1
|
Chriqui LE, Cavin S, Perentes JY. Dual implication of endothelial adhesion molecules in tumor progression and cancer immunity. Cell Adh Migr 2025; 19:2472308. [PMID: 40071851 PMCID: PMC11913389 DOI: 10.1080/19336918.2025.2472308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/16/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025] Open
Abstract
Adhesion molecules are proteins expressed at the surface of various cell types. Their main contribution to immunity is to allow the infiltration of immune cells in an inflamed site. In cancer, adhesion molecules have been shown to promote tumor dissemination favoring the development of metastasis. While adhesion molecule inhibition approaches were unsuccessful for cancer control, their importance for the generation of an immune response alone or in combination with immunotherapies has gained interest over the past years. Currently, the balance of adhesion molecules for tumor promotion/inhibition is unclear. Here we review the role of selectins, intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) from the perspective of the dual contribution of adhesion molecules in tumor progression and immunity.
Collapse
Affiliation(s)
- Louis-Emmanuel Chriqui
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Sabrina Cavin
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Jean Yannis Perentes
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Tang R, Luo S, Liu H, Sun Y, Liu M, Li L, Ren H, Angele MK, Börner N, Yu K, Guo Z, Yin G, Luo H. Circulating Tumor Microenvironment in Metastasis. Cancer Res 2025; 85:1354-1367. [PMID: 39992721 PMCID: PMC11997552 DOI: 10.1158/0008-5472.can-24-1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/12/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Activation of invasion and metastasis is a central hallmark of cancer, contributing to the primary cause of death for patients with cancer. In the multistep metastatic process, cancer cells must infiltrate the circulation, survive, arrest at capillary beds, extravasate, and form metastatic clones in distant organs. However, only a small proportion of circulating tumor cells (CTC) successfully form metastases, with transit of CTCs in the circulation being the rate-limiting step. The fate of CTCs is influenced by the circulating tumor microenvironment (cTME), which encompasses factors affecting their biological behaviors in the circulation. This liquid and flowing microenvironment differs significantly from the primary TME or the premetastatic niche. This review summarizes the latest advancements in identifying the biophysical cues, key components, and biological roles of the cTME, highlighting the network among biophysical attributes, blood cells, and nonblood factors in cancer metastasis. In addition to the potential of the cTME as a therapeutic target for inhibiting metastasis, the cTME could also represent as a biomarker for predicting patient outcomes and developing strategies for treating cancer.
Collapse
Affiliation(s)
- Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shujuan Luo
- Department of Obstetrics, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haoyu Ren
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Martin K. Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Keda Yu
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Guobing Yin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haojun Luo
- Department of Thyroid and Breast Surgery, Renji Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Hergueta-Redondo M, Sánchez-Redondo S, Hurtado B, Santos V, Pérez-Martínez M, Ximénez-Embún P, McDowell SAC, Mazariegos MS, Mata G, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Graña-Castro O, Megias D, Quail D, Quintela-Fandino M, Peinado H. The impact of a high fat diet and platelet activation on pre-metastatic niche formation. Nat Commun 2025; 16:2897. [PMID: 40175356 PMCID: PMC11965330 DOI: 10.1038/s41467-025-57938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025] Open
Abstract
There is active crosstalk between tumor cells and the tumor microenvironment during metastatic progression, a process that is significantly affected by obesity, particularly in breast cancer. Here we analyze the impact of a high fat diet (HFD) on metastasis, focusing on the role of platelets in the formation of premetastatic niches (PMNs). We find that a HFD provokes pre-activation of platelets and endothelial cells, promoting the formation of PMNs in the lung. These niches are characterized by increased vascular leakiness, platelet activation and overexpression of fibronectin in both platelets and endothelial cells. A HFD promotes interactions between platelets, tumor cells and endothelial cells within PMNs, enhancing tumor cell homing and metastasis. Importantly, therapeutic interventions like anti-platelet antibody administration or a dietary switch reduce metastatic cell homing and outgrowth. Moreover, blocking fibronectin reduces the interaction of tumor cells with endothelial cells. Importantly, when coagulation parameters prior to neoadjuvant treatment are considered, triple negative breast cancer (TNBC) female patients with reduced Partial Thromboplastin time (aPTT) had a significantly shorter time to relapse. These findings highlight how diet and platelet activation in pre-metastatic niches affect tumor cell homing and metastasis, suggesting potential therapeutic interventions and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Begoña Hurtado
- Cancer Cell Cycle Group, Preclinical & Translational Research Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
| | - Gadea Mata
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA-Nemesio Díez), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28925, Alcorcón, Spain
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Advanced Optical Microscopy - ISCIII Madrid, Madrid, Spain
| | - Daniela Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Medical Oncology, Hospital de Fuenlabrada, Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
4
|
Wu S, Wu Z, Lu Z, Qi F, Cheng J, Chu T, Li B, Zhao Y, Nie G, Li S. Selective apoptosis of tumor-associated platelets boosts the anti-metastatic potency of PD-1 blockade therapy. Cell Rep Med 2025; 6:101984. [PMID: 40020674 PMCID: PMC11970387 DOI: 10.1016/j.xcrm.2025.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Despite the transformative impact of programmed cell death protein-1 (PD-1) blockade therapy on metastatic/advanced solid tumor treatment, its efficacy is hindered by a limited response rate. Platelets play a pivotal role in tumor metastasis by shielding circulating tumor cells and secreting immunosuppressive factors. We here demonstrate that selectively inducing apoptosis in tumor-associated platelets (TAPs) using ABT-737-loaded nanoparticles (cyclic arginine-glycine-aspartate containing peptide-modified ABT-737-loaded nanoparticles [cRGD-NP@A]) enhances the anti-metastatic efficacy of the anti-PD-1 antibody (aPD-1). cRGD-NP@A specifically binds to TAPs, disrupting platelet-tumor cell interactions and exposing tumor cells to immune surveillance in vivo. Combined with aPD-1, cRGD-NP@A substantially augments immune activation and reduces TAP-derived immunosuppressive factors, notably transforming growth factor β1 (TGF-β1), consequently improving anti-metastatic outcomes across multiple metastasis-bearing animal models without observable adverse effects. Our study underscores the importance of depleting TAPs to enhance PD-1 blockade therapy, presenting a promising strategy to improve response rates and clinical outcomes for patients with metastatic cancer.
Collapse
Affiliation(s)
- Suying Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feilong Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Jin Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tianjiao Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; School of Astronautics, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
5
|
Josefsson EC. Platelets and megakaryocytes in cancer. J Thromb Haemost 2025; 23:804-816. [PMID: 39742972 DOI: 10.1016/j.jtha.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Platelets have important roles in hemostasis but also actively participate in cancer metastasis and inflammatory processes. They are produced by large precursor cells, the megakaryocytes, residing mainly in the bone marrow. Clinically, elevated platelet counts and/or increased platelet-to-lymphocyte ratio are being explored as biomarkers of metastatic disease and to predict survival or response to therapy in certain cancers. Multiple mechanisms have been put forward on how platelets promote hematogenous metastasis stemming mainly from murine experimental models. Research is now beginning to explore the potential roles of megakaryocytes in solid cancer, myeloma, and lymphoma. Here, we review mechanisms on how platelets and megakaryocytes contribute to cancer progression and metastasis but also discuss potential cancer-suppressing functions mainly related to the regulation of vascular intratumor integrity. Recent developments in cancer immune checkpoint therapy are reviewed with a focus on the potential roles of platelets. Moreover, we review studies exploring platelets for targeted drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Emma C Josefsson
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, The University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Miao L, Yang Y, Cheng M, Chen L, Han C. Ginsenoside Rb prevents the metastasis of hepatocarcinoma by blocking the platelet-tumor cell interaction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1721-1733. [PMID: 39172150 DOI: 10.1007/s00210-024-03387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The interaction between platelets and tumor cells is a crucial step in the progression of tumor metastasis. Blocking platelet-tumor cell interaction is a potential target against metastasis. Ginsenoside Rb (G-Rb) exhibits potential anti-tumor pharmacological properties and may offer a therapeutic option for cancer. PURPOSE This study aimed to investigate anti-metastatic effects of G-Rb through regulating the crosstalk of platelets with tumor cells. METHODS In order to explore anti-metastatic effects of G-Rb in vitro, HepG2 cell and platelets were co-cultured to mimic the interaction of platelets with tumor cells. Wound healing and Transwell assays were used to assess the effect of G-Rb on cell migration and invasion. The expression of epithelial-mesenchymal transition (EMT)-related markers was determined by RT-qPCR and western blot assays. The aggregation and activation of platelets were detected by flow cytometry. Moreover, a lung metastasis model of mice was established to evaluate inhibitory effects of G-Rb in vivo. Metastatic nodules on the lung surface were counted and sections of lung tissues were stained by H&E. RESULTS G-Rb effectively suppressed tumor metastasis in the co-culture of platelets with HepG2 cell. First, G-Rb treatment significantly inhibited the migration and invasion of HepG2 cells induced by platelets. Second, the expressions of EMT-related markers, including N-cadherin, Snail, and MMP9, were decreased by the treatment of G-Rb in the presence of platelets. Meanwhile, G-Rb also suppressed platelet hyperactivity by regulating the adhesion to tumor cells, activation, TCIPA, and TGF-β1 secretion of platelets in vitro. In addition, the results of in vivo experiments proved G-Rb administration not only significantly decreased lung metastasis but also attenuated platelets aberrant aggregation and activation in vivo. CONCLUSION Our findings showed that G-Rb inhibited tumor metastasis and platelet activation through mediating platelet-tumor cell interaction, indicating the potential values of G-Rb in tumor metastasis therapy.
