1
|
Duplouy A. Validating a Mitochondrial Sweep Accompanying the Rapid Spread of a Maternally Inherited Symbiont. Methods Mol Biol 2024; 2739:239-247. [PMID: 38006556 DOI: 10.1007/978-1-0716-3553-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Maternally inherited symbiotic bacteria that interfere with the reproduction of their hosts can contribute to selective sweeps of mitochondrial haplotypes through hitch-hiking or coordinate inheritance of cytoplasmic bacteria and host mitochondria. The sweep will be manifested by genetic variations of mitochondrial genomic DNA of symbiont-infected hosts relative to their uninfected counterparts. In particular, at the population level, infected specimens will show a reduced mitochondrial DNA polymorphism compared to that in the nuclear DNA. This may challenge the use of mitochondrial DNA sequences as neutral genetic markers, as the mitochondrial patterns will reflect the evolutionary history of parasitism, rather than the sole evolutionary history of the host. Here, I describe a detailed step-by-step procedure to infer the occurrence and timing of symbiont-induced mitochondrial sweeps in host species.
Collapse
Affiliation(s)
- Anne Duplouy
- Insect Symbiosis Ecology and Evolution, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Research Centre for Ecological Changes, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Aoki K, Takahata N, Oota H, Wakano JY, Feldman MW. Infectious diseases may have arrested the southward advance of microblades in Upper Palaeolithic East Asia. Proc Biol Sci 2023; 290:20231262. [PMID: 37644833 PMCID: PMC10465978 DOI: 10.1098/rspb.2023.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
An unsolved archaeological puzzle of the East Asian Upper Palaeolithic is why the southward expansion of an innovative lithic technology represented by microblades stalled at the Qinling-Huaihe Line. It has been suggested that the southward migration of foragers with microblades stopped there, which is consistent with ancient DNA studies showing that populations to the north and south of this line had differentiated genetically by 19 000 years ago. Many infectious pathogens are believed to have been associated with hominins since the Palaeolithic, and zoonotic pathogens in particular are prevalent at lower latitudes, which may have produced a disease barrier. We propose a mathematical model to argue that mortality due to infectious diseases may have arrested the wave-of-advance of the technologically advantaged foragers from the north.
Collapse
Affiliation(s)
- Kenichi Aoki
- Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Naoyuki Takahata
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0116, Japan
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Joe Yuichiro Wakano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano, Tokyo 164-8525, Japan
| | | |
Collapse
|
3
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
4
|
Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, Khan MB, Kumar N, Lau YL, Misra-Bhattacharya S, Rao R, Sadzewicz L, Saeung A, Shahab M, Sparklin BC, Steven A, Turner JD, Tallon LJ, Taylor MJ, Moorhead AR, Michalski M, Foster JM, Dunning Hotopp JC. X-treme loss of sequence diversity linked to neo-X chromosomes in filarial nematodes. PLoS Negl Trop Dis 2021; 15:e0009838. [PMID: 34705823 PMCID: PMC8575316 DOI: 10.1371/journal.pntd.0009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/08/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
Collapse
Affiliation(s)
- John Mattick
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Silvia Libro
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Robin Bromley
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Matthew Chung
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Darren Cook
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mohammad Behram Khan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nikhil Kumar
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Ramakrishna Rao
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lisa Sadzewicz
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mohd Shahab
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Benjamin C. Sparklin
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Andrew Steven
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Luke J. Tallon
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Mark J. Taylor
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew R. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Michalski
- University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Deng J, Assandri G, Chauhan P, Futahashi R, Galimberti A, Hansson B, Lancaster LT, Takahashi Y, Svensson EI, Duplouy A. Wolbachia-driven selective sweep in a range expanding insect species. BMC Ecol Evol 2021; 21:181. [PMID: 34563127 PMCID: PMC8466699 DOI: 10.1186/s12862-021-01906-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. Method The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). Results Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. Conclusions Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.
