients with human immunodeficiency virus (HIV)-associated Kaposi's sarcoma of the upper airway receiving antiretroviral therapy. STUDY DESIGN A pilot randomized, open, phase II study. METHODS HIV-infected patients with Kaposi's sarcoma lesions of the upper airway in the T0 stage were randomized to receive antiretroviral therapy alone or antiretroviral therapy with intralesional bevacizumab. The primary end point was the assessment of changes in tumor size according to the Response Evaluation Criteria In Solid Tumors (RECIST); the secondary end point was safety. RESULTS Of the 14 patients with Kaposi's sarcoma included in the study, seven were assigned to the bevacizumab group and seven to the control group. The median age was 30.5 years (interquartile range [IQR], 24.7-38.2). Four patients (28.5%) had >150 CD4 T cells/mm(3). Nine patients had lesions in the oral cavity; three patients had pharyngeal disease; one patient had laryngeal involvement; and one patient had oral cavity, pharyngeal, and laryngeal involvement. Four patients had complete response (28.5%), two had partial response, six had stable disease, and two had progressive disease. The median time to complete response was 13 weeks (IQR, 7.5-36.5). No statistical differences between groups were observed (P = .124). In the bevacizumab group, one patient had a grade I adverse event, and another patient had a grade II adverse event. CONCLUSIONS Intralesional administration of bevacizumab was well tolerated but had no impact on upper respiratory tract Kaposi's sarcoma lesions of HIV-infected patients.
Collapse
Affiliation(s)
- Yuria Ablanedo-Terrazas
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
18
|
Monteiro D, Horta R, Eloy C, Silva P, Silva Á. Kaposi's sarcoma arising in a burn scar mimicking Marjolin's ulcer. Burns 2013; 39:e25-8. [DOI: 10.1016/j.burns.2012.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 01/24/2023]
|
19
|
Cancian L, Hansen A, Boshoff C. Cellular origin of Kaposi's sarcoma and Kaposi's sarcoma-associated herpesvirus-induced cell reprogramming. Trends Cell Biol 2013; 23:421-32. [PMID: 23685018 DOI: 10.1016/j.tcb.2013.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/05/2023]
Abstract
Kaposi's sarcoma (KS) is the most common malignancy in untreated HIV patients. KS is characterised by abnormal neoangiogenesis, inflammation, and proliferation of tumour cells [KS spindle cells (SCs)]. Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiological agent of KS. KS SCs are the predominant KSHV-infected cells in KS lesions. In this review, we report advances in understanding of the cellular origin of the KS SC, a contentious topic in KSHV research. KS SCs are now known to be of endothelial cell (EC) origin, phenotypically most similar to lymphatic ECs (LECs), but poorly differentiated. We focus on recent insights into KSHV's ability to exploit the normal differentiation pathway and intrinsic plasticity of ECs, through manipulation of EC-specific transcriptional regulators [i.e., prospero homeobox 1 (PROX1) and MAF] and discuss how this may contribute to viral persistence and KS sarcomagenesis.
Collapse
Affiliation(s)
- Laila Cancian
- UCL Cancer Institute, 72 Huntley Street, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
20
|
Xyla V, Skopelitis E, Ziakas PD, Kontos A, Ioannidis E, Kordossis T, Aroni K. PGP 9.5 neuronal marker may differentiate immunohistochemically HIV-related from Mediterranean and immunosuppression-associated Kaposi's sarcoma. Arch Dermatol Res 2013; 305:917-23. [PMID: 23670173 DOI: 10.1007/s00403-013-1364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 04/21/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Mediterranean Kaposi's sarcoma (MKS), HIV-related KS (HIV-KS) and immunosuppression-associated KS (IS-KS), caused by human herpes virus 8 (HHV-8), share similar histological features. The aim of this study was to investigate differences in epidermal nerve fibers (ENFs) between the three KS types and controls. Skin biopsies from 23 HIV-KS, 16 MKS, 28 IS-KS patients and 18 controls, age-gender matched, were immunostained with PGP 9.5; ENFs in upper epidermal layer (EL) and penetrating the basement membrane were measured. The mean number of nerve fibers penetrating ENFs was significantly lower in HIV-KS (p < 0.001) compared to all other groups. MKS and IS-KS had comparable ENFs but lower than controls (p < 0.00 1). In the upper EL all groups had comparable ENFs and lower than controls. In conclusion, HIV-KS can be distinguished histologically from other types, by counting ENFs. Moreover, KS is associated with decreased ENFs, which may be a histological reflection of nerve damage. This is even more pronounced in HIV-KS patients and could be explained by a neurotoxic action of HHV-8, HIV, and their co-existence.