Collapse
Affiliation(s)
- Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Yijun Yang
- Department of Pharmacy, Shandong Medical College, Jinan, 250002, People's Republic of China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- The Second Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
7
|
Shu L, Lin S, Zhou S, Yuan T. Glycan-Lectin interactions between platelets and tumor cells drive hematogenous metastasis. Platelets 2024; 35:2315037. [PMID: 38372252 DOI: 10.1080/09537104.2024.2315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Glycosylation is a ubiquitous cellular or microenvironment-specific post-translational modification that occurs on the surface of normal cells and tumor cells. Tumor cell-associated glycosylation is involved in hematogenous metastasis. A wide variety of tumors undergo aberrant glycosylation to interact with platelets. As platelets have many opportunities to engage circulating tumor cells, they represent an important avenue into understanding the role glycosylation plays in tumor metastasis. Platelet involvement in tumor metastasis is evidenced by observations that platelets protect tumor cells from damaging shear forces and immune system attack, aid metastasis through the endothelium at specific sites, and facilitate tumor survival and colonization. During platelet-tumor-cell interactions, many opportunities for glycan-ligand binding emerge. This review integrates the latest information about glycans, their ligands, and how they mediate platelet-tumor interactions. We also discuss adaptive changes that tumors undergo upon glycan-lectin binding and the impact glycans have on targeted therapeutic strategies for treating tumors in clinical settings.
Collapse
Affiliation(s)
- Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyi Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Peking University People's Hospital, Beijing, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Faria PCL, Resende RS, Cardoso AM. Metastasis and angiogenesis in cervical cancer: key aspects of purinergic signaling in platelets and possible therapeutic targets. Purinergic Signal 2024; 20:607-616. [PMID: 38753131 PMCID: PMC11554953 DOI: 10.1007/s11302-024-10020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/09/2024] [Indexed: 11/13/2024] Open
Abstract
Cervical cancer ranks as the fourth most common and fatal cancer among women worldwide. Studies have demonstrated a strong association between purinergic platelet signaling and tumor progression in this type of cancer. The literature shows that neoplastic cells, when in the bloodstream, secrete adenosine triphosphate (ATP) and adenosine nucleotide diphosphate (ADP) that act on their corresponding platelet P2Y and P2X receptors. The interaction of these nucleotides with their receptors results in platelet activation and degranulation, ensuing several consequences, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor, matrix metalloproteinases, ADP, and ATP. These molecules play essential roles in angiogenesis and tumor metastasis in cervical cancer. Several purinergic receptors are found in endothelial cells. Their activation, especially P2Y2, by the nucleotides released by platelets can induce relaxation of the endothelial barrier and consequent extravasation of tumor cells, promoting the development of metastases. Cancer cells that enter the bloodstream during the metastatic process are also subject to high shear stress and immune surveillance. In this context, activated platelets bind to circulating tumor cells and protect them against shear stress and the host's immune system, especially against natural killer cells, facilitating their spread throughout the body. Furthermore, activation of the P2Y12 receptor present on the platelet surface promotes the release of VEGF, the main inducer of angiogenesis in cervical cancer, in addition to increasing the concentration of several other pro-angiogenic molecules. Therefore, this review will address the role of platelet purinergic signaling in tumor progression of cervical cancer and propose possible therapeutic targets.
Collapse
Affiliation(s)
- Paula C L Faria
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Rackel S Resende
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Andréia M Cardoso
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
9
|
Xu W, Tan X, Li ML, Xu H, Villegas J, Fu H. Von Willebrand factor and hematogenous cancer metastasis under flow. Front Cell Dev Biol 2024; 12:1435718. [PMID: 39282473 PMCID: PMC11401050 DOI: 10.3389/fcell.2024.1435718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Hematogenous metastasis involves cancer cell migration to different locations from the primary tumor through the blood circulation. Von Willebrand factor (VWF) has been shown to play an important role in tumor cell adhesion to and extravasation from the endothelial cell lining of blood vessel walls during cancer metastasis. VWF may contribute to this process by interacting with tumor cells, endothelial cells, and platelets through various cell membrane receptors, such as platelet glycoprotein (GP)Ibα, P-selectin, ανβ3 and αIIbβ3 integrins, and glycocalyx. Blood flow can mechanically extend and activate VWF to bind platelets and associate intermolecularly with other VWF molecules in plasma or on the surface of endothelial cells, cancer cells, or platelets. This suggests a mechanoregulatory role of VWF in mediating the interactions between VWF and these cells to promote cancer cell adhesion to blood vessels. In this review, we will summarize the current knowledge of VWF function and the role of hydrodynamic forces in hematogenous cancer metastasis.
Collapse
Affiliation(s)
- Wenxuan Xu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Xi Tan
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Morgan L Li
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Hanzhi Xu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jasmine Villegas
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Hongxia Fu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Bloodworks Research Institute, Seattle, WA, United States
| |
Collapse
|
10
|
Wang R, Zhao R, Liang Z, Chen K, Zhu X. A Nomogram Based on Platelet Distribution Width-to-Lymphocyte Ratio to Predict Overall Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma. J Inflamm Res 2024; 17:4297-4308. [PMID: 38973997 PMCID: PMC11227859 DOI: 10.2147/jir.s462833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose To evaluate the prognostic significance of platelet distribution width-to-lymphocyte ratio (PDWLR) in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC). Moreover, a nomogram based on PDWLR was built and validated to predict the overall survival (OS) of this population. Patients and Methods All LA-NPC patients who were diagnosed and treated between January 2015 and December 2017 at Guangxi Medical University Cancer Hospital were included. Cox regression analyses were performed to assess PDWLR and clinical features that might affect OS to screen for independent predictors. The independent predictors and important clinical variables were used to build and validate a nomogram for predicting OS. Then, the capability of the model was estimated by discrimination, calibration and clinical usefulness. Risk stratification was conducted using the nomogram-calculated risk score, and the comparison of survival in the high-risk group and the low-risk group was through Kaplan-Meier method. Results This study included 746 LA-NPC patients. Multivariate Cox analysis suggested that age (hazard ratio [HR]: 1.81, 95% confidence interval [CI]: 1.18-2.78, P = 0.007), gender (HR: 2.03, 95% CI: 1.12-3.68, P = 0.019), pre-treatment plasma Epstein-Barr virus (EBV) DNA (HR: 1.55, 95% CI: 1.01-2.39, P = 0.047), PDWLR (HR: 2.61, 95% CI: 1.67-4.09, P < 0.001) were independent predictors of OS. Compared to the 8th edition TNM staging system, the nomogram based on the above four factors and important clinical variables (T stage and N stage) demonstrated better predictive performance. Moreover, the model had the ability to identify individuals at high risk. Conclusion PDWLR was a promising negative predictor for patients with LA-NPC. The nomogram based on PDWLR demonstrated better predictive performance than the current staging system.
Collapse
Affiliation(s)
- Runzhi Wang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Rong Zhao
- Department of Radiation, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia autonomous Region, 010020, People’s Republic of China
| | - Zhongguo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Clinical Medicine Research Center of Nasopharyngeal Carcinoma, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
11
|
Man Q, Li P, Fan J, Yang S, Xing C, Bai Y, Hu M, Wang B, Zhang K. The prognostic role of pre-treatment neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in esophageal squamous cell carcinoma treated with concurrent chemoradiotherapy. BMC Cancer 2024; 24:464. [PMID: 38616289 PMCID: PMC11017504 DOI: 10.1186/s12885-024-12242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
PURPOSE In this study, we retrospectively investigated the prognostic role of pre-treatment neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) in esophageal squamous cell carcinoma patients (ESCC) treated with concurrent chemo-radiotherapy (CCRT). METHODS We retrospectively analyzed the records of 338 patients with pathologically diagnosed esophageal squamous cell carcinoma that underwent concurrent chemo-radiotherapy from January 2013 to December 2017. Univariate and multivariate analyses were used to identify prognostic factors for progression free survival (PFS) and overall survival (OS). RESULTS The result showed that the thresholds for NLR and PLR were 2.47 and 136.0 by receiver operating characteristic curve. High NLR and PLR were both associated with tumor length (P < 0.05). High NLR and PLR were significantly associated with poor PFS and OS. Multivariate analyses identified NLR, PLR and TNM stage were independent risk factors for PFS and OS. CONCLUSIONS We show that the pre-treatment NLR and PLR may serve as prognostic indicators for esophageal squamous cell carcinoma treated with concurrent chemo-radiotherapy.