Collapse
Affiliation(s)
- Junchen Deng
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.,Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Giacomo Assandri
- Area per l'Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPA), Via Ca' Fornacetta 9, 40064, Ozzano Emilia, BO, Italy
| | - Pallavi Chauhan
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Trukuba, Ibaraki, 305-8566, Japan
| | - Andrea Galimberti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Bengt Hansson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | - Erik I Svensson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Anne Duplouy
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden. .,Insect Symbiosis Ecology and Evolution Lab, Organismal and Evolutionary Biology Research Program, The University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland.
| |
Collapse
|
6
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
7
|
Abstract
African apes harbor at least twelve Plasmodium species, some of which have been a source of human infection. It is now well established that Plasmodium falciparum emerged following the transmission of a gorilla parasite, perhaps within the last 10,000 years, while Plasmodium vivax emerged earlier from a parasite lineage that infected humans and apes in Africa before the Duffy-negative mutation eliminated the parasite from humans there. Compared to their ape relatives, both human parasites have greatly reduced genetic diversity and an excess of nonsynonymous mutations, consistent with severe genetic bottlenecks followed by rapid population expansion. A putative new Plasmodium species widespread in chimpanzees, gorillas, and bonobos places the origin of Plasmodium malariae in Africa. Here, we review what is known about the origins and evolutionary history of all human-infective Plasmodium species, the time and circumstances of their emergence, and the diversity, host specificity, and zoonotic potential of their ape counterparts.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
8
|
Antinori S, Bonazzetti C, Giacomelli A, Corbellino M, Galli M, Parravicini C, Ridolfo AL. Non-human primate and human malaria: past, present and future. J Travel Med 2021; 28:6162451. [PMID: 33693917 DOI: 10.1093/jtm/taab036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Studies of the malaria parasites infecting various non-human primates (NHPs) have increased our understanding of the origin, biology and pathogenesis of human Plasmodium parasites.This review considers the major discoveries concerning NHP malaria parasites, highlights their relationships with human malaria and considers the impact that this may have on attempts to eradicate the disease. RESULTS The first description of NHP malaria parasites dates back to the early 20th century. Subsequently, experimental and fortuitous findings indicating that some NHP malaria parasites can be transmitted to humans have raised concerns about the possible impact of a zoonotic malaria reservoir on efforts to control human malaria.Advances in molecular techniques over the last 15 years have contributed greatly to our knowledge of the existence and geographical distribution of numerous Plasmodium species infecting NHPs, and extended our understanding of their close phylogenetic relationships with human malaria parasites. The clinical application of such techniques has also made it possible to document ongoing spillovers of NHP malaria parasites (Plasmodium knowlesi, P. cynomolgi, P. simium, P. brasilianum) in humans living in or near the forests of Asia and South America, thus confirming that zoonotic malaria can undermine efforts to eradicate human malaria. CONCLUSIONS Increasing molecular research supports the prophetic intuition of the pioneers of modern malariology who saw zoonotic malaria as a potential obstacle to the full success of malaria eradication programmes. It is, therefore, important to continue surveillance and research based on one-health approaches in order to improve our understanding of the complex interactions between NHPs, mosquito vectors and humans during a period of ongoing changes in the climate and the use of land, monitor the evolution of zoonotic malaria, identify the populations most at risk and implement appropriate preventive strategies.
Collapse
Affiliation(s)
- Spinello Antinori
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Cecilia Bonazzetti
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Andrea Giacomelli
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Mario Corbellino
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Galli
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Carlo Parravicini
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Anna Lisa Ridolfo
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
9
|
Pegoraro M, Weedall GD. Malaria in the 'Omics Era'. Genes (Basel) 2021; 12:843. [PMID: 34070769 PMCID: PMC8228830 DOI: 10.3390/genes12060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology.