Collapse
Affiliation(s)
- Vasileia Xyla
- Academic Department of Pathophysiology (AIDS Unit), School of Medicine, National and Kapodestrian University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
21
|
Leao JC, de Faria ABS, Fonseca DDD, Gueiros LAM, Silva IHM, Porter SR. Intrahost genetic variability of human herpes virus-8. J Med Virol 2013; 85:636-45. [DOI: 10.1002/jmv.23491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 01/19/2023]
|
22
|
Guttman-Yassky E, Chiricozzi A, Jacob-Hirsch J, Tintle S, Khatcherian A, Amariglio N, Rechavi G, Krueger J, Nisticò S, Bergman R, Sarid R. Gene Expression Profiling Associated with the Progression of Classic Kaposi's Sarcoma. EUR J INFLAMM 2012. [DOI: 10.1177/1721727x1201000313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although Kaposi's sarcoma (KS) gene expression profile is closer to lymphatic (LEC) rather than blood vascular endothelial cells (BEC), uncertainty still surrounds the cellular origin of KS. To follow KS progression from early to late (nodular) stage, and characterize the molecular fingerprinting associated with each stage, gene arrays were used to compare gene expression profile of 9 skin samples of classic KS (4 Early, 2 Mixed, and 3 Nodular CKS samples) to 4 normal samples. Results for selected genes were validated by Real-time (RT) PCR and immunohistochemistry. Genes regulating immune and defense responses, angiogenesis, apoptosis and proliferation were differentially expressed in different KS stages compared to normal skin. Hierarchical clustering separated normal skin from KS with a clear gradient from early to nodular KS lesions. The gene expression level of endothelium markers, metalloproteinases, angiogenic factors and chemokines, gradually increased from normal through all KS stages. The expression of LEC genes highly increased from early to nodular KS. In the initiation phase we noticed a higher expression of growth factors, as compared to progressive stages. LEC and BEC markers co-exist in “KS expression signature”, although the LEC signature prevailed. Our results also show a complex environment of inflammatory cells and chemokines during KS evolution. A pathogenic hypothesis where cellular hyperproliferation is driven by local expression of chemokines and growth factors without clonal expansion of cells is suggested.
Collapse
Affiliation(s)
- E. Guttman-Yassky
- Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Department of Dermatology, Weill-Cornell Medical College, Cornell University, New York, USA
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - A. Chiricozzi
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
- Department of Dermatology, University of Rome Tor Vergata
| | - J. Jacob-Hirsch
- Institute of Hematology and Sheba Cancer Research Center Tel Hashomer Sackler School of Medicine, Tel Aviv University, Israel
| | - S. Tintle
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - A. Khatcherian
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - N. Amariglio
- Institute of Hematology and Sheba Cancer Research Center Tel Hashomer Sackler School of Medicine, Tel Aviv University, Israel
| | - G. Rechavi
- Institute of Hematology and Sheba Cancer Research Center Tel Hashomer Sackler School of Medicine, Tel Aviv University, Israel
| | - J.G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - S.P. Nisticò
- Department of Dermatology, University of Rome Tor Vergata
| | - R. Bergman
- Department of Dermatology, Rambam Medical Center and the Technion, Haifa, Israel
| | - R. Sarid
- Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
23
|
Qin Z, Jakymiw A, Findlay V, Parsons C. KSHV-Encoded MicroRNAs: Lessons for Viral Cancer Pathogenesis and Emerging Concepts. Int J Cell Biol 2012; 2012:603961. [PMID: 22505930 PMCID: PMC3296157 DOI: 10.1155/2012/603961] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 02/04/2023] Open
Abstract
The human genome contains microRNAs (miRNAs), small noncoding RNAs that orchestrate a number of physiologic processes through regulation of gene expression. Burgeoning evidence suggests that dysregulation of miRNAs may promote disease progression and cancer pathogenesis. Virus-encoded miRNAs, exhibiting unique molecular signatures and functions, have been increasingly recognized as contributors to viral cancer pathogenesis. A large segment of the existing knowledge in this area has been generated through characterization of miRNAs encoded by the human gamma-herpesviruses, including the Kaposi's sarcoma-associated herpesvirus (KSHV). Recent studies focusing on KSHV miRNAs have led to a better understanding of viral miRNA expression in human tumors, the identification of novel pathologic check points regulated by viral miRNAs, and new insights for viral miRNA interactions with cellular ("human") miRNAs. Elucidating the functional effects of inhibiting KSHV miRNAs has also provided a foundation for further translational efforts and consideration of clinical applications. This paper summarizes recent literature outlining mechanisms for KSHV miRNA regulation of cellular function and cancer-associated pathogenesis, as well as implications for interactions between KSHV and human miRNAs that may facilitate cancer progression. Finally, insights are offered for the clinical feasibility of targeting miRNAs as a therapeutic approach for viral cancers.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
- Department of Craniofacial Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Key Laboratory of Arrhythmias, Ministry of Education, and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Andrew Jakymiw
- Department of Craniofacial Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Victoria Findlay
- Department of Pathology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Chris Parsons
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
- Department of Craniofacial Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
24
|
Kaposi sarcoma: review and medical management update. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:2-16. [DOI: 10.1016/j.tripleo.2011.05.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/11/2011] [Accepted: 05/15/2011] [Indexed: 12/21/2022]
|
25
|
Abstract
Paclitaxel is a microtubule stabilizing drug that causes dividing cells to arrest and then undergo apoptosis. It also has antiangiogenic
activity because it alters cytoskeletal structure, affecting migration and invasion. Paclitaxel is an effective
treatment for AIDS-related Kaposi’s sarcoma (KS). KS is a tumor in which there is marked proliferation of endothelial cells
in addition to the tumor cells, which themselves share many markers with activated (proliferating) endothelial cells.We
sought to determine the mechanism by which paclitaxel exerts its anti-KS tumor effects. In vitro, KS cells are very sensitive
to paclitaxel, with half-maximal growth inhibition observed at 0.8 nM. Inhibition of migration of KS cells was also observed
at nanomolar concentrations of the drug. Paclitaxel induced cell cycle arrest with an accumulation of cells in sub-G1.This
was accompanied in vitro by various events typical of apoptosis: phosphorylation of two anti-apoptotic proteins Bcl-2 and
Bcl-xL
, release of cytochrome c into the cytoplasm, cleavage and activation of caspase-3. In vitro results were borne out by
studies of KS tumor xenografts in nude mice. Paclitaxel (10 mg/kg) inhibited tumor growth by 75% over 21 days.
