1
|
Boudrioua A, Joiner JD, Grin I, Kronenberger T, Korotkov VS, Steinchen W, Kohler A, Schminke S, Schulte JC, Pietsch M, Naini A, Kalverkamp S, Hotop SK, Coyle T, Piselli C, Coles M, Rox K, Marschal M, Bange G, Flieger A, Poso A, Brönstrup M, Hartmann MD, Wagner S. Discovery of synthetic small molecules targeting the central regulator of Salmonella pathogenicity. SCIENCE ADVANCES 2025; 11:eadr5235. [PMID: 40215303 PMCID: PMC11988454 DOI: 10.1126/sciadv.adr5235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/04/2025] [Indexed: 04/14/2025]
Abstract
The enteric pathogen Salmonella enterica serovar Typhimurium relies on the activity of effector proteins to invade, replicate, and disseminate into host epithelial cells and other tissues, thereby causing disease. Secretion and injection of effector proteins into host cells is mediated by dedicated secretion systems, which hence represent major virulence determinants. Here, we report the identification of a synthetic small molecule with drug-like properties, C26, which suppresses the secretion of effector proteins and consequently hinders bacterial invasion of eukaryotic cells. C26 binds to and inhibits HilD, the transcriptional regulator of the major secretion systems. Although sharing the same binding pocket as the previously described long-chain fatty acid ligands, C26 inhibits HilD with a unique binding mode and a distinct mechanism. We provide evidence of intramacrophage activity and present analogs with improved potency and suitability as scaffolds to develop antivirulence agents against Salmonella infections in humans and animals.
Collapse
Affiliation(s)
- Abdelhakim Boudrioua
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, 72076 Tübingen, Germany
| | - Joe D. Joiner
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Iwan Grin
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, 72076 Tübingen, Germany
| | - Thales Kronenberger
- German Center for Infection Research (DZIF), partner-site Tübingen, 72076 Tübingen, Germany
- Institute of Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Vadim S. Korotkov
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps University of Marburg, Hans Meerwein-Str. 4, 35043 Marburg, Germany
| | - Alexander Kohler
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, 72076 Tübingen, Germany
| | - Sophie Schminke
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Julia-Christina Schulte
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, 72076 Tübingen, Germany
| | - Michael Pietsch
- Unit for Enteropathogenic Bacteria and Legionella (FG11) and National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute (RKI), Burgstr. 37, 38855 Wernigerode, Germany
| | - Arun Naini
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Simon Kalverkamp
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Travis Coyle
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Claudio Piselli
- German Center for Infection Research (DZIF), partner-site Tübingen, 72076 Tübingen, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Murray Coles
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Matthias Marschal
- Institute of Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Gert Bange
- Center for Synthetic Microbiology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps University of Marburg, Hans Meerwein-Str. 4, 35043 Marburg, Germany
| | - Antje Flieger
- Unit for Enteropathogenic Bacteria and Legionella (FG11) and National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute (RKI), Burgstr. 37, 38855 Wernigerode, Germany
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Institute of Organic Chemistry and Biomolecular Drug Research Centre (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Marcus D. Hartmann
- German Center for Infection Research (DZIF), partner-site Tübingen, 72076 Tübingen, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, 72076 Tübingen, Germany
- Excellence Cluster “Controlling Microbes to Fight Infections” (CMFI), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Mekkaoui F, Drewell RA, Dresch JM, Spratt DE. Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195074. [PMID: 39644990 PMCID: PMC11832328 DOI: 10.1016/j.bbagrm.2024.195074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Homeodomain transcription factors (TFs) bind to specific DNA sequences to regulate the expression of target genes. Structural work has provided insight into molecular identities and aided in unraveling structural features of these TFs. However, the detailed affinity and specificity by which these TFs bind to DNA sequences is still largely unknown. Qualitative methods, such as DNA footprinting, Electrophoretic Mobility Shift Assays (EMSAs), Systematic Evolution of Ligands by Exponential Enrichment (SELEX), Bacterial One Hybrid (B1H) systems, Surface Plasmon Resonance (SPR), and Protein Binding Microarrays (PBMs) have been widely used to investigate the biochemical characteristics of TF-DNA binding events. In addition to these qualitative methods, bioinformatic approaches have also assisted in TF binding site discovery. Here we discuss the advantages and limitations of these different approaches, as well as the benefits of utilizing more quantitative approaches, such as Mechanically Induced Trapping of Molecular Interactions (MITOMI), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC), in determining the biophysical basis of binding specificity of TF-DNA complexes and improving upon existing computational approaches aimed at affinity predictions.
Collapse
Affiliation(s)
- Fadwa Mekkaoui
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America.
| |
Collapse
|
3
|
Corbella M, Moreira C, Bello‐Madruga R, Torrent Burgas M, Kamerlin SCL, Blair JMA, Sancho‐Vaello E. Targeting MarA N-terminal domain dynamics to prevent DNA binding. Protein Sci 2025; 34:e5258. [PMID: 39660948 PMCID: PMC11633057 DOI: 10.1002/pro.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
Efflux is one of the mechanisms employed by Gram-negative bacteria to become resistant to routinely used antibiotics. The inhibition of efflux by targeting their regulators is a promising strategy to re-sensitize bacterial pathogens to antibiotics. AcrAB-TolC is the main resistance-nodulation-division efflux pump in Enterobacteriaceae. MarA is an AraC/XylS family global regulator that regulates more than 40 genes related to the antimicrobial resistance phenotype, including acrAB. The aim of this work was to understand the role of the N-terminal helix of MarA in the mechanism of DNA binding. An N-terminal deletion of MarA showed that the N-terminal helix is critical for recognition of the functional marboxes. By engineering two double cysteine variants of MarA that form a disulfide bond between the N-terminal helix and the hydrophobic core of one of the helices in direct DNA contact, and combining in vitro electrophoretic mobility assays, in vivo measurements of acrAB transcription using a GFP reporter system, and molecular dynamic simulations, it was shown that the immobilization of the N-terminal helix of MarA prevents binding to DNA. This inhibited conformation seems to be universal for the monomeric members of the AraC/XylS family, as suggested by additional molecular dynamics simulations of the two-domain protein Rob. These results point to the N-terminal helix of the AraC/XylS family monomeric regulators as a promising target for the development of inhibitors.
Collapse
Affiliation(s)
- Marina Corbella
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| | - Cátia Moreira
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
| | - Roberto Bello‐Madruga
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Shina C. L. Kamerlin
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jessica M. A. Blair
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Enea Sancho‐Vaello
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
4
|
Teng Y, Gong X, Zhang J, Obideen Z, Yan Y. Investigating and Engineering an 1,2-Propanediol-Responsive Transcription Factor-Based Biosensor. ACS Synth Biol 2024; 13:2177-2187. [PMID: 38968698 PMCID: PMC11264322 DOI: 10.1021/acssynbio.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Transcription factor (TF)-based biosensors have arisen as powerful tools in the advancement of metabolic engineering. However, with the emergence of numerous bioproduction targets, the variety of applicable TF-based biosensors remains severely limited. In this study, we investigated and engineered an 1,2-propanediol (1,2-PD)-responsive transcription activator, PocR, from Salmonella typhimurium to enrich the current biosensor repertoire. Heterologous characterization of PocR in E. coli revealed a significantly limited operational range and dynamic range, primarily attributed to the leaky binding between PocR and its corresponding promoters in the absence of the 1,2-PD inducer. Promiscuity characterization uncovered the minor responsiveness of PocR toward glycerol and 1,2-butanediol (1,2-BD). Using AlphaFold-predicted structure and protein mutagenesis, we preliminarily explored the underlying mechanism of PocR. Based on the investigated mechanism, we engineered a PcoR-F46R/G105D variant with an altered inducer specificity to glycerol, as well as a PocR-ARE (Q107A/S192R/A203E) variant with nearly a 4-fold higher dynamic range (6.7-fold activation) and a 20-fold wider operational range (0-20 mM 1,2-PD). Finally, we successfully converted PocR to a repressor through promoter engineering. Integrating the activation and repression functions established a versatile 1,2-PD-induced bifunctional regulation system based on PocR-ARE. Our work showcases the exploration and exploitation of an underexplored type of transcriptional activator capable of recruiting RNA polymerase. It also expands the biosensor toolbox by providing a 1,2-PD-responsive bifunctional regulator and glycerol-responsive activator.