Collapse
Affiliation(s)
- Qirong Man
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China
| | - Peishun Li
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China
| | - Jing Fan
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China
| | - Sen Yang
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China
| | - Chao Xing
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China
| | - Yunling Bai
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China
| | - Miaomiao Hu
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China
| | - Baohu Wang
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China
| | - Kaixian Zhang
- Department of Oncology, Tengzhou Central People's Hospital, Shandong, China.
| |
Collapse
|
12
|
Abstract
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors. This review will first provide a brief historical perspective on platelet contributions to metastatic disease before discussing the emerging roles that platelets play in creating microenvironments that likely support successful tumor cell metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Le Chapelain O, Jadoui S, Gros A, Barbaria S, Benmeziane K, Ollivier V, Dupont S, Solo Nomenjanahary M, Mavouna S, Rogozarski J, Mawhin MA, Caligiuri G, Delbosc S, Porteu F, Nieswandt B, Mangin PH, Boulaftali Y, Ho-Tin-Noé B. The localization, origin, and impact of platelets in the tumor microenvironment are tumor type-dependent. J Exp Clin Cancer Res 2024; 43:84. [PMID: 38493157 PMCID: PMC10944607 DOI: 10.1186/s13046-024-03001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.
Collapse
Affiliation(s)
- Ophélie Le Chapelain
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Soumaya Jadoui
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Angèle Gros
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Samir Barbaria
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Véronique Ollivier
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Sébastien Dupont
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Mialitiana Solo Nomenjanahary
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Sabrina Mavouna
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Marie-Anne Mawhin
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Sandrine Delbosc
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, F-67065, France
| | - Yacine Boulaftali
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Benoit Ho-Tin-Noé
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France.
| |
Collapse
|
14
|
Kha VV, Ly TTH, Duy PDT, Hoa PTT, Cong BT. The Prognostic Significance of Pretreatment White Blood Cell and Platelet Counts for Survival Outcome in Primary Lung Cancer. Mater Sociomed 2024; 36:97-102. [PMID: 38590595 PMCID: PMC10999138 DOI: 10.5455/msm.2024.36.97-102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
Background In Vietnam, lung cancer ranks second among common types of cancer. Although there have been many advances in the diagnosis and treatment of lung cancer, it is still one of the deadliest types of cancer. Objective We investigated the prognostic value of pretreatment white blood cell (WBC) and platelet counts of patients with lung cancer. Methods This was a prospective, descriptive study with longitudinal follow-up. Data from 203 patients with stage IIIA-IV lung cancer presenting at Can Tho City Oncology Hospital between June 2020 and June 2022 were analyzed. Complete blood cell counts were obtained using standard methods. Lung cancer diagnoses and histological classifications were obtained from cancer registries. The optimal overall survival cutoff point for pretreatment WBC and platelet counts was determined using maximally selected rank statistics. Results The median follow-up was 6 (interquartile range 4-8) months and the median age was 61.3 years. The number of male patients was higher than the number of female patients. Most (71.4%) patients had adenocarcinoma; 62.1% of the patients had a WBC count of > 10 × 109/L and 38.4% had a platelet count of > 400 × 109/L. The median overall survival (OS) of all patients was 8 months. The 3-month, 6-month, and 1-year OS was 88.7%, 62.4%, and 28.3%, respectively. Patients with a WBC count of <9.18 × 109/L had a higher OS than those with a count of ≥ 9.18 × 109/L (17 months versus 8 months; p < 0.001) Patients with a platelet count of < 453 × 109/L had a higher OS than those with a count of ≥ 453 × 109/L (8 months versus 7 months; p < 0.001). Conclusion White blood cell and platelet count tests are routine investigations that are valuable, in combination with other factors, for predicting OS of lung cancer patients. They can help clinicians to monitor treatment response and survival.
Collapse
Affiliation(s)
- Vo-Van Kha
- Director Board, Can Tho Oncology Hospital, Can Tho, Vietnam
| | - Tran-Thi Huong Ly
- Department of Pathophysiology - Immunity, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
- Department of General Planning, Can Tho Oncology Hospital, Can Tho, Vietnam
| | | | - Pham-Thi Thanh Hoa
- Department of of Intenal Medicine, Can Tho Oncology Hospital, Can Tho, Vietnam
| | - Bui Tien Cong
- Department of Nuclear Medicine, Hanoi Medical University, Hanoi, Vietnam
- Center of Nuclear Medicine and Oncology, Hanoi, Vietnam
| |
Collapse
|
15
|
Shu Q, Zhang N, Han J, Yan X, Sha B, Zhao L, Yi Y, Zhang Y. Novel predictive nomograms based on aspartate aminotransferase‑to‑platelet ratio index for hepatocellular carcinoma with post‑operative adjuvant transarterial chemoembolization. Oncol Lett 2024; 27:3. [PMID: 38028181 PMCID: PMC10665988 DOI: 10.3892/ol.2023.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The clinical significance of systemic inflammation assessed with laboratory analysis of blood samples has been validated in a variety of cancers. The present study was conducted to investigate prognostic significance of preoperative aspartate aminotransferase-to-platelet ratio index (APRI) for the outcome of hepatocellular carcinoma (HCC) patients receiving post-operative adjuvant transarterial chemoembolization (PATACE). A total of 201 patients who underwent PATACE were retrospectively analyzed. A nomogram for HCC was developed using predictors based on multivariate Cox models, and bootstrapping was performed for validation. According to the ROC curve, which was used to divide patients into two cohorts: High APRI group (APRI>1.02) and Low APRI group (APRI≤1.02). In subgroup survival analysis, patients with a relatively low APRI had significantly longer disease-free survival (DFS) and overall survival (OS) than patients with a relatively high APRI, regardless of Barcelona Clinic Liver Cancer (BCLC) stages (BCLC 0/A or BCLC B/C, both P<0.05); while in China liver cancer staging I/II and TNM I/II stage patients, relatively low APRI was associated with improved DFS and OS (both P<0.05). Multivariate Cox models demonstrated that APRI and BCLC stages were independent prognostic factors of DFS and OS (both P<0.05). Nomograms for DFS and OS were constructed, respectively. Calibration curve analysis showed that the standard curve fitted well with the predicted curve. Time-receiver operating characteristic curve analysis revealed that the nomogram had high efficiency. Decision curve analysis demonstrated the high clinical value of the nomogram. APRI is an independent prognostic factor of DFS and OS in HCC patients receiving PATACE, and the combination of APRI with the HCC staging system can refine risk stratification to provide a more accurate prognostic assessment for the outcome of patients receiving PATACE.
Collapse
Affiliation(s)
- Qinghua Shu
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, P.R. China
| | - Nannan Zhang
- Department of Gastroenterology, Jiangsu Geriatric Hospital/Jiangsu Official Hospital, Nanjing, Jiangsu 210024, P.R. China
| | - Jianbo Han
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, P.R. China
| | - Xiaopeng Yan
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, P.R. China
| | - Bowen Sha
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, P.R. China
| | - Liang Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, P.R. China
| | - Yongxiang Yi
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, P.R. China
| | - Yufeng Zhang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, P.R. China
| |
Collapse
|
16
|
Zhao J, Huang A, Zeller J, Peter K, McFadyen JD. Decoding the role of platelets in tumour metastasis: enigmatic accomplices and intricate targets for anticancer treatments. Front Immunol 2023; 14:1256129. [PMID: 38106409 PMCID: PMC10722285 DOI: 10.3389/fimmu.2023.1256129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The canonical role of platelets as central players in cardiovascular disease by way of their fundamental role in mediating thrombosis and haemostasis is well appreciated. However, there is now a large body of experimental evidence demonstrating that platelets are also pivotal in various physiological and pathophysiological processes other than maintaining haemostasis. Foremost amongst these is the emerging data highlighting the key role of platelets in driving cancer growth, metastasis and modulating the tumour microenvironment. As such, there is significant interest in targeting platelets therapeutically for the treatment of cancer. Therefore, the purpose of this review is to provide an overview of how platelets contribute to the cancer landscape and why platelets present as valuable targets for the development of novel cancer diagnosis tools and therapeutics.