Histological examination of the tumors revealed a decrease in proliferative index, a decrease in the number of mitotic figures
and an increase in apoptotic cells compared to tumors from untreated mice.
Collapse
|
26
|
Sgadari C, Bacigalupo I, Barillari G, Ensoli B. Pharmacological management of Kaposi's sarcoma. Expert Opin Pharmacother 2011; 12:1669-90. [DOI: 10.1517/14656566.2011.577066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
The T-Cell Immune Response against Kaposi's Sarcoma-Associated Herpesvirus. Adv Virol 2011; 2010:340356. [PMID: 22331985 PMCID: PMC3275983 DOI: 10.1155/2010/340356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/20/2010] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiological agent of Kaposi's sarcoma (KS), the most frequently arising malignancy in individuals with untreated HIV/AIDS. There are several lines of evidence to indicate that Kaposi's sarcoma oncogenesis is associated with loss of T-cell-mediated control of KSHV-infected cells. KSHV can establish life-long asymptomatic infection in immune-competent individuals. However, when T-cell immune control declines, for example, through AIDS or treatment with immunosuppressive drugs, both the prevalence of KSHV infection and the incidence of KS in KSHV carriers dramatically increase. Moreover, a dramatic and spontaneous improvement in KS is frequently seen when immunity is restored, for example, through antiretroviral therapy or the cessation of iatrogenic drugs. In this paper we describe the current state of knowledge on the T-cell immune responses against KSHV.
Collapse
|
28
|
Abstract
Kaposi's sarcoma (KS) is the most common cancer in HIV-infected untreated individuals. Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV8)) is the infectious cause of this neoplasm. In this Review we describe the epidemiology of KS and KSHV, and the insights into the remarkable mechanisms through which KSHV can induce KS that have been gained in the past 16 years. KSHV latent transcripts, such as latency-associated nuclear antigen (LANA), viral cyclin, viral FLIP and viral-encoded microRNAs, drive cell proliferation and prevent apoptosis, whereas KSHV lytic proteins, such as viral G protein-coupled receptor, K1 and virally encoded cytokines (viral interleukin-6 and viral chemokines) further contribute to the unique angioproliferative and inflammatory KS lesions through a mechanism called paracrine neoplasia.
Collapse
Affiliation(s)
- Enrique A Mesri
- Viral Oncology Program, Developmental Center for AIDS Research, and Department of Microbiology & Immunology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1,550 NW 10th Avenue, 109 Papanicolau Building, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
29
|
Kaposi’s sarcoma of the head and neck: A review. Oral Oncol 2010; 46:135-45. [DOI: 10.1016/j.oraloncology.2009.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 12/15/2022]
|
30
|
Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D, Romano M, Kearney P, Oates J, Plaisance K, Renne R, Kaleeba J, Parsons C. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog 2010; 6:e1000742. [PMID: 20126446 PMCID: PMC2813276 DOI: 10.1371/journal.ppat.1000742] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 12/29/2009] [Indexed: 01/13/2023] Open
Abstract
Upregulation of xCT, the inducible subunit of a membrane-bound amino acid transporter, replenishes intracellular glutathione stores to maintain cell viability in an environment of oxidative stress. xCT also serves as a fusion-entry receptor for the Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma (KS). Ongoing KSHV replication and infection of new cell targets is important for KS progression, but whether xCT regulation within the tumor microenvironment plays a role in KS pathogenesis has not been determined. Using gene transfer and whole virus infection experiments, we found that KSHV-encoded microRNAs (KSHV miRNAs) upregulate xCT expression by macrophages and endothelial cells, largely through miR-K12-11 suppression of BACH-1-a negative regulator of transcription recognizing antioxidant response elements within gene promoters. Correlative functional studies reveal that upregulation of xCT by KSHV miRNAs increases cell permissiveness for KSHV infection and protects infected cells from death induced by reactive nitrogen species (RNS). Interestingly, KSHV miRNAs simultaneously upregulate macrophage secretion of RNS, and biochemical inhibition of RNS secretion by macrophages significantly reduces their permissiveness for KSHV infection. The clinical relevance of these findings is supported by our demonstration of increased xCT expression within more advanced human KS tumors containing a larger number of KSHV-infected cells. Collectively, these data support a role for KSHV itself in promoting de novo KSHV infection and the survival of KSHV-infected, RNS-secreting cells in the tumor microenvironment through the induction of xCT.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Craniofacial Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Eduardo Freitas
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Roger Sullivan
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sarumathi Mohan
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Rocky Bacelieri
- Department of Dermatology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Drake Branch
- Department of Dermatology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Margaret Romano
- Department of Pathology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patricia Kearney
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jim Oates
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| | - Karlie Plaisance
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Johnan Kaleeba
- Departments of Microbiology and Immunology and Molecular/Cell Biology, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, Maryland, United States of America
| | - Chris Parsons
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Craniofacial Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
31
|
Douglas JL, Gustin JK, Moses AV, Dezube BJ, Pantanowitz L. Kaposi Sarcoma Pathogenesis: A Triad of Viral Infection, Oncogenesis and Chronic Inflammation. TRANSLATIONAL BIOMEDICINE 2010; 1:172. [PMID: 23082307 PMCID: PMC3472629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Kaposi sarcoma (KS) is a complex cancer that arises from the initial infection of an appropriate endothelial or progenitor cell by Kaposi Sarcoma Herpesvirus/Human Herpesvirus-8 (KSHV/HHV8). However, the majority of KS cases occur when infected patients also suffer from some coincident form of immune deregulation, providing a favorable microenvironment for tumor development. Cellular hallmarks of KS progression include both the hyper-proliferation of KSHV-infected cells and the infiltration of immune modulatory cells into KS lesions, which together result in chronic inflammation, the induction of angiogenesis and tumor growth. This review describes the current understanding of the interactions between KSHV and host responses that result in this unusual cancer, along with existing treatments and prospects for future therapeutic approaches.