Collapse
Affiliation(s)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
10
|
Derilus D, Rahman MZ, Serrano AE, Massey SE. Proteome size reduction in Apicomplexans is linked with loss of DNA repair and host redundant pathways. INFECTION GENETICS AND EVOLUTION 2020; 87:104642. [PMID: 33296723 DOI: 10.1016/j.meegid.2020.104642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022]
Abstract
Apicomplexans are alveolate parasites which include Plasmodium falciparum, the main cause of malaria, one of the world's biggest killers from infectious disease. Apicomplexans are characterized by a reduction in proteome size, which appears to result from metabolic and functional simplification, commensurate with their parasitic lifestyle. However, other factors may also help to explain gene loss such as population bottlenecks experienced during transmission, and the effect of reducing the overall genomic information content. The latter constitutes an 'informational constraint', which is proposed to exert a selective pressure to evolve and maintain genes involved in informational fidelity and error correction, proportional to the quantity of information in the genome (which approximates to proteome size). The dynamics of gene loss was examined in 41 Apicomplexan genomes using orthogroup analysis. We show that loss of genes involved in amino acid metabolism and steroid biosynthesis can be explained by metabolic redundancy with the host. We also show that there is a marked tendency to lose DNA repair genes as proteome size is reduced. This may be explained by a reduction in size of the informational constraint and can help to explain elevated mutation rates in pathogens with reduced genome size. Multiple Sequentially Markovian Coalescent (MSMC) analysis indicates a recent bottleneck, consistent with predictions generated using allele-based population genetics approaches, implying that relaxed selection pressure due to reduced population size might have contributed to gene loss. However, the non-randomness of pathways that are lost challenges this scenario. Lastly, we identify unique orthogroups in malaria-causing Plasmodium species that infect humans, with a high proportion of membrane associated proteins. Thus, orthogroup analysis appears useful for identifying novel candidate pathogenic factors in parasites, when there is a wide sample of genomes available.
Collapse
Affiliation(s)
- D Derilus
- Environmental Sciences Department, University of Puerto Rico-Rio Piedras, United States of America
| | - M Z Rahman
- Biology Department, University of Puerto Rico-Rio Piedras, United States of America
| | - A E Serrano
- Department of Microbiology, University of Puerto Rico-School of Medicine, Medical Sciences, United States of America
| | - S E Massey
- Biology Department, University of Puerto Rico-Rio Piedras, United States of America.
| |
Collapse
|
11
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Gautam N, Gaire B, Manandhar T, Marasini BP, Parajuli N, Lekhak SP, Nepal M. Glucose 6 phosphate dehydrogenase deficiency and hemoglobinopathy in South Western Region Nepal: a boon or burden. BMC Res Notes 2019; 12:734. [PMID: 31703724 PMCID: PMC6839259 DOI: 10.1186/s13104-019-4762-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022] Open
Abstract
Objectives The study was carried out to optimize the phenotypic method to characterize the sickle cell trait (SCT), sickle cell anemia (SCA), and β-thalassemia (β-TT) suspected sample from tharu community of South Western province-5, Nepal. SCT and SCA were further evaluated by genotypic method employing amplification refractory mutation system (ARMS PCR). Moreover, Glucose 6 phosphate dehydrogenase (G6PD) was estimated in those hemoglobinopathy to observe its prevalence. The accurate and reliable method can play an important role in reduction of morbidity and mortality rate. Results The 100 suspected cases were subjected to phenotypic method adopting cellulose acetate electrophoresis and genotypic method using ARMS PCR which portraits (5%) SCA positive test showing HBS/HBS, (38%) SCT positive trait HBA/HBS and (36%) cases normal HBA/HBA. β-TT (21%) cases were confirmed by electropherogram. G6PD deficiency was observed in (40%) of SCA, (18.4%) of SCT, (4.8%) of β-TT and (2.8%) in normal cases. Increased G6PD were developed only in SCT (5.3%) and β-TT (4.8%). The study highlighted sickle cell disorder (SCD) and β-TT as the most common hemoglobinopathy coexisting with G6PD deficiency. Though hemoglobinopathy sometime could be protective in malaria but G6PD deficiency can cause massive hemolysis which may exacerbate the condition.
