1
|
Sakkiah S, Leggett C, Pan B, Guo W, Valerio LG, Hong H. Development of a Nicotinic Acetylcholine Receptor nAChR α7 Binding Activity Prediction Model. J Chem Inf Model 2020; 60:2396-2404. [PMID: 32159345 DOI: 10.1021/acs.jcim.0c00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the well-known adverse health effects associated with tobacco use, addiction to nicotine found in tobacco products causes difficulty in quitting among users. Nicotinic acetylcholine receptors (nAChRs) are the physiological targets of nicotine and facilitate addiction to tobacco products. The nAChR-α7 subtype plays an important role in addiction; therefore, predicting the binding activity of tobacco constituents to nAChR-α7 is an important component for assessing addictive potential of tobacco constituents. We developed an α7 binding activity prediction model based on a large training data set of 843 chemicals with human α7 binding activity data extracted from PubChem and ChEMBL. The model was tested using 1215 chemicals with rat α7 binding activity data from the same databases. Based on the competitive docking results, the docking scores were partitioned to the key residues that play important roles in the receptor-ligand binding. A decision forest was used to train the human α7 binding activity prediction model based on the partition of docking scores. Five-fold cross validations were conducted to estimate the performance of the decision forest models. The developed model was used to predict the potential human α7 binding activity for 5275 tobacco constituents. The human α7 binding activity data for 84 of the 5275 tobacco constituents were experimentally measured to confirm and empirically validate the prediction results. The prediction accuracy, sensitivity, and specificity were 64.3, 40.0, and 81.6%, respectively. The developed prediction model of human α7 may be a useful tool for high-throughput screening of potential addictive tobacco constituents.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Carmine Leggett
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, U.S. Food and Drug Administration, 11785 Beltsville Drive, Calverton, Maryland 20705, United States
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Wenjing Guo
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Luis G Valerio
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, U.S. Food and Drug Administration, 11785 Beltsville Drive, Calverton, Maryland 20705, United States
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| |
Collapse
|
2
|
Competitive docking model for prediction of the human nicotinic acetylcholine receptor α7 binding of tobacco constituents. Oncotarget 2018; 9:16899-16916. [PMID: 29682193 PMCID: PMC5908294 DOI: 10.18632/oncotarget.24458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
The detrimental health effects associated with tobacco use constitute a major public health concern. The addiction associated with nicotine found in tobacco products has led to difficulty in quitting among users. Nicotinic acetylcholine receptors (nAChRs) are the targets of nicotine and are responsible for addiction to tobacco products. However, it is unknown if the other >8000 tobacco constituents are addictive. Since it is time-consuming and costly to experimentally assess addictive potential of such larger number of chemicals, computationally predicting human nAChRs binding is important for in silico evaluation of addiction potential of tobacco constituents and needs structures of human nAChRs. Therefore, we constructed three-dimensional structures of the ligand binding domain of human nAChR α7 subtype and then developed a predictive model based on the constructed structures to predict human nAChR α7 binding activity of tobacco constituents. The predictive model correctly predicted 11 out of 12 test compounds to be binders of nAChR α7. The model is a useful tool for high-throughput screening of potential addictive tobacco constituents. These results could inform regulatory science research by providing a new validated predictive tool using cutting-edge computational methodology to high-throughput screen tobacco additives and constituents for their binding interaction with the human α7 nicotinic receptor. The tool represents a prediction model capable of screening thousands of chemicals found in tobacco products for addiction potential, which improves the understanding of the potential effects of additives.
Collapse
|
3
|
Design and synthesis of 5-chloro-2-hydroxy-3-triazolylbenzoic acids as HIV integrase inhibitors. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1325-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Crosby DC, Lei X, Gibbs CG, Reinecke MG, Robinson WE. Mutagenesis of Lysines 156 and 159 in Human Immunodeficiency Virus Type 1 Integrase (IN) Reveals Differential Interactions between these Residues and Different IN Inhibitors. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 integrase (IN) active site, and viral DNA-binding residues K156 and K159 are predicted to interact both with strand transfer-selective IN inhibitors (STI), e.g. L-731,988, Elvitegravir (EVG), and the FDA-approved IN inhibitor, Raltegravir (RGV), and strand transfer non-selective inhibitors, e.g. dicaffeoyltartaric acids (DCTAs), e.g. L-chicoric acid (L-CA). To test posited roles for these two lysine residues in inhibitor action we assayed the potency of L-CA and several STI against a panel of K156 and K159 mutants. Mutagenesis of K156 conferred resistance to L-CA and mutagenesis of either K156 or K159 conferred resistance to STI indicating that the cationic charge at these two viral DNA-binding residues is important for inhibitor potency. IN K156N, a reported polymorphism associated with resistance to RGV, conferred resistance to L-CA and STI as well. To investigate the apparent preference L-CA exhibits for interactions with K156, we assayed the potency of several hybrid inhibitors containing combinations of DCTA and STI pharmacophores against recombinant IN K156A or K159A. Although K156A conferred resistance to diketo acid-branched bis-catechol hybrid inhibitors, neither K156A nor K159A conferred resistance to their monocatechol counterparts, suggesting that bis-catechol moieties direct DCTAs toward K156. In contrast, STI were more promiscuous in their interaction with K156 and K159. Taken together, the results of this study indicate that DCTAs interact with IN in a manner different than that of STI and suggest that DCTAs are an attractive candidate chemotype for development into drugs potent against STI-resistant IN.
Collapse
Affiliation(s)
- David C. Crosby
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA
| | - Xiangyang Lei
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - Charles G. Gibbs
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - Manfred G. Reinecke
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - W. Edward Robinson
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4800, USA
| |
Collapse
|
5
|
Design and synthesis of biotin- or alkyne-conjugated photoaffinity probes for studying the target molecules of PD 404182. Bioorg Med Chem 2013; 21:2079-87. [PMID: 23403297 DOI: 10.1016/j.bmc.2013.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/05/2013] [Accepted: 01/05/2013] [Indexed: 12/22/2022]
Abstract
To investigate the mechanism of action of the potent antiviral compound PD 404182, three novel photoaffinity probes equipped with a biotin or alkyne indicator were designed and synthesized based on previous structure-activity relationship studies. These probes retained the potent anti-HIV activity of the original pyrimidobenzothiazine derivatives. In photoaffinity labeling studies using HIV-1-infected H9 cells (H9IIIB), eight potential proteins were observed to bind PD 404182.
