1
|
Kopriva S, Rahimzadeh Karvansara P, Takahashi H. Adaptive modifications in plant sulfur metabolism over evolutionary time. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4697-4711. [PMID: 38841807 PMCID: PMC11350084 DOI: 10.1093/jxb/erae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sulfur (S) is an essential element for life on Earth. Plants are able to take up and utilize sulfate (SO42-), the most oxidized inorganic form of S compounds on Earth, through the reductive S assimilatory pathway that couples with photosynthetic energy conversion. Organic S compounds are subsequently synthesized in plants and made accessible to animals, primarily as the amino acid methionine. Thus, plant S metabolism clearly has nutritional importance in the global food chain. S metabolites may be part of redox regulation and drivers of essential metabolic pathways as cofactors and prosthetic groups, such as Fe-S centers, CoA, thiamine, and lipoic acid. The evolution of the S metabolic pathways and enzymes reflects the critical importance of functional innovation and diversifications. Here we review the major evolutionary alterations that took place in S metabolism across different scales and outline research directions that may take advantage of understanding the evolutionary adaptations.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Institute of Molecular Photosynthesis, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
3
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
de Bont L, Donnay N, Couturier J, Rouhier N. Redox regulation of enzymes involved in sulfate assimilation and in the synthesis of sulfur-containing amino acids and glutathione in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:958490. [PMID: 36051294 PMCID: PMC9426629 DOI: 10.3389/fpls.2022.958490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sulfur is essential in plants because of its presence in numerous molecules including the two amino acids, cysteine, and methionine. Cysteine serves also for the synthesis of glutathione and provides sulfur to many other molecules including protein cofactors or vitamins. Plants absorb sulfate from their environment and assimilate it via a reductive pathway which involves, respectively, a series of transporters and enzymes belonging to multigenic families. A tight control is needed to adjust each enzymatic step to the cellular requirements because the whole pathway consumes energy and produces toxic/reactive compounds, notably sulfite and sulfide. Glutathione is known to regulate the activity of some intermediate enzymes. In particular, it provides electrons to adenosine 5'-phosphosulfate reductases but also regulates the activity of glutamate-cysteine ligase by reducing a regulatory disulfide. Recent proteomic data suggest a more extended post-translational redox control of the sulfate assimilation pathway enzymes and of some associated reactions, including the synthesis of both sulfur-containing amino acids, cysteine and methionine, and of glutathione. We have summarized in this review the known oxidative modifications affecting cysteine residues of the enzymes involved. In particular, a prominent regulatory role of protein persulfidation seems apparent, perhaps because sulfide produced by this pathway may react with oxidized thiol groups. However, the effect of persulfidation has almost not yet been explored.
Collapse
Affiliation(s)
- Linda de Bont
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Natacha Donnay
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| | | |
Collapse
|
5
|
Transcriptomic analysis reveals antibacterial mechanism of flavonoids from Sedum aizoon L. against Pseudomonas fragi. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Turner KG, Ostevik KL, Grassa CJ, Rieseberg LH. Genomic Analyses of Phenotypic Differences Between Native and Invasive Populations of Diffuse Knapweed (Centaurea diffusa). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.577635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive species represent excellent opportunities to study the evolutionary potential of traits important to success in novel environments. Although some ecologically important traits have been identified in invasive species, little is typically known about the genetic mechanisms that underlie invasion success in non-model species. Here, we use a genome-wide association (GWAS) approach to identify the genetic basis of trait variation in the non-model, invasive, diffuse knapweed [Centaurea diffusa Lam. (Asteraceae)]. To assist with this analysis, we have assembled the first draft genome reference and fully annotated plastome assembly for this species, and one of the first from this large, weedy, genus, which is of major ecological and economic importance. We collected phenotype data from 372 individuals from four native and four invasive populations of C. diffusa grown in a common environment. Using these individuals, we produced reduced-representation genotype-by-sequencing (GBS) libraries and identified 7,058 SNPs. We identify two SNPs associated with leaf width in these populations, a trait which significantly varies between native and invasive populations. In this rosette forming species, increased leaf width is a major component of increased biomass, a common trait in invasive plants correlated with increased fitness. Finally, we use annotations from Arabidopsis thaliana to identify 98 candidate genes that are near the associated SNPs and highlight several good candidates for leaf width variation.
Collapse
|
7
|
Whitcomb SJ, Rakpenthai A, Brückner F, Fischer A, Parmar S, Erban A, Kopka J, Hawkesford MJ, Hoefgen R. Cysteine and Methionine Biosynthetic Enzymes Have Distinct Effects on Seed Nutritional Quality and on Molecular Phenotypes Associated With Accumulation of a Methionine-Rich Seed Storage Protein in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1118. [PMID: 32793268 PMCID: PMC7387578 DOI: 10.3389/fpls.2020.01118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Staple crops in human and livestock diets suffer from deficiencies in certain "essential" amino acids including methionine. With the goal of increasing methionine in rice seed, we generated a pair of "Push × Pull" double transgenic lines, each containing a methionine-dense seed storage protein (2S albumin from sunflower, HaSSA) and an exogenous enzyme for either methionine (feedback desensitized cystathionine gamma synthase from Arabidopsis, AtD-CGS) or cysteine (serine acetyltransferase from E. coli, EcSAT) biosynthesis. In both double transgenic lines, the total seed methionine content was approximately 50% higher than in their untransformed parental line, Oryza sativa ssp. japonica cv. Taipei 309. HaSSA-containing rice seeds were reported to display an altered seed protein profile, speculatively due to insufficient sulfur amino acid content. However, here we present data suggesting that this may result from an overloaded protein folding machinery in the endoplasmic reticulum rather than primarily from redistribution of limited methionine from endogenous seed proteins to HaSSA. We hypothesize that HaSSA-associated endoplasmic reticulum stress results in redox perturbations that negatively impact sulfate reduction to cysteine, and we speculate that this is mitigated by EcSAT-associated increased sulfur import into the seed, which facilitates additional synthesis of cysteine and glutathione. The data presented here reveal challenges associated with increasing the methionine content in rice seed, including what may be relatively low protein folding capacity in the endoplasmic reticulum and an insufficient pool of sulfate available for additional cysteine and methionine synthesis. We propose that future approaches to further improve the methionine content in rice should focus on increasing seed sulfur loading and avoiding the accumulation of unfolded proteins in the endoplasmic reticulum. Oryza sativa ssp. japonica: urn:lsid:ipni.org:names:60471378-2.