Collapse
Affiliation(s)
- Narayan Gautam
- Department of Biochemistry, Universal College of Medical Sciences, Bhairahawa, Nepal.
| | - Bhagwati Gaire
- Department of Biotechnology, National College, Kathmandu, Nepal
| | | | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Monica Nepal
- Department of Pharmacological and Bio-Molecular Sciences, Universita Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
13
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
14
|
Hecht LBB, Thompson PC, Rosenthal BM. Comparative demography elucidates the longevity of parasitic and symbiotic relationships. Proc Biol Sci 2018; 285:rspb.2018.1032. [PMID: 30282650 PMCID: PMC6191686 DOI: 10.1098/rspb.2018.1032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Parasitic and symbiotic relationships govern vast nutrient and energy flows, yet controversy surrounds their longevity. Enduring relationships may engender parallel phylogenies among hosts and parasites, but so may ephemeral relationships when parasites colonize related hosts. An understanding of whether symbiont and host populations have grown and contracted in concert would be useful when considering the temporal durability of these relationships. Here, we devised methods to compare demographic histories derived from genomic data. We compared the historical growth of the agent of severe human malaria, Plasmodium falciparum, and its mosquito vector, Anopheles gambiae, to human and primate histories, thereby discerning long-term parallels and anthropogenic population explosions. The growth history of Trichinella spiralis, a zoonotic parasite disseminated by swine, proved regionally specific, paralleling distinctive growth histories for wild boar in Asia and Europe. Parallel histories were inferred for an anemone and its algal symbiont (Exaiptasia pallida and Symbiodinium minutum). Concerted growth in potatoes and the agent of potato blight (Solanum tuberosum and Phytophthora infestans) did not commence until the age of potato domestication. Through these examples, we illustrate the utility of comparative historical demography as a new exploratory tool by which to interrogate the origins and durability of myriad ecological relationships. To facilitate future use of this approach, we introduce a tool called C-PSMC to align and evaluate the similarity of demographic history curves.
Collapse
Affiliation(s)
- Luke B B Hecht
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Peter C Thompson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Benjamin M Rosenthal
- US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| |
Collapse
|
15
|
Deng Z, Li Q, Yi H, Zhang Y, Yang F, Li H, Luo L, Ma L, Yang Z, He Y, Cui L. Hemoglobin E protects against acute Plasmodium vivax infections in a Kachin population at the China-Myanmar border. J Infect 2018; 77:435-439. [PMID: 29964138 DOI: 10.1016/j.jinf.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Hemoglobin E (HbE, β26 Glu-Lys) is the most prevalent hemoglobinopathy in Southeast Asia. This study aimed to determine whether HbE protects against clinical Plasmodium vivax malaria in Southeast Asia. METHODS In a case-control study performed in villages along the China-Myanmar border, we determined the prevalence of HbE in 257 villagers who had acute P. vivax infections and in 157 control healthy villagers. RESULTS HbE in P. vivax patients (17.4%) was significantly less prevalent than in the healthy villager population (36.3%). Moreover, there was a complete lack of HbEE homozygotes in the vivax patients as compared to 9.5% prevalence in the healthy villagers. Using the HbAA group as the reference, both the HbEA heterozygotes and HbEE homozygotes had significantly lower odds of presenting with acute P. vivax infections. Furthermore, HbEA heterozygotes also had significantly lower P. vivax asexual parasite densities. HbEA did not affect the proportion of P. vivax patients with gametocytemia nor the gametocyte densities. CONCLUSIONS HbE offers significant protection against the occurrence and parasite density of acute P. vivax infections and provides a renewed perspective on P. vivax malaria as a potentially strong driving force behind the high frequencies of HbE in the Kachin population.
Collapse
Affiliation(s)
- Zeshuai Deng
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qing Li
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haoan Yi
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yanjie Zhang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Fang Yang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong Li
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Lan Luo
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Limei Ma
- Department of Histology and Embryology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China.