Collapse
Affiliation(s)
- Jessie Zhao
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VI, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VI, Australia
| | - Angela Huang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
| | - Johannes Zeller
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Plastic and Hand Surgery, Medical Center – University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VI, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VI, Australia
- Department of Medicine, Monash University, Melbourne, VI, Australia
| | - James D. McFadyen
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VI, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VI, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VI, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VI, Australia
| |
Collapse
|
17
|
Wang L, Zhang K, Feng J, Wang D, Liu J. The Progress of Platelets in Breast Cancer. Cancer Manag Res 2023; 15:811-821. [PMID: 37589033 PMCID: PMC10426457 DOI: 10.2147/cmar.s418574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Breast cancer is the most common female cancer and the sixth leading cause of death, seriously affecting the quality of life of women. Platelets, one of the fragments derived from megakaryocytes, are being increasingly investigated by tumor researchers because of their anticoagulant function. According to relevant studies, platelets, as the key source of circulating angiogenesis-related factors, can regulate tumor angiogenesis and vascular integrity, and they can also affect the tumor microenvironment, thereby facilitating the proliferation and differentiation of tumor cells. By covering or transferring normal MHC I molecules to tumor cells, platelets can protect tumor cells from being killed by the immune system and facilitate tumor cell metastasis. However, details on the mechanisms involved have remained elusive. This paper reviews and analyzes studies of the role of platelets in tumorigenesis, tumor cell proliferation, tumor metastasis, and cancer treatment to provide readers with a better understanding of the relevant studies.
Collapse
Affiliation(s)
- Luchang Wang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Clinical Laboratory, Chengdu Second People’s Hospital, Chengdu, 610017, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
18
|
Ding S, Dong X, Song X. Tumor educated platelet: the novel BioSource for cancer detection. Cancer Cell Int 2023; 23:91. [PMID: 37170255 PMCID: PMC10176761 DOI: 10.1186/s12935-023-02927-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-specific substances in the circulation during their life span, thus called "Tumor Educated Platelets" (TEPs). The alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xiaohan Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
19
|
Sun F, Hou H, Li Y, Tang W, Wang J, Lu L, Fu J, Liu Z, Gao D, Zhao F, Gao X, Ling P, Wang F, Tan H. Glycol-Split Heparin-Linked Prodrug Nanoparticles Target the Mitochondrion Apparatus for Cancer Metastasis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206491. [PMID: 36965026 DOI: 10.1002/smll.202206491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The progression and metastasis of solid tumors rely strongly on neovascularization. However, angiogenesis inhibitors alone cannot meet the needs of tumor therapy. This study prepared a new drug conjugate (PTX-GSHP-CYS-ES2, PGCE) by combining polysaccharides (heparin without anticoagulant activity, GSHP), chemotherapeutic drugs (paclitaxel, PTX), and antiangiogenic drugs (ES2). Furthermore, a tumor-targeted prodrug nanoparticle delivery system is established. The nanoparticles appear to accumulate in the mitochondrial of tumor cells and achieve ES2 and PTX release under high glutathione and acidic environment. It has been confirmed that PGCE inhibited the expression of multiple metastasis-related proteins by targeting the tumor cell mitochondrial apparatus and disrupting their structure. Furthermore, PGCE nanoparticles inhibit migration, invasion, and angiogenesis in B16F10 tumor-bearing mice and suppress tumor growth and metastasis in vitro. Further in vitro and in vivo experiments show that PGCE has strong antitumor growth and metastatic effects and exhibits efficient anti-angiogenesis properties. This multi-targeted nanoparticle system potentially enhances the antitumor and anti-metastatic effects of combination chemotherapy and antiangiogenic drugs.
Collapse
Affiliation(s)
- Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao, 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan, 250012, China
| |
Collapse
|
20
|
Tyagi T, Jain K, Yarovinsky TO, Chiorazzi M, Du J, Castro C, Griffin J, Korde A, Martin KA, Takyar SS, Flavell RA, Patel AA, Hwa J. Platelet-derived TLT-1 promotes tumor progression by suppressing CD8+ T cells. J Exp Med 2023; 220:e20212218. [PMID: 36305874 DOI: 10.1084/jem.20212218] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/25/2022] [Accepted: 10/05/2022] [Indexed: 01/19/2023] Open
Abstract
Current understanding of tumor immunosuppressive mechanisms forms the basis for modern day immunotherapies. Immunoregulatory role of platelets in cancer remains largely elusive. Platelets from non-small cell lung cancer (NSCLC) patients revealed a distinct activation phenotype. TREM-like transcript 1 (TLT-1), a platelet protein, was increased along with enhanced extracellular release from NSCLC platelets. The increased platelet TLT-1 was also evident in humanized mice with patient-derived tumors. In immunocompetent mice with syngeneic tumors, TLT-1 binding to T cells, in vivo, led to suppression of CD8 T cells, promoting tumor growth. We identified direct interaction between TLT-1 and CD3ε on T cells, implicating the NF-κB pathway in CD8 T cell suppression. Anti-TLT-1 antibody rescued patients' T cells from platelet-induced suppression ex vivo and reduced tumors in mice in vivo. Clinically, higher TLT-1 correlated with reduced survival of NSCLC patients. Our findings thus identify TLT-1 as a platelet-derived immunosuppressor that suppresses CD8 T cells and demonstrate its therapeutic and prognostic significance in cancer.
Collapse
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Kanika Jain
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Timur O Yarovinsky
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Michael Chiorazzi
- Department of Immunobiology, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Jing Du
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Cecilia Castro
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Jules Griffin
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Asawari Korde
- Pulmonary Critical Care, Yale Internal Medicine, New Haven, CT
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Shervin S Takyar
- Pulmonary Critical Care, Yale Internal Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Richard A Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Abhijit A Patel
- Yale Therapeutic Radiology, Yale Cancer Center, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - John Hwa
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| |
Collapse
|
21
|
Prediction of Potential Biomarkers in Early-Stage Nasopharyngeal Carcinoma Based on Platelet RNA Sequencing. Mol Biotechnol 2022:10.1007/s12033-022-00611-z. [DOI: 10.1007/s12033-022-00611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
AbstractEarly diagnosis is essential for the treatment and prevention of nasopharyngeal cancer. However, there is a lack of effective biological indicators for nasopharyngeal carcinoma (NPC). Therefore, we explored the potential biomarkers in tumour-educated blood platelet (TEP) RNA in early NPC. Platelets were isolated from blood plasma and their RNA was extracted. High-throughput sequenced data from a total of 33 plasma samples were analysed using DESeq2 to identify the differentially expressed genes (DEGs). Subsequently, the DEGs were subjected to principal component analysis (PCA), gene ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis; and Cytoscape, TargetScan, and miRanda software were used for inferring the competing endogenous RNA network. We identified 19 long non-coding (lnc) RNAs (DElncRNAs) and 248 mRNAs (DEmRNAs) that were differentially expressed in the TEP RNA. In addition, SELP gene mRNA and lncRNAs AC092135.3, AC012358.2, AL021807.1, AP001972.5, and GPX1 were found to be down-regulated DEmRNA and DElncRNAs in the early stage of NPC. Bioinformatic analysis showed that these DEmRNAs and DElncRNAs may be involved in regulating the pathogenesis of NPC. Our research may provide new insights for exploring the biological mechanisms of NPC and early diagnosis using potential biomarkers.
Collapse
|
22
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 PMCID: PMC11770836 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Dai Z, Zhao T, Song N, Pan K, Yang Y, Zhu X, Chen P, Zhang J, Xia C. Platelets and platelet extracellular vesicles in drug delivery therapy: A review of the current status and future prospects. Front Pharmacol 2022; 13:1026386. [PMID: 36330089 PMCID: PMC9623298 DOI: 10.3389/fphar.2022.1026386] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are blood cells that are primarily produced by the shedding of megakaryocytes in the bone marrow. Platelets participate in a variety of physiological and pathological processes in vivo, including hemostasis, thrombosis, immune-inflammation, tumor progression, and metastasis. Platelets have been widely used for targeted drug delivery therapies for treating various inflammatory and tumor-related diseases. Compared to other drug-loaded treatments, drug-loaded platelets have better targeting, superior biocompatibility, and lower immunogenicity. Drug-loaded platelet therapies include platelet membrane coating, platelet engineering, and biomimetic platelets. Recent studies have indicated that platelet extracellular vesicles (PEVs) may have more advantages compared with traditional drug-loaded platelets. PEVs are the most abundant vesicles in the blood and exhibit many of the functional characteristics of platelets. Notably, PEVs have excellent biological efficacy, which facilitates the therapeutic benefits of targeted drug delivery. This article provides a summary of platelet and PEVs biology and discusses their relationships with diseases. In addition, we describe the preparation, drug-loaded methods, and specific advantages of platelets and PEVs targeted drug delivery therapies for treating inflammation and tumors. We summarize the hot spots analysis of scientific articles on PEVs and provide a research trend, which aims to give a unique insight into the development of PEVs research focus.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Nan Song
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Chen Xia
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| |
Collapse
|
24
|
Marklund M, Schultz N, Friedrich S, Berglund E, Tarish F, Tanoglidi A, Liu Y, Bergenstråhle L, Erickson A, Helleday T, Lamb AD, Sonnhammer E, Lundeberg J. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones. Nat Commun 2022; 13:5475. [PMID: 36115838 PMCID: PMC9482614 DOI: 10.1038/s41467-022-33069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.