Collapse
Affiliation(s)
- Janet L. Douglas
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR
| | - Jean K. Gustin
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR
| | - Ashlee V. Moses
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR
| | - Bruce J. Dezube
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
32
|
Oral Kaposi sarcoma: a case of immune reconstitution inflammatory syndrome. ACTA ACUST UNITED AC 2009; 108:70-5. [DOI: 10.1016/j.tripleo.2009.02.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 02/22/2009] [Accepted: 02/25/2009] [Indexed: 12/16/2022]
|
33
|
Douglas JL, Whitford JG, Moses AV. Characterization of c-Kit expression and activation in KSHV-infected endothelial cells. Virology 2009; 390:174-85. [PMID: 19501868 DOI: 10.1016/j.virol.2009.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 04/30/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Kaposi's sarcoma (KS) herpesvirus (KSHV) is the etiological agent of several immunodeficiency-linked cancers, including KS. Our previous work showed that the proto-oncogene c-kit is upregulated in KSHV-infected endothelial cells (ECs), as well as in KS lesions. We show here that KSHV-dependent induction of both c-kit mRNA and protein requires the establishment of a latent infection and that this upregulation occurs in primary DMVECs as well as in immortalized DMVECs (eDMVECs). Interestingly, we find that while the lymphatic EC (LEC) subpopulation exhibits KSHV-induced c-Kit upregulation, the blood EC (BEC) subpopulation does not. Despite this upregulation of c-Kit, receptor activation and phosphorylation of downstream effectors such as MAP Kinase Erk 1/2 and GSK-3 still requires the addition of exogenous c-Kit ligand, stem cell factor (SCF). These data indicate that KSHV does not induce constitutive c-Kit signaling, but instead upregulates c-Kit receptor levels, thus allowing infected ECs to respond to endogenous and exogenous SCF. Nonetheless, inhibition of either c-Kit activation or its downstream effectors reverses the characteristic spindle phenotype of infected eDMVECs. Together, these results contribute to our overall understanding of the role that the c-kit proto-oncogene plays in KS pathogenesis.
Collapse
Affiliation(s)
- Janet L Douglas
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, 505 NW 185th Ave., Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Camille Francès
- Department of Dermatology, APHP Hospital Tenon Paris, Paris, France
| | | |
Collapse
|
35
|
Horenstein MG, Moontasri NJ, Cesarman E. The pathobiology of Kaposi’s sarcoma: advances since the onset of the AIDS epidemic. J Cutan Pathol 2008; 35 Suppl 2:40-4. [DOI: 10.1111/j.1600-0560.2008.01118.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Wood NH, Feller L. The malignant potential of HIV-associated Kaposi sarcoma. Cancer Cell Int 2008; 8:14. [PMID: 18976452 PMCID: PMC2633277 DOI: 10.1186/1475-2867-8-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 10/31/2008] [Indexed: 11/10/2022] Open
Abstract
Human herpesvirus (HHV)-8 associated oncogenesis, a state of immune impairment, a local inflammatory environment, angiogenesis and HIV infection occurring concurrently are important factors for the development of HIV-associated Kaposi sarcoma (KS). Activation of the interleukin (IL)-6 receptor signalling pathway and constitutive signalling of viral G protein-coupled receptor (vGPCR) play an important role in the activation, proliferation and transformation of HHV-8 infected endothelial cells thus contributing to the initiation and progression of KS. HIV-tat protein, HIV-induced immune suppression and a hyperinflammatory state facilitate the oncogenic activity of HHV-8. In this article we reviewed some aspects of HIV-KS pathogenesis and tried to establish, according to the available information in the literature, whether HIV-KS is a monoclonal neoplasm or a benign angioproliferative disorder. From the data of this review it is evident that most of the HIV-KS lesions are oligoclonal in origin. It remains to be demonstrated whether these multiple monoclonal populations of cells are neoplastic, harbouring specific cytogenetic alterations such as mutations, rearrangements and amplifications, or are, as the current evidence shows, the result of HHV-8 induced intracellular signalling pathways that modulate the expression of cellular genes associated with cell cycle regulation, apoptosis, inflammatory response and angiogenesis, and represent a reactive angioproliferative disorder.