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America.
| |
Collapse
|
16
|
Plenderleith LJ, Liu W, MacLean OA, Li Y, Loy DE, Sundararaman SA, Bibollet-Ruche F, Learn GH, Hahn BH, Sharp PM. Adaptive Evolution of RH5 in Ape Plasmodium species of the Laverania Subgenus. mBio 2018; 9:e02237-17. [PMID: 29362238 PMCID: PMC5784257 DOI: 10.1128/mbio.02237-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/03/2023] Open
Abstract
Plasmodium falciparum, the major cause of malaria morbidity and mortality in humans, has been shown to have emerged after cross-species transmission of one of six host-specific parasites (subgenus Laverania) infecting wild chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla). Binding of the parasite-encoded ligand RH5 to the host protein basigin is essential for erythrocyte invasion and has been implicated in host specificity. A recent study claimed to have found two amino acid changes in RH5 that "drove the host shift leading to the emergence of P. falciparum as a human pathogen." However, the ape Laverania data available at that time, which included only a single distantly related chimpanzee parasite sequence, were inadequate to justify any such conclusion. Here, we have investigated Laverania Rh5 gene evolution using sequences from all six ape parasite species. Searching for gene-wide episodic selection across the entire Laverania phylogeny, we found eight codons to be under positive selection, including three that correspond to contact residues known to form hydrogen bonds between P. falciparum RH5 and human basigin. One of these sites (residue 197) has changed subsequent to the transmission from apes to humans that gave rise to P. falciparum, suggesting a possible role in the adaptation of the gorilla parasite to the human host. We also found evidence that the patterns of nucleotide polymorphisms in P. falciparum are not typical of Laverania species and likely reflect the recent demographic history of the human parasite.IMPORTANCE A number of closely related, host-specific malaria parasites infecting wild chimpanzees and gorillas have recently been described. The most important cause of human malaria, Plasmodium falciparum, is now known to have resulted from a cross-species transmission of one of the gorilla parasites. Overcoming species-specific interactions between a parasite ligand, RH5, and its receptor on host cells, basigin, was likely an important step in the origin of the human parasite. We have investigated the evolution of the Rh5 gene and found evidence of adaptive changes during the diversification of the ape parasite species at sites that are known to form bonds with human basigin. One of these changes occurred at the origin of P. falciparum, implicating it as an important adaptation to the human host.
Collapse
Affiliation(s)
- Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oscar A MacLean
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sesh A Sundararaman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Gerald H Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Gelabert P, Olalde I, de-Dios T, Civit S, Lalueza-Fox C. Malaria was a weak selective force in ancient Europeans. Sci Rep 2017; 7:1377. [PMID: 28469196 PMCID: PMC5431260 DOI: 10.1038/s41598-017-01534-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/30/2017] [Indexed: 12/23/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, is thought to be one of the strongest selective forces that has shaped the genome of modern humans and was endemic in Europe until recent times. Due to its eradication around mid-twentieth century, the potential selective history of malaria in European populations is largely unknown. Here, we screen 224 ancient European genomes from the Upper Palaeolithic to the post-Roman period for 22 malaria-resistant alleles in twelve genes described in the literature. None of the most specific mutations for malaria resistance, like those at G6PD, HBB or Duffy blood group, have been detected among the available samples, while many other malaria-resistant alleles existed well before the advent of agriculture. We detected statistically significant differences between ancient and modern populations for the ATP2B4, FCGR2B and ABO genes and we found evidence of selection at IL-10 and ATP2B4 genes. However it is unclear whether malaria is the causative agent, because these genes are also involved in other immunological challenges. These results suggest that the selective force represented by malaria was relatively weak in Europe, a fact that could be associated to a recent historical introduction of the severe malaria pathogen.
Collapse
Affiliation(s)
- Pere Gelabert
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Iñigo Olalde
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Toni de-Dios
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Sergi Civit
- Department of Statistics, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 2016; 47:87-97. [PMID: 27381764 DOI: 10.1016/j.ijpara.2016.05.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun 2016; 7:11078. [PMID: 27002652 PMCID: PMC4804174 DOI: 10.1038/ncomms11078] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
African apes harbour at least six Plasmodium species of the subgenus Laverania, one of which gave rise to human Plasmodium falciparum. Here we use a selective amplification strategy to sequence the genome of chimpanzee parasites classified as Plasmodium reichenowi and Plasmodium gaboni based on the subgenomic fragments. Genome-wide analyses show that these parasites indeed represent distinct species, with no evidence of cross-species mating. Both P. reichenowi and P. gaboni are 10-fold more diverse than P. falciparum, indicating a very recent origin of the human parasite. We also find a remarkable Laverania-specific expansion of a multigene family involved in erythrocyte remodelling, and show that a short region on chromosome 4, which encodes two essential invasion genes, was horizontally transferred into a recent P. falciparum ancestor. Our results validate the selective amplification strategy for characterizing cryptic pathogen species, and reveal evolutionary events that likely predisposed the precursor of P. falciparum to colonize humans. African apes harbour six Plasmodium species, one of which gave rise to the human malaria parasite. Here, Sundaraman et al. use selective whole-genome amplification to determine genome sequences from two chimpanzee Plasmodium species, shedding light on the evolutionary origin of the human parasite.