Collapse
Affiliation(s)
- Sarah J. Whitcomb
- Laboratory of Amino Acid and Sulfur Metabolism, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Apidet Rakpenthai
- Laboratory of Amino Acid and Sulfur Metabolism, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Franziska Brückner
- Laboratory of Amino Acid and Sulfur Metabolism, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Axel Fischer
- Bioinformatics Infrastructure Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saroj Parmar
- Plant Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | - Alexander Erban
- Applied Metabolome Analysis Infrastructure Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Applied Metabolome Analysis Infrastructure Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Rainer Hoefgen
- Laboratory of Amino Acid and Sulfur Metabolism, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
8
|
Cohen A, Hacham Y, Welfe Y, Khatib S, Avice JC, Amir R. Evidence of a significant role of glutathione reductase in the sulfur assimilation pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:246-261. [PMID: 31782847 DOI: 10.1111/tpj.14621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
With the objective of studying the role of glutathione reductase (GR) in the accumulation of cysteine and methionine, we generated transgenic tobacco and Arabidopsis lines overexpressing the cytosolic AtGR1 and the plastidic AtGR2 genes. The transgenic plants had higher contents of cysteine and glutathione. To understand why cysteine levels increased in these plants, we also used gr1 and gr2 mutants. The results showed that the transgenic plants have higher levels of sulfite, cysteine, glutathione and methionine, which are downstream to adenosine 5' phosphosulfate reductase (APR) activity. However, the mutants had lower levels of these metabolites, while the sulfate content increased. A feeding experiment using 34 SO42- also showed that the levels of APR downstream metabolites increased in the transgenic lines and decreased in gr1 compared with their controls. These findings, and the results obtained from the expression levels of several genes related to the sulfur pathway, suggest that GR plays an essential role in the sulfur assimilation pathway by supporting the activity of APR, the key enzyme in this pathway. GR recycles the oxidized form of glutathione (GSSG) back to reduce glutathione (GSH), which serves as an electron donor for APR activity. The phenotypes of the transgenic plants and the mutants are not significantly altered under non-stress and oxidative stress conditions. However, when germinating on sulfur-deficient medium, the transgenic plants grew better, while the mutants were more sensitive than the control plants. The results give substantial evidence of the yet unreported function of GR in the sulfur assimilation pathway.
Collapse
Affiliation(s)
- Anner Cohen
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| | - Yael Hacham
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| | - Yochai Welfe
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| | - Soliman Khatib
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| | | | - Rachel Amir
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, 12100, Israel
- Tel-Hai Collage, Upper Galilee, 11016, Israel
| |
Collapse
|
9
|
Marty L, Bausewein D, Müller C, Bangash SAK, Moseler A, Schwarzländer M, Müller-Schüssele SJ, Zechmann B, Riondet C, Balk J, Wirtz M, Hell R, Reichheld JP, Meyer AJ. Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems. THE NEW PHYTOLOGIST 2019; 224:1569-1584. [PMID: 31372999 DOI: 10.1111/nph.16086] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 05/27/2023]
Abstract
A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
Collapse
Affiliation(s)
- Laurent Marty
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Daniela Bausewein
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Christopher Müller
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Sajid Ali Khan Bangash
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Bernd Zechmann
- Center of Microscopy and Imaging, Baylor University, One Bear Place 97046, Waco, TX, 76798-7046, USA
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Via Domitia, F-66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860, Perpignan, France
| | - Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Via Domitia, F-66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860, Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
10
|
Chen FF, Chien CY, Cho CC, Chang YY, Hsu CH. C-terminal Redox Domain of Arabidopsis APR1 is a Non-Canonical Thioredoxin Domain with Glutaredoxin Function. Antioxidants (Basel) 2019; 8:antiox8100461. [PMID: 31597378 PMCID: PMC6827007 DOI: 10.3390/antiox8100461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
Sulfur is an essential nutrient that can be converted into utilizable metabolic forms to produce sulfur-containing metabolites in plant. Adenosine 5'-phosphosulfate (APS) reductase (APR) plays a vital role in catalyzing the reduction of activated sulfate to sulfite, which requires glutathione. Previous studies have shown that the C-terminal domain of APR acts as a glutathione-dependent reductase. The crystal structure of the C-terminal redox domain of Arabidopsis APR1 (AtAPR1) shows a conserved α/β thioredoxin fold, but not a glutaredoxin fold. Further biochemical studies of the redox domain from AtAPR1 provided evidence to support the structural observation. Collectively, our results provide structural and biochemical information to explain how the thioredoxin fold exerts the glutaredoxin function in APR.
Collapse
Affiliation(s)
- Fang-Fang Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, (F.-F.C.); (C.-Y.C.); (Y.-Y.C.)
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, (F.-F.C.); (C.-Y.C.); (Y.-Y.C.)
| | - Chao-Cheng Cho
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan;
| | - Yu-Yung Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, (F.-F.C.); (C.-Y.C.); (Y.-Y.C.)
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, (F.-F.C.); (C.-Y.C.); (Y.-Y.C.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan;
- Correspondence: ; Tel.: +886-2-33664468
| |
Collapse
|
11
|
Xie M, Chen W, Lai X, Dai H, Sun H, Zhou X, Chen T. Metabolic responses and their correlations with phytochelatins in Amaranthus hypochondriacus under cadmium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1791-1800. [PMID: 31299508 DOI: 10.1016/j.envpol.2019.06.103] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/28/2023]
Abstract
Phytochelatins (PCs) play a vital role in the tolerance and enrichment of cadmium (Cd) in higher plants by chelating with Cd2+. The aim of this study was to perform a full-scale metabolomics analysis of metabolic responses highly correlated with PCs generation. These metabolites and metabolic pathways were expected to promote PCs generation and further optimize Cd absorption in plants. In the current study, Amaranthus hypochondriacus, a potential species for phytoremediation, was first adopted to investigate physiological responses to Cd stress via LCMS/MS-based metabolomics and the HPLC based determination of thiol compounds. The results showed that the leaves of A. hypochondriacus under high Cd stress accumulated 40 times the amount of Cd compared to the leaves of the plants not under Cd stress and had an increased content of three types of PCs. Metabolomics qualitatively identified 12084 substances in total, among which 41 were significantly different metabolites (SDMs) between the two groups and involved in 7 metabolic pathways. Among the SDMs, 12 metabolites were highly linearly correlated with PCs involved in three pathways (Val, Leu and Ile biosynthesis; Ala, Asp and Glu metabolism; and Arg and Pro metabolism). These results provide an innovative method to promote PCs synthesis for the restoration of Cd-contaminated-soil.