Collapse
|
6
|
Mizuhara T. Structure–Activity Relationship Study of PD 404182 Derivatives for the Highly Potent Anti-HIV Agents. DEVELOPMENT OF NOVEL ANTI-HIV PYRIMIDOBENZOTHIAZINE DERIVATIVES 2013. [PMCID: PMC7122882 DOI: 10.1007/978-4-431-54445-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using facile synthetic approaches to pyrimido[1,2-c][1,3]benzothiazin-6-imines and related tricyclic derivatives, the parallel structural optimizations were investigated for the central 1,3-thiazin-2-imine core, the benzene part, and the cyclic amidine part of PD 404182. Replacement of the 6-6-6 pyrimido[1,2-c][1,3]benzothiazin-6-imine framework with 5-6-6 or 6-6-5 derivatives led to a significant loss of anti-HIV activity, and introduction of a hydrophobic group at the 9- or 10-positions improved the potency. The most potent PD 404182 derivative exerts anti-HIV effects at an early stage of viral infection including binding and fusion.
Collapse
|
7
|
Mizuhara T, Oishi S, Ohno H, Shimura K, Matsuoka M, Fujii N. Concise synthesis and anti-HIV activity of pyrimido[1,2-c][1,3]benzothiazin-6-imines and related tricyclic heterocycles. Org Biomol Chem 2012; 10:6792-802. [DOI: 10.1039/c2ob25904d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Gupta P, Garg P, Roy N. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors. Mol Divers 2011; 15:733-50. [DOI: 10.1007/s11030-011-9304-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/05/2011] [Indexed: 12/01/2022]
|
9
|
The HIV-1 integrase α4-helix involved in LTR-DNA recognition is also a highly antigenic peptide element. PLoS One 2010; 5:e16001. [PMID: 21209864 PMCID: PMC3012736 DOI: 10.1371/journal.pone.0016001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023] Open
Abstract
Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147–166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (5 CITEP, for instance), significantly impaired the binding of K156 to the antibody. Moreover, we found that in competition ELISAs, the processed and unprocessed LTR oligonucleotides interfered with the binding of MAba4 to IN and K156, confirming that the IN α4-helix uses common residues to interact with the DNA target and the MAba4 antibody. This also explains why, in our standard in vitro concerted integration assays, MAba4 strongly impaired the IN enzymatic activity.
Collapse
|
10
|
Zheng Y, Ao Z, Jayappa KD, Yao X. Characterization of the HIV-1 integrase chromatin- and LEDGF/p75-binding abilities by mutagenic analysis within the catalytic core domain of integrase. Virol J 2010; 7:68. [PMID: 20331877 PMCID: PMC2859858 DOI: 10.1186/1743-422x-7-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 03/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background During the early stage of HIV-1 replication, integrase (IN) plays important roles at several steps, including reverse transcription, viral DNA nuclear import, targeting viral DNA to host chromatin and integration. Previous studies have demonstrated that HIV-1 IN interacts with a cellular Lens epithelium-derived growth factor (LEDGF/p75) and that this viral/cellular interaction plays an important role for tethering HIV-1 preintegration complexes (PICs) to transcriptionally active units of host chromatin. Meanwhile, other studies have revealed that the efficient knockdown and/or knockout of LEDGF/p75 could not abolish HIV infection, suggesting a LEDGF/p75-independent action of IN for viral DNA chromatin targeting and integration, even though the underlying mechanism(s) is not fully understood. Results In this study, we performed site-directed mutagenic analysis at the C-terminal region of the IN catalytic core domain responsible for IN/chromatin binding and IN/LEDGF/p75 interaction. The results showed that the IN mutations H171A, L172A and EH170,1AA, located in the loop region 170EHLK173 between the α4 and α5 helices of IN, severely impaired the interaction with LEDGF/p75 but were still able to bind chromatin. In addition, our combined knockdown approach for LEDGF/p75 also failed to dissociate IN from chromatin. This suggests that IN has a LEDGF/p75-independent determinant for host chromatin binding. Furthermore, a single-round HIV-1 replication assay showed that the viruses harboring IN mutants capable of LEDGF/p75-independent chromatin binding still sustained a low level of infection, while the chromatin-binding defective mutant was non-infectious. Conclusions All of these data indicate that, even though the presence of LEDGF/p75 is important for a productive HIV-1 replication, IN has the ability to bind chromatin in a LEDGF/p75-independent manner and sustains a low level of HIV-1 infection. Hence, it is interesting to define the mechanism(s) underlying IN-mediated LEDGF/p75-independent chromatin targeting, and further studies in this regard will help for a better understanding of the molecular mechanism of chromatin targeting by IN during HIV-1 infection.
Collapse
Affiliation(s)
- Yingfeng Zheng
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, 508-745 William Avenue, Winnipeg R3E 0J9, Canada
| | | | | | | |
Collapse
|
11
|
Hobaika Z, Zargarian L, Boulard Y, Maroun RG, Mauffret O, Fermandjian S. Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase {alpha}4 helix. Nucleic Acids Res 2010; 37:7691-700. [PMID: 19808934 PMCID: PMC2794180 DOI: 10.1093/nar/gkp824] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
HIV-1 integrase integrates retroviral DNA through 3′-processing and strand transfer reactions in the presence of a divalent cation (Mg2+ or Mn2+). The α4 helix exposed at the catalytic core surface is essential to the specific recognition of viral DNA. To define group determinants of recognition, we used a model composed of a peptide analogue of the α4 helix, oligonucleotides mimicking processed and unprocessed U5 LTR end and 5 mM Mg2+. Circular dichroism, fluorescence and NMR experiments confirmed the implication of the α4 helix polar/charged face in specific and non-specific bindings to LTR ends. The specific binding requires unprocessed LTR ends—i.e. an unaltered 3′-processing site CA↓GT3′—and is reinforced by Mg2+ (Kd decreases from 2 to 0.8 nM). The latter likely interacts with the ApG and GpT3′ steps of the 3′-processing site. With deletion of GT3′, only persists non-specific binding (Kd of 100 μM). Proton chemical shift deviations showed that specific binding need conserved amino acids in the α4 helix and conserved nucleotide bases and backbone groups at LTR ends. We suggest a conserved recognition mechanism based on both direct and indirect readout and which is subject to evolutionary pressure.