Collapse
|
20
|
Zarlenga DS, Hoberg E, Rosenthal B, Mattiucci S, Nascetti G. Anthropogenics: Human Influence on Global and Genetic Homogenization of Parasite Populations. J Parasitol 2014; 100:756-72. [DOI: 10.1645/14-622.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
21
|
Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates. INFECTION GENETICS AND EVOLUTION 2014; 26:313-22. [PMID: 24953504 DOI: 10.1016/j.meegid.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/04/2014] [Accepted: 06/07/2014] [Indexed: 11/21/2022]
Abstract
Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species.
Collapse
|
22
|
Perkins SL. Malaria's many mates: past, present, and future of the systematics of the order Haemosporida. J Parasitol 2013; 100:11-25. [PMID: 24059436 DOI: 10.1645/13-362.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Malaria has been one of the most important diseases of humans throughout history and continues to be a major public health concern. The 5 species of Plasmodium that cause the disease in humans are part of the order Haemosporida, a diverse group of parasites that all have heteroxenous life cycles, alternating between a vertebrate host and a free-flying, blood-feeding dipteran vector. Traditionally, the identification and taxonomy of these parasites relied heavily on life-history characteristics, basic morphological features, and the host species infected. However, molecular approaches to resolving the phylogeny of the group have sometimes challenged many of these traditional hypotheses. One of the greatest debates has concerned the origin of the most virulent of the human-infecting parasites, Plasmodium falciparum, with early results suggesting a close relationship with an avian parasite. Subsequent phylogenetic studies placed it firmly within the mammalian clade instead, but the avian origin hypothesis has been revived with recent genome-based analyses. The rooting of the tree of Haemosporida has also been inconsistent, and the various topologies that result certainly affect our interpretation of the history of the group. There is clearly a pressing need to obtain a much more complete degree of taxon sampling of haemosporidians, as well as a greater number of characters before confidence can be placed in any hypothesis regarding the evolutionary history of the order. There are numerous challenges moving forward, particularly for generating complete genome sequences of avian and saurian parasites.
Collapse
Affiliation(s)
- Susan L Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
| |
Collapse
|
23
|
Prajapati SK, Joshi H, Carlton JM, Rizvi MA. Neutral polymorphisms in putative housekeeping genes and tandem repeats unravels the population genetics and evolutionary history of Plasmodium vivax in India. PLoS Negl Trop Dis 2013; 7:e2425. [PMID: 24069480 PMCID: PMC3777877 DOI: 10.1371/journal.pntd.0002425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
The evolutionary history and age of Plasmodium vivax has been inferred as both recent and ancient by several studies, mainly using mitochondrial genome diversity. Here we address the age of P. vivax on the Indian subcontinent using selectively neutral housekeeping genes and tandem repeat loci. Analysis of ten housekeeping genes revealed a substantial number of SNPs (n = 75) from 100 P. vivax isolates collected from five geographical regions of India. Neutrality tests showed a majority of the housekeeping genes were selectively neutral, confirming the suitability of housekeeping genes for inferring the evolutionary history of P. vivax. In addition, a genetic differentiation test using housekeeping gene polymorphism data showed a lack of geographical structuring between the five regions of India. The coalescence analysis of the time to the most recent common ancestor estimate yielded an ancient TMRCA (232,228 to 303,030 years) and long-term population history (79,235 to 104,008) of extant P. vivax on the Indian subcontinent. Analysis of 18 tandem repeat loci polymorphisms showed substantial allelic diversity and heterozygosity per locus, and analysis of potential bottlenecks revealed the signature of a stable P. vivax population, further corroborating our ancient age estimates. For the first time we report a comparable evolutionary history of P. vivax inferred by nuclear genetic markers (putative housekeeping genes) to that inferred from mitochondrial genome diversity.