Collapse
Affiliation(s)
- Yuxi Teng
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xinyu Gong
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jianli Zhang
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Ziad Obideen
- Franklin
College of Arts and Sciences, The University
of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Gao R, Wu T, Stock AM. A conserved inhibitory interdomain interaction regulates DNA-binding activities of hybrid two-component systems in Bacteroides. mBio 2024; 15:e0122024. [PMID: 38842315 PMCID: PMC11253607 DOI: 10.1128/mbio.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
7
|
Abd-El-Haleem D. AraC transcriptional regulator, aspartate semialdehyde dehydrogenase and acyltransferase: Three putative genes in phenol catabolic pathway of Acinetobacter sp. Strain DF4. J Genet Eng Biotechnol 2024; 22:100349. [PMID: 38494254 PMCID: PMC10980861 DOI: 10.1016/j.jgeb.2023.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 03/19/2024]
Abstract
The objective of this study was to identify genes associated with the biodegradation of phenol by Acinetobacter sp. strain DF4 through the use of differential display (DD) methodology. The bacteria were grown in YEPG medium, and total RNA was extracted and analyzed using labeled primers to detect gene expression differences. Three distinctively expressed cDNA bands (ph1, ph2, and ph3) were identified, cloned, and sequenced. DNA analysis involved searching for open reading frames (ORFs), verifying results with the NCBI database, predicting promoter regions, and constructing phylogenetic trees using bioinformatics tools. The ph1 gene displayed a 97% identity with the AraC transcriptional regulator, suggesting its potential role in regulating the ortho-catabolic pathway of phenol. The ph2 gene showed a 98% identity with aspartate semialdehyde dehydrogenase, which is involved in phenol degradation. The ph3 gene had a 93% identity with acetyltransferase. Essential transcription factors, such as TATA, GTGTGT, CACA, and CTTTT, were detected, and the three genes promoter regions were predicted. This study successfully identified functional genes involved in the metabolism of cyclic chemicals, particularly phenol, using the DD technique. These findings provide insights into the biodegradation pathways of phenol by Acinetobacter sp. Strain DF4 and may contribute to the development of more efficient bioremediation strategies for phenol-contaminated environments.
Collapse
Affiliation(s)
- Desouky Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications, Burgelarab, Alexandria, Egypt.
| |
Collapse
|
8
|
Fekri Kohan S, Nouhi Kararoudi A, Bazgosha M, Adelifar S, Hafezolghorani Esfahani A, Ghaderi Barmi F, Kouchakinejad R, Barzegari E, Shahriarinour M, Ranji N. Determining the potential targets of silybin by molecular docking and its antibacterial functions on efflux pumps and porins in uropathogenic E. coli. Int Microbiol 2024:10.1007/s10123-024-00488-9. [PMID: 38363383 DOI: 10.1007/s10123-024-00488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND One of the causes of antibiotic resistance is the reduced accumulation of antibiotics in bacterial cells through pumping out the drugs. Silybin, a key component of the Silybum marianum plant, exhibits various beneficial properties, including anti-bacterial, anti-inflammatory, antioxidant, and hepatoprotective effects. METHODS AND RESULTS Clinical isolates of E. coli were procured from 17 Shahrivar Children's Hospital in Rasht, Guilan, located in northern Iran. Their susceptibility to six antibiotics was assessed using disc diffusion and broth dilution (MIC) methods. The antibacterial effects of silybin-loaded polymersome nanoparticles (SPNs) were investigated with broth dilution (MIC) and biofilm assays. Molecular docking was utilized to evaluate silybin's (the antibacterial component) binding affinity to efflux pumps, porins, and their regulatory elements. Additionally, qRT-PCR analysis explored the expression patterns of acrA, acrB, tolC, ompC, and ompF genes in both SPNs (sub-MIC) and ciprofloxacin (sub-MIC)-treated and untreated E. coli isolates. The combined use of SPNs and ciprofloxacin exhibited a notable reduction in bacterial growth and biofilm formation, in ciprofloxacin-resistant isolates. The study identified eight overlapping binding sites of the AcrABZ-TolC efflux pump in association with silybin, demonstrating a binding affinity ranging from -7.688 to -10.33 Kcal/mol. Furthermore, the qRT-PCR analysis showed that silybin upregulated AcrAB-TolC efflux pump genes and downregulated ompC and ompF porin genes in combination with ciprofloxacin in transcriptional level in uropathogenic E. coli. CONCLUSIONS Silybin, a safe herbal compound, exhibits potential in inhibiting antibiotic resistance within bacterial isolates, potentially through the regulation of gene expression and plausible binding to target proteins.
Collapse
Affiliation(s)
- Shirin Fekri Kohan
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Lahijan Branch, Islamic Azad University, Rasht, Iran
| | - Maryam Bazgosha
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Somayeh Adelifar
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Arman Hafezolghorani Esfahani
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Fatemeh Ghaderi Barmi
- Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Reyhaneh Kouchakinejad
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Shahriarinour
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran.
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran.
| |
Collapse
|
9
|
Abstract
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
Collapse
Affiliation(s)
- Lon M. Chubiz
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, USA
- Biochemistry and Biotechnology Program, University of Missouri–St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Maniyeri A, Wieczorek A, Ayyolath A, Sugalska W, Klein G, Raina S. Suppressors of lapC Mutation Identify New Regulators of LpxC, Which Mediates the First Committed Step in Lipopolysaccharide Biosynthesis. Int J Mol Sci 2023; 24:15174. [PMID: 37894855 PMCID: PMC10607373 DOI: 10.3390/ijms242015174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Gram-negative bacteria, such as Escherichia coli, are characterized by an asymmetric outer membrane (OM) with lipopolysaccharide (LPS) located in the outer leaflet and phospholipids facing the inner leaflet. E. coli recruits LPS assembly proteins LapB, LapC and LapD in concert with FtsH protease to ensure a balanced biosynthesis of LPS and phospholipids. We recently reported that bacteria either lacking the periplasmic domain of the essential LapC protein (lapC190) or in the absence of LapD exhibit an elevated degradation of LpxC, which catalyzes the first committed step in LPS biosynthesis. To further understand the functions of LapC and LapD in regulating LPS biosynthesis, we show that the overproduction of the intact LapD suppresses the temperature sensitivity (Ts) of lapC190, but not when either its N-terminal transmembrane anchor or specific conserved amino acids in the C-terminal domain are mutated. Moreover, overexpression of srrA, marA, yceJ and yfgM genes can rescue the Ts phenotype of lapC190 bacteria by restoring LpxC amounts. We further show that MarA-mediated suppression requires the expression of mla genes, whose products participate in the maintenance of OM asymmetry, and the SrrA-mediated suppression requires the presence of cardiolipin synthase A.
Collapse
Affiliation(s)
| | | | | | | | - Gracjana Klein
- Laboratory of Bacterial Genetics, Gdansk University of Technology, 80-233 Gdansk, Poland; (A.M.); (A.W.); (A.A.); (W.S.)
| | - Satish Raina
- Laboratory of Bacterial Genetics, Gdansk University of Technology, 80-233 Gdansk, Poland; (A.M.); (A.W.); (A.A.); (W.S.)
| |
Collapse
|
11
|
Dow GT, Young AM, Garcia GA. Elucidation of the DNA-Binding Activity of VirF from Shigella flexneri for the icsA and rnaG Promoters and Characterization of the N-Terminal Domain To Identify Residues Crucial for Dimerization. J Bacteriol 2023; 205:e0001523. [PMID: 36920216 PMCID: PMC10127635 DOI: 10.1128/jb.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
A novel approach to treat the highly virulent and infectious enteric pathogen Shigella flexneri, with the potential for reduced resistance development, is to target virulence pathways. One promising such target is the AraC-family transcription factor VirF, which activates downstream virulence factors. VirF harbors a conserved C-terminal DNA-binding domain (DBD) and an N-terminal dimerization domain (NTD). Previously, we studied the wild type (WT) and seven alanine DBD mutants of VirF binding to the virB promoter (N. J. Ragazzone, G. T. Dow, and A. Garcia, J Bacteriol 204:e00143-22, 2022, https://doi.org/10.1128/jb.00143-22). Here, we report studies of VirF binding to the icsA and rnaG promoters. Gel shift assays (electrophoretic mobility shift assays [EMSAs]) of WT VirF binding to these promoters revealed multiple bands at higher apparent molecular weights, indicating the likelihood of VirF dimerization when bound to DNA. For three of the mutants, we observed consistent effects on binding to the three promoters. For the four other mutants, we observed differential effects on promoter binding. Results of a cell-based, LexA monohybrid β-galactosidase reporter assay [D. A. Daines, M. Granger-Schnarr, M. Dimitrova, and R. P. Silver, Methods Enzymol 358:153-161, 2002, https://doi.org/10.1016/s0076-6879(02)58087-3] indicated that WT VirF dimerizes in vivo and that alanine mutations to Y132, L137, and L147 significantly reduced dimerization. However, these mutations negatively impacted protein stability. We did purify enough of the Y132A mutant to determine that it binds in vitro to the virB and rnaG promoters, albeit with weaker affinities. Full-length VirF model structures, generated with I-TASSER, predict that these three amino acids are in a "dimerization" helix in the NTD, consistent with our results. IMPORTANCE Antimicrobial-resistant (AMR) infections continue to rise dramatically, and the lack of new approved antibiotics is not ameliorating this crisis. A promising route to reduce AMR is by targeting virulence. The Shigella flexneri virulence pathway is a valuable source for potential therapeutic targets useful to treat this infection. VirF, an AraC-family virulence transcription factor, is responsible for activating necessary downstream virulence genes that allow the bacteria to invade and spread within the human colon. Previous studies have identified how VirF interacts with the virB promoter and have even developed a lead DNA-binding inhibitor, but not much is known about VirF dimerization or binding to the icsA and rnaG promoters. Fully characterizing VirF can be a valuable resource for inhibitor discovery/design.