Collapse
Affiliation(s)
- Zeina Hobaika
- Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Marchand C, Maddali K, Métifiot M, Pommier Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 2010; 9:1016-37. [PMID: 19747122 DOI: 10.2174/156802609789630910] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/13/2009] [Indexed: 12/29/2022]
Abstract
Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress((R))) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation STI, recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
13
|
Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 2008; 5:114. [PMID: 19091057 PMCID: PMC2615046 DOI: 10.1186/1742-4690-5-114] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/17/2008] [Indexed: 01/12/2023] Open
Abstract
Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1). This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.
Collapse
|
14
|
Exploring the binding of HIV-1 integrase inhibitors by comparative residue interaction analysis (CoRIA). J Mol Model 2008; 15:233-45. [DOI: 10.1007/s00894-008-0399-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/06/2008] [Indexed: 11/26/2022]
|
15
|
Dolan J, Chen A, Weber IT, Harrison RW, Leis J. Defining the DNA substrate binding sites on HIV-1 integrase. J Mol Biol 2008; 385:568-79. [PMID: 19014951 DOI: 10.1016/j.jmb.2008.10.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
A tetramer model for human immunodeficiency virus type 1 (HIV-1) integrase (IN) with DNA representing long terminal repeat (LTR) termini was previously assembled to predict the IN residues that interact with the LTR termini; these predictions were experimentally verified for nine amino acid residues [Chen, A., Weber, I. T., Harrison, R. W. & Leis, J. (2006). Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J. Biol. Chem., 281, 4173-4182]. In a similar strategy, the unique amino acids found in avian sarcoma virus IN, rather than HIV-1 or Mason-Pfizer monkey virus IN, were substituted into the structurally related positions of HIV-1 IN. Substitutions of six additional residues (Q44, L68, E69, D229, S230, and D253) showed changes in the 3' processing specificity of the enzyme, verifying their predicted interaction with the LTR DNA. The newly identified residues extend interactions along a 16-bp length of the LTR termini and are consistent with known LTR DNA/HIV-1 IN cross-links. The tetramer model for HIV-1 IN with LTR termini was modified to include two IN binding domains for lens-epithelium-derived growth factor/p75. The target DNA was predicted to bind in a surface trench perpendicular to the plane of the LTR DNA binding sites of HIV-1 IN and extending alongside lens-epithelium-derived growth factor. This hypothesis is supported by the in vitro activity phenotype of HIV-1 IN mutant, with a K219S substitution showing loss in strand transfer activity while maintaining 3' processing on an HIV-1 substrate. Mutations at seven other residues reported in the literature have the same phenotype, and all eight residues align along the length of the putative target DNA binding trench.
Collapse
Affiliation(s)
- James Dolan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
16
|
Du L, Zhao YX, Yang LM, Zheng YT, Tang Y, Shen X, Jiang HL. Symmetrical 1-pyrrolidineacetamide showing anti-HIV activity through a new binding site on HIV-1 integrase. Acta Pharmacol Sin 2008; 29:1261-7. [PMID: 18817633 DOI: 10.1111/j.1745-7254.2008.00863.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To characterize the functional and pharmacological features of a symmetrical 1-pyrrolidineacetamide, N,N'-(methylene-di-4,1-phenylene) bis-1-pyrrolidineacetamide, as a new anti-HIV compound which could competitively inhibit HIV-1 integrase (IN) binding to viral DNA. METHODS A surface plasma resonance (SPR)-based competitive assay was employed to determine the compound's inhibitory activity, and the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide cell assay was used to qualify the antiviral activity. The potential binding sites were predicted by molecular modeling and determined by site-directed mutagenesis and a SPR binding assay. RESULTS 1-pyrrolidineacetamide, N,N'-(methylene-di-4,1-phenylene) bis-1-pyrrolidineacetamide could competitively inhibit IN binding to viral DNA with a 50% inhibitory concentration (IC(50)) value of 7.29+/-0.68 micromol/L as investigated by SPR-based investigation. Another antiretroviral activity assay showed that this compound exhibited inhibition against HIV-1(IIIB) replication with a 50% effective concentration (EC(50)) value of 40.54 micromol/L in C8166 cells, and cytotoxicity with a cytotoxic concentration value of 173.84 micromol/L in mock-infected C8166 cells. Molecular docking predicted 3 potential residues as 1-pyrrolidineacetamide, N,N'-(methylene-di-4,1-phenylene)bis-1- pyrrolidineacetamide binding sites. The importance of 3 key amino acid residues (Lys103, Lys173, and Thr174) involved in the binding was further identified by site-directed mutagenesis and a SPR binding assay. CONCLUSION This present work identified a new anti-HIV compound through a new IN-binding site which is expected to supply new potential drug-binding site information for HIV-1 integrase inhibitor discovery and development.