Collapse
Affiliation(s)
- Maja Marklund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Niklas Schultz
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Stefanie Friedrich
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden
| | - Emelie Berglund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Firas Tarish
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Anna Tanoglidi
- Department of Pathology, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Yao Liu
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Ludvig Bergenstråhle
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Thomas Helleday
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Erik Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden.
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
25
|
Strasenburg W, Jóźwicki J, Durślewicz J, Kuffel B, Kulczyk MP, Kowalewski A, Grzanka D, Drewa T, Adamowicz J. Tumor Cell-Induced Platelet Aggregation as an Emerging Therapeutic Target for Cancer Therapy. Front Oncol 2022; 12:909767. [PMID: 35814405 PMCID: PMC9259835 DOI: 10.3389/fonc.2022.909767] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells have the ability to induce platelet activation and aggregation. This has been documented to be involved in tumor progression in several types of cancers, such as lung, colon, breast, pancreatic, ovarian, and brain. During the process, platelets protect circulating tumor cells from the deleterious effects of shear forces, shield tumor cells from the immune system, and provide growth factors, facilitating metastatic spread and tumor growth at the original site as well as at the site of metastasis. Herein, we present a wider view on the induction of platelet aggregation by specific factors primarily developed by cancer, including coagulation factors, adhesion receptors, growth factors, cysteine proteases, matrix metalloproteinases, glycoproteins, soluble mediators, and selectins. These factors may be presented on the surface of tumor cells as well as in their microenvironment, and some may trigger more than just one simple receptor-ligand mechanism. For a better understanding, we briefly discuss the physiological role of the factors in the platelet activation process, and subsequently, we provide scientific evidence and discuss their potential role in the progression of specific cancers. Targeting tumor cell-induced platelet aggregation (TCIPA) by antiplatelet drugs may open ways to develop new treatment modalities. On the one hand, it may affect patients' prognosis by enhancing known therapies in advanced-stage tumors. On the other hand, the use of drugs that are mostly easily accessible and widely used in general practice may be an opportunity to propose an unparalleled antitumor prophylaxis. In this review, we present the recent discoveries of mechanisms by which cancer cells activate platelets, and discuss new platelet-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Wiktoria Strasenburg
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Błażej Kuffel
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Martyna Parol Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Adam Kowalewski
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Drewa
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Jan Adamowicz
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
26
|
Yeini E, Satchi-Fainaro R. The role of P-selectin in cancer-associated thrombosis and beyond. Thromb Res 2022; 213 Suppl 1:S22-S28. [DOI: 10.1016/j.thromres.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 10/18/2022]
|
27
|
Le Chapelain O, Ho-Tin-Noé B. Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment? Cancers (Basel) 2022; 14:cancers14092192. [PMID: 35565321 PMCID: PMC9105443 DOI: 10.3390/cancers14092192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is the complex and heterogenous ecosystem of solid tumors known to influence their growth and their progression. Besides tumor cells, the TME comprises a variety of host-derived cell types, ranging from endothelial cells to fibroblasts and immune cells. Clinical and experimental data are converging to indicate that platelets, originally known for their fundamental hemostatic function, also participate in tumor development and shaping of the TME. Considering the abundance of antiplatelet drugs, understanding if and how platelets contribute to the TME may lead to new therapeutic tools for improved cancer prevention and treatments. Abstract The tumor microenvironment (TME) has gained considerable interest because of its decisive impact on cancer progression, response to treatment, and disease recurrence. The TME can favor the proliferation, dissemination, and immune evasion of cancer cells. Likewise, there is accumulating evidence that intratumoral platelets could favor the development and aggressiveness of solid tumors, notably by influencing tumor cell phenotype and shaping the vascular and immune TME components. Yet, in contrast to other tumor-associated cell types like macrophages and fibroblasts, platelets are still often overlooked as components of the TME. This might be due, in part, to a deficit in investigating and reporting the presence of platelets in the TME and its relationships with cancer characteristics. This review summarizes available evidence from clinical and animal studies supporting the notion that tumor-associated platelets are not incidental bystanders but instead integral and active components of the TME. A particular emphasis is given to the description of intratumoral platelets, as well as to the functional consequences and possible mechanisms of intratumoral platelet accumulation.
Collapse
|
28
|
Qian X, Zheng H, Xue K, Chen Z, Hu Z, Zhang L, Wan J. Recurrence Risk of Liver Cancer Post-hepatectomy Using Machine Learning and Study of Correlation With Immune Infiltration. Front Genet 2021; 12:733654. [PMID: 34956309 PMCID: PMC8692778 DOI: 10.3389/fgene.2021.733654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Postoperative recurrence of liver cancer is the main obstacle to improving the survival rate of patients with liver cancer. We established an mRNA-based model to predict the risk of recurrence after hepatectomy for liver cancer and explored the relationship between immune infiltration and the risk of recurrence after hepatectomy for liver cancer. We performed a series of bioinformatics analyses on the gene expression profiles of patients with liver cancer, and selected 18 mRNAs as biomarkers for predicting the risk of recurrence of liver cancer using a machine learning method. At the same time, we evaluated the immune infiltration of the samples and conducted a joint analysis of the recurrence risk of liver cancer and found that B cell, B cell naive, T cell CD4+ memory resting, and T cell CD4+ were significantly correlated with the risk of postoperative recurrence of liver cancer. These results are helpful for early detection, intervention, and the individualized treatment of patients with liver cancer after surgical resection, and help to reveal the potential mechanism of liver cancer recurrence.
Collapse
Affiliation(s)
- Xiaowen Qian
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Huilin Zheng
- Department of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ke Xue
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zheng Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Zhenhua Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.,Key Laboratory of Combined Multi-Organ Transplantation, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health Key Laboratory of Organ Transplantation, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Yiwu Central Hospital, Yiwu, China
| | - Lei Zhang
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China.,Department of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jian Wan
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
29
|
Wurtzel JGT, Lazar S, Sikder S, Cai KQ, Astsaturov I, Weyrich AS, Rowley JW, Goldfinger LE. Platelet microRNAs inhibit primary tumor growth via broad modulation of tumor cell mRNA expression in ectopic pancreatic cancer in mice. PLoS One 2021; 16:e0261633. [PMID: 34936674 PMCID: PMC8694476 DOI: 10.1371/journal.pone.0261633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
We investigated the contributions of platelet microRNAs (miRNAs) to the rate of growth and regulation of gene expression in primary ectopic tumors using mouse models. We previously identified an inhibitory role for platelets in solid tumor growth, mediated by tumor infiltration of platelet microvesicles (microparticles) which are enriched in platelet-derived miRNAs. To investigate the specific roles of platelet miRNAs in tumor growth models, we implanted pancreatic ductal adenocarcinoma cells as a bolus into mice with megakaryocyte-/platelet-specific depletion of mature miRNAs. We observed an ~50% increase in the rate of growth of ectopic primary tumors in these mice compared to controls including at early stages, associated with reduced apoptosis in the tumors, in particular in tumor cells associated with platelet microvesicles-which were depleted of platelet-enriched miRNAs-demonstrating a specific role for platelet miRNAs in modulation of primary tumor growth. Differential expression RNA sequencing of tumor cells isolated from advanced primary tumors revealed a broad cohort of mRNAs modulated in the tumor cells as a function of host platelet miRNAs. Altered genes comprised 548 up-regulated transcripts and 43 down-regulated transcripts, mostly mRNAs altogether spanning a variety of growth signaling pathways-notably pathways related to epithelial-mesenchymal transition-in tumor cells from platelet miRNA-deleted mice compared with those from control mice. Tumors in platelet miRNA-depleted mice showed more sarcomatoid growth and more advanced tumor grade, indicating roles for host platelet miRNAs in tumor plasticity. We further validated increased protein expression of selected genes associated with increased cognate mRNAs in the tumors due to platelet miRNA depletion in the host animals, providing proof of principle of widespread effects of platelet miRNAs on tumor cell functional gene expression in primary tumors in vivo. Together, these data demonstrate that platelet-derived miRNAs modulate solid tumor growth in vivo by broad-spectrum restructuring of the tumor cell transcriptome.