Collapse
Affiliation(s)
- Mengdi Xie
- College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Wenqing Chen
- College of Architecture & Environment, Sichuan University, Chengdu, 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xicong Lai
- College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Haibo Dai
- College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Hui Sun
- College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaoyong Zhou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
12
|
Jez JM. Structural biology of plant sulfur metabolism: from sulfate to glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4089-4103. [PMID: 30825314 DOI: 10.1093/jxb/erz094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Sulfur is an essential element for all organisms. Plants must assimilate this nutrient from the environment and convert it into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine and glutathione. This review summarizes structural biology studies on the enzymes involved in plant sulfur assimilation [ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and sulfite reductase], cysteine biosynthesis (serine acetyltransferase and O-acetylserine sulfhydrylase), and glutathione biosynthesis (glutamate-cysteine ligase and glutathione synthetase) pathways. Overall, X-ray crystal structures of enzymes in these core pathways provide molecular-level information on the chemical events that allow plants to incorporate sulfur into essential metabolites and revealed new biochemical regulatory mechanisms, such as structural rearrangements, protein-protein interactions, and thiol-based redox switches, for controlling different steps in these pathways.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Omeka WKM, Liyanage DS, Priyathilaka TT, Godahewa GI, Lee S, Lee S, Lee J. Glutaredoxin 1 from big-belly seahorse (Hippocampus abdominalis): Molecular, transcriptional, and functional evidence in teleost immune responses. FISH & SHELLFISH IMMUNOLOGY 2019; 90:40-51. [PMID: 31015065 DOI: 10.1016/j.fsi.2019.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/02/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
Glutaredoxins (Grx) are redox enzymes conserved in viruses, eukaryotes, and prokaryotes. In this study, we characterized glutaredoxin 1 (HaGrx1) from big-belly seahorse, Hippocampus abdominalis. In-silico analysis showed that HaGrx1 contained the classical glutaredoxin 1 structure with a CSYC thioredoxin active site motif. According to multiple sequence alignment and phylogenetic reconstruction, HaGrx1 presented the highest homology to the Grx1 ortholog from Hippocampus comes. Transcriptional studies demonstrated the ubiquitous distribution of HaGrx1 transcripts in all the seahorse tissues tested. Significant modulation (p < 0.05) of HaGrx1 transcripts were observed in blood upon stimulation with pathogen-associated molecular patterns and live pathogens. The β-hydroxyethyl disulfide reduction assay confirmed the antioxidant activity of recombinant HaGrx1. Further, dehydroascorbate reduction and insulin disulfide reduction assays revealed the oxidoreductase activity of HaGrx1. HaGrx1 utilized 1,4-dithiothreitol, l-cysteine, 2-mercaptoethanol, and reduced l-glutathione as reducing agent with different dehydroascorbate reduction activity levels. Altogether, our results suggested a vital role of HaGrx1 in redox homeostasis as well as the host innate immune defense system.
Collapse
Affiliation(s)
- W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
14
|
Feldman-Salit A, Veith N, Wirtz M, Hell R, Kummer U. Distribution of control in the sulfur assimilation in Arabidopsis thaliana depends on environmental conditions. THE NEW PHYTOLOGIST 2019; 222:1392-1404. [PMID: 30681147 DOI: 10.1111/nph.15704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/13/2019] [Indexed: 05/24/2023]
Abstract
Sulfur assimilation is central to the survival of plants and has been studied under different environmental conditions. Multiple studies have been published trying to determine rate-limiting or controlling steps in this pathway. However, the picture remains inconclusive with at least two different enzymes proposed to represent such rate-limiting steps. Here, we used computational modeling to gain an integrative understanding of the distribution of control in the sulfur assimilation pathway of Arabidopsis thaliana. For this purpose, we set up a new ordinary differential equation (ODE)-based, kinetic model of sulfur assimilation encompassing all biochemical reactions directly involved in this process. We fitted the model to published experimental data and produced a model ensemble to deal with parameter uncertainties. The ensemble was validated against additional published experimental data. We used the model ensemble to subsequently analyse the control pattern and robustly identified a set of processes that share the control in this pathway under standard conditions. Interestingly, the pattern of control is dynamic and not static, that is it changes with changing environmental conditions. Therefore, while adenosine-5'-phosphosulfate reductase (APR) and sulfite reductase (SiR) share control under standard laboratory conditions, APR takes over an even more dominant role under sulfur starvation conditions.
Collapse
Affiliation(s)
- Anna Feldman-Salit
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| | - Nadine Veith
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| | - Markus Wirtz
- Department Molecular Biology of Plants, COS Heidelberg, INF 360, Heidelberg University, 69120, Heidelberg, Germany
| | - Rüdiger Hell
- Department Molecular Biology of Plants, COS Heidelberg, INF 360, Heidelberg University, 69120, Heidelberg, Germany
| | - Ursula Kummer
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Fu Y, Tang J, Yao GF, Huang ZQ, Li YH, Han Z, Chen XY, Hu LY, Hu KD, Zhang H. Central Role of Adenosine 5'-Phosphosulfate Reductase in the Control of Plant Hydrogen Sulfide Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:1404. [PMID: 30319669 PMCID: PMC6166572 DOI: 10.3389/fpls.2018.01404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/04/2018] [Indexed: 05/07/2023]
Abstract
Hydrogen sulfide (H2S) has been postulated to be the third gasotransmitter in both animals and plants after nitric oxide (NO) and carbon monoxide (CO). In this review, the physiological roles of H2S in plant growth, development and responses to biotic, and abiotic stresses are summarized. The enzymes which generate H2S are subjected to tight regulation to produce H2S when needed, contributing to delicate responses of H2S to environmental stimuli. H2S occupies a central position in plant sulfur metabolism as it is the link of inorganic sulfur to the first organic sulfur-containing compound cysteine which is the starting point for the synthesis of methionine, coenzyme A, vitamins, etc. In sulfur assimilation, adenosine 5'-phosphosulfate reductase (APR) is the rate-limiting enzyme with the greatest control over the pathway and probably the generation of H2S which is an essential component in this process. APR is an evolutionarily conserved protein among plants, and two conserved domains PAPS_reductase and Thioredoxin are found in APR. Sulfate reduction including the APR-catalyzing step is carried out in chloroplasts. APR, the key enzyme in sulfur assimilation, is mainly regulated at transcription level by transcription factors in response to sulfur availability and environmental stimuli. The cis-acting elements in the promoter region of all the three APR genes in Solanum lycopersicum suggest that multiple factors such as sulfur starvation, cytokinins, CO2, and pathogens may regulate the expression of SlAPRs. In conclusion, as a critical enzyme in regulating sulfur assimilation, APR is probably critical for H2S generation during plants' response to diverse environmental factors.
Collapse
Affiliation(s)
- Yang Fu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhong-Qin Huang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Yan-Hong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhuo Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiao-Yan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lan-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd., Jieshou, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Kang-Di Hu, Hua Zhang,
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Kang-Di Hu, Hua Zhang,
| |
Collapse
|
16
|
Jez JM, Ravilious GE, Herrmann J. Structural biology and regulation of the plant sulfation pathway. Chem Biol Interact 2016; 259:31-38. [DOI: 10.1016/j.cbi.2016.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 11/26/2022]
|
17
|
García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 2016; 34:859-873. [PMID: 27184302 DOI: 10.1016/j.biotechadv.2016.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
Abstract
Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes.