Collapse
Affiliation(s)
- Li Du
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
17
|
HIV‐1 Integrase Inhibitors: Update and Perspectives. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:199-228. [DOI: 10.1016/s1054-3589(07)56007-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Deng J, Sanchez T, Al-Mawsawi LQ, Dayam R, Yunes RA, Garofalo A, Bolger MB, Neamati N. Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Bioorg Med Chem 2007; 15:4985-5002. [PMID: 17502148 DOI: 10.1016/j.bmc.2007.04.041] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 02/18/2007] [Accepted: 04/15/2007] [Indexed: 11/28/2022]
Abstract
Recently, we reported small-molecule chalcones as a novel class of HIV-1 integrase (IN) inhibitors. The most potent compound showed an IC50 value of 2 microM for both IN-mediated 3'-processing and strand transfer reactions. To further utilize the chalcones, we developed pharmacophore models to identify chemical signatures important for biological activity. The derived models were validated with a collection of published inhibitors, and then were applied to screen a subset of our small molecule database. We tested 71 compounds in an in vitro assay specific for IN enzymatic activity. Forty-four compounds showed inhibitory potency<100 microM, and four of them exhibited IC50 values<10 microM. One compound, 62, with an IC50 value of 0.6 microM, displayed better potency than the original chalcone 2 against the strand transfer process. This study demonstrates the systematic use of pharmacophore technologies to discover novel structurally diverse inhibitors based on lead molecules that would exhibit poor characteristics in vivo. The identified compounds have the potential to exhibit favorable pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Jinxia Deng
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Al-Mawsawi LQ, Fikkert V, Dayam R, Witvrouw M, Burke TR, Borchers CH, Neamati N. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Proc Natl Acad Sci U S A 2006; 103:10080-5. [PMID: 16785440 PMCID: PMC1502509 DOI: 10.1073/pnas.0511254103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein, we report the identification of a unique HIV-1 integrase (IN) inhibitor-binding site using photoaffinity labeling and mass spectrometric analysis. We chemically incorporated a photo-activatable benzophenone moiety into a series of coumarin-containing IN inhibitors. A representative of this series was covalently photo-crosslinked with the IN core domain and subjected to HPLC purification. Fractions were subsequently analyzed by using MALDI-MS and electrospray ionization (ESI)-MS to identify photo-crosslinked products. In this fashion, a single binding site for an inhibitor located within the tryptic peptide (128)AACWWAGIK(136) was identified. Site-directed mutagenesis followed by in vitro inhibition assays resulted in the identification of two specific amino acid residues, C130 and W132, in which substitutions resulted in a marked resistance to the IN inhibitors. Docking studies suggested a specific disruption in functional oligomeric IN complex formation. The combined approach of photo-affinity labeling/MS analysis with site-directed mutagenesis/molecular modeling is a powerful approach for elucidating inhibitor-binding sites of proteins at the atomic level. This approach is especially important for the study of proteins that are not amenable to traditional x-ray crystallography and NMR techniques. This type of structural information can help illuminate processes of inhibitor resistance and thereby facilitate the design of more potent second-generation inhibitors.
Collapse
Affiliation(s)
- Laith Q. Al-Mawsawi
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Valery Fikkert
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Raveendra Dayam
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Myriam Witvrouw
- Division of Molecular Medicine, Katholieke Universiteit Leuven and Interdisciplinary Research Center, Katholieke Universiteit Leuven–Campus Kortrijk, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Terrence R. Burke
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702; and
| | - Christoph H. Borchers
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
- To whom correspondence may be addressed. E-mail:
or
| | - Nouri Neamati
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
20
|
Chen A, Weber IT, Harrison RW, Leis J. Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat Ends. J Biol Chem 2006; 281:4173-82. [PMID: 16298997 PMCID: PMC2656937 DOI: 10.1074/jbc.m510628200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A tetramer model for HIV-1 integrase (IN) with DNA representing 20 bp of the U3 and U5 long terminal repeats (LTR) termini was assembled using structural and biochemical data and molecular dynamics simulations. It predicted amino acid residues on the enzyme surface that can interact with the LTR termini. A separate structural alignment of HIV-1, simian sarcoma virus (SIV), and avian sarcoma virus (ASV) INs predicted which of these residues were unique. To determine whether these residues were responsible for specific recognition of the LTR termini, the amino acids from ASV IN were substituted into the structurally equivalent positions of HIV-1 IN, and the ability of the chimeras to 3 ' process U5 HIV-1 or ASV duplex oligos was determined. This analysis demonstrated that there are multiple amino acid contacts with the LTRs and that substitution of ASV IN amino acids at many of the analogous positions in HIV-1 IN conferred partial ability to cleave ASV substrates with a concomitant loss in the ability to cleave the homologous HIV-1 substrate. HIV-1 IN residues that changed specificity include Val(72), Ser(153), Lys(160)-Ile(161), Gly(163)-Val(165), and His(171)-Leu(172). Because a chimera that combines several of these substitutions showed a specificity of cleavage of the U5 ASV substrate closer to wild type ASV IN compared with chimeras with individual amino acid substitutions, it appears that the sum of the IN interactions with the LTRs determines the specificity. Finally, residues Ser(153) and Val(72) in HIV-1 IN are among those that change in enzymes that develop resistance to naphthyridine carboxamide- and diketo acid-related inhibitors in cells. Thus, amino acid residues involved in recognition of the LTRs are among these positions that change in development of drug resistance.
Collapse
Affiliation(s)
- Aiping Chen
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Irene T. Weber
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Robert W. Harrison
- Department of Computer Science, Georgia State University, Atlanta, Georgia 30303
| | - Jonathan Leis
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
21
|
Deng J, Sanchez T, Neamati N, Briggs JM. Dynamic Pharmacophore Model Optimization: Identification of Novel HIV-1 Integrase Inhibitors. J Med Chem 2006; 49:1684-92. [PMID: 16509584 DOI: 10.1021/jm0510629] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We extended the previously described dynamic pharmacophore model studies of HIV-1 integrase (IN) by considering more key residues in the active site, including Mg2+. First, we applied a Monte Carlo sampling method to map the complementary features of the IN binding surface. Two types of dynamic pharmacophore models were generated. One considers Mg2+ as part of the IN and therefore as an excluded volume, and the other treats Mg2+ as a positively charged feature, representing a new type of pharmacophore model aimed to identify compounds potentially preventing Mg2+ binding. Second, we validated the models with 385 known active (IC50 < 20 microM) and 235 (IC50 > 100 microM) inactive IN inhibitors. Third, we used the derived models to screen our small molecule database. Twenty-two structurally novel compounds were tested in an in vitro assay specific for IN, and two of them showed IC50 < or = 10 microM for strand transfer reaction.
Collapse
Affiliation(s)
- Jinxia Deng
- Department of Chemical Engineering, University of Houston, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|
22
|
John S, Fletcher TM, Jonsson CB. Development and application of a high-throughput screening assay for HIV-1 integrase enzyme activities. ACTA ACUST UNITED AC 2005; 10:606-14. [PMID: 16103418 DOI: 10.1177/1087057105276318] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Integrase (IN) mediates the covalent insertion of the retroviral genome into its host chromosomal DNA. This enzymatic activity can be reconstituted in vitro with short DNA oligonucleotides, which mimic a single viral DNA end, and purified IN. Herein we report a highly efficient and sensitive high-throughput screen, HIV Integrase Target SRI Assay (HITS), for HIV-1 IN activity using 5' biotin-labeled DNA (5' BIO donor) and 3' digoxygenin-labeled DNA (3' DIG target). Following 3' processing of the 5' BIO donor, strand transfer proceeds with integration of the 5' BIO donor into the 3' DIG target. Products were captured on a streptavidin-coated microplate and the amount of DIG retained in the well was measured. The end point values, measured as absorbance, ranged from 0.9 to 1.5 for IN-mediated reactions as compared with background readings of 0.05 to 0.12. The Z factor for the assay ranged from 0.7 to 0.85. The assay was used to screen drugs in a high-throughput format, and furthermore, we adapted the assay to study mechanistic questions regarding the integration process. For example, using variations of the assay format, we showed high preference of E strand of the long terminal repeat (LTR) viral DNA as a target strand compared with its complementary A strand. The E strand is the strand processed by IN. Furthermore, we explored the reported inhibitory effect of reverse transcriptase on integration.