Collapse
Affiliation(s)
- Jeremy G. T. Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sophia Lazar
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sonali Sikder
- Molecular Therapeutics Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Kathy Q. Cai
- Cancer Biology Program and Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Igor Astsaturov
- Molecular Therapeutics Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Andrew S. Weyrich
- Molecular Medicine Program, Pathology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Jesse W. Rowley
- Molecular Medicine Program, Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
30
|
Leiva O, AbdelHameid D, Connors JM, Cannon CP, Bhatt DL. Common Pathophysiology in Cancer, Atrial Fibrillation, Atherosclerosis, and Thrombosis: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2021; 3:619-634. [PMID: 34988471 PMCID: PMC8702799 DOI: 10.1016/j.jaccao.2021.08.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease and cancer are the 2 leading causes of death worldwide. Emerging evidence suggests common mechanisms between cancer and cardiovascular disease, including atrial fibrillation and atherosclerosis. With advances in cancer therapies, screening, and diagnostics, cancer-specific survival and outcomes have improved. This increase in survival has led to the coincidence of cardiovascular disease, including atrial fibrillation and atherosclerosis, as patients with cancer live longer. Additionally, cancer and cardiovascular disease share several risk factors and underlying pathophysiologic mechanisms, including inflammation, cancer-related factors including treatment effects, and alterations in platelet function. Patients with cancer are at increased risk for bleeding and thrombosis compared with the general population. Although optimal antithrombotic therapy, including agent choice and duration, has been extensively studied in the general population, this area remains understudied in patients with cancer despite their altered thrombotic and bleeding risk. Future investigation, including incorporation of cancer-specific characteristics to traditional thrombotic and bleeding risk scores, clinical trials in the cancer population, and the development of novel antithrombotic and anti-inflammatory strategies on the basis of shared pathophysiologic mechanisms, is warranted to improve outcomes in this patient population.
Collapse
Key Words
- AF, atrial fibrillation
- CAD, coronary artery disease
- CHIP, clonal hematopoiesis of indeterminate potential
- CI, confidence interval
- CLEC-2, C-type lectin-like receptor 2
- HR, hazard ratio
- IL, interleukin
- MI, myocardial infarction
- PCI, percutaneous coronary intervention
- ROS, reactive oxygen species
- TKI, tyrosine kinase inhibitor
- VTE, venous thromboembolism
- arrhythmia
- risk factor
- thrombosis
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Duaa AbdelHameid
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jean M. Connors
- Division of Hematology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher P. Cannon
- Brigham and Women’s Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak L. Bhatt
- Brigham and Women’s Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Xu S, Liu C, Zang S, Li J, Wang Y, Ren K, Li M, Zhang Z, He Q. Multifunctional self-delivery micelles targeting the invasion-metastasis cascade for enhanced chemotherapy against melanoma and the lung metastasis. Asian J Pharm Sci 2021; 16:794-805. [PMID: 35027954 PMCID: PMC8740406 DOI: 10.1016/j.ajps.2021.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022] Open
|
32
|
Lung-Derived Selectins Enhance Metastatic Behavior of Triple Negative Breast Cancer Cells. Biomedicines 2021; 9:biomedicines9111580. [PMID: 34829810 PMCID: PMC8615792 DOI: 10.3390/biomedicines9111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
The lung is one of the deadliest sites of breast cancer metastasis, particularly for triple negative breast cancer (TNBC). We have previously shown that the lung produces several soluble factors that may enhance the metastatic behavior of TNBC, including E-, L-, and P-selectin. In this paper, we hypothesize that lung-derived selectins promote TNBC metastatic behavior and may serve as a potential therapeutic target. Lungs were isolated from mice and used to generate lung-conditioned media (CM). Lung-derived selectins were immunodepleted and TNBC migration and proliferation were assessed in response to native or selectin-depleted lung-CM. A 3D ex vivo pulmonary metastasis assay (PuMA) was used to assess the metastatic progression of TNBC in the lungs of wild-type versus triple-selectin (ELP-/-) knockout mice. We observed that individual lung-derived selectins enhance in vitro migration (p ≤ 0.05), but not the proliferation of TNBC cells, and that ex vivo metastatic progression is reduced in the lungs of ELP-/- mice compared to wild-type mice (p ≤ 0.05). Treatment with the pan-selectin inhibitor bimosiamose reduced in vitro lung-specific TNBC migration and proliferation (p ≤ 0.05). Taken together, these results suggest that lung-derived selectins may present a potential therapeutic target against TNBC metastasis. Future studies are aimed at elucidating the pro-metastatic mechanisms of lung-derived selectins and developing a lung-directed therapeutic approach.
Collapse
|
33
|
Kdimati S, Mullins CS, Linnebacher M. Cancer-Cell-Derived IgG and Its Potential Role in Tumor Development. Int J Mol Sci 2021; 22:11597. [PMID: 34769026 PMCID: PMC8583861 DOI: 10.3390/ijms222111597] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
Human immunoglobulin G (IgG) is the primary component of the human serum antibody fraction, representing about 75% of the immunoglobulins and 10-20% of the total circulating plasma proteins. Generally, IgG sequences are highly conserved, yet the four subclasses, IgG1, IgG2, IgG3, and IgG4, differ in their physiological effector functions by binding to different IgG-Fc receptors (FcγR). Thus, despite a similarity of about 90% on the amino acid level, each subclass possesses a unique manner of antigen binding and immune complex formation. Triggering FcγR-expressing cells results in a wide range of responses, including phagocytosis, antibody-dependent cell-mediated cytotoxicity, and complement activation. Textbook knowledge implies that only B lymphocytes are capable of producing antibodies, which recognize specific antigenic structures derived from pathogens and infected endogenous or tumorigenic cells. Here, we review recent discoveries, including our own observations, about misplaced IgG expression in tumor cells. Various studies described the presence of IgG in tumor cells using immunohistology and established correlations between high antibody levels and promotion of cancer cell proliferation, invasion, and poor clinical prognosis for the respective tumor patients. Furthermore, blocking tumor-cell-derived IgG inhibited tumor cells. Tumor-cell-derived IgG might impede antigen-dependent cellular cytotoxicity by binding antigens while, at the same time, lacking the capacity for complement activation. These findings recommend tumor-cell-derived IgG as a potential therapeutic target. The observed uniqueness of Ig heavy chains expressed by tumor cells, using PCR with V(D)J rearrangement specific primers, suggests that this specific part of IgG may additionally play a role as a potential tumor marker and, thus, also qualify for the neoantigen category.
Collapse
Affiliation(s)
| | | | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany; (S.K.); (C.S.M.)
| |
Collapse
|
34
|
Noh JY. Megakaryopoiesis and Platelet Biology: Roles of Transcription Factors and Emerging Clinical Implications. Int J Mol Sci 2021; 22:ijms22179615. [PMID: 34502524 PMCID: PMC8431765 DOI: 10.3390/ijms22179615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets play a critical role in hemostasis and thrombus formation. Platelets are small, anucleate, and short-lived blood cells that are produced by the large, polyploid, and hematopoietic stem cell (HSC)-derived megakaryocytes in bone marrow. Approximately 3000 platelets are released from one megakaryocyte, and thus, it is important to understand the physiologically relevant mechanism of development of mature megakaryocytes. Many genes, including several key transcription factors, have been shown to be crucial for platelet biogenesis. Mutations in these genes can perturb megakaryopoiesis or thrombopoiesis, resulting in thrombocytopenia. Metabolic changes owing to inflammation, ageing, or diseases such as cancer, in which platelets play crucial roles in disease development, can also affect platelet biogenesis. In this review, I describe the characteristics of platelets and megakaryocytes in terms of their differentiation processes. The role of several critical transcription factors have been discussed to better understand the changes in platelet biogenesis that occur during disease or ageing.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
35
|
Cariello M, Piccinin E, Zerlotin R, Piglionica M, Peres C, Divella C, Signorile A, Villani G, Ingravallo G, Sabbà C, Moschetta A. Adhesion of Platelets to Colon Cancer Cells Is Necessary to Promote Tumor Development in Xenograft, Genetic and Inflammation Models. Cancers (Basel) 2021; 13:cancers13164243. [PMID: 34439397 PMCID: PMC8394609 DOI: 10.3390/cancers13164243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Platelets are small, anucleate, metabolically active cells and they represent an important linkage between tissue damage and inflammatory response. Several studies focused on the central role of platelets in inflammation and tumor development through their direct interaction with other cell types. Mice lacking the vascular adhesion molecules P-selectin exhibited a reduction in tumor metastases. We demonstrated that P-selectin-ablated platelets reduced tumor growth in a xenograft adenocarcinoma model. Furthermore, the lack of P-selectin decreased colon cancer progression in genetic mouse models and in chemically-induced colitis colorectal carcinogenesis. Our results suggest that platelets-cancer cells crosstalk via P-selectin is fundamental for tumor development. Abstract Platelets represent the linkage between tissue damage and inflammatory response with a putative role in tumorigenesis. Given the importance of the microenvironment in colon cancer development, we elucidated the eventual role of platelets-cancer cells crosstalk in in vivo colon cancer models. To evaluate the involvement of platelets in intestinal tumorigenesis, we first analyzed if the ablation of β-integrin P-selectin that drives platelets-cell adhesion, would contribute to platelets-colon cancer cell interaction and drive cancer progression. In a xenograft tumor model, we observed that when tumors are inoculated with platelets, the ablation of P-selectin significantly reduced tumor growth compared to control platelets. Furthermore, in genetic models, as well as in chronic colitis-associated colorectal carcinogenesis, P-selectin ablated mice displayed a significant reduction in tumor number and size compared to control mice. Taken together, our data highlights the importance of platelets in the tumor microenvironment for intestinal tumorigenesis. These results support the hypothesis that a strategy aimed to inhibit platelets adhesion to tumor cells are able to block tumor growth and could represent a novel therapeutic approach to colon cancer treatment.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.S.); (G.V.)
| | - Roberta Zerlotin
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
| | - Claudia Peres
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy;
| | - Chiara Divella
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 71024 Bari, Italy;
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.S.); (G.V.)