Collapse
Affiliation(s)
- Jorge D García-García
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México.
| | - Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| |
Collapse
|
18
|
Bohrer AS, Takahashi H. Compartmentalization and Regulation of Sulfate Assimilation Pathways in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:1-31. [PMID: 27572125 DOI: 10.1016/bs.ircmb.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants utilize sulfate to synthesize primary and secondary sulfur-containing metabolites required for growth and survival in the environment. Sulfate is taken up into roots from the soil and distributed to various organs through the functions of membrane-bound sulfate transporters, while it is utilized as the primary substrate for synthesizing sulfur-containing metabolites in the sulfate assimilation pathways. Transporters and enzymes for the assimilative conversion of sulfate are regulated in highly organized manners depending on changes in sulfate supply from the environment and demand for biosynthesis of reduced sulfur compounds in the plant systems. Over the past few decades, the effect of sulfur nutrition on gene expression of sulfate transporters and assimilatory enzymes has been extensively studied with the aim of understanding the full landscape of regulatory networks.
Collapse
Affiliation(s)
- A-S Bohrer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - H Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
19
|
Choi AR, Kim MS, Kang SG, Lee HS. Dimethyl sulfoxide reduction by a hyperhermophilic archaeon Thermococcus onnurineus NA1 via a cysteine-cystine redox shuttle. J Microbiol 2016; 54:31-38. [DOI: 10.1007/s12275-016-5574-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
|
20
|
Chen FF, Chang YY, Cho CC, Hsu CH. Crystallization of the C-terminal redox domain of the sulfur-assimilatory enzyme APR1 from Arabidopsis thaliana. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1211-4. [PMID: 25195893 DOI: 10.1107/s2053230x1401574x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/05/2014] [Indexed: 11/10/2022]
Abstract
Plant-type APS reductase (APR), which catalyzes the reduction of activated sulfate to sulfite in plants, consists of a reductase domain and a C-terminal redox domain showing sequence homology to thioredoxin but possessing the activity of glutaredoxin. In order to understand the structural and biochemical properties of the redox domain of plant-type APS reductase, the C-terminal domain of APR1 (APR1C) from Arabidopsis thaliana was crystallized using the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to a resolution of 2.70 Å on the SPXF beamline BL13B1 at the NSRRC, Taiwan. The crystals belonged to space group P43212 or P41212, with unit-cell parameters a = b = 58.2, c = 86.7 Å. With one molecule per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.64 Å(3) Da(-1), which corresponds to a solvent content of approximately 53.49%. Further structure-based functional studies of APR1C would extend knowledge of the molecular mechanism and regulation of APR.
Collapse
Affiliation(s)
- Fang-Fang Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Yung Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chao-Cheng Cho
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
21
|
Xiang X, Pan G, Rong T, Zheng ZL, Leustek T. A luciferase-based method for assay of 5'-adenylylsulfate reductase. Anal Biochem 2014; 460:22-8. [PMID: 24857786 DOI: 10.1016/j.ab.2014.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023]
Abstract
A luciferase-based method was developed for measurement of 5'-adenylylsulfate (APS) reductase (APR), an enzyme of the reductive sulfate assimilation pathway in prokaryotes and plants. APR catalyzes the two-electron reduction of APS and forms sulfite and adenosine 5'-monophospahate (AMP). The luciferase-based assay measures AMP production using an enzyme-coupled system that generates luminescence. The method is shown to provide an accurate measurement of APR kinetic properties and can be used for both endpoint and continuous assays. APR activity can be measured from pure enzyme preparations as well as from crude protein extracts of tissues. In addition, the assay is ideally suited to high-throughput sample analysis of APR activity in a microtiter dish format. The method adds new capability to the study of the biochemistry and physiology of APR.
Collapse
Affiliation(s)
- Xiaoli Xiang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA; Institute of Maize Research, Key Laboratory of Biology and Genetic Improvement of Maize in the Southwest Region, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- Institute of Maize Research, Key Laboratory of Biology and Genetic Improvement of Maize in the Southwest Region, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingzhao Rong
- Institute of Maize Research, Key Laboratory of Biology and Genetic Improvement of Maize in the Southwest Region, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
| | - Thomas Leustek
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
22
|
Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.). PLoS One 2014; 9:e88310. [PMID: 24520364 PMCID: PMC3919742 DOI: 10.1371/journal.pone.0088310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.
Collapse
|
23
|
Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? FRONTIERS IN PLANT SCIENCE 2013; 4:477. [PMID: 24324478 PMCID: PMC3838956 DOI: 10.3389/fpls.2013.00477] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/04/2013] [Indexed: 05/06/2023]
Abstract
Glutathione is a small redox-active molecule existing in two main stable forms: the thiol (GSH) and the disulphide (GSSG). In plants growing in optimal conditions, the GSH:GSSG ratio is high in most cell compartments. Challenging environmental conditions are known to alter this ratio, notably by inducing the accumulation of GSSG, an effect that may be influential in the perception or transduction of stress signals. Despite the potential importance of glutathione status in redox signaling, the reactions responsible for the oxidation of GSH to GSSG have not been clearly identified. Most attention has focused on the ascorbate-glutathione pathway, but several other candidate pathways may couple the availability of oxidants such as H2O2 to changes in glutathione and thus impact on signaling pathways through regulation of protein thiol-disulfide status. We provide an overview of the main candidate pathways and discuss the available biochemical, transcriptomic, and genetic evidence relating to each. Our analysis emphasizes how much is still to be elucidated on this question, which is likely important for a full understanding of how stress-related redox regulation might impinge on phytohormone-related and other signaling pathways in plants.
Collapse
Affiliation(s)
- Marie-Sylviane Rahantaniaina
- Institut de Biologie des Plantes, Université Paris-SudOrsay, France
- Institut National de Recherche Agronomique, UMR Environnement et Grandes CulturesThiverval-Grignon, France
| | - Andrée Tuzet
- Institut National de Recherche Agronomique, UMR Environnement et Grandes CulturesThiverval-Grignon, France
| | - Amna Mhamdi
- Institut de Biologie des Plantes, Université Paris-SudOrsay, France
| | - Graham Noctor
- Institut de Biologie des Plantes, Université Paris-SudOrsay, France
| |
Collapse
|
24
|
Stevenson CEM, Hughes RK, McManus MT, Lawson DM, Kopriva S. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens. FEBS Lett 2013; 587:3626-32. [PMID: 24100135 DOI: 10.1016/j.febslet.2013.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 01/18/2023]
Abstract
Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.