Collapse
Affiliation(s)
- Neil H Wood
- Department of Periodontology and Oral Medicine, School of Dentistry, University of Limpopo (Medunsa Campus) Pretoria, South Africa.
| | | |
Collapse
|
37
|
Stallone G, Infante B, Grandaliano G, Schena FP, Gesualdo L. Kaposi's sarcoma and mTOR: a crossroad between viral infection neoangiogenesis and immunosuppression. Transpl Int 2008; 21:825-32. [PMID: 18498314 DOI: 10.1111/j.1432-2277.2008.00697.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The incidence of Kaposi's sarcoma (KS) among the recipients of solid organ transplants is about 500 times the rate in the general population, suggesting a role for immunosuppression in the development of the disease. The drugs used for the induction and maintenance of immunosuppression and the length of treatment with these agents influence both the incidence and the type of cancer development. The clinical presentation of KS in transplant recipients is often limited to the skin. The risk of death from KS is related to the form and extent of the lesions. The main approach to managing transplant-associated KS is to reduce or even discontinue immunosuppressive therapy; this strategy carries a risk of acute rejection of the graft. KS is a multicentric tumor composed of endothelium-lined vascular spaces and spindle-shaped cells. Its pathogenesis is unclear. Recent evidence suggests that vascular endothelial growth factor (VEGF) is likely to be a growth factor for KS cells: blocking the interaction between VEGF and Flk-1/KDR can abolish VEGF-induced growth of the tumor. Recently, Sirolimus, a drug used in kidney-transplant recipients, has been suggested to reduce KS progression in transplant recipients. This unexpected effect of the drug confirms previous experimental information on KS pathogenesis and may shed light on an array of molecular mechanisms, modulated by Sirolimus, of potential clinical interest in the transplantation scenario.
Collapse
Affiliation(s)
- Giovanni Stallone
- Section of Nephrology, Dialysis and Transplant, Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | |
Collapse
|
38
|
Abstract
This review evaluates changes in vascular nomenclature particularly in the category of vascular tumours of intermediate malignancy that includes the various haemangioendotheliomas, Kaposi's sarcoma and giant cell angioblastoma. Recently described entities in this category, including the latter tumour and composite haemangioendothelioma, are described. Several newly characterized vascular tumours not included in recent classifications of vascular tumours are also summarized. These include acquired elastotic haemangioma, symplastic haemangioma, cutaneous epithelioid angiomatous nodule and cutaneovisceral angiomatosis with thrombocytopenia. The newly introduced clinical classification of congenital haemangiomas into non-involuting and rapidly involuting variants and radiation-induced atypical vascular lesions are also reviewed.
Collapse
Affiliation(s)
- S G N Goh
- St John's Institute of Dermatology, St Thomas' Hospital, London, UK
| | | |
Collapse
|
39
|
Feller L, Lemmer J. Insights into pathogenic events of HIV-associated Kaposi sarcoma and immune reconstitution syndrome related Kaposi sarcoma. Infect Agent Cancer 2008; 3:1. [PMID: 18208585 PMCID: PMC2265259 DOI: 10.1186/1750-9378-3-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/21/2008] [Indexed: 11/27/2022] Open
Abstract
A decrease in the incidence of human immune deficiency virus-associated Kaposi sarcoma (HIV-KS) and regression of some established HIV-KS lesions is evident after the introduction of highly active anti-retroviral treatment (HAART), and is attributed to generalized immune restoration, to the reconstitution of human herpesvirus (HHV)-8 specific cellular immune responses, and to the decrease in HIV Tat protein and HHV-8 loads following HAART. However, a small subset of HIV-seropositive subjects with a low CD4+ T cell count at the time of introduction of HAART, may develop HIV-KS as immune reconstitution inflammatory syndrome (IRIS) within 8 weeks thereafter.
Collapse
Affiliation(s)
- Liviu Feller
- Department of Periodontology and Oral Medicine, Box D26 School of Dentistry, University of Limpopo Medunsa Campus, Pretoria, South Africa.
| | | |
Collapse
|
40
|
Ganem D. KSHV infection and the pathogenesis of Kaposi's sarcoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:273-96. [PMID: 18039116 DOI: 10.1146/annurev.pathol.1.110304.100133] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Kaposi's sarcoma (KS) has long been suspected of having an infectious etiology on the basis of its unusual epidemiology, histopathology, and natural history. Nearly a decade ago, a novel herpesviral genome was discovered in KS biopsies, and since that time strong epidemiologic evidence has accumulated correlating infection with this KS-associated herpesvirus (KSHV, also known as human herpesvirus 8) with the development of the disease. Here we review the evidence linking KSHV infection to KS risk and discuss current notions of how KSHV gene expression promotes the development of this remarkable neoplasm. These studies show that both latent and lytic viral replicative cycles contribute significantly-but differently-to KS development. The studies also highlight mechanistic differences between oncogenesis caused by KSHV and that caused by its distant relative Epstein-Barr virus.
Collapse
Affiliation(s)
- Don Ganem
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.