Collapse
Affiliation(s)
- Garrett T. Dow
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna M. Young
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - George A. Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Hu QY, Pu XJ, Li GH, Li CQ, Lei HM, Zhang KQ, Zhao PJ. Identification and Mechanism of Action of the Global Secondary Metabolism Regulator SaraC in Stereum hirsutum. Microbiol Spectr 2022; 10:e0262422. [PMID: 36409127 PMCID: PMC9769804 DOI: 10.1128/spectrum.02624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is an important factor in the regulation of gene expression. In analyzing genomic data of Stereum hirsutum FP-91666, we found a hypothetical bifunctional transcription regulator/O6Meguanine-DNA methyltransferase (named SaraC), which is widely present in both bacteria and fungi, and confirmed that its function in bacteria is mainly for DNA reparation. In this paper, we confirmed that SaraC has the function of DNA binding and demethylation through surface plasma resonance and reaction experiments in vitro. Then, we achieved the overexpression of SaraC (OES) in S. hirsutum, sequenced the methylation and transcription levels of the whole-genome, and further conducted untargeted metabolomics analyses of the OES transformants and the wild type (WT). The results confirmed that the overall-methylation levels of the transformants were significantly downregulated, and various genes related to secondary metabolism were upregulated. Through comparative untargeted metabolomic analyses, it showed that OES SA6 transformant produced a greater number of hybrid polyketides, and we identified 2 novel hybrid polyketides from the fermentation products of SA6. Our results show that overexpression SaraC can effectively stimulate the expression of secondary-metabolism-related genes, which could be a broad-spectrum tool for discovery of metabolites due to its cross-species conservation. IMPORTANCE Fungi are one of the important sources of active compounds. However, in fungi, most of the secondary metabolic biosynthetic gene clusters are weakly expressed or silenced under conventional culture conditions. How to efficiently excavate potential new compounds contained in fungi is becoming a research hot spot in the world. In this study, we found a DNA demethylation protein (SaraC) and confirmed that it is a global secondary metabolism regulator in Stereum hirsutum FP-91666. In the past, SaraC-like proteins were mainly regarded as DNA repair proteins, but our findings proved that it will be a powerful tool for mining secondary metabolites for overexpression of SaraC, which can effectively stimulate the expression of genes related to secondary metabolism.
Collapse
Affiliation(s)
- Qian-Yi Hu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xue-Juan Pu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Guo-Hong Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Chun-Qiang Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Hong-Mei Lei
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Pei-Ji Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Shi J, Wang L, Wen A, Wang F, Zhang Y, Yu L, Li F, Jin Y, Feng Z, Li J, Yang Y, Gao F, Zhang Y, Feng Y, Wang S, Zhao W, Lin W. Structural basis of three different transcription activation strategies adopted by a single regulator SoxS. Nucleic Acids Res 2022; 50:11359-11373. [PMID: 36243985 PMCID: PMC9638938 DOI: 10.1093/nar/gkac898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Transcription activation is established through extensive protein–protein and protein–DNA interactions that allow an activator to engage and remodel RNA polymerase. SoxS, a global transcription activator, diversely regulates subsets of stress response genes with different promoters, but the detailed SoxS-dependent transcription initiation mechanisms remain obscure. Here, we report cryo-EM structures of three SoxS-dependent transcription activation complexes (SoxS-TACI, SoxS-TACII and SoxS-TACIII) comprising of Escherichia coli RNA polymerase (RNAP), SoxS protein and three representative classes of SoxS-regulated promoters. The structures reveal that SoxS monomer orchestrates transcription initiation through specific interactions with the promoter DNA and different conserved domains of RNAP. In particular, SoxS is positioned in the opposite orientation in SoxS-TACIII to that in SoxS-TACI and SoxS-TACII, unveiling a novel mode of transcription activation. Strikingly, two universally conserved C-terminal domains of alpha subunit (αCTD) of RNAP associate with each other, bridging SoxS and region 4 of σ70. We show that SoxS interacts with RNAP directly and independently from DNA, remodeling the enzyme to activate transcription from cognate SoxS promoters while repressing transcription from UP-element containing promoters. Our data provide a comprehensive summary of SoxS-dependent promoter architectures and offer new insights into the αCTD contribution to transcription control in bacteria.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqiong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, 510631 Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, 510631 Guangzhou, Guangdong, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Feng
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujiao Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Gao
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Zhang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuang Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210023, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Elucidation of Key Interactions between VirF and the virB Promoter in Shigella flexneri Using E. coli MarA- and GadX-Based Homology Models and In Vitro Analysis of the DNA-Binding Domains of VirF and MarA. J Bacteriol 2022; 204:e0014322. [PMID: 36040161 PMCID: PMC9487632 DOI: 10.1128/jb.00143-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Shigella, the organism responsible for the diarrheal disease shigellosis, leads to approximately 200,000 deaths globally annually. Virulence of this pathogen is primarily controlled by the DNA-binding transcriptional activator VirF. This AraC family protein activates transcription of two major virulence genes, virB and icsA, which lead to the pathogen's ability to invade and spread within colonic epithelial cells. While several AraC proteins have been studied, few studies of VirF's binding to its DNA promoters have been reported, and VirF's three-dimensional structure remains unsolved. Here, we used structures of two E. coli VirF homologs, GadX and MarA-marRAB, to generate homology models of the VirF DNA-binding domain in free and DNA-bound conformations. We conducted alanine scanning mutagenesis on seven residues within MarA that make base-specific interactions with its promoter, marRAB, and the corresponding residues within VirF (identified by sequence and structural homologies). In vitro DNA-binding assays studying both wild-type and mutant MarA and VirF proteins identified residues important for binding to the marRAB and virB promoters, respectively. Comparison of the effects of these DNA-binding domain mutants validated our MarA-based homology model, allowing us to identify crucial interactions between VirF and the virB promoter. Proteins with mutations to helix 3 within both MarA(W42A, R46A) and MalE-VirF(R192A, K193A) exhibited significant reductions in DNA binding, while the effects of mutations in helix 6 varied. This suggests the shared importance of helix 3 in the binding to these promoters, while helix 6 is transcription factor specific. These results can inform further development of virulence-targeting inhibitors as an alternative to traditional antimicrobial drug design. IMPORTANCE Globally, infection with Shigella flexneri is a leading cause of bacterial dysentery, particularly affecting children under the age of 5 years. The virulence of this pathogen makes it highly infectious, allowing it to spread easily within areas lacking proper sanitation or access to clean drinking water. VirF is a DNA-binding transcription factor that activates S. flexneri virulence once the bacteria infect the human colon. Development of drugs that target VirF's DNA-binding activity can be an effective treatment to combat shigellosis as an alternative or addition to traditional antibiotics. Due to the lack of structural data, analysis of VirF's DNA-binding activity is critical to the development of potent VirF inhibitors.
Collapse
|
15
|
The AraC/XylS Protein MxiE and Its Coregulator IpgC Control a Negative Feedback Loop in the Transcriptional Cascade That Regulates Type III Secretion in Shigella flexneri. J Bacteriol 2022; 204:e0013722. [PMID: 35703565 DOI: 10.1128/jb.00137-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the AraC family of transcriptional regulators (AFTRs) control the expression of many genes important to cellular processes, including virulence. In Shigella species, the type III secretion system (T3SS), a key determinant for host cell invasion, is regulated by the three-tiered VirF/VirB/MxiE transcriptional cascade. Both VirF and MxiE belong to the AFTRs and are characterized as positive transcriptional regulators. Here, we identify a novel regulatory activity for MxiE and its coregulator IpgC, which manifests as a negative feedback loop in the VirF/VirB/MxiE transcriptional cascade. Our findings show that MxiE and IpgC downregulate the virB promoter and, hence, VirB protein production, thus decreasing VirB-dependent promoter activity at ospD1, one of the nearly 50 VirB-dependent genes. At the virB promoter, regions required for negative MxiE- and IpgC-dependent regulation were mapped and found to be coincident with regions required for positive VirF-dependent regulation. In tandem, negative MxiE- and IpgC-dependent regulation of the virB promoter only occurred in the presence of VirF, suggesting that MxiE and IpgC can function to counter VirF activation of the virB promoter. Lastly, MxiE and IpgC do not downregulate another VirF-activated promoter, icsA, demonstrating that this negative feedback loop targets the virB promoter. Our study provides insight into a mechanism that may reprogram Shigella virulence gene expression following type III secretion and provides the impetus to examine if MxiE and IpgC homologs in other important bacterial pathogens, such as Burkholderia pseudomallei and Salmonella enterica serovars Typhimurium and Typhi, coordinate similar negative feedback loops. IMPORTANCE The large AraC family of transcriptional regulators (AFTRs) control virulence gene expression in many bacterial pathogens. In Shigella species, the AraC/XylS protein MxiE and its coregulator IpgC positively regulate the expression of type III secretion system genes within the three-tiered VirF/VirB/MxiE transcriptional cascade. Our findings suggest a negative feedback loop in the VirF/VirB/MxiE cascade, in which MxiE and IpgC counter VirF-dependent activation of the virB promoter, thus making this the first characterization of negative MxiE- and IpgC-dependent regulation. Our study provides insight into a mechanism that likely reprograms Shigella virulence gene expression following type III secretion, which has implications for other important bacterial pathogens with functional homologs of MxiE and IpgC.