Collapse
Affiliation(s)
- Sinu John
- Graduate Program, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
23
|
Williams KL, Zhang Y, Shkriabai N, Karki RG, Nicklaus MC, Kotrikadze N, Hess S, Le Grice SFJ, Craigie R, Pathak VK, Kvaratskhelia M. Mass spectrometric analysis of the HIV-1 integrase-pyridoxal 5'-phosphate complex reveals a new binding site for a nucleotide inhibitor. J Biol Chem 2004; 280:7949-55. [PMID: 15615720 DOI: 10.1074/jbc.m413579200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 integrase (IN) is an important target for designing new antiviral therapies. Screening of potential inhibitors using recombinant IN-based assays has revealed a number of promising leads including nucleotide analogs such as pyridoxal 5'-phosphate (PLP). Certain PLP derivatives were shown to also exhibit antiviral activities in cell-based assays. To identify an inhibitory binding site of PLP to IN, we used the intrinsic chemical property of this compound to form a Schiff base with a primary amine in the protein at the nucleotide binding site. The amino acid affected was then revealed by mass spectrometric analysis of the proteolytic peptide fragments of IN. We found that an IC(50) concentration (15 mum) of PLP modified a single IN residue, Lys(244), located in the C-terminal domain. In fact, we observed a correlation between interaction of PLP with Lys(244) and the compound's ability to impair formation of the IN.DNA complex. Site-directed mutagenesis studies confirmed an essential role of Lys(244) for catalytic activities of recombinant IN and viral replication. Molecular modeling revealed that Lys(244) together with several other DNA binding residues provides a plausible pocket for a nucleotide inhibitor-binding site. To our knowledge, this is the first report indicating that a small molecule inhibitor can impair IN activity through its binding to the protein C terminus. At the same time, our findings highlight the importance of structural analysis of the full-length protein.
Collapse
Affiliation(s)
- Kerry L Williams
- Ohio State University Health Sciences Center, College of Pharmacy, Center for Retrovirus Research and Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sechi M, Angotzi G, Dallocchio R, Dessì A, Carta F, Sannia L, Mariani A, Fiori S, Sanchez T, Movsessian L, Plasencia C, Neamati N. Design and synthesis of novel dihydroxyindole-2-carboxylic acids as HIV-1 integrase inhibitors. Antivir Chem Chemother 2004; 15:67-81. [PMID: 15185725 DOI: 10.1177/095632020401500203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In a search for new HIV-1 integrase (IN) inhibitors, we synthesized and evaluated the biological activity of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and a series of its derivatives. These compounds were designed as conformationally constrained analogues of the acrylate moiety of caffeic acid phenethyl ester (CAPE). DHICA, an intermediate in the biosynthesis of melanins, was prepared as a monomeric unit by a novel synthetic route. In order to perform coherent SAR studies, two series of DHICA amides were synthesized. First, to validate the utility of a previously identified three-point pharmacophore based on CAPE in inhibitor design, we prepared a series of benzyl- or phenylethylamine substituted derivatives lacking and containing hydroxyl groups. Second, dimers of DHICA containing various aminoalkylamine linkers were also prepared with a goal to increase potency. All compounds were tested against purified IN and the C65S mutant in enzyme-based assays. They were also tested for cytotoxicity in an ovarian carcinoma cell line and antiviral activity in HIV-1-infected CEM cells. Seven compounds inhibited catalytic activities of purified IN with IC50 values below 10 microM. Further computational docking studies were performed to determine the title compounds' mode of interaction with the IN active site. The residues K156, K159 and D64 were the most important for potency against purified IN.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Deprez E, Barbe S, Kolaski M, Leh H, Zouhiri F, Auclair C, Brochon JC, Le Bret M, Mouscadet JF. Mechanism of HIV-1 Integrase Inhibition by Styrylquinoline Derivatives in Vitro. Mol Pharmacol 2004; 65:85-98. [PMID: 14722240 DOI: 10.1124/mol.65.1.85] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Styrylquinoline derivatives (SQ) efficiently inhibit the 3'-processing activity of integrase (IN) with IC50 values of between 0.5 and 5 microM. We studied the mechanism of action of these compounds in vitro. First, we used steady-state fluorescence anisotropy to assay the effects of the SQ derivatives on the formation of IN-viral DNA complexes independently of the catalytic process. The IC50 values obtained in activity and DNA-binding tests were similar, suggesting that the inhibition of 3'-processing can be fully explained by the prevention of IN-DNA recognition. SQ compounds act in a competitive manner, with Ki values of between 400 and 900 nM. In contrast, SQs did not inhibit 3'-processing when IN-DNA complexes were preassembled. Computational docking followed or not by molecular dynamics using the catalytic core of HIV-1 IN suggested a competitive inhibition mechanism, which is consistent with our previous data obtained with the corresponding Rous sarcoma virus domain. Second, we used preassembled IN-preprocessed DNA complexes to assay the potency of SQs against the strand transfer reaction, independently of 3'-processing. Inhibition occurred even if the efficiency was decreased by about 5- to 10-fold. Our results suggest that two inhibitor-binding modes exist: the first one prevents the binding of the viral DNA and then the two subsequent reactions (i.e., 3'-processing and strand transfer), whereas the second one prevents the binding of target DNA, thus inhibiting strand transfer. SQ derivatives have a higher affinity for the first site, in contrast to that observed for the diketo acids, which preferentially bind to the second one.