| |
Collapse
|
41
|
Feller L, Wood NH, Lemmer J. HIV-associated Kaposi sarcoma: pathogenic mechanisms. ACTA ACUST UNITED AC 2007; 104:521-9. [PMID: 17142074 DOI: 10.1016/j.tripleo.2006.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/22/2006] [Indexed: 11/16/2022]
Abstract
Kaposi sarcoma (KS) is a multicentric angioproliferative disorder characterized by spindle cell proliferation, neo-angiogenesis, inflammation, and edema. Human herpesvirus (HHV)-8, a gamma-herpesvirus, is a critical factor, but is not alone sufficient for the initiation of KS. Other cofactors such as human immunodeficiency virus (HIV), host-derived cytokines, chemokines, and growth factors are required for the development of KS. Whether HIV-associated KS is a reactive hyperplastic inflammatory lesion or a true neoplasm is still controversial. It is likely that HIV-associated KS begins as a reactive disorder that in some cases progresses to a monoclonal, an oligoclonal, and a polyclonal neoplasm.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- Chemokines/biosynthesis
- Cytokines/biosynthesis
- Gene Expression Regulation, Neoplastic
- Growth Substances/biosynthesis
- HIV Infections/complications
- HIV-1/physiology
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- Humans
- Inflammation/complications
- Neovascularization, Pathologic/virology
- Receptors, Chemokine/physiology
- Sarcoma, Kaposi/etiology
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
Collapse
Affiliation(s)
- Liviu Feller
- Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa, South Africa
| | | | | |
Collapse
|
42
|
|
43
|
Duprez R, Lacoste V, Brière J, Couppié P, Frances C, Sainte-Marie D, Kassa-Kelembho E, Lando MJ, Essame Oyono JL, Nkegoum B, Hbid O, Mahé A, Lebbé C, Tortevoye P, Huerre M, Gessain A. Evidence for a Multiclonal Origin of Multicentric Advanced Lesions of Kaposi Sarcoma. J Natl Cancer Inst 2007; 99:1086-94. [PMID: 17623796 DOI: 10.1093/jnci/djm045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a complex tumor of uncertain clonality. Studying the viral clonality of the human herpesvirus 8 (HHV-8) in KS to determine clonality of the tumors, a strategy that has been used previously with Epstein-Barr virus and its associated tumors, may elucidate whether multicentric (disseminated) KS lesions correspond to metastatic lesions or to expansions of independent clones. METHODS A series of 139 KS biopsies (from skin, lymph node, or tonsil) was obtained from 98 patients, with 59 biopsies from 18 patients with disseminated multicentric KS skin lesions. The degree of spindle cell infiltration in biopsies was established by direct observation of hematoxylin-eosin-stained sections, and HHV-8 viral load was quantified by real-time polymerase chain reaction. To determine cellular clonality, the size heterogeneity of the HHV-8-fused terminal repeat (TR) region was determined by probing of electrophoresed restricted genomic DNA from KS biopsies for the HHV-8 TR sequence. RESULTS HHV-8 clonality analysis was performed on the 62 samples for which sufficient DNA was obtained. Most samples corresponded to histologically nodular lesions with high spindle cell infiltration and high viral load. A clonal HHV-8 pattern was determined for 59 samples; 11 were found to be monoclonal and 48 to be oligoclonal. The informative samples that were from disseminated KS skin lesions (n = 26, from six patients) were either monoclonal or oligoclonal, and the size of HHV-8 episomes varied between these samples. CONCLUSION Although some tumor KS lesions were monoclonal expansions of HHV-8-infected spindle cells, most advanced lesions were oligoclonal proliferations. Furthermore, individual KS disseminated tumor skin lesions were found to represent distinct expansions of HHV-8-infected spindle cells. Thus, our results suggest that KS lesions, especially in patients with advanced skin tumors, are reactive proliferations rather than true malignancies with metastatic dissemination.
Collapse
Affiliation(s)
- Renan Duprez
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mutlu AD, Cavallin LE, Vincent L, Chiozzini C, Eroles P, Duran EM, Asgari Z, Hooper AT, La Perle KMD, Hilsher C, Gao SJ, Dittmer DP, Rafii S, Mesri EA. In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi's sarcoma. Cancer Cell 2007; 11:245-58. [PMID: 17349582 PMCID: PMC2180156 DOI: 10.1016/j.ccr.2007.01.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/13/2006] [Accepted: 01/04/2007] [Indexed: 11/20/2022]
Abstract
Transfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial-lineage cells generates a cell (mECK36) that forms KS-like tumors in mice. mECK36 expressed most KSHV genes and were angiogenic, but they didn't form colonies in soft agar. In nude mice, mECK36 formed KSHV-harboring vascularized spindle cell sarcomas that were LANA+/podoplanin+, overexpressed VEGF and Angiopoietin ligands and receptors, and displayed KSHV and host transcriptomes reminiscent of KS. mECK36 that lost the KSHV episome reverted to nontumorigenicity. siRNA suppression of KSHV vGPCR, an angiogenic gene upregulated in mECK36 tumors, inhibited angiogenicity and tumorigenicity. These results show that KSHV malignancy is in vivo growth restricted and reversible, defining mECK36 as a biologically sensitive animal model of KSHV-dependent KS.