Collapse
|
16
|
Shi J, Wang F, Li F, Wang L, Xiong Y, Wen A, Jin Y, Jin S, Gao F, Feng Z, Li J, Zhang Y, Shang Z, Wang S, Feng Y, Lin W. Structural basis of transcription activation by Rob, a pleiotropic AraC/XylS family regulator. Nucleic Acids Res 2022; 50:5974-5987. [PMID: 35641097 PMCID: PMC9178005 DOI: 10.1093/nar/gkac433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Rob, which serves as a paradigm of the large AraC/XylS family transcription activators, regulates diverse subsets of genes involved in multidrug resistance and stress response. However, the underlying mechanism of how it engages bacterial RNA polymerase and promoter DNA to finely respond to environmental stimuli is still elusive. Here, we present two cryo-EM structures of Rob-dependent transcription activation complex (Rob-TAC) comprising of Escherichia coli RNA polymerase (RNAP), Rob-regulated promoter and Rob in alternative conformations. The structures show that a single Rob engages RNAP by interacting with RNAP αCTD and σ70R4, revealing their generally important regulatory roles. Notably, by occluding σ70R4 from binding to -35 element, Rob specifically binds to the conserved Rob binding box through its consensus HTH motifs, and retains DNA bending by aid of the accessory acidic loop. More strikingly, our ligand docking and biochemical analysis demonstrate that the large Rob C-terminal domain (Rob CTD) shares great structural similarity with the global Gyrl-like domains in effector binding and allosteric regulation, and coordinately promotes formation of competent Rob-TAC. Altogether, our structural and biochemical data highlight the detailed molecular mechanism of Rob-dependent transcription activation, and provide favorable evidences for understanding the physiological roles of the other AraC/XylS-family transcription factors.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Xiong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fei Gao
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Feng
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Zhang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuo Shang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210023, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Hao M, Ye F, Jovanovic M, Kotta‐Loizou I, Xu Q, Qin X, Buck M, Zhang X, Wang M. Structures of Class I and Class II Transcription Complexes Reveal the Molecular Basis of RamA-Dependent Transcription Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103669. [PMID: 34761556 PMCID: PMC8811837 DOI: 10.1002/advs.202103669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ70 , together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ70 form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ70 at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.
Collapse
Affiliation(s)
- Min Hao
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Fuzhou Ye
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Milija Jovanovic
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Qingqing Xu
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Xiaohua Qin
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Martin Buck
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Xiaodong Zhang
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Minggui Wang
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| |
Collapse
|
18
|
Picard HR, Schwingen KS, Green LM, Shis DL, Egan SM, Bennett MR, Swint-Kruse L. Allosteric regulation within the highly interconnected structural scaffold of AraC/XylS homologs tolerates a wide range of amino acid changes. Proteins 2022; 90:186-199. [PMID: 34369028 PMCID: PMC8671227 DOI: 10.1002/prot.26206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
To create bacterial transcription "circuits" for biotechnology, one approach is to recombine natural transcription factors, promoters, and operators. Additional novel functions can be engineered from existing transcription factors such as the E. coli AraC transcriptional activator, for which binding to DNA is modulated by binding L-arabinose. Here, we engineered chimeric AraC/XylS transcription activators that recognized ara DNA binding sites and responded to varied effector ligands. The first step, identifying domain boundaries in the natural homologs, was challenging because (i) no full-length, dimeric structures were available and (ii) extremely low sequence identities (≤10%) among homologs precluded traditional assemblies of sequence alignments. Thus, to identify domains, we built and aligned structural models of the natural proteins. The designed chimeric activators were assessed for function, which was then further improved by random mutagenesis. Several mutational variants were identified for an XylS•AraC chimera that responded to benzoate; two enhanced activation to near that of wild-type AraC. For an RhaR•AraC chimera, a variant with five additional substitutions enabled transcriptional activation in response to rhamnose. These five changes were dispersed across the protein structure, and combinatorial experiments testing subsets of substitutions showed significant non-additivity. Combined, the structure modeling and epistasis suggest that the common AraC/XylS structural scaffold is highly interconnected, with complex intra-protein and inter-domain communication pathways enabling allosteric regulation. At the same time, the observed epistasis and the low sequence identities of the natural homologs suggest that the structural scaffold and function of transcriptional regulation are nevertheless highly accommodating of amino acid changes.
Collapse
Affiliation(s)
- Hunter R. Picard
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Kristen S. Schwingen
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Lisa M. Green
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - David L. Shis
- Department of Biosciences and Department of Bioengineering, Rice University, Houston, TX 77005
| | - Susan M. Egan
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045
| | - Matthew R. Bennett
- Department of Biosciences and Department of Bioengineering, Rice University, Houston, TX 77005
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160,To whom correspondence should be addressed: ; 913-588-0399
| |
Collapse
|
19
|
Optimised Heterologous Expression and Functional Analysis of the Yersinia pestis F1-Capsular Antigen Regulator Caf1R. Int J Mol Sci 2021; 22:ijms22189805. [PMID: 34575967 PMCID: PMC8470410 DOI: 10.3390/ijms22189805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.
Collapse
|
20
|
Corbella M, Liao Q, Moreira C, Parracino A, Kasson PM, Kamerlin SCL. The N-terminal Helix-Turn-Helix Motif of Transcription Factors MarA and Rob Drives DNA Recognition. J Phys Chem B 2021; 125:6791-6806. [PMID: 34137249 PMCID: PMC8279559 DOI: 10.1021/acs.jpcb.1c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
DNA-binding proteins
play an important role in gene regulation
and cellular function. The transcription factors MarA and Rob are
two homologous members of the AraC/XylS family that regulate multidrug
resistance. They share a common DNA-binding domain, and Rob possesses
an additional C-terminal domain that permits binding of low-molecular
weight effectors. Both proteins possess two helix-turn-helix (HTH)
motifs capable of binding DNA; however, while MarA interacts with
its promoter through both HTH-motifs, prior studies indicate that
Rob binding to DNA via a single HTH-motif is sufficient for tight
binding. In the present work, we perform microsecond time scale all-atom
simulations of the binding of both transcription factors to different
DNA sequences to understand the determinants of DNA recognition and
binding. Our simulations characterize sequence-dependent changes in
dynamical behavior upon DNA binding, showcasing the role of Arg40
of the N-terminal HTH-motif in allowing for specific tight binding.
Finally, our simulations demonstrate that an acidic C-terminal loop
of Rob can control the DNA binding mode, facilitating interconversion
between the distinct DNA binding modes observed in MarA and Rob. In
doing so, we provide detailed molecular insight into DNA binding and
recognition by these proteins, which in turn is an important step
toward the efficient design of antivirulence agents that target these
proteins.
Collapse
Affiliation(s)
- Marina Corbella
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, S-751 23, Sweden
| | - Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, S-751 23, Sweden
| | - Cátia Moreira
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, S-751 23, Sweden
| | - Antonietta Parracino
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, S-751 23, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-65124, Sweden.,Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | | |
Collapse
|
21
|
Kotecka K, Kawalek A, Kobylecki K, Bartosik AA. The AraC-Type Transcriptional Regulator GliR (PA3027) Activates Genes of Glycerolipid Metabolism in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:5066. [PMID: 34064685 PMCID: PMC8151288 DOI: 10.3390/ijms22105066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa encodes a large set of transcriptional regulators (TRs) that modulate and manage cellular metabolism to survive in variable environmental conditions including that of the human body. The AraC family regulators are an abundant group of TRs in bacteria, mostly acting as gene expression activators, controlling diverse cellular functions (e.g., carbon metabolism, stress response, and virulence). The PA3027 protein from P. aeruginosa has been classified in silico as a putative AraC-type TR. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3027 revealed a spectacular increase in the mRNA levels of PA3026-PA3024 (divergent to PA3027), PA3464, and PA3342 genes encoding proteins potentially involved in glycerolipid metabolism. Concomitantly, chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that at least 22 regions are bound by PA3027 in the PAO1161 genome. These encompass promoter regions of PA3026, PA3464, and PA3342, showing the major increase in expression in response to PA3027 excess. In Vitro DNA binding assay confirmed interactions of PA3027 with these regions. Furthermore, promoter-reporter assays in a heterologous host showed the PA3027-dependent activation of the promoter of the PA3026-PA3024 operon. Two motifs representing the preferred binding sites for PA3027, one localized upstream and one overlapping with the -35 promoter sequence, were identified in PA3026p and our data indicate that both motifs are required for full activation of this promoter by PA3027. Overall, the presented data show that PA3027 acts as a transcriptional regulator in P. aeruginosa, activating genes likely engaged in glycerolipid metabolism. The GliR name, from a glycerolipid metabolism regulator, is proposed for PA3027 of P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.K.); (A.K.); (K.K.)