Collapse
Affiliation(s)
- Eric Deprez
- Centre National de la Recherche Scientifique Unité Mixte Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée, Ecole Normale Supérieure de Cachan, Cachan Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Human immunodeficiency virus Type 1 (HIV-1) integrase is an essential enzyme for the obligatory integration of the viral DNA into the infected cell chromosome. As no cellular homologue of HIV integrase has been identified, this unique HIV-1 enzyme is an attractive target for the development of new therapeutics. Treatment of HIV-1 infection and AIDS currently consists of the use of combinations of HIV-1 inhibitors directed against reverse transcriptase (RT) and protease. However, their numerous side effects and the rapid emergence of drug-resistant variants limit greatly their use in many AIDS patients. In principle, inhibitors of the HIV-1 integrase should be relatively non-toxic and provide additional benefits for AIDS chemotherapy. There have been many major advances in our understanding of the molecular mechanism of the integration reaction, although some critical aspects remain obscure. Several classes of compounds have been screened and further scrutinised for their inhibitory properties against the HIV integrase; however, there are currently no useful inhibitors available clinically for the treatment of AIDS patients. This review describes the current knowledge of the biological functions of the HIV-1 integrase and reports the major classes of integrase inhibitors identified to date.
Collapse
Affiliation(s)
- Khampoune Sayasith
- CRRA, Faculty of Veterinary Medicine, University of Montreal, PO Box 5000, St-Hyacinthe, Quebec, Canada J2S 7C6.
| | | | | |
Collapse
|
27
|
Brodin P, Pinskaya M, Parsch U, Bischerour J, Leh H, Romanova E, Engels JW, Gottikh M, Mouscadet JF. 6-oxocytidine containing oligonucleotides inhibit the HIV-1 integrase in vitro. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:481-6. [PMID: 11563063 DOI: 10.1081/ncn-100002322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Integration of the proviral DNA into the genome of infected cells is a key step of HIV-1 replication. Integration is catalyzed by the viral enzyme integrase (IN). 6-oxocytidine-containing oligonucleotides were found to be efficient inhibitors of integrase in vitro. The inhibitory effect is sequence-specific and strictly requires the presence of the 6-oxocytidine base. It is due to the impairment of the integrase binding to its substrate and does not involve an auto-structure of the oligonucleotide.
Collapse
Affiliation(s)
- P Brodin
- UMR 8532, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The pol gene of HIV-1 encodes for three essential enzymes, protease (PR), reverse transcriptase (RT) and integrase (IN). More than 16 drugs, targeting two of these enzymes, PR and RT have been approved by the FDA. At present, there are no clinically useful agents that inhibit the third enzyme, IN. Combination chemotherapy consisting of PR and RT inhibitors has shown remarkable success in the clinic and has benefited many patients. It is thought that a combination of drugs targeting all three enzymes should further incapacitate the virus. Discovery of highly selective PR inhibitors owe their success to the recent development in structure-guided drug design. During the past several years a plethora of structures of HIV-1 PR in complex with an inhibitor have been solved by x-ray crystallography. This incredible wealth of information provided opportunities for the discovery of second and third generation inhibitors. Due to the inherent nature of IN and insufficient structural information, structure-based inhibitor design selective for IN has not kept pace. However, because of recent developments in the field such information could soon become available. In this review, emphasis is placed on inhibitors with identified or proposed drug binding sites on IN.
Collapse
Affiliation(s)
- N Neamati
- University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 304BA, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|
29
|
d'Angelo J, Mouscadet JF, Desmaële D, Zouhiri F, Leh H. HIV-1 integrase: the next target for AIDS therapy? ACTA ACUST UNITED AC 2001; 49:237-46. [PMID: 11367559 DOI: 10.1016/s0369-8114(01)00135-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HIV-1 is the aetiological agent of AIDS. Present treatment of AIDS uses a combination therapy with reverse transcriptase and protease inhibitors. Recently, the integrase (IN), the third enzyme of HIV-1 which is necessary for the integration process of proviral DNA into the host genome, has reached as a legitimate new drug target. Several families of inhibitors of the catalytic core domain of HIV-1 IN exhibiting submicromolar activities have now been identified. Our contribution in this field was related to the development of new polyhydroxylated styrylquinolines. The latter compounds have proved to be potent HIV-1 IN inhibitors, that block the replication of HIV-1 in cell culture, and are devoid of cytotoxicity. The crystal structure of the catalytically active core domain of a HIV-1 IN mutant has been determined. The active site region is identified by the position of two of the conserved carboxylate residues essential for catalysis, Asp64 and Asp116, which coordinate a Mg2+ ion, whereas the third catalytic residue, Glu152 does not participate in metal binding. However, a recent molecular dynamics simulation of the HIV-1 IN catalytic domain provides support to the hypothesis that a second metal ion is likely to be carried into the HIV-1 IN active site by the DNA substrate. The structure of a complex of the HIV-1 IN core domain with the inhibitor 5-CITEP has been recently reported. The inhibitor binds centrally in the active site of the IN and makes a number of close contacts with the protein, particularly with Lys156, Lys159 and Gln148, amino acids which were identified to be near the active site of the enzyme, through site-directed mutagenis and photo-crosslinking experiments. The exact mechanism by which HIV-1 IN inhibitors block the catalytic activity of the protein remains unknown. However, several putative pharmacophore components have been characterized. All these groups lie in a possible coordination to a divalent ion, supporting thus the hypothesis that the interaction causing the inhibition is mediated by one or two cations. Finally, among the HIV-1 IN inhibitors, three classes have proved to exhibit significant antiviral activities. Thus, it seems likely that the efficient use of HIV-1 IN as a target for rational design will become possible in the next future, possibly through the use of combination regimens including IN inhibitors.
Collapse
Affiliation(s)
- J d'Angelo
- Unité associée au CNRS, faculté de pharmacie, 5, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Using the crystal structure of the first complex of the HIV-1 integrase catalytic core domain with an inhibitor bound to the active site, structural models for the interaction of various inhibitors with integrase were generated by computational docking. For the compound of the crystallographic study, binding modes unaffected by crystal packing have recently been proposed. Although a large search region was used for the docking simulations, the ligands investigated here are found to bind preferably in similar ways close to the active site. The binding site is formed by residues 64-67, 116, 148, 151-152, 155-156, and 159, as well as by residue 92 in case of the largest ligand of the series. The coherent picture of possible interactions of small-molecule inhibitors at the active site provides an improved basis for structure-based ligand design. The recurring motif of tight interaction with the two lysine residues 156 and 159 is suggested to be of prime importance.