Collapse
MESH Headings
- Angiopoietins/metabolism
- Animals
- Antigens, Viral/metabolism
- Bone Marrow Cells/pathology
- Cell Lineage
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- Cells, Cultured
- Chromosomes, Artificial, Bacterial
- Disease Models, Animal
- Endothelial Cells/pathology
- Herpesvirus 8, Human
- Humans
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic
- Nuclear Proteins/metabolism
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Agata D'Agostino Mutlu
- Laboratory of Viral Oncogenesis, Division of Hematology-Oncology, Department of Medicine, Weill Medical College of Cornell University, New York 10021
| | - Lucas E. Cavallin
- Laboratory of Viral Oncogenesis, Division of Hematology-Oncology, Department of Medicine, Weill Medical College of Cornell University, New York 10021
- Program in Viral Oncology, Department of Microbiology & Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami FL 33149
| | - Loïc Vincent
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University, New York
| | - Chiara Chiozzini
- Laboratory of Viral Oncogenesis, Division of Hematology-Oncology, Department of Medicine, Weill Medical College of Cornell University, New York 10021
| | - Pilar Eroles
- Laboratory of Viral Oncogenesis, Division of Hematology-Oncology, Department of Medicine, Weill Medical College of Cornell University, New York 10021
| | - Elda M. Duran
- Program in Viral Oncology, Department of Microbiology & Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami FL 33149
| | - Zahra Asgari
- Laboratory of Viral Oncogenesis, Division of Hematology-Oncology, Department of Medicine, Weill Medical College of Cornell University, New York 10021
| | - Andrea T. Hooper
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University, New York
| | - Krista M. D. La Perle
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| | - Chelsey Hilsher
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chappel Hill, NC
| | - Shou-Jiang Gao
- Departments of Pediatrics and Microbiology, and Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chappel Hill, NC
| | - Shahin Rafii
- Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Medical College of Cornell University, New York
| | - Enrique A. Mesri
- Laboratory of Viral Oncogenesis, Division of Hematology-Oncology, Department of Medicine, Weill Medical College of Cornell University, New York 10021
- Program in Viral Oncology, Department of Microbiology & Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami FL 33149
- Corresponding Author: Enrique A. Mesri, Ph.D. Program in Viral Oncology Department of Microbiology & Immunology Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine 1550 NW 10 Avenue, Papanicolaou Bldg, Room 109 (R138) Miami, FL 33136 Ph: 305-243-5659 Fax: 305-243-8309 E-mail:
| |
Collapse
|
45
|
McAllister SC, Moses AV. Endothelial cell- and lymphocyte-based in vitro systems for understanding KSHV biology. Curr Top Microbiol Immunol 2006; 312:211-44. [PMID: 17089799 DOI: 10.1007/978-3-540-34344-8_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kaposi sarcoma (KS), the most common AIDS-associated malignancy, is a multifocal tumor characterized by deregulated angiogenesis, proliferation of spindle cells, and extravasation of inflammatory cells and erythrocytes. Kaposi sarcoma-associated herpesvirus (KSHV; also human herpesvirus-8) is implicated in all clinical forms of KS. Endothelial cells (EC) harbor the KSHV genome in vivo, are permissive for virus infection in vitro, and are thought to be the precursors of KS spindle cells. Spindle cells are rare in early patch-stage KS lesions but become the predominant cell type in later plaque- and nodular-stage lesions. Alterations in endothelial/spindle cell physiology that promote proliferation and survival are thus thought to be important in disease progression and may represent potential therapeutic targets. KSHV encodes genes that stimulate cellular proliferation and migration, prevent apoptosis, and counter the host immune response. The combined effect of these genes is thought to drive the proliferation and survival of infected spindle cells and influence the lesional microenvironment. Large-scale gene expression analyses have revealed that KSHV infection also induces dramatic reprogramming of the EC transcriptome. These changes in cellular gene expression likely contribute to the development of the KS lesion. In addition to KS, KSHV is also present in B cell neoplasias including primary effusion lymphoma and multicentric Castleman disease. A combination of virus and virus-induced host factors are similarly thought to contribute to establishment and progression of these malignancies. A number of lymphocyte- and EC-based systems have been developed that afford some insight into the means by which KSHV contributes to malignant transformation of host cells. Whereas KSHV is well maintained in PEL cells cultured in vitro, explanted spindle cells rapidly lose the viral episome. Thus, endothelial cell-based systems for studying KSHV gene expression and function, as well as the effect of infection on host cell physiology, have required in vitro infection of primary or life-extended EC. This chapter includes a review of these in vitro cell culture systems, acknowledging their strengths and weaknesses and putting into perspective how each has contributed to our understanding of the complex KS lesional environment. In addition, we present a model of KS lesion progression based on findings culled from these models as well as recent clinical advances in KS chemotherapy. Thus this unifying model describes our current understanding of KS pathogenesis by drawing together multiple theories of KS progression that by themselves cannot account for the complexities of tumor development.
Collapse
Affiliation(s)
- S C McAllister
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | |
Collapse
|
46
|
Mbulaiteye SM, Sternberg LR, Nsubuga MM, Anver MR, Mehta M, Biryahwaho B, Kambugu F, Rabkin CS, Biggar RJ. Absence of Y-chromosome sequences in tumors from African women with AIDS-related Kaposi sarcoma. Cancer Lett 2006; 248:229-33. [PMID: 16934394 DOI: 10.1016/j.canlet.2006.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/17/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
Kaposi sarcoma (KS) occurs with relatively high frequency in immunosuppressed transplant recipients and in patients with AIDS. Recently, Italian investigators reported transplant-related KS tumors bearing donor-derived antigens, suggesting possible parenteral transmission of KS as whole cells, i.e., chimeric tumors. To investigate the hypothesis that KS whole cells may also be transmitted into immunocompromised persons via heterosexual acts, we tested nodular KS lesions and matched normal tissue obtained from female patients with AIDS for the presence of the Y-chromosome specific sex determining sequence (SRY). Among 25 unique tumors tested, none was positive for SRY sequence. While our results do not exclude sexual cellular transmission of whole KS cells, they suggest that if it occurs, it is rare.