| |
Collapse
|
22
|
Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P, Pérez-Rueda E, Ibarra JA. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021; 45:6219864. [PMID: 33837749 DOI: 10.1093/femsre/fuab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Transcriptional factors play an important role in gene regulation in all organisms, especially in Bacteria. Here special emphasis is placed in the AraC/XylS family of transcriptional regulators. This is one of the most abundant as many predicted members have been identified and more members are added because more bacterial genomes are sequenced. Given the way more experimental evidence has mounded in the past decades, we decided to update the information about this captivating family of proteins. Using bioinformatics tools on all the data available for experimentally characterized members of this family, we found that many members that display a similar functional classification can be clustered together and in some cases they have a similar regulatory scheme. A proposal for grouping these proteins is also discussed. Additionally, an analysis of surveyed proteins in bacterial genomes is presented. Altogether, the current review presents a panoramic view into this family and we hope it helps to stimulate future research in the field.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Noemy Martínez-Pérez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario A Ortiz-Moncada
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aylin Juárez-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo A Baños-Vargas
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.,Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
23
|
Pan X, Cen Y, Kuang M, Li B, Qin R, Zhou H. Artesunate interrupts the self-transcriptional activation of MarA to inhibit RND family pumps of Escherichia coli. Int J Med Microbiol 2020; 310:151465. [PMID: 33238228 DOI: 10.1016/j.ijmm.2020.151465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/14/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022] Open
Abstract
Resistance-Nodulation-Division (RND) family pumps are responsible for producing multidrug resistance in Escherichia coli; however, there has been little study of targeted inhibitors of RNDs. In the present study, we investigated the inhibition of RND pumps by artesunate (AS) in E. coli, and further investigated the mechanism with respect to MarA, a regulator of RNDs. Although AS had no direct antibacterial effect, it showed a synergistic effect in combination with β-lactams against E. coli ATCC35218 in vitro and in vivo, suggesting it possesses antibacterial enhancement activity. Notably, AS, alone or in combination with β-lactams, downregulated the mRNA expression levels of marA, soxS, and rob, known as the marA-soxS-rob regulon, which then decreased the expression levels of RNDs, thereby increased ampicillin accumulation within ATCC35218. Using gene-deletion strains, we found that the antibacterial sensitization effect of AS persisted in wildtype bacteria, but was completely lost in the strain lacking marA, and decreased in the strain lacking soxS or rob, suggesting marA plays a crucial role in the sensitization of AS. Critically, we showed that AS inhibited the binding of MarA to the promoter of marA itself, not acrB, resulting in decreased mRNA expression of both acrB and marA. Mechanistically, we found AS directly bound to the central cavity of MarA through the R59 and K62 residues, and thus altered the charge distribution of MarA to interrupt the recognition between MarA and its promoter. We concluded that AS interrupts the self-transcriptional activation of MarA, thereby inhibits MarA-dependent mRNA expression of marA, acrAB, and tolC, and also certain other RNDs and regulatory genes related to MarA. Therefore, AS is a novel inhibitor of RND pumps that acts on the regulator MarA.
Collapse
Affiliation(s)
- Xichun Pan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yanyan Cen
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Mei Kuang
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Bin Li
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Rongxin Qin
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China.
| |
Collapse
|
24
|
Wu Y, Yang X, Zhang D, Lu C. Myricanol Inhibits the Type III Secretion System of Salmonella enterica Serovar Typhimurium by Interfering With the DNA-Binding Activity of HilD. Front Microbiol 2020; 11:571217. [PMID: 33101243 PMCID: PMC7546796 DOI: 10.3389/fmicb.2020.571217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system (T3SS) consists of a syringe-like export machine injecting effectors from the bacterial cytosol directly into host cells to establish infection. This mechanism is widely distributed in gram-negative bacteria and can be targeted as an innovative strategy for the developing of anti-virulence drugs. In this study, we present an effective T3SS inhibitor, myricanol, inspired by the use of folk medicinal plants traditionally used against infections. Myricanol is a cyclic diarylheptanoid isolated from the medicinal plant Myrica nagi, which is found in South and East Asia. Bioassay-guided fractionation revealed that myricanol inhibited not only the secretion of type III effector proteins of Salmonella enterica serovar Typhimurium UK-1 χ8956 (S. Typhimurium) but also the invasion of S. Typhimurium into mammalian cells, but showed no toxicity to bacterial growth or the host cells. RNA-Seq data analysis showed that the transcription of the pathogenesis-related SPI-1 gene was significantly inhibited by myricanol. Further study demonstrated that myricanol binds physically to HilD and interferes with its DNA-binding activity to the promoters of the hilA and invF genes. In conclusion, we propose that myricanol is responsible for the anti-infectious properties of M. nagi and is a novel T3SS inhibitor of S. Typhimurium through a previously unappreciated mechanism of action.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dongdong Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
25
|
Zhang C, Chen S, Dedkova LM, Hecht SM. Effects of Nucleobase Amino Acids on the Binding of Rob to Its Promoter DNA: Differential Alteration of DNA Affinity and Phenotype. Biochemistry 2020; 59:2111-2119. [PMID: 32412234 DOI: 10.1021/acs.biochem.0c00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nucleic acid binding proteins have been studied extensively, but the nature of the interactions that control their affinity, selectivity, and DNA and RNA functions is still not well understood. To understand the nature and functional consequences of such interactions, we introduced nucleobase amino acids at specific positions of the transcriptional regulator Rob protein in vivo and succeeded in demonstrating that an alteration of the protein-DNA affinity can affect specific phenotypes associated with Rob protein-DNA interactions. Previously, we inserted different nucleobase amino acids in lieu of Arg40; this residue is known (via X-ray crystallography) to interact with the micF DNA promoter A-box residue Gua6. The interactions predominantly involved Watson-Crick-like H bonding. The present study focused primarily on the micF DNA promoter B-box; the crystallographically determined interaction involves H bonding between the agmatine moiety of Arg90 within an HTH motif of Rob and a phosphate oxygen anion to the 5'-side of Thy14. We had two main goals, the first of which was to demonstrate enhanced Rob-binding to the micF promoter DNA and the functional consequences resulting from the interaction of micF DNA with Rob analogues containing Arg90 nucleobase mimics. The second was to explore the possible functional consequences of enhancing the protein-DNA affinity with nucleobase replacements, which mechanistically mediate interactions differently than those reported to be operative for specific protein-DNA interactions. Nucleobase replacement at position 90 with Arg isosteres enhanced the Rob protein-micF DNA affinity in parallel with increasing antibiotic and Hg2+ resistance, while aromatic amino acid replacements increased the affinity but not the antibiotic or Hg2+ resistance. The demonstration of an increased affinity through strong base stacking interactions was notable.
Collapse
|
26
|
Chetri S, Das BJ, Bhowmik D, Chanda DD, Chakravarty A, Bhattacharjee A. Transcriptional response of mar, sox and rob regulon against concentration gradient carbapenem stress within Escherichia coli isolated from hospital acquired infection. BMC Res Notes 2020; 13:168. [PMID: 32192538 PMCID: PMC7083032 DOI: 10.1186/s13104-020-04999-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/10/2020] [Indexed: 12/01/2022] Open
Abstract
Objective The present study was carried out to investigate the transcriptional response of marA (Multiple antibiotic resistance A gene), soxS (Superoxide S gene) and rob (Right-origin-binding gene) under carbapenem stress. Results 12 isolates were found over-expressing AcrAB-TolC efflux pump system and showed reduced expression of OmpF (Outer membrane porin) gene were selected for further study. Among them, over expression of marA and rob was observed in 7 isolates. Increasing pattern of expression of marA and rob against meropenem was observed. The clones of marA and rob showed reduced susceptibility towards carbapenems.
Collapse
|
27
|
Zhang C, Chen S, Bai X, Dedkova LM, Hecht SM. Alteration of Transcriptional Regulator Rob In Vivo: Enhancement of Promoter DNA Binding and Antibiotic Resistance in the Presence of Nucleobase Amino Acids. Biochemistry 2020; 59:1217-1220. [PMID: 32157864 DOI: 10.1021/acs.biochem.0c00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of proteins that bind selectively to nucleic acid sequences is an ongoing challenge. We previously synthesized nucleobase amino acids designed to replace proteinogenic amino acids; these were incorporated into proteins to bind specific nucleic acids predictably. An early example involved selective cell free binding of the hnRNP LL RRM1 domain to its i-motif DNA target via Watson-Crick-like H-bonding interactions. In this study, we employ the X-ray crystal structure of transcriptional regulator Rob bound to its micF promoter, which occurred without DNA distortion. Rob proteins modified in vivo with nucleobase amino acids at position 40 exhibited altered DNA promoter binding, as predicted on the basis of their Watson-Crick-like H-bonding interactions with promoter DNA A-box residue Gua-6. Rob protein expression ultimately controls phenotypic changes, including resistance to antibiotics. Although Rob proteins with nucleobase amino acids were expressed in Escherichia coli at levels estimated to be only a fraction of that of the wild-type Rob protein, those modified proteins that bound to the micF promoter more avidly than the wild type in vitro also produced greater resistance to macrolide antibiotics roxithromycin and clarithromycin in vivo, as well as the β-lactam antibiotic ampicillin. Also demonstrated is the statistical significance of altered DNA binding and antibiotic resistance for key Rob analogues. These preliminary findings suggest the ultimate utility of nucleobase amino acids in altering and controlling preferred nucleic acid target sequences by proteins, for probing molecular interactions critical to protein function, and for enhancing phenotypic changes in vivo by regulatory protein analogues.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
28
|
Wang M, Niikura H, He H, Daniel‐Ivad P, Ryan KS. Biosynthesis of the N–N‐Bond‐Containing Compound
l
‐Alanosine. Angew Chem Int Ed Engl 2020; 59:3881-3885. [DOI: 10.1002/anie.201913458] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Menghua Wang
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Haruka Niikura
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Hai‐Yan He
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Phillip Daniel‐Ivad
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Katherine S. Ryan
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
29
|
Wang M, Niikura H, He H, Daniel‐Ivad P, Ryan KS. Biosynthesis of the N–N‐Bond‐Containing Compound
l
‐Alanosine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Menghua Wang
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Haruka Niikura
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Hai‐Yan He
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Phillip Daniel‐Ivad
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Katherine S. Ryan
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
30
|
Cruite JT, Kovacikova G, Clark KA, Woodbrey AK, Skorupski K, Kull FJ. Structural basis for virulence regulation in Vibrio cholerae by unsaturated fatty acid components of bile. Commun Biol 2019; 2:440. [PMID: 31815195 PMCID: PMC6882843 DOI: 10.1038/s42003-019-0686-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
The AraC/XylS-family transcriptional regulator ToxT is the master virulence activator of Vibrio cholerae, the gram-negative bacterial pathogen that causes the diarrheal disease cholera. Unsaturated fatty acids (UFAs) found in bile inhibit the activity of ToxT. Crystal structures of inhibited ToxT bound to UFA or synthetic inhibitors have been reported, but no structure of ToxT in an active conformation had been determined. Here we present the 2.5 Å structure of ToxT without an inhibitor. The structure suggests release of UFA or inhibitor leads to an increase in flexibility, allowing ToxT to adopt an active conformation that is able to dimerize and bind DNA. Small-angle X-ray scattering was used to validate a structural model of an open ToxT dimer bound to the cholera toxin promoter. The results presented here provide a detailed structural mechanism for virulence gene regulation in V. cholerae by the UFA components of bile and other synthetic ToxT inhibitors.