Collapse
Affiliation(s)
- Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
25
|
Hanke G, Mulo P. Plant type ferredoxins and ferredoxin-dependent metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1071-1084. [PMID: 23190083 DOI: 10.1111/pce.12046] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/24/2023]
Abstract
Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.
Collapse
Affiliation(s)
- Guy Hanke
- Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076, Osnabrück, Germany
| | | |
Collapse
|
26
|
Abstract
SIGNIFICANCE Oxidative stress is widely invoked in inflammation, aging, and complex diseases. To avoid unwanted oxidations, the redox environment of cellular compartments needs to be tightly controlled. The complementary action of oxidoreductases and of high concentrations of low-molecular-weight (LMW) nonprotein thiols plays an essential role in maintaining the redox potential of the cell in balance. RECENT ADVANCES While LMW thiols are central players in an extensive range of redox regulation/metabolism processes, not all organisms use the same thiol cofactors to this effect, as evidenced by the recent discovery of mycothiol (MSH) and bacillithiol (BSH) among different gram-positive bacteria. CRITICAL ISSUES LMW thiol-disulfide exchange processes and their cellular implications are often oversimplified, as only the biology of the free thiols and their symmetrical disulfides is considered. In bacteria under oxidative stress, especially where concentrations of different LMW thiols are comparable [e.g., BSH, coenzyme A (CoA), and cysteine (Cys) in many low-G+C gram-positive bacteria (Firmicutes)], mixed disulfides (e.g., CoASSB and CySSCoA) must surely be major thiol-redox metabolites that need to be taken into consideration. FUTURE DIRECTIONS There are many microorganisms whose LMW thiol-redox buffers have not yet been identified (either bioinformatically or experimentally). Many elements of BSH and MSH redox biochemistry remain to be explored. The fundamental biophysical properties, thiol pK(a) and redox potential, have not yet been determined, and the protein interactome in which the biothiols MSH and BSH are involved needs further exploration.
Collapse
Affiliation(s)
- Koen Van Laer
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | | | | |
Collapse
|
27
|
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 2012; 17:1124-60. [PMID: 22531002 DOI: 10.1089/ars.2011.4327] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thioredoxins (Trx) and glutaredoxins (Grx) constitute families of thiol oxidoreductases. Our knowledge of Trx and Grx in plants has dramatically increased during the last decade. The release of the Arabidopsis genome sequence revealed an unexpectedly high number of Trx and Grx genes. The availability of several genomes of vascular and nonvascular plants allowed the establishment of a clear classification of the genes and the chronology of their appearance during plant evolution. Proteomic approaches have been developed that identified the putative Trx and Grx target proteins which are implicated in all aspects of plant growth, including basal metabolism, iron/sulfur cluster formation, development, adaptation to the environment, and stress responses. Analyses of the biochemical characteristics of specific Trx and Grx point to a strong specificity toward some target enzymes, particularly within plastidial Trx and Grx. In apparent contradiction with this specificity, genetic approaches show an absence of phenotype for most available Trx and Grx mutants, suggesting that redundancies also exist between Trx and Grx members. Despite this, the isolation of mutants inactivated in multiple genes and several genetic screens allowed the demonstration of the involvement of Trx and Grx in pathogen response, phytohormone pathways, and at several control points of plant development. Cytosolic Trxs are reduced by NADPH-thioredoxin reductase (NTR), while the reduction of Grx depends on reduced glutathione (GSH). Interestingly, recent development integrating biochemical analysis, proteomic data, and genetics have revealed an extensive crosstalk between the cytosolic NTR/Trx and GSH/Grx systems. This crosstalk, which occurs at multiple levels, reveals the high plasticity of the redox systems in plants.
Collapse
Affiliation(s)
- Yves Meyer
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France
| | | | | | | | | |
Collapse
|
28
|
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. Glutathione in plants: an integrated overview. PLANT, CELL & ENVIRONMENT 2012; 35:454-84. [PMID: 21777251 DOI: 10.1111/j.1365-3040.2011.02400.x] [Citation(s) in RCA: 811] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, Orsay cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Structural basis and evolution of redox regulation in plant adenosine-5'-phosphosulfate kinase. Proc Natl Acad Sci U S A 2011; 109:309-14. [PMID: 22184237 DOI: 10.1073/pnas.1115772108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenosine-5'-phosphosulfate (APS) kinase (APSK) catalyzes the phosphorylation of APS to 3'-phospho-APS (PAPS). In Arabidopsis thaliana, APSK is essential for reproductive viability and competes with APS reductase to partition sulfate between the primary and secondary branches of the sulfur assimilatory pathway; however, the biochemical regulation of APSK is poorly understood. The 1.8-Å resolution crystal structure of APSR from A. thaliana (AtAPSK) in complex with β,γ-imidoadenosine-5'-triphosphate, Mg(2+), and APS provides a view of the Michaelis complex for this enzyme and reveals the presence of an intersubunit disulfide bond between Cys86 and Cys119. Functional analysis of AtAPSK demonstrates that reduction of Cys86-Cys119 resulted in a 17-fold higher k(cat)/K(m) and a 15-fold increase in K(i) for substrate inhibition by APS compared with the oxidized enzyme. The C86A/C119A mutant was kinetically similar to the reduced WT enzyme. Gel- and activity-based titrations indicate that the midpoint potential of the disulfide in AtAPSK is comparable to that observed in APS reductase. Both cysteines are invariant among the APSK from plants, but not other organisms, which suggests redox-control as a unique regulatory feature of the plant APSK. Based on structural, functional, and sequence analyses, we propose that the redox-sensitive APSK evolved after bifurcation of the sulfur assimilatory pathway in the green plant lineage and that changes in redox environment resulting from oxidative stresses may affect partitioning of APS into the primary and secondary thiol metabolic routes by having opposing effects on APSK and APS reductase in plants.
Collapse
|
30
|
Lim B, Meyer AJ, Cobbett CS. Development of glutathione-deficient embryos in Arabidopsis is influenced by the maternal level of glutathione. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:693-7. [PMID: 21668611 DOI: 10.1111/j.1438-8677.2011.00464.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Glutathione (GSH) biosynthesis-deficient gsh1 and gsh2 null mutants of Arabidopsis thaliana have late embryonic-lethal and early seedling-lethal phenotypes, respectively, when segregating from a phenotypically wild-type parent plant, indicating that GSH is required for seed maturation and during germination. In this study, we show that gsh2 embryos generated in a partially GSH-deficient parent plant, homozygous for either the cad2 mutation in the GSH1 gene or homozygous for mutations in CLT1, CLT2 and CLT3 encoding plastid thiol transporters, abort early in embryogenesis. In contrast, individuals homozygous for the same combinations of mutations but segregating from heterozygous, phenotypically wild-type parents exhibit the parental gsh2 seedling-lethal phenotype. Similarly, homozygous gsh1 embryos generated in a gsh1/cad2 partially GSH-deficient parent plant abort early in development. These observations indicate that the development of gsh1 and gsh2 embryos to a late stage is dependent on the level of GSH in the maternal plant.