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.S.); (G.V.)
| | - Giuseppe Ingravallo
- Pathology Section, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy;
- Correspondence: ; Tel.: +39-0805593262; Fax: +39-0805478126
| |
Collapse
|
36
|
Menyailo ME, Bokova UA, Ivanyuk EE, Khozyainova AA, Denisov EV. Metastasis Prevention: Focus on Metastatic Circulating Tumor Cells. Mol Diagn Ther 2021; 25:549-562. [PMID: 34287797 DOI: 10.1007/s40291-021-00543-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Metastasis is the main cause of cancer death. Metastatic foci are derived from tumor cells that detach from the primary tumor and then enter the circulation. Circulating tumor cells (CTCs) are generally associated with a high probability of distant metastasis and a negative prognosis. Most CTCs die in the bloodstream, and only a few cells form metastases. Such metastatic CTCs have a stem-like and hybrid epithelial-mesenchymal phenotype, can avoid immune surveillance, and show increased therapy resistance. Targeting metastatic CTCs and their progenitors in primary tumors and their descendants, particularly disseminated tumor cells, represents an attractive strategy for metastasis prevention. However, current therapeutic strategies mainly target the primary tumor and only indirectly affect metastasis-initiating cells. Here, we consider potential methods for preventing metastasis based on targeting molecular and cellular features of metastatic CTCs, including CTC clusters. Also, we emphasize current knowledge gaps in CTC biology that should be addressed to develop highly effective therapeutics and strategies for metastasis suppression.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Ustinia A Bokova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Elena E Ivanyuk
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia.
| |
Collapse
|
37
|
Mattiola I. Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers (Basel) 2021; 13:cancers13133225. [PMID: 34203391 PMCID: PMC8267947 DOI: 10.3390/cancers13133225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are circulating innate lymphocytes endowed with antitumoral functions. NK cells are the innate counterpart of effector T cells and among the first cells responding to infections and tumors. In this review, the immune circuits regulating the NK cell antitumoral functions and the possible strategies to shape natural killing in cancer will be discussed. Abstract Natural killer (NK) cells are innate lymphoid cells playing an important role in anti-cancer immunity. NK cells are efficient in controlling the spreading of metastasis but are not very powerful in fighting against primary tumors. The NK cell capability to infiltrate and persist in the tumor microenvironment and to exert their antitumoral functions is often limited by tumor escape mechanisms. These tumor-mediated strategies not only induce NK cell tolerance but also interfere with the NK cell-dependent immune networking. This review will provide an overview of the tumor escape mechanisms impacting NK cells, identify the immune circuits regulating the NK cell-dependent antitumor immunity and revise the emerging therapeutic approaches to unleash NK cells in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany;
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10117 Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
38
|
Tao DL, Tassi Yunga S, Williams CD, McCarty OJT. Aspirin and antiplatelet treatments in cancer. Blood 2021; 137:3201-3211. [PMID: 33940597 PMCID: PMC8351882 DOI: 10.1182/blood.2019003977] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Platelets have been hypothesized to promote certain neoplastic malignancies; however, antiplatelet drugs are still not part of routine pharmacological cancer prevention and treatment protocols. Paracrine interactions between platelets and cancer cells have been implicated in potentiating the dissemination, survival within the circulation, and extravasation of cancer cells at distant sites of metastasis. Signals from platelets have also been suggested to confer epigenetic alterations, including upregulating oncoproteins in circulating tumor cells, and secretion of potent growth factors may play roles in promoting mitogenesis, angiogenesis, and metastatic outgrowth. Thrombocytosis remains a marker of poor prognosis in patients with solid tumors. Experimental data suggest that lowering of platelet count may reduce tumor growth and metastasis. On the basis of the mechanisms by which platelets could contribute to cancer growth and metastasis, it is conceivable that drugs reducing platelet count or platelet activation might attenuate cancer progression and improve outcomes. We will review select pharmacological approaches that inhibit platelets and may affect cancer development and propagation. We begin by presenting an overview of clinical cancer prevention and outcome studies with low-dose aspirin. We then review current nonclinical development of drugs targeted to platelet binding, activation, and count as potential mitigating agents in cancer.
Collapse
Affiliation(s)
- Derrick L Tao
- Division of Hematology & Medical Oncology
- Department of Biomedical Engineering, and
| | - Samuel Tassi Yunga
- Department of Biomedical Engineering, and
- Cancer Early Detection & Advanced Research Center, Oregon Health & Science University, Portland, OR; and
| | - Craig D Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR
| | - Owen J T McCarty
- Division of Hematology & Medical Oncology
- Department of Biomedical Engineering, and
| |
Collapse
|
39
|
Ma SN, Mao ZX, Wu Y, Liang MX, Wang DD, Chen X, Chang PA, Zhang W, Tang JH. The anti-cancer properties of heparin and its derivatives: a review and prospect. Cell Adh Migr 2021; 14:118-128. [PMID: 32538273 PMCID: PMC7513850 DOI: 10.1080/19336918.2020.1767489] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angiogenesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-CXCR4 axis. Here we summarize the current experimental evidence regarding the anti-cancer role of heparin and its derivatives, and conclude that there is evidence to support heparin’s role in inhibiting cancer progression, making it a promising anti-cancer agent.
Collapse
Affiliation(s)
- Sai-Nan Ma
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China.,Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University , Suqian, P.R.China
| | - Zhi-Xiang Mao
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University , Xuzhou, P.R. China
| | - Yang Wu
- Core Facility, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Ping-An Chang
- Urinary Surgery, Dongtai People's Hospital , Dongtai, P.R. China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| |
Collapse
|
40
|
Abstract
Platelets have long been known to play important roles beyond hemostasis and thrombosis. Now recognized as a bona fide mediator of malignant disease, platelets influence various aspects of cancer progression, most notably tumor cell metastasis. Interestingly, platelets isolated from cancer patients often display distinct RNA and protein profiles, with no clear alterations in hemostatic activity. This phenotypically distinct population, termed tumor-educated platelets, now receive significant attention for their potential use as a readily available liquid biopsy for early cancer detection. Although the mechanisms underpinning platelet education are still being defined, direct uptake and storage of tumor-derived factors, signal-dependent changes in platelet RNA processing, and differential platelet production by tumor-educated megakaryocytes are the most prominent scenarios. This article aims to cover the various modalities of platelet education by tumors, in addition to assessing their diagnostic potential.
Collapse
|
41
|
Haschemi R, Gockel LM, Bendas G, Schlesinger M. A Combined Activity of Thrombin and P-Selectin Is Essential for Platelet Activation by Pancreatic Cancer Cells. Int J Mol Sci 2021; 22:3323. [PMID: 33805059 PMCID: PMC8037188 DOI: 10.3390/ijms22073323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer patients have an elevated risk of suffering from venous thrombosis. Among several risk factors that contribute to hypercoagulability of this malignancy, platelets possess a key role in the initiation of clot formation. Although single mechanisms of platelet activation are well-known in principle, combinations thereof and their potential synergy to mediate platelet activation is, in the case of pancreatic cancer, far from being clear. Applying an inhibitor screening approach using light transmission aggregometry, dense granule release, and thrombin formation assays, we provide evidence that a combination of tissue factor-induced thrombin formation by cancer cells and their platelet P-selectin binding is responsible for AsPC-1 and Capan-2 pancreatic cancer cell-mediated platelet activation. While the blockade of one of these pathways leads to a pronounced inhibition of platelet aggregation and dense granule release, the simultaneous blockade of both pathways is inevitable to prevent platelet aggregation completely and minimize ATP release. In contrast, MIA PaCa-2 pancreatic cancer cells express reduced levels of tissue factor and P-selectin ligands and thus turn out to be poor platelet activators. Consequently, a simultaneous blockade of thrombin and P-selectin binding seems to be a powerful approach, as mediated by heparin to crucially reduce the hypercoagulable state of pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | | | - Martin Schlesinger
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (R.H.); (L.M.G.); (G.B.)
| |
Collapse
|
42
|
Fabricius HÅ, Starzonek S, Lange T. The Role of Platelet Cell Surface P-Selectin for the Direct Platelet-Tumor Cell Contact During Metastasis Formation in Human Tumors. Front Oncol 2021; 11:642761. [PMID: 33791226 PMCID: PMC8006306 DOI: 10.3389/fonc.2021.642761] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian platelets, devoid of nuclei, are the smallest cells in the blood stream. They are essential for hemostasis, but also transmit cell signals that are necessary for regenerative and generative processes such as inflammation, immunity and tissue repair. In particular, in malignancies they are also associated with cell proliferation, angiogenesis, and epithelial-mesenchymal transition. Platelets promote metastasis and resistance to anti-tumor treatment. However, fundamental principles of the interaction between them and target cells within tumors are complex and still quite obscure. When injected into animals or circulating in the blood of cancer patients, cancer cells ligate platelets in a timely manner closely related to platelet activation either by direct contact or by cell-derived substances or microvesicles. In this context, a large number of different surface molecules and transduction mechanisms have been identified, although the results are sometimes species-specific and not always valid to humans. In this mini-review, we briefly summarize the current knowledge on the role of the direct and indirect platelet-tumor interaction for single steps of the metastatic cascade and specifically focus on the functional role of P-selectin.