Collapse
Affiliation(s)
- Surendra K Prajapati
- Molecular Biology Division, National Institute of Malaria Research, New Delhi, India
| | | | | | | |
Collapse
|
24
|
Tatonova YV, Chelomina GN, Besprozvannykh VV. Genetic diversity of Clonorchis sinensis (Trematoda: Opisthorchiidae) in the Russian southern Far East based on mtDNA cox1 sequence variation. Folia Parasitol (Praha) 2013; 60:155-62. [DOI: 10.14411/fp.2013.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Dias S, Wickramarachchi T, Sahabandu I, Escalante AA, Udagama PV. Population genetic structure of the Plasmodium vivax circumsporozoite protein (Pvcsp) in Sri Lanka. Gene 2013; 518:381-7. [PMID: 23333606 DOI: 10.1016/j.gene.2013.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Molecular methods elucidate evolutionary and ecological processes in parasites, where interaction between hosts and parasites enlighten the evolution of parasite lifestyles and host defenses. Population genetics of Plasmodium vivax parasites accurately describe transmission dynamics of the parasites and evaluation of malaria control measures. As a first generation vaccine candidate against malaria, the Circumsporozoite Protein (CSP) has demonstrated significant potential in P. falciparum. Extensive polymorphism hinders the development of a potent malaria vaccine. Hence, the genetic diversity of Pvcsp was investigated for the first time in 60 Sri Lankan clinical isolates by obtaining the nucleotide sequence of the central repeat (CR) domain and examining the polymorphism of the peptide repeat motifs (PRMs), the genetic diversity indices and phylogenetic relationships. PCR amplicons determined size polymorphism of 610, 700 and 710 bp in Pvcsp of Sri Lanka where all amino acid sequences obtained were of the VK210 variant, consisting variable repeats of 4 different PRMs. The two most abundant PRMs of the CR domain, GDRADGQPA and GDRAAGQPA consisted ~2-4 repeats, while GNRAAGQPA was unique to the island. Though, different nucleotide sequences termed repeat allotypes (RATs) were observed for each PRM, these were synonymous contributing to a less polymorphic CR domain. The genetic diversity of Pvcsp in Sri Lanka was due to the number of repetitive peptide repeat motifs, point mutations, and intragenic recombination. The 19 amino acid haplotypes defined were exclusive to Sri Lanka, whereas the 194 Pvcsp sequences of global isolates generated 57 more distinct a.a. haplotypes of the VK210 variant. Strikingly, the CR domain of both VK210 and VK247 variants was under purifying selection interpreting the scarcity of CSP non-synonymous polymorphisms. Insights to the distribution of RATs in the CR region with geographic clustering of the P. vivax VK210 variant were revealed. The cladogram reiterated this unique geographic clustering of local (VK210) and global isolates (VK210 and VK247), which was further validated by the elevated fixation index values of the VK210 variant.
Collapse
Affiliation(s)
- Sajani Dias
- Department of Zoology, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | | | | | | | | |
Collapse
|
26
|
Madubata C, Dunams-Morel DB, Elkin B, Oksanen A, Rosenthal BM. Evidence for a recent population bottleneck in an Apicomplexan parasite of caribou and reindeer, Besnoitia tarandi. INFECTION GENETICS AND EVOLUTION 2012; 12:1605-13. [PMID: 22742966 DOI: 10.1016/j.meegid.2012.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
The evolutionary history and epidemiology of parasites may be reflected in the extent and geographic distribution of their genetic variation. Among coccidian parasites, the population structure of only Toxoplasma gondii has been extensively examined. Intraspecific variation in other coccidia, for example, those assigned to the genus Besnoitia, remains poorly defined. Here, we characterize the extent of genetic variation among populations of Besnoitia tarandi, a parasite whose intermediate hosts include reindeer/caribou (Rangifer tarandus). Isolates from the Canadian Arctic and Finnish sub-Arctic were genotyped at six microsatellite loci, the first internal transcribed spacer region of nuclear rDNA, and the RNA polymerase β subunit (rpoB) encoded in the plastid genome. Remarkably, all isolates exhibited the same multilocus genotype, regardless of the isolate's geographic origin. This absolute monomorphism occurred despite the capacity of these loci to vary, as established by evident differentiation between B. tarandi and two other species of Besnoitia, and variation among four isolates of B. besnoiti. The surprising lack of genetic variation across the sampled range suggests that B. tarandi may have experienced a recent population bottleneck.