Collapse
Affiliation(s)
- Justin T. Cruite
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
- Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH USA
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Kenzie A. Clark
- Department of Chemistry, Dartmouth College, Hanover, NH USA
- Present Address: Department of Chemistry, Princeton University, Princeton, NJ USA
| | - Anne K. Woodbrey
- Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH USA
- Department of Chemistry, Dartmouth College, Hanover, NH USA
| | - Karen Skorupski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - F. Jon Kull
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
- Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH USA
- Department of Chemistry, Dartmouth College, Hanover, NH USA
| |
Collapse
|
31
|
Kettles RA, Tschowri N, Lyons KJ, Sharma P, Hengge R, Webber MA, Grainger DC. The Escherichia coli MarA protein regulates the ycgZ-ymgABC operon to inhibit biofilm formation. Mol Microbiol 2019; 112:1609-1625. [PMID: 31518447 PMCID: PMC6900184 DOI: 10.1111/mmi.14386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Escherichia coli marRAB operon is a paradigm for chromosomally encoded antibiotic resistance. The operon exerts its effect via an encoded transcription factor called MarA that modulates efflux pump and porin expression. In this work, we show that MarA is also a regulator of biofilm formation. Control is mediated by binding of MarA to the intergenic region upstream of the ycgZ-ymgABC operon. The operon, known to influence the formation of curli fibres and colanic acid, is usually expressed during periods of starvation. Hence, the ycgZ-ymgABC promoter is recognised by σ38 (RpoS)-associated RNA polymerase (RNAP). Surprisingly, MarA does not influence σ38 -dependent transcription. Instead, MarA drives transcription by the housekeeping σ70 -associated RNAP. The effects of MarA on ycgZ-ymgABC expression are coupled with biofilm formation by the rcsCDB phosphorelay system, with YcgZ, YmgA and YmgB forming a complex that directly interacts with the histidine kinase domain of RcsC.
Collapse
Affiliation(s)
- Rachel A Kettles
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Kevin J Lyons
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Prateek Sharma
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - David C Grainger
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
32
|
Newman J, Caron K, Nebl T, Peat TS. Structures of the transcriptional regulator BgaR, a lactose sensor. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:639-646. [PMID: 31282473 DOI: 10.1107/s2059798319008131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/06/2019] [Indexed: 11/10/2022]
Abstract
The structure of BgaR, a transcriptional regulator of the lactose operon in Clostridium perfringens, has been solved by SAD phasing using a mercury derivative. BgaR is an exquisite sensor of lactose, with a binding affinity in the low-micromolar range. This sensor and regulator has been captured bound to lactose and to lactulose as well as in a nominal apo form, and was compared with AraC, another saccharide-binding transcriptional regulator. It is shown that the saccharides bind in the N-terminal region of a jelly-roll fold, but that part of the saccharide is exposed to bulk solvent. This differs from the classical AraC saccharide-binding site, which is mostly sequestered from the bulk solvent. The structures of BgaR bound to lactose and to lactulose highlight how specific and nonspecific interactions lead to a higher binding affinity of BgaR for lactose compared with lactulose. Moreover, solving multiple structures of BgaR in different space groups, both bound to saccharides and unbound, verified that the dimer interface along a C-terminal helix is similar to the dimer interface observed in AraC.
Collapse
Affiliation(s)
- Janet Newman
- Biomedical Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Karine Caron
- Health and Biosecurity, CSIRO, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| | - Tom Nebl
- Biomedical Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas S Peat
- Biomedical Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
33
|
Singh S, Goswami N, Tyagi AK, Khare G. Unraveling the role of the transcriptional regulator VirS in low pH-induced responses of Mycobacterium tuberculosis and identification of VirS inhibitors. J Biol Chem 2019; 294:10055-10075. [PMID: 31126988 DOI: 10.1074/jbc.ra118.005312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 05/11/2019] [Indexed: 11/06/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to respond and adapt to various stresses such as oxygen/nitrogen radicals and low pH inside macrophages is critical for the persistence of this human pathogen inside its host. We have previously shown that an AraC/XylS-type transcriptional regulator, VirS, which is induced in low pH, is involved in remodeling the architecture of the bacterial cell envelope. However, how VirS influences gene expression to coordinate these pH responses remains unclear. Here, using a genetic biosensor of cytoplasmic pH, we demonstrate that VirS is required for the intracellular pH maintenance in response to acidic stress and inside acidified macrophages. Furthermore, we observed that VirS plays an important role in blocking phagosomal-lysosomal fusions. Transcriptomics experiments revealed that VirS affects the expression of genes encoding metabolic enzymes, cell-wall envelope proteins, efflux pumps, ion transporters, detoxification enzymes, and transcriptional regulators expressed under low-pH stress. Employing electrophoretic mobility-shift assays, DNA footprinting, and in silico analysis, we identified a DNA sequence to which VirS binds and key residues in VirS required for its interaction with DNA. A significant role of VirS in M. tuberculosis survival in adverse conditions suggested it as a potential anti-mycobacterial drug target. To that end, we identified VirS inhibitors in a virtual screen; the top hit compounds inhibited its DNA-binding activity and also M. tuberculosis growth in vitro and inside macrophages. Our findings establish that VirS mediates M. tuberculosis responses to acidic stress and identify VirS-inhibiting compounds that may form the basis for developing more effective anti-mycobacterial agents.
Collapse
Affiliation(s)
- Swati Singh
- From the Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India and
| | - Nikita Goswami
- From the Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India and
| | - Anil K Tyagi
- From the Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India and .,Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India
| | - Garima Khare
- From the Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India and
| |
Collapse
|
34
|
Chhiba-Govindjee VP, van der Westhuyzen CW, Bode ML, Brady D. Bacterial nitrilases and their regulation. Appl Microbiol Biotechnol 2019; 103:4679-4692. [DOI: 10.1007/s00253-019-09776-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
|
35
|
Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol 2019; 234:19237-19248. [PMID: 31012115 DOI: 10.1002/jcp.28720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis strains and increased incidence of HIV coinfection fueled the difficulty in controlling tuberculosis (TB). MarR (multiple antibiotic resistance regulator) family transcription factors can regulate marRAB operon and are involved in resistance to multiple environmental stresses. We have summarized the structure, function, distribution, and regulation of the MarR family proteins, as well as their implications for novel targets for antibiotics, especially for tuberculosis.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhua Cai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
36
|
The Escherichia coli multiple antibiotic resistance activator protein represses transcription of the lac operon. Biochem Soc Trans 2019; 47:671-677. [PMID: 30850424 DOI: 10.1042/bst20180498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 11/17/2022]
Abstract
In Escherichia coli, the marRAB operon is a determinant for antibiotic resistance. Such phenotypes require the encoded transcription factor MarA that activates efflux pump expression. To better understand all genes controlled by MarA, we recently mapped binding of the regulator across the E. coli genome. As expected, many MarA targets were adjacent to genes encoding stress response systems. Surprisingly, one MarA-binding site overlapped the lac operon regulatory region. Here, we show that MarA specifically targets this locus and can block transcription of the lac genes. Repression is mediated by binding of MarA to a site overlapping the lacP1 promoter -35 element. Control of the lac operon by MarA does not impact antibiotic resistance.