Collapse
Affiliation(s)
- B Lim
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
31
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011; 9:e0142. [PMID: 22303267 PMCID: PMC3267239 DOI: 10.1199/tab.0142] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Guillaume Queval
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
- Present address: Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Plant Biotechnologyand Genetics, Gent University, 9052 Gent, Belgium
| | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Sejir Chaouch
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Christine H. Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
32
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011. [PMID: 22303267 DOI: 10.1199/tab0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
|
33
|
Takahashi H, Kopriva S, Giordano M, Saito K, Hell R. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:157-84. [PMID: 21370978 DOI: 10.1146/annurev-arplant-042110-103921] [Citation(s) in RCA: 462] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sulfur is required for growth of all organisms and is present in a wide variety of metabolites having distinctive biological functions. Sulfur is cycled in ecosystems in nature where conversion of sulfate to organic sulfur compounds is primarily dependent on sulfate uptake and reduction pathways in photosynthetic organisms and microorganisms. In vascular plant species, transport proteins and enzymes in this pathway are functionally diversified to have distinct biochemical properties in specific cellular and subcellular compartments. Recent findings indicate regulatory processes of sulfate transport and metabolism are tightly connected through several modes of transcriptional and posttranscriptional mechanisms. This review provides up-to-date knowledge in functions and regulations of sulfur assimilation in plants and algae, focusing on sulfate transport systems and metabolic pathways for sulfate reduction and synthesis of downstream metabolites with diverse biological functions.
Collapse
|
34
|
Cameron JC, Pakrasi HB. Glutathione in Synechocystis 6803: a closer look into the physiology of a ∆gshB mutant. PLANT SIGNALING & BEHAVIOR 2011; 6:89-92. [PMID: 21301218 PMCID: PMC3122014 DOI: 10.4161/psb.6.1.14145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Glutathione (GSH) is a low molecular weight thiol compound that plays many roles in photosynthetic organisms. We utilized a ∆gshB (glutathione synthetase) mutant strain as a tool to evaluate the role of GSH in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803), a model photosynthetic organism. The ∆gshB mutant does not synthesize glutathione, but instead accumulates the GSH precursor, gamma-glutamylcysteine (gamma-EC), to millimolar levels. We found that gamma-EC was sufficient to permit cellular proliferation during optimal conditions, but not when cells were exposed to conditions promoting oxidative stress. Furthermore, we found that many factors affecting growth rate and photosynthetic activities strongly influenced cellular thiol content. Here, we are providing some additional insights into the role of GSH and gamma-EC in Synechocystis 6803 during conditions promoting oxidative stress.
Collapse
|
35
|
Cameron JC, Pakrasi HB. Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2010; 154:1672-85. [PMID: 20935175 PMCID: PMC2996012 DOI: 10.1104/pp.110.162990] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glutathione, a nonribosomal thiol tripeptide, has been shown to be critical for many processes in plants. Much less is known about the roles of glutathione in cyanobacteria, oxygenic photosynthetic prokaryotes that are the evolutionary precursor of the chloroplast. An understanding of glutathione metabolism in cyanobacteria is expected to provide novel insight into the evolution of the elaborate and extensive pathways that utilize glutathione in photosynthetic organisms. To investigate the function of glutathione in cyanobacteria, we generated deletion mutants of glutamate-cysteine ligase (gshA) and glutathione synthetase (gshB) in Synechocystis sp. PCC 6803. Complete segregation of the ΔgshA mutation was not achieved, suggesting that GshA activity is essential for growth. In contrast, fully segregated ΔgshB mutants were isolated and characterized. The ΔgshB strain lacks reduced glutathione (GSH) but instead accumulates the precursor compound γ-glutamylcysteine (γ-EC). The ΔgshB strain grows slower than the wild-type strain under favorable conditions and exhibits extremely reduced growth or death when subjected to conditions promoting oxidative stress. Furthermore, we analyzed thiol contents in the wild type and the ΔgshB mutant after subjecting the strains to multiple environmental and redox perturbations. We found that conditions promoting growth stimulate glutathione biosynthesis. We also determined that cellular GSH and γ-EC content decline following exposure to dark and blue light and during photoheterotrophic growth. Moreover, a rapid depletion of GSH and γ-EC is observed in the wild type and the ΔgshB strain, respectively, when cells are starved for nitrate or sulfate.
Collapse
|
36
|
Yi H, Ravilious GE, Galant A, Krishnan HB, Jez JM. From sulfur to homoglutathione: thiol metabolism in soybean. Amino Acids 2010; 39:963-78. [PMID: 20364282 DOI: 10.1007/s00726-010-0572-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 03/16/2010] [Indexed: 12/11/2022]
Abstract
Sulfur is an essential plant nutrient and is metabolized into the sulfur-containing amino acids (cysteine and methionine) and into molecules that protect plants against oxidative and environmental stresses. Although studies of thiol metabolism in the model plant Arabidopsis thaliana (thale cress) have expanded our understanding of these dynamic processes, our knowledge of how sulfur is assimilated and metabolized in crop plants, such as soybean (Glycine max), remains limited in comparison. Soybean is a major crop used worldwide for food and animal feed. Although soybeans are protein-rich, they do not contain high levels of the sulfur-containing amino acids, cysteine and methionine. Ultimately, unraveling the fundamental steps and regulation of thiol metabolism in soybean is important for optimizing crop yield and quality. Here we review the pathways from sulfur uptake to glutathione and homoglutathione synthesis in soybean, the potential biotechnology benefits of understanding and modifying these pathways, and how information from the soybean genome may guide the next steps in exploring this biochemical system.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
37
|
Chibani K, Couturier J, Selles B, Jacquot JP, Rouhier N. The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment. PHOTOSYNTHESIS RESEARCH 2010; 104:75-99. [PMID: 19902380 DOI: 10.1007/s11120-009-9501-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/12/2009] [Indexed: 05/28/2023]
Abstract
The post-translational modification consisting in the formation/reduction of disulfide bonds has been the subject of intense research in plants since the discovery in the 1970s that many chloroplastic enzymes are regulated by light through dithiol-disulfide exchange reactions catalyzed by oxidoreductases called thioredoxins (Trxs). Further biochemical and proteomic studies have considerably increased the number of target enzymes and processes regulated by these mechanisms in many sub-cellular compartments. Recently, glutathionylation, a modification consisting in the reversible formation of a glutathione adduct on cysteine residues, was proposed as an alternative redox regulation mechanism. Glutaredoxins (Grxs), proteins related to Trxs, are efficient catalysts for deglutathionylation, the opposite reaction. Hence, the Trxs- and Grxs-dependent pathways might constitute complementary and not only redundant regulatory processes. This article focuses on these two multigenic families and associated protein partners in poplar and on their involvement in the regulation of some major chloroplastic processes such as stress response, carbohydrate and heme/chlorophyll metabolism.