Collapse
Affiliation(s)
- C A Sotriffer
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0365, USA.
| | | | | |
Collapse
|
31
|
Pilon AA, Marchand C, Kavlick MF, Bajaj K, Owen J, Mitsuya H, Pommier Y. Mutations in the HIV type 1 integrase of patients receiving long-term dideoxynucleoside therapy do not confer resistance to zidovudine. AIDS Res Hum Retroviruses 2000; 16:1417-22. [PMID: 11018861 DOI: 10.1089/08892220050140964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolites of AZT can inhibit HIV-1 integrase in vitro (Mazumder A, et al., Proc Natl Acad Sci USA 1994;91:5771-5775). To determine if long-term dideoxynucleoside therapy can lead to the emergence of HIV-1 AZT-resistant variants containing mutations in the integrase, we have sequenced the proviral DNA encoding the HIV-1 integrase of nine HIV-1-infected patients at different time points during treatment. Four of the nine patients developed mutations during the course of treatment. Although most mutations occurred at nonconserved amino acids, one patient developed a mutation at codon (R166T), a residue that is conserved among all integrases from known HIV-1 isolates. This mutation was introduced in the recombinant HIV-1 integrase protein to determine if it could confer resistance to AZT in vitro. We show that the R166T integrase mutant is still proficient at carrying 3'-processing and 3' end-joining but that the enzyme is not resistant to AZT-TP. Our results suggest that it is unlikely that integrase inhibition contributes to the antiviral activity of AZT.
Collapse
Affiliation(s)
- A A Pilon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pommier Y, Marchand C, Neamati N. Retroviral integrase inhibitors year 2000: update and perspectives. Antiviral Res 2000; 47:139-48. [PMID: 10974366 DOI: 10.1016/s0166-3542(00)00112-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
HIV-1 integrase is an essential enzyme for retroviral replication and a rational target for the design of anti-AIDS drugs. A number of inhibitors have been reported in the past 8 years. This review focuses on the recent developments in the past 2 years. There are now several inhibitors with known sites of actions and antiviral activity. The challenge is to convert these leads into drugs that will selectively target integrase in vivo, and can be added to our antiviral armamentarium.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892-4255, USA.
| | | | | |
Collapse
|
33
|
Jing N. Developing G-quartet oligonucleotides as novel anti-HIV agents: focus on anti-HIV drug design. Expert Opin Investig Drugs 2000; 9:1777-85. [PMID: 11060776 DOI: 10.1517/13543784.9.8.1777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, a new class of oligonucleotides, forming G-quartet structures, has been developed as novel anti-HIV agents. Several critical structure-activity relationships between HIV-1 integrase and G-quartet oligonucleotides have been demonstrated. In addition the mechanism of the inhibition of HIV-1 integrase by G-quartet oligonucleotides, such as T30695 and its derivatives, has been explored. This review summarises the preliminary studies of developing G-quartet oligonucleotides as novel anti-HIV agents in several aspects including structure-activity relationship, stability-activity correlation, mechanism of HIV-1 integrase inhibition, substitution of phosphorothioates and targeting HIV-1 integrase in infected cells, which, hopefully, could help for developing a novel, efficient anti-HIV agent.
Collapse
Affiliation(s)
- N Jing
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Jing N, Marchand C, Liu J, Mitra R, Hogan ME, Pommier Y. Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in Vitro. J Biol Chem 2000; 275:21460-7. [PMID: 10801812 DOI: 10.1074/jbc.m001436200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G-tetrad-forming oligonucleotides and have been identified as potent inhibitors of human immunodeficiency virus type 1 integrase (HIV-1 IN) activity (Rando, R. F., Ojwang, J., Elbaggari, A., Reyes, G. R., Tinder, R., McGrath, M. S., and Hogan, M. E. (1995) J. Biol. Chem. 270, 1754-1760; Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13762-13771; Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). To understand the inhibition of HIV-1 IN activity by the G-quartet inhibitors, we have designed the oligonucleotides and, composed of three and four G-quartets with stem lengths of 19 and 24 A, respectively. The fact that increasing the G-quartet stem length from 15 to 24 A kept inhibition of HIV-1 IN activity unchanged suggests that the binding interaction occurs between a GTGT loop domain of the G-quartet inhibitors and a catalytic site of HIV-1 IN, referred to as a face-to-face interaction. Docking the NMR structure of (Jing and Hogan (1998)) into the x-ray structure of the core domain of HIV-1 IN, HIV-1 IN-(51-209) (Maignan, S., Guilloteau, J.-P. , Qing, Z.-L., Clement-Mella, C., and Mikol, V. (1998) J. Mol. Biol. 282, 359-368), was performed using the GRAMM program. The statistical distributions of hydrogen bonding between HIV-1 IN and were obtained from the analyses of 1000 random docking structures. The docking results show a high probability of interaction between the GTGT loop residues of the G-quartet inhibitors and the catalytic site of HIV-1 IN, in agreement with the experimental observation.
Collapse
Affiliation(s)
- N Jing
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Taktakishvili M, Neamati N, Pommier Y, Pal S, Nair V. Recognition and Inhibition of HIV Integrase by Novel Dinucleotides. J Am Chem Soc 2000. [DOI: 10.1021/ja992528d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Taktakishvili
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Nouri Neamati
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Yves Pommier
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Suresh Pal
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Vasu Nair
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| |
Collapse
|
36
|
Taktakishvili M, Neamati N, Pommier Y, Nair V. Recognition and inhibition of HIV integrase by a novel dinucleotide. Bioorg Med Chem Lett 2000; 10:249-51. [PMID: 10698446 DOI: 10.1016/s0960-894x(99)00677-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The viral enzyme, HIV integrase, is involved in the integration of viral DNA into host cell DNA. In the quest for a small nucleotide system with nuclease stability of the internucleotide phosphate bond and critical structural features for recognition and inhibition of HIV-1 integrase, we have discovered a conceptually novel dinucleotide, pIsodApdC, which is a potent inhibitor of this key viral enzyme.