Collapse
|
37
|
Sieradzan AK, Giełdoń A, Yin Y, He Y, Scheraga HA, Liwo A. A new protein nucleic-acid coarse-grained force field based on the UNRES and NARES-2P force fields. J Comput Chem 2018; 39:2360-2370. [PMID: 30306573 PMCID: PMC6487257 DOI: 10.1002/jcc.25571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/29/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Based on the coarse-grained UNRES and NARES-2P models of proteins and nucleic acids, respectively, developed in our laboratory, in this work we have developed a coarse-grained model of systems containing proteins and nucleic acids. The UNRES and NARES-2P effective energy functions have been applied to the protein and nucleic-acid components of a system, respectively, while protein-nucleic-acid interactions have been described by the respective coarse-grained potentials developed in our recent work (Yin et al., J. Chem Theory Comput. 2015, 11, 1792). The Debye-Hückel screening has been applied to the electrostatic-interaction energy between the phosphate groups and charged amino-acid side chains. The model has been integrated into the UNRES package for coarse-grained molecular dynamics simulations of proteins and the implementation has been tested for energy conservation in microcanonical molecular dynamics runs and for temperature conservation in canonical molecular dynamics runs. Two case studies were performed: (i) the dynamics of the Ku protein heterodimer bound to DNA, for which it was found that the Ku70/Ku80 protein complex plays an active role in DNA repairing and (ii) conformational changes of the multiple antibiotic resistance (MarA) protein occurring during DNA binding, for which the functionally important motions occurring during this process were identified. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Artur Giełdoń
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Yanping Yin
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, U.S.A
| | - Yi He
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, U.S.A
- School of Engineering, University of California Merced, 5200 N. Lake Road, Merced, CA 95343, U.S.A
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, U.S.A
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
38
|
Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 2018; 9:2489. [PMID: 29950558 PMCID: PMC6021436 DOI: 10.1038/s41467-018-04901-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
Methods to regulate gene expression programs in bacterial cells are limited by the absence of effective gene activators. To address this challenge, we have developed synthetic bacterial transcriptional activators in E. coli by linking activation domains to programmable CRISPR-Cas DNA binding domains. Effective gene activation requires target sites situated in a narrow region just upstream of the transcription start site, in sharp contrast to the relatively flexible target site requirements for gene activation in eukaryotic cells. Together with existing tools for CRISPRi gene repression, these bacterial activators enable programmable control over multiple genes with simultaneous activation and repression. Further, the entire gene expression program can be switched on by inducing expression of the CRISPR-Cas system. This work will provide a foundation for engineering synthetic bacterial cellular devices with applications including diagnostics, therapeutics, and industrial biosynthesis. The absence of effective gene activators in bacteria limits regulated expression programs. Here the authors design synthetic bacterial CRISPR-Cas transcriptional activators that can be used to construct multi-gene programs of activation and repression.
Collapse
|
39
|
Housseini B Issa K, Phan G, Broutin I. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Front Mol Biosci 2018; 5:57. [PMID: 29971236 PMCID: PMC6018408 DOI: 10.3389/fmolb.2018.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
Bacterial antibiotic resistance is a worldwide health problem that deserves important research attention in order to develop new therapeutic strategies. Recently, the World Health Organization (WHO) classified Pseudomonas aeruginosa as one of the priority bacteria for which new antibiotics are urgently needed. In this opportunistic pathogen, antibiotics efflux is one of the most prevalent mechanisms where the drug is efficiently expulsed through the cell-wall. This resistance mechanism is highly correlated to the expression level of efflux pumps of the resistance-nodulation-cell division (RND) family, which is finely tuned by gene regulators. Thus, it is worthwhile considering the efflux pump regulators of P. aeruginosa as promising therapeutical targets alternative. Several families of regulators have been identified, including activators and repressors that control the genetic expression of the pumps in response to an extracellular signal, such as the presence of the antibiotic or other environmental modifications. In this review, based on different crystallographic structures solved from archetypal bacteria, we will first focus on the molecular mechanism of the regulator families involved in the RND efflux pump expression in P. aeruginosa, which are TetR, LysR, MarR, AraC, and the two-components system (TCS). Finally, the regulators of known structure from P. aeruginosa will be presented.
Collapse
Affiliation(s)
- Karim Housseini B Issa
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
40
|
Sang Y, Ren J, Qin R, Liu S, Cui Z, Cheng S, Liu X, Lu J, Tao J, Yao YF. Acetylation Regulating Protein Stability and DNA-Binding Ability of HilD, thus Modulating Salmonella Typhimurium Virulence. J Infect Dis 2017; 216:1018-1026. [PMID: 28329249 DOI: 10.1093/infdis/jix102] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/21/2017] [Indexed: 02/04/2023] Open
Abstract
HilD, a dominant regulator of Salmonella pathogenicity island 1, can be acetylated by protein acetyltransferase (Pat) in Salmonella Typhimurium, and the acetylation is beneficial to its stability. However, the underlying mechanism of HilD stability regulated by acetylation is not clear. We show here that lysine 297 (K297) located in the helix-turn-helix motif, can be acetylated by Pat. Acetylation of K297 increases HilD stability, but reduces its DNA-binding affinity. In turn, the deacetylated K297 enhances the DNA-binding ability but decreases HilD stability. Under the Salmonella pathogenicity island 1-inducing condition, the acetylation level of K297 is down-regulated. The acetylated K297 (mimicked by glutamine substitution) causes attenuated invasion in HeLa cells, as well as impaired virulence in mouse model, compared with the deacetylated K297 (mimicked by arginine substitution), suggesting that deacetylation of K297 is essential for Salmonella virulence. These findings demonstrate that the acetylation of K297 can regulate both protein stability and DNA-binding ability. This regulation mediated by acetylation not only degrades redundant HilD to keep a moderate protein level to facilitate S. Typhimurium growth but also maintains an appropriate DNA-binding activity of HilD to ensure bacterial pathogenicity.
Collapse
Affiliation(s)
- Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences
| | - Jie Ren
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences
| | - Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University
| | - Shuting Liu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine
| |
Collapse
|
41
|
The multiple antibiotic resistance operon of enteric bacteria controls DNA repair and outer membrane integrity. Nat Commun 2017; 8:1444. [PMID: 29133912 PMCID: PMC5684230 DOI: 10.1038/s41467-017-01405-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/14/2017] [Indexed: 11/08/2022] Open
Abstract
The multiple antibiotic resistance (mar) operon of Escherichia coli is a paradigm for chromosomally encoded antibiotic resistance in enteric bacteria. The locus is recognised for its ability to modulate efflux pump and porin expression via two encoded transcription factors, MarR and MarA. Here we map binding of these regulators across the E. coli genome and identify an extensive mar regulon. Most notably, MarA activates expression of genes required for DNA repair and lipid trafficking. Consequently, the mar locus reduces quinolone-induced DNA damage and the ability of tetracyclines to traverse the outer membrane. These previously unrecognised mar pathways reside within a core regulon, shared by most enteric bacteria. Hence, we provide a framework for understanding multidrug resistance, mediated by analogous systems, across the Enterobacteriaceae. Transcription factors MarR and MarA confer multidrug resistance in enteric bacteria by modulating efflux pump and porin expression. Here, Sharma et al. show that MarA also upregulates genes required for lipid trafficking and DNA repair, thus reducing antibiotic entry and quinolone-induced DNA damage.
Collapse
|
42
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
43
|
Schneider B, Božíková P, Čech P, Svozil D, Černý J. A DNA Structural Alphabet Distinguishes Structural Features of DNA Bound to Regulatory Proteins and in the Nucleosome Core Particle. Genes (Basel) 2017; 8:E278. [PMID: 29057824 PMCID: PMC5664128 DOI: 10.3390/genes8100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 01/21/2023] Open
Abstract
We analyzed the structural behavior of DNA complexed with regulatory proteins and the nucleosome core particle (NCP). The three-dimensional structures of almost 25 thousand dinucleotide steps from more than 500 sequentially non-redundant crystal structures were classified by using DNA structural alphabet CANA (Conformational Alphabet of Nucleic Acids) and associations between ten CANA letters and sixteen dinucleotide sequences were investigated. The associations showed features discriminating between specific and non-specific binding of DNA to proteins. Important is the specific role of two DNA structural forms, A-DNA, and BII-DNA, represented by the CANA letters AAA and BB2: AAA structures are avoided in non-specific NCP complexes, where the wrapping of the DNA duplex is explained by the periodic occurrence of BB2 every 10.3 steps. In both regulatory and NCP complexes, the extent of bending of the DNA local helical axis does not influence proportional representation of the CANA alphabet letters, namely the relative incidences of AAA and BB2 remain constant in bent and straight duplexes.