Collapse
Affiliation(s)
- Sam M Mbulaiteye
- Viral Epidemiology Branch, DCEG, National Cancer Institute, Executive Plaza South Rm 7080, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
AIDS associated malignancies (ARL) is a major complication associated with AIDS patients upon immunosuppression. Chronically immunocompromised patients have a markedly increased risk of developing lymphoproliferative disease. In the era of potent antiretrovirals therapy (ARV), the malignant complications due to HIV-1 infection have decreased in developed nations where ARV is administered, but still poses a major problem in developing countries where HIV-1 incidence is high and ARV is still not yet widely available. Even in ARV treated individuals there is a concern that the prolonged survival of many HIV-1 carriers is likely to eventually result in an increased number of malignancies diagnosed. Malignancies that were found to have high incidence in HIV-infected individuals are Kaposi's sarcoma (KS), Hodgkin's disease (HD) and non-Hodgkin's lymphoma (NHL). The incidence of NHL has increased nearly 200 fold in HIV-positive patients, and accounts for a greater percentage of AIDS defining illness in the US and Europe since the advent of HAART therapy. These AIDS related lymphomas are distinct from their counterparts seen in HIV-1 seronegative patients. For example nearly half of all cases of ARL are associated with the presence of a gamma herpesvirus, Epstein Barr virus (EBV) or human herpesvirus-8 (HHV-8)/ Kaposi's sarcoma associated herpesvirus (KSHV). The pathogenesis of ARLs is complex. B-cell proliferation driven by chronic antigenemia resulting in the induction of polyclonal and ultimately monoclonal lymphoproliferation may occur in the setting of severe immunosuppression.
Collapse
Affiliation(s)
- Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
48
|
Koshy M, Kauh J, Gunthel C, Joyner M, Landry J, Thomas CR. State of the art: gastrointestinal malignancies in the human immunodeficiency virus (HIV) population. ACTA ACUST UNITED AC 2006; 36:1-14. [PMID: 16227631 DOI: 10.1385/ijgc:36:1:001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The gastrointestinal tract is one of the most common sites for the development of primary neoplasms arising in patients with pre-existing infection with the human immunodeficiency virus (HIV). Over the past decade, new information on the clinical manifestation, natural history, treatment options, and related toxicity have been reported, mostly notably the integration of highly active antiretroviral therapy (HAART). The following is a concise review summarizing the current state-of-the-art for GI tract malignancies in the HIV-positive patient and is designed to assist the clinical oncology team in developing a rationale plan when caring for these patients.
Collapse
Affiliation(s)
- Mary Koshy
- Department of Radiation Oncology, Department of Radiation Oncology, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA 30344, USA
| | | | | | | | | | | |
Collapse
|
49
|
Gessain A, Duprez R. Spindle cells and their role in Kaposi's sarcoma. Int J Biochem Cell Biol 2005; 37:2457-65. [PMID: 16188485 DOI: 10.1016/j.biocel.2005.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 05/12/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Spindle cells represent the main cell type of the advanced final nodular stage of Kaposi's sarcoma lesions. Despite some clinical and epidemiological differences, the four Kaposi's sarcoma forms (classic, endemic, post-transplant and epidemic) display very similar histopathological features, with the proliferation of spindle cells (considered as the Kaposi's sarcoma tumor cells) associated with inflammation and neo-angiogenesis. Electron-microscopy and immuno-histochemistry studies have led to the consensus that the spindle cells originated from the endothelial lineage. However, only recently, studies that used specific lymphatic immunological markers (such as podoplanin) and molecular features (gene expression microarrays) strongly linked Kaposi's sarcoma spindle cells to the endothelium lymphatic cell lineage. Both hybridization and immuno-histochemistry techniques have demonstrated that human herpesvirus 8 also known as Kaposi's sarcoma associated herpesvirus was present in spindle cells at all stages of the disease (patch, plaque, nodule). Interestingly, while the human herpesvirus 8 latent genes are expressed in nearly all tumor spindle cells, only a small fraction of them expresses markers of viral lytic replication. Recent findings showing that nodular Kaposi's sarcoma lesions display all patterns of human herpesvirus 8 clonality support the model according to which this tumor begins as a polyclonal disease with a subsequent evolution to a mono/oligoclonal process involving infected spindle cells. Spindle cells appear to be the central masterpiece in KS tumorigenesis, however the exact respective role of each human herpesvirus 8 gene, in the initiation and the disease progression is still under investigation and the question of whether or not this tumor is a reactive process or a true malignant proliferation of spindle cells remains yet unclear.
Collapse
Affiliation(s)
- Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département des Ecosytèmes et Epidémiologie des Maladies Infectieuses, Paris Cédex 15, France.
| | | |
Collapse
|
50
|
Cohen A, Wolf DG, Guttman-Yassky E, Sarid R. Kaposi's sarcoma-associated herpesvirus: clinical, diagnostic, and epidemiological aspects. Crit Rev Clin Lab Sci 2005; 42:101-53. [PMID: 15941082 DOI: 10.1080/10408360590913524] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHI) is one of the few viruses proven to be associated with tumorigenesis in humans. Its causal association with all clinical and epidemiological variants of Kaposi's sarcoma (KS) is well established. KSHV is also involved in the pathogenesis of primary effusion lymphoma (PEL) and a subset of multicentric Castleman's disease (MCD). Possible associations of KSHV with other clinical settings have been extensively examined. The findings from several of these studies are contradictory and are yet to be resolved. Concentrated effort over the last decade, since the initial discovery of KSHV, led to the development of several experimental systems that resulted in a better comprehension of the biological characteristics of KSHV and set the stage for the understanding of mechainisms by which diseases are induced by the virus. The development of molecular, histological, and serological tools for KSHV diagnosis allowed researchers to track the transmission and to study the epidemiology of KSHV. These assays have been applied, in particular in ambiguous cases, in order to confirm clinically and pathologically based diagnoses. Here, we review the advances in the clinical, experimental, diagnostic, and epidemiological research of KSHV.
Collapse
Affiliation(s)
- Adina Cohen
- Faculty of Life Sciences, Bar-Ilan Universiy, Ramat-Gan, Israel
| | | | | | | |
Collapse
|