Collapse
Affiliation(s)
- Kamel Chibani
- Unité Mixte de Recherches 1136 INRA-Nancy Université, Interactions Arbre-Microorganismes IFR 110 EFABA, Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
38
|
Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM. Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. MOLECULAR PLANT 2010; 3:269-79. [PMID: 20080815 DOI: 10.1093/mp/ssp112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sulfur is essential for plant growth and development, and the molecular systems for maintaining sulfur and thiol metabolism are tightly controlled. From a biochemical perspective, the regulation of plant thiol metabolism highlights nature's ability to engineer pathways that respond to multiple inputs and cellular demands under a range of conditions. In this review, we focus on the regulatory mechanisms that form the molecular basis of biochemical sulfur sensing in plants by translating the intracellular concentration of sulfur-containing compounds into control of key metabolic steps. These mechanisms range from the simple (substrate availability, thermodynamic properties of reactions, feedback inhibition, and organelle localization) to the elaborate (formation of multienzyme complexes and thiol-based redox switches). Ultimately, the dynamic interplay of these regulatory systems is critical for sensing and maintaining sulfur assimilation and thiol metabolism in plants.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 2009; 43:335-67. [PMID: 19691428 DOI: 10.1146/annurev-genet-102108-134201] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families with multiple and partially redundant genes. The number of genes clearly increased with the appearance of multicellular organisms, in part because of new types of Trx and Grx with orthologs throughout the animal and plant kingdoms. The function of Trx and Grx also broadened as cells achieved increased complexity, especially in the regulation arena. In view of these progressive changes, the ubiquitous distribution of Trx and the wide occurrence of Grx enable these proteins to serve as indicators of the evolutionary history of redox regulation. In so doing, they add a unifying element that links the diverse forms of life to one another in an uninterrupted continuum. It is anticipated that future research will embellish this continuum and further elucidate the properties of these proteins and their impact on biology. The new information will be important not only to our understanding of the role of Trx and Grx in fundamental cell processes but also to future societal benefits as the proteins find new applications in a range of fields.
Collapse
Affiliation(s)
- Yves Meyer
- Université de Perpignan, Génome et dévelopement des plantes, CNRS-UP-IRD UMR 5096, F 66860 Perpignan Cedex, France.
| | | | | | | |
Collapse
|
41
|
Abstract
Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the Chromatiaceae), and many are well characterized also on a molecular genetic level. Complete genome sequence data are currently available for 10 strains of GSB and for one strain of PSB. We present here a genome-based survey of the distribution and phylogenies of genes involved in oxidation of sulfur compounds in these strains. It is evident from biochemical and genetic analyses that the dissimilatory sulfur metabolism of these organisms is very complex and incompletely understood. This metabolism is modular in the sense that individual steps in the metabolism may be performed by different enzymes in different organisms. Despite the distant evolutionary relationship between GSB and PSB, their photosynthetic nature and their dependency on oxidation of sulfur compounds resulted in similar ecological roles in the sulfur cycle as important anaerobic oxidizers of sulfur compounds.
Collapse
|
42
|
Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim Biophys Acta Gen Subj 2008; 1780:1304-17. [DOI: 10.1016/j.bbagen.2008.06.003] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 12/15/2022]
|
43
|
Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:999-1012. [PMID: 18088327 DOI: 10.1111/j.1365-313x.2007.03389.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glutathione (GSH) homeostasis in plants is essential for cellular redox control and efficient responses to abiotic and biotic stress. Compartmentation of the GSH biosynthetic pathway is a unique feature of plants. The first enzyme, gamma-glutamate cysteine ligase (GSH1), responsible for synthesis of gamma-glutamylcysteine (gamma-EC), is, in Arabidopsis, exclusively located in the plastids, whereas the second enzyme, glutathione synthetase (GSH2), is located in both plastids and cytosol. In Arabidopsis, gsh2 insertion mutants have a seedling lethal phenotype in contrast to the embryo lethal phenotype of gsh1 null mutants. This difference in phenotype may be due to partial replacement of GSH functions by gamma-EC, which in gsh2 mutants hyperaccumulates to levels 5000-fold that in the wild type and 200-fold wild-type levels of GSH. In situ labelling of thiols with bimane and confocal imaging in combination with HPLC analysis showed high concentrations of gamma-EC in the cytosol. Feedback inhibition of Brassica juncea plastidic GSH1 by gamma-EC in vitro strongly suggests export of gamma-EC as functional explanation for hyperaccumulation. Complementation of gsh2 mutants with the cytosol-specific GSH2 gave rise to phenotypically wild-type transgenic plants. These results support the conclusion that cytosolic synthesis of GSH is sufficient for plant growth. The transgenic lines further show that, consistent with the exclusive plastidic localization of GSH1, gamma-EC is exported from the plastids to supply the cytosol with the immediate precursor for GSH biosynthesis, and that there can be efficient re-import of GSH into the plastids to allow effective control of GSH biosynthesis through feedback inhibition of GSH1.
Collapse
Affiliation(s)
- Maciej Pasternak
- Heidelberg Institute of Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Phylogenetic Analysis of Sulfate Assimilation and Cysteine Biosynthesis in Phototrophic Organisms. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB. The role of 5'-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, kinetic characterization, and gene expression. PHYTOCHEMISTRY 2008; 69:356-64. [PMID: 17761201 DOI: 10.1016/j.phytochem.2007.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 06/28/2007] [Accepted: 07/17/2007] [Indexed: 05/17/2023]
Abstract
Soybean seeds are a major source of protein, but contain low levels of sulfur-containing amino acids. With the objective of studying the sulfur assimilation pathway of soybean, a full-length cDNA clone for 5'-adenylylsulfate reductase (APS reductase) was isolated and characterized. The cDNA clone contained an open reading frame of 1414 bp encoding a 52 kDa protein with a N-terminal chloroplast/plastid transit peptide. Southern blot analysis of genomic DNA indicated that the APS reductase in soybean is encoded by a small multigene family. Biochemical characterization of the heterologously expressed and purified protein shows that the clone encoded a functional APS reductase. Although expressed in tissues throughout the plant, these analyses established an abundant expression of the gene and activity of the encoded protein in the early developmental stages of soybean seed, which declined with seed maturity. Sulfur and phosphorus deprivation increased this expression level, while nitrogen starvation repressed APS reductase mRNA transcript and protein levels. Cold-treatment increased expression and the total activity of APS reductase in root tissues. This study provides insight into the sulfur assimilation pathway of this nutritionally important legume.