Collapse
Affiliation(s)
- Hans-Åke Fabricius
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Starzonek
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Fang L, Xu Q, Qian J, Zhou JY. Aberrant Factors of Fibrinolysis and Coagulation in Pancreatic Cancer. Onco Targets Ther 2021; 14:53-65. [PMID: 33442266 PMCID: PMC7797325 DOI: 10.2147/ott.s281251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant factors associated with fibrinolysis and thrombosis are found in many cancer patients, which can promote metastasis and are associated with poor prognosis. The relationship between tumor-associated fibrinolysis and thrombosis is poorly understood in pancreatic cancer. This review provides a brief highlight of existing studies that the fibrinolysis and coagulation systems were activated in pancreatic cancer patients, along with aberrant high concentrations of tissue plasminogen activator (t-PA), urine plasminogen activator (u-PA), D-dimer, fibrinogen, or platelets. These factors cooperate with each other, propelling tumor cell shedding, localization, adhesion to distant metastasis. The relationship between thrombosis or fibrinolysis and cancer immune escape is also investigated. In addition, the potential prevention and therapy strategies of pancreatic cancer targeting factors in fibrinolysis and coagulation systems are also been discussed, in which we highlight two effective agents aspirin and low-molecular weight heparin (LMWH). Summarily, this review provides new directions for the research and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lianghua Fang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Qing Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210029, People's Republic of China
| | - Jun Qian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Jin-Yong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
44
|
Schwarz S, Schlesinger M, Bendas G. Detection of Tumor Cell-Induced Platelet Aggregation and Granule Secretion. Methods Mol Biol 2021; 2294:181-195. [PMID: 33742402 DOI: 10.1007/978-1-0716-1350-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hematogenous metastatic spread of cancer is strongly dependent on and triggered by an intensive interplay of tumor cells with platelets. Immediately after entering the blood vascular system, tumor cells are surrounded by a platelet cloak, which protects them physically from shear stress and from attacks by the immune surveillance. Furthermore, tumor cell binding activates platelets, which in turn release growth factors and chemokines to recruit myeloid cells into the platelet/tumor cell microemboli, eventually create a permissive microenvironment in the early metastatic niche. Although the molecular mechanisms of tumor cells to activate platelets appear versatile being a matter of further research, interference with platelet activation turns out to be an attractive target to efficiently inhibit tumor metastasis. Some experimental assays are generally recognized to follow tumor cell-induced platelet activation (TCIPA), which provide an insight into the molecular mechanisms of TCIPA and allow searching for potential inhibitors. In this chapter, we describe the two most prominent experimental assays to follow TCIPA, namely platelet aggregation and platelet granule secretion, experimentally realized by dense granules´ ATP quantification. Although light transmission aggregometry and ATP detection from dense granule secretion are two age-old techniques, they are still highly relevant to provide reliable information concerning platelet activation status since all tumor cell-derived molecular triggers are covered and monitored in the experimental outcome.
Collapse
Affiliation(s)
- Svenja Schwarz
- Pharmaceutical Department, University Bonn, Bonn, Germany
| | | | - Gerd Bendas
- Pharmaceutical Department, University Bonn, Bonn, Germany.
| |
Collapse
|
45
|
Fucoidan-Doxorubicin Nanoparticles Targeting P-Selectin for Effective Breast Cancer Therapy. Carbohydr Polym 2020; 249:116837. [DOI: 10.1016/j.carbpol.2020.116837] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
|
46
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Rivello F, Matuła K, Piruska A, Smits M, Mehra N, Huck WTS. Probing single-cell metabolism reveals prognostic value of highly metabolically active circulating stromal cells in prostate cancer. SCIENCE ADVANCES 2020; 6:6/40/eaaz3849. [PMID: 32998889 PMCID: PMC7527228 DOI: 10.1126/sciadv.aaz3849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 08/06/2020] [Indexed: 05/05/2023]
Abstract
Despite their important role in metastatic disease, no general method to detect circulating stromal cells (CStCs) exists. Here, we present the Metabolic Assay-Chip (MA-Chip) as a label-free, droplet-based microfluidic approach allowing single-cell extracellular pH measurement for the detection and isolation of highly metabolically active cells (hm-cells) from the tumor microenvironment. Single-cell mRNA-sequencing analysis of the hm-cells from metastatic prostate cancer patients revealed that approximately 10% were canonical EpCAM+ hm-CTCs, 3% were EpCAM- hm-CTCs with up-regulation of prostate-related genes, and 87% were hm-CStCs with profiles characteristic for cancer-associated fibroblasts, mesenchymal stem cells, and endothelial cells. Kaplan-Meier analysis shows that metastatic prostate cancer patients with more than five hm-cells have a significantly poorer survival probability than those with zero to five hm-cells. Thus, prevalence of hm-cells is a prognosticator of poor outcome in prostate cancer, and a potentially predictive and therapy response biomarker for agents cotargeting stromal components and preventing epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Francesca Rivello
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Kinga Matuła
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Aigars Piruska
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Minke Smits
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
48
|
Buffone A, Weaver VM. Don't sugarcoat it: How glycocalyx composition influences cancer progression. J Cell Biol 2020; 219:133536. [PMID: 31874115 PMCID: PMC7039198 DOI: 10.1083/jcb.201910070] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Buffone and Weaver discuss how the structure of the backbones and glycans of the tumor glycocalyx governs cell–matrix interactions and directs cancer progression. Mechanical interactions between tumors and the extracellular matrix (ECM) of the surrounding tissues have profound effects on a wide variety of cellular functions. An underappreciated mediator of tumor–ECM interactions is the glycocalyx, the sugar-decorated proteins and lipids that act as a buffer between the tumor and the ECM, which in turn mediates all cell-tissue mechanics. Importantly, tumors have an increase in the density of the glycocalyx, which in turn increases the tension of the cell membrane, alters tissue mechanics, and drives a more cancerous phenotype. In this review, we describe the basic components of the glycocalyx and the glycan moieties implicated in cancer. Next, we examine the important role the glycocalyx plays in driving tension-mediated cancer cell signaling through a self-enforcing feedback loop that expands the glycocalyx and furthers cancer progression. Finally, we discuss current tools used to edit the composition of the glycocalyx and the future challenges in leveraging these tools into a novel tractable approach to treat cancer.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA.,Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA.,Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
49
|
Yoon J, Parish CR, Blackburn AC, Coupland LA. Potential contrasting effects of platelets on the migration and invasion of sarcomas versus carcinomas. Platelets 2020; 32:662-670. [PMID: 32664767 DOI: 10.1080/09537104.2020.1792433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ability of platelets to promote carcinoma and melanoma progression has been thoroughly studied and occurs in numerous ways. In contrast, the effect of platelets on sarcomas, tumors arising from mesenchymal cells, has received very little attention. This study was undertaken to simultaneously compare the effects of platelets on murine and human sarcomas and carcinomas. In contrast to their effect on carcinomas, platelets inhibited the invasion of some murine- and all human sarcomas tested in vitro. Further invasion studies with TGFβ treatment only partially recapitulated the results seen with whole platelets. In a spontaneous tumor growth and lung metastasis model, platelets promoted 4T1 mammary carcinoma metastasis but not MCA-1 fibrosarcoma metastasis. Gene expression analysis of the platelet-promoted MDA-MB-231 breast carcinoma, and the platelet-inhibited HT1080 fibrosarcoma cell lines revealed that exposure of MDA-MB-231 to platelets, resulted in upregulation of oncogenes and EMT-associated genes whereas in HT1080 a tumor-suppressor gene was significantly upregulated. Thus, this study has revealed a potential diametrically opposing effect of platelets on mesenchymal and epithelial cancers, a finding that warrants further investigation.
Collapse
Affiliation(s)
- Jinsoo Yoon
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Christopher R Parish
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Anneke C Blackburn
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Lucy A Coupland
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| |
Collapse
|
50
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|