Collapse
Affiliation(s)
- Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Prague West, Czech Republic.
| | - Paulína Božíková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Prague West, Czech Republic.
| | - Petr Čech
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic.
| | - Daniel Svozil
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic.
| | - Jiří Černý
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Prague West, Czech Republic.
| |
Collapse
|
44
|
Giangrossi M, Giuliodori AM, Tran CN, Amici A, Marchini C, Falconi M. VirF Relieves the Transcriptional Attenuation of the Virulence Gene icsA of Shigella flexneri Affecting the icsA mRNA-RnaG Complex Formation. Front Microbiol 2017; 8:650. [PMID: 28458662 PMCID: PMC5394118 DOI: 10.3389/fmicb.2017.00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
VirF is the master activator of virulence genes of Shigella and its expression is required for the invasion of the human intestinal mucosa by pathogenic bacteria. VirF was shown to directly activate the transcription of virB and icsA, which encode two essential proteins involved in the pathogenicity process, by binding their promoter regions. In this study, we demonstrate by band shift, enzymatic probing and cross-linking experiments that VirF, in addition to DNA, can also bind the icsA transcript and RnaG, an antisense non-coding small RNA that promotes the premature termination of icsA mRNA through a transcriptional attenuation mechanism. Furthermore, we show that VirF binds in vitro also other species of RNAs, although with lower specificity. The existence of VirF–RnaG and VirF-icsA mRNA complexes is confirmed in a pulldown assay carried out under experimental conditions that very close reproduce the in vivo conditions and that allows immobilized VirF to “fish” out RnaG and icsA mRNA from a total RNA extract. The VirF binding sites identified on both icsA mRNA and RnaG contain a 13 nucleotides stretch (5′-UUUUaGYcUuUau-3′) that is the RNA-converted consensus sequence previously proposed for the VirF–DNA interaction. Band-shift assays with a synthetic RNA molecule whose sequence perfectly matches the consensus indicate that this signature plays a key role also in the VirF–RNA interaction, in particular when exposed in a stem–loop structure. To further explore the icsA-RnaG-VirF regulatory system, we developed an in vitro test (RNA–RNA Pairing Assay) in which pairing between icsA mRNA and synthetic RNAs that reproduce the individual stem–loop motifs of RnaG, was analyzed in the presence of VirF. This assay shows that this protein can prevent the formation of the kissing complex, defined as the initial nucleation points for RNA heteroduplex formation, between RnaG and icsA mRNA. Consistently, VirF alleviates the RnaG-mediated repression of icsA transcription in vitro. Therefore VirF, by hindering the icsA transcript-RnaG interaction, exhibits an activity opposed to that usually displayed by proteins, which generally assist the RNA–RNA interaction; this quite uncommon and new function and the regulatory implications of VirF as a potential RNA-binding protein are discussed.
Collapse
Affiliation(s)
- Mara Giangrossi
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Anna M Giuliodori
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Chi N Tran
- Food Science Department, Can Tho Technical - Economic CollegeCan Tho, Vietnam
| | - Augusto Amici
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Cristina Marchini
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Maurizio Falconi
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| |
Collapse
|
45
|
Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine. Antimicrob Agents Chemother 2016; 61:AAC.01162-16. [PMID: 27799211 DOI: 10.1128/aac.01162-16] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/09/2016] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that is often difficult to treat due to its multidrug resistance (MDR). We have previously shown that K. pneumoniae strains are able to "adapt" (become more resistant) to the widely used bisbiguanide antiseptic chlorhexidine. Here, we investigated the mechanisms responsible for and the phenotypic consequences of chlorhexidine adaptation, with particular reference to antibiotic cross-resistance. In five of six strains, adaptation to chlorhexidine also led to resistance to the last-resort antibiotic colistin. Here, we show that chlorhexidine adaptation is associated with mutations in the two-component regulator phoPQ and a putative Tet repressor gene (smvR) adjacent to the major facilitator superfamily (MFS) efflux pump gene, smvA Upregulation of smvA (10- to 27-fold) was confirmed in smvR mutant strains, and this effect and the associated phenotype were suppressed when a wild-type copy of smvR was introduced on plasmid pACYC. Upregulation of phoPQ (5- to 15-fold) and phoPQ-regulated genes, pmrD (6- to 19-fold) and pmrK (18- to 64-fold), was confirmed in phoPQ mutant strains. In contrast, adaptation of K. pneumoniae to colistin did not result in increased chlorhexidine resistance despite the presence of mutations in phoQ and elevated phoPQ, pmrD, and pmrK transcript levels. Insertion of a plasmid containing phoPQ from chlorhexidine-adapted strains into wild-type K. pneumoniae resulted in elevated expression levels of phoPQ, pmrD, and pmrK and increased resistance to colistin, but not chlorhexidine. The potential risk of colistin resistance emerging in K. pneumoniae as a consequence of exposure to chlorhexidine has important clinical implications for infection prevention procedures.
Collapse
|
46
|
Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol 2016; 35:48-55. [PMID: 27941803 DOI: 10.1038/nbt.3718] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023]
Abstract
Improvements in DNA synthesis and sequencing have underpinned comprehensive assessment of gene function in bacteria and eukaryotes. Genome-wide analyses require high-throughput methods to generate mutations and analyze their phenotypes, but approaches to date have been unable to efficiently link the effects of mutations in coding regions or promoter elements in a highly parallel fashion. We report that CRISPR-Cas9 gene editing in combination with massively parallel oligomer synthesis can enable trackable editing on a genome-wide scale. Our method, CRISPR-enabled trackable genome engineering (CREATE), links each guide RNA to homologous repair cassettes that both edit loci and function as barcodes to track genotype-phenotype relationships. We apply CREATE to site saturation mutagenesis for protein engineering, reconstruction of adaptive laboratory evolution experiments, and identification of stress tolerance and antibiotic resistance genes in bacteria. We provide preliminary evidence that CREATE will work in yeast. We also provide a webtool to design multiplex CREATE libraries.
Collapse
|
47
|
Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G. The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle. Front Mol Biosci 2016; 3:61. [PMID: 27747215 PMCID: PMC5041530 DOI: 10.3389/fmolb.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Maurizio Falconi
- Laboratorio di Genetica Molecolare e dei Microrganismi, Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino Camerino, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consilglio Nazionale Delle Richerche Roma, Italy
| | - Bianca Colonna
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Gianni Prosseda
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| |
Collapse
|
48
|
Control of MarRAB Operon in Escherichia coli via Autoactivation and Autorepression. Biophys J 2016; 109:1497-508. [PMID: 26445450 DOI: 10.1016/j.bpj.2015.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/15/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
Choice of network topology for gene regulation has been a question of interest for a long time. How do simple and more complex topologies arise? In this work, we analyze the topology of the marRAB operon in Escherichia coli, which is associated with control of expression of genes associated with conferring resistance to low-level antibiotics to the bacterium. Among the 2102 promoters in E. coli, the marRAB promoter is the only one that encodes for an autoactivator and an autorepressor. What advantages does this topology confer to the bacterium? In this work, we demonstrate that, compared to control by a single regulator, the marRAB regulatory arrangement has the least control cost associated with modulating gene expression in response to environmental stimuli. In addition, the presence of dual regulators allows the regulon to exhibit a diverse range of dynamics, a feature that is not observed in genes controlled by a single regulator.
Collapse
|
49
|
Zhao J, Yu X, Zhu M, Kang H, Ma J, Wu M, Gan J, Deng X, Liang H. Structural and Molecular Mechanism of CdpR Involved in Quorum-Sensing and Bacterial Virulence in Pseudomonas aeruginosa. PLoS Biol 2016; 14:e1002449. [PMID: 27119725 PMCID: PMC4847859 DOI: 10.1371/journal.pbio.1002449] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/24/2016] [Indexed: 01/07/2023] Open
Abstract
Although quorum-sensing (QS) systems are important regulators of virulence gene expression in the opportunistic human pathogen Pseudomonas aeruginosa, their detailed regulatory mechanisms have not been fully characterized. Here, we show that deletion of PA2588 resulted in increased production of pyocyanin and biofilm, as well as enhanced pathogenicity in a mouse model. To gain insights into the function of PA2588, we performed a ChIP-seq assay and identified 28 targets of PA2588, including the intergenic region between PA2588 and pqsH, which encodes the key synthase of Pseudomonas quinolone signal (PQS). Though the C-terminal domain was similar to DNA-binding regions of other AraC family members, structural studies revealed that PA2588 has a novel fold at the N-terminal region (NTR), and its C-terminal HTH (helix-turn-helix) domain is also unique in DNA recognition. We also demonstrated that the adaptor protein ClpS, an essential regulator of ATP-dependent protease ClpAP, directly interacted with PA2588 before delivering CdpR to ClpAP for degradation. We named PA2588 as CdpR (ClpAP-degradation and pathogenicity Regulator). Moreover, deletion of clpP or clpS/clpA promotes bacterial survival in a mouse model of acute pneumonia infection. Taken together, this study uncovered that CdpR is an important QS regulator, which can interact with the ClpAS-P system to regulate the expression of virulence factors and pathogenicity.
Collapse
Affiliation(s)
- Jingru Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, ShaanXi, China
| | - Xiang Yu
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Innovative Collaborative Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Miao Zhu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, ShaanXi, China
| | - Huaping Kang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, ShaanXi, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Innovative Collaborative Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Wu
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jianhua Gan
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JG); (XD); (HL)
| | - Xin Deng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- * E-mail: (JG); (XD); (HL)
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, ShaanXi, China
- * E-mail: (JG); (XD); (HL)
| |
Collapse
|
50
|
Malaga F, Mayberry O, Park DJ, Rodgers ME, Toptygin D, Schleif RF. A genetic and physical study of the interdomain linker of E. Coli
AraC protein-a trans
-subunit communication pathway. Proteins 2016; 84:448-60. [DOI: 10.1002/prot.24990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Fabiana Malaga
- Biology Department; UPCH; Lima San Martín De Porres Peru
| | - Ory Mayberry
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - David J. Park
- Tufts University Medical School; Boston Massachusetts
| | - Michael E. Rodgers
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - Dmitri Toptygin
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - Robert F. Schleif
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| |
Collapse
|