Collapse
Affiliation(s)
- Pallavi Phartiyal
- Department of Agronomy, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
46
|
Rouhier N, Lemaire SD, Jacquot JP. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:143-66. [PMID: 18444899 DOI: 10.1146/annurev.arplant.59.032607.092811] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glutathione, a tripeptide with the sequence gamma-Glu-Cys-Gly, exists either in a reduced form with a free thiol group or in an oxidized form with a disulfide between two identical molecules. We describe here briefly the pathways involved in the synthesis, reduction, polymerization, and degradation of glutathione, as well as its distribution throughout the plant and its redox buffering capacities. The function of glutathione in xenobiotic and heavy metal detoxification, plant development, and plant-pathogen interactions is also briefly discussed. Several lines of evidence indicate that glutathione and glutaredoxins (GRXs) are implicated in the response to oxidative stress through the regeneration of enzymes involved in peroxide and methionine sulfoxide reduction. Finally, emerging functions for plant GRXs and glutathione concern the regulation of protein activity via glutathionylation and the capacity of some GRXs to bind iron sulfur centers and for some of them to transfer FeS clusters into apoproteins.
Collapse
Affiliation(s)
- Nicolas Rouhier
- Unité Mixte de Recherches, 1136 INRA-UHP Interaction Arbres-Microorganismes, IFR 110 GEEF, Nancy University, Faculté des Sciences, 54506 Vandoeuvre Cedex, France.
| | | | | |
Collapse
|
47
|
Wiedemann G, Koprivova A, Schneider M, Herschbach C, Reski R, Kopriva S. The role of the novel adenosine 5'-phosphosulfate reductase in regulation of sulfate assimilation of Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2007; 65:667-76. [PMID: 17786562 DOI: 10.1007/s11103-007-9231-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 08/18/2007] [Indexed: 05/17/2023]
Abstract
Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5'-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5'phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.
Collapse
Affiliation(s)
- Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Cumming M, Leung S, McCallum J, McManus MT. Complex formation between recombinant ATP sulfurylase and APS reductase of Allium cepa (L.). FEBS Lett 2007; 581:4139-47. [PMID: 17692849 DOI: 10.1016/j.febslet.2007.07.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/09/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Recombinant ATP sulfurylase (AcATPS1) and adenosine-5'-phosphosulfate reductase (AcAPR1) from Allium cepa have been used to determine if these enzymes form protein-protein complexes in vitro. Using a solid phase binding assay, AcAPR1 was shown to interact with AcATPS1. The AcAPR1 enzyme was also expressed in E. coli as the N-terminal reductase domain (AcAPR1-N) and the C-terminal glutaredoxin domain (AcAPR1-C), but neither of these truncated proteins interacted with AcATPS1. The solid-phase interactions were confirmed by immune-precipitation, where anti-AcATPS1 IgG precipitated the full-length AcAPR1 protein, but not AcAPR1-N and AcAPR1-C. Finally, using the ligand binding assay, full-length AcATPS1 has been shown to bind to membrane-localised full-length AcAPR1. The significance of an interaction between chloroplastidic ATPS and APR in A. cepa is evaluated with respect to the control of the reductive assimilation of sulfate.
Collapse
Affiliation(s)
- Mathew Cumming
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
49
|
Kopriva S, Fritzemeier K, Wiedemann G, Reski R. The putative moss 3'-phosphoadenosine-5'-phosphosulfate reductase is a novel form of adenosine-5'-phosphosulfate reductase without an iron-sulfur cluster. J Biol Chem 2007; 282:22930-8. [PMID: 17519237 DOI: 10.1074/jbc.m702522200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfate assimilation provides reduced sulfur for synthesis of the amino acids cysteine and methionine and for a range of other metabolites. Sulfate has to be activated prior to reduction by adenylation to adenosine 5'-phosphosulfate (APS). In plants, algae, and many bacteria, this compound is reduced to sulfite by APS reductase (APR); in fungi and some cyanobacteria and gamma-proteobacteria, a second activation step, phosphorylation to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is necessary before reduction to sulfite by PAPS reductase (PAPR). We found previously that the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR genes (Koprivova, A., Meyer, A. J., Schween, G., Herschbach, C., Reski, R., and Kopriva, S. (2002) J. Biol. Chem. 277, 32195-32201). To assess the function of the two enzymes, we compared their biochemical properties by analysis of purified recombinant proteins. APR from Physcomitrella is very similar to the well characterized APRs from seed plants. On the other hand, we found that the putative PAPR preferentially reduces APS. Sequence analysis, analysis of UV-visible spectra, and determination of iron revealed that this new APR, named PpAPR-B, does not contain the FeS cluster, which was previously believed to determine the substrate specificity of the otherwise relatively similar enzymes. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein. These findings show that APS reduction without the FeS cluster is possible and that plant sulfate assimilation is predominantly dependent on reduction of APS.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. PLANT PHYSIOLOGY 2006; 141:446-55. [PMID: 16531482 PMCID: PMC1475471 DOI: 10.1104/pp.106.077982] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glutathione (GSH) has been implicated in maintaining the cell cycle within plant meristems and protecting proteins during seed dehydration. To assess the role of GSH during development of Arabidopsis (Arabidopsis thaliana [L.] Heynh.) embryos, we characterized T-DNA insertion mutants of GSH1, encoding the first enzyme of GSH biosynthesis, gamma-glutamyl-cysteine synthetase. These gsh1 mutants confer a recessive embryo-lethal phenotype, in contrast to the previously described GSH1 mutant, root meristemless 1(rml1), which is able to germinate, but is deficient in postembryonic root development. Homozygous mutant embryos show normal morphogenesis until the seed maturation stage. The only visible phenotype in comparison to wild type was progressive bleaching of the mutant embryos from the torpedo stage onward. Confocal imaging of GSH in isolated mutant and wild-type embryos after fluorescent labeling with monochlorobimane detected residual amounts of GSH in rml1 embryos. In contrast, gsh1 T-DNA insertion mutant embryos could not be labeled with monochlorobimane from the torpedo stage onward, indicating the absence of GSH. By using high-performance liquid chromatography, however, GSH was detected in extracts of mutant ovules and imaging of intact ovules revealed a high concentration of GSH in the funiculus, within the phloem unloading zone, and in the outer integument. The observation of high GSH in the funiculus is consistent with a high GSH1-promoterbeta-glucuronidase reporter activity in this tissue. Development of mutant embryos could be partially rescued by exogenous GSH in vitro. These data show that at least a small amount of GSH synthesized autonomously within the developing embryo is essential for embryo development and proper seed maturation.
Collapse
Affiliation(s)
- Narelle G Cairns
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|