Collapse
Affiliation(s)
- M Taktakishvili
- Department of Chemistry, The University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
37
|
Wang-Gillam A, Pastuszak I, Stewart M, Drake RR, Elbein AD. Identification and modification of the uridine-binding site of the UDP-GalNAc (GlcNAc) pyrophosphorylase. J Biol Chem 2000; 275:1433-8. [PMID: 10625695 DOI: 10.1074/jbc.275.2.1433] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-GalNAc pyrophosphorylase (UDP-GalNAcPP; AGX1) catalyzes the synthesis of UDP-GalNAc from UTP and GalNAc-1-P. The 475-amino acid protein (57 kDa protein) also synthesizes UDP-GlcNAc at about 25% the rate of UDP-GalNAc. The cDNA for this enzyme, termed AGX1, was cloned in Escherichia coli, and expressed as an active enzyme that cross-reacted with antiserum against the original pig liver UDP-HexNAcPP. In the present study, we incubated recombinant AGX1 with N(3)-UDP-[(32)P]GlcNAc and N(3)-UDP-[(32)P]GalNAc probes to label the nucleotide-binding site. Proteolytic digestions of the labeled enzyme and analysis of the resulting peptides indicated that both photoprobes cross-linked to one 24-amino acid peptide located between residues Val(216) and Glu(240). Four amino acids in this peptide were found to be highly conserved among closely related enzymes, and each of these was individually modified to alanine. Mutation of Gly(222) to Ala in the peptide almost completely eliminated UDP-GlcNAc and UDP-GalNAc synthesis, while mutation of Gly(224) to Ala, almost completely eliminated UDP-GalNAc synthesis, but UDP-GlcNAc was only diminished by 50%. Both of these mutations also resulted in almost complete loss of the ability of the mutated proteins to cross-link N(3)-UDP-[(32)P]GlcNAc or N(3)-UDP-[(32)P]GalNAc. On the other hand, mutations of either Pro(220) or Tyr(227) to Ala did not greatly affect enzymatic activity, although there was some reduction in the ability of these proteins to cross-link the photoaffinity probes. We also mutated Gly(111) to Ala since this amino acid was reported to be necessary for catalysis (Mio, T., Yabe, T., Arisawa, M., and Yamada-Okabe, H. (1998) J. Biol. Chem. 273, 14392-14397). The Gly(111) to Ala mutant lost all enzymatic activity, but interestingly enough, this mutant protein still cross-linked the radioactive N(3)-UDP-GlcNAc although not nearly as well as the wild type. On the other hand, mutation of Arg(115) to Ala had no affect on enzymatic activity although it also reduced the amount of cross-linking of N(3)-UDP-[(32)P]GlcNAc. These studies help to define essential amino acids at or near the nucleotide-binding site and the catalytic site, as well as peptides involved in binding and catalysis.
Collapse
Affiliation(s)
- A Wang-Gillam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
38
|
Maroun RG, Krebs D, El Antri S, Deroussent A, Lescot E, Troalen F, Porumb H, Goldberg ME, Fermandjian S. Self-association and domains of interactions of an amphipathic helix peptide inhibitor of HIV-1 integrase assessed by analytical ultracentrifugation and NMR experiments in trifluoroethanol/H(2)O mixtures. J Biol Chem 1999; 274:34174-85. [PMID: 10567389 DOI: 10.1074/jbc.274.48.34174] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EAA26 (VESMNEELKKIIAQVRAQAEHLKTAY) is a better inhibitor of human immunodeficiency virus, type 1, integrase than its parent Lys-159, reproducing the enzyme segment 147-175 with a nonpolar-polar/charged residue periodicity defined by four helical heptads (abcdefg) prone to collapse into a coiled-coil. Circular dichroism, nuclear magnetic resonance, sedimentation equilibrium, and chemical cross-linking were used to analyze EAA26 in various trifluoroethanol/H(2)O mixtures. In pure water the helix content is weak but increases regularly up to 50-60% trifluoroethanol. In contrast the multimerization follows a bell-shaped curve with monomers in pure water, tetramers at 10% trifluoroethanol, and dimers at 40% trifluoroethanol. All suggest that interhelical interactions between apolar side chains are required for the coiled-coil formation of EAA26 and subsist at medium trifluoroethanol concentration. The N(H) temperature coefficients measured by nuclear magnetic resonance show that at low trifluoroethanol concentration the amide groups buried in the hydrophobic interior of four alpha-helix bundles are weakly accessible to trifluoroethanol and are only weakly subject to its hydrogen bond strengthening effect. The increased accessibility of trifluoroethanol to buried amide groups at higher trifluoroethanol concentration entails the reduction of the hydrophobic interactions and the conversion of helix tetramers into helix dimers, the latter displaying a smaller hydrophobic interface. The better inhibitory activity of EAA26 compared with Lys-159 could arise from its better propensity to form a helix bundle structure with the biologically important helical part of the 147-175 segment in integrase.
Collapse
Affiliation(s)
- R G Maroun
- Département de Biologie et Pharmacologie Structurales, UMR 8532 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Integration of the viral DNA into a host cell chromosome is an essential step for HIV replication and maintenance of persistent infection. Two viral factors are essential for integration: the viral DNA termini (the att sites) and IN. Accruing knowledge of the IN structure, catalytic mechanisms, and interactions with other proteins can be used to design strategies to block integration. A large number of inhibitors have been identified that can be used as leads for the development of potent and selective anti-IN drugs with antiviral activity.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
40
|
Abu Sheika G, Tramontano E, Loi AG, Franchetti P, Grifantini M, La Colla P. Effect of acyclic nucleoside phosphonates on the HIV-1 integrase in vitro. NUCLEOSIDES & NUCLEOTIDES 1999; 18:849-51. [PMID: 10432692 DOI: 10.1080/15257779908041579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Integrase (IN) is an essential enzyme in the human immunodeficiency virus type-1 (HIV-1) replication cycle and, thus, a potential target for chemotherapeutic agents. Because various nucleotide analogues have been reported to inhibit IN in vitro, we investigated the effect of acyclic nucleoside phosphonates. Both unphosphorylated and diphosphorylated derivatives were inhibitory to IN at concentrations ranging between 60 and 800 microM, with diphosphorylated derivatives being 5- to 8-fold more potent than unphosphorylated counterparts.
Collapse
Affiliation(s)
- G Abu Sheika
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Farnet CM, Wang B, Hansen M, Lipford JR, Zalkow L, Robinson WE, Siegel J, Bushman F. Human immunodeficiency virus type 1 cDNA integration: new aromatic hydroxylated inhibitors and studies of the inhibition mechanism. Antimicrob Agents Chemother 1998; 42:2245-53. [PMID: 9736543 PMCID: PMC105796 DOI: 10.1128/aac.42.9.2245] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8, 12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development.
Collapse
Affiliation(s)
- C M Farnet
- Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|