Collapse
Affiliation(s)
- Chioma Madubata
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Henry A Wallace Agricultural Research Center, Beltsville, MD 20705, United States
| | | | | | | | | |
Collapse
|
27
|
Chang HH, Park DJ, Galinsky KJ, Schaffner SF, Ndiaye D, Ndir O, Mboup S, Wiegand RC, Volkman SK, Sabeti PC, Wirth DF, Neafsey DE, Hartl DL. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population. Mol Biol Evol 2012; 29:3427-39. [PMID: 22734050 DOI: 10.1093/molbev/mss161] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Department of Organismic and Evolutionary Biology, Harvard University.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Antinori S, Galimberti L, Milazzo L, Corbellino M. Biology of human malaria plasmodia including Plasmodium knowlesi. Mediterr J Hematol Infect Dis 2012; 4:e2012013. [PMID: 22550559 PMCID: PMC3340990 DOI: 10.4084/mjhid.2012.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/11/2012] [Indexed: 01/08/2023] Open
Abstract
Malaria is a vector-borne infection caused by unicellular parasite of the genus Plasmodium. Plasmodia are obligate intracellular parasites that are able to infect and replicate within the erythrocytes after a clinically silent replication phase in the liver. Four species (P.falciparum, P.malariae, P.ovale and P.vivax) are traditionally recognized as responsible of natural infection in human beings but the recent upsurge of P.knowlesi malaria in South-East Asia has led clinicians to consider it as the fifth human malaria parasite. Recent studies in wild-living apes in Africa have revealed that P.falciparum, the most deadly form of human malaria, is not only human-host restricted as previously believed and its phylogenetic lineage is much more complex with new species identified in gorilla, bonobo and chimpanzee. Although less impressive, new data on biology of P.malariae, P.ovale and P.vivax are also emerging and will be briefly discussed in this review.
Collapse
Affiliation(s)
- Spinello Antinori
- Department of Clinical Sciences L. Sacco, Section of Infectious Diseases and Immunopathology, University of Milano, Italy
| | - Laura Galimberti
- Department of Clinical Sciences L. Sacco, Section of Infectious Diseases and Immunopathology, University of Milano, Italy
| | - Laura Milazzo
- Department of Clinical Sciences L. Sacco, Section of Infectious Diseases and Immunopathology, University of Milano, Italy
| | - Mario Corbellino
- Department of Clinical Sciences L. Sacco, Section of Infectious Diseases and Immunopathology, University of Milano, Italy
| |
Collapse
|
29
|
A monomorphic haplotype of chromosome Ia is associated with widespread success in clonal and nonclonal populations of Toxoplasma gondii. mBio 2011; 2:e00228-11. [PMID: 22068979 PMCID: PMC3215432 DOI: 10.1128/mbio.00228-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Toxoplasma gondii is a common parasite of animals that also causes a zoonotic infection in humans. Previous studies have revealed a strongly clonal population structure that is shared between North America and Europe, while South American strains show greater genetic diversity and evidence of sexual recombination. The common inheritance of a monomorphic version of chromosome Ia (referred to as ChrIa*) among three clonal lineages from North America and Europe suggests that inheritance of this chromosome might underlie their recent clonal expansion. To further examine the diversity and distribution of ChrIa, we have analyzed additional strains with greater geographic diversity. Our findings reveal that the same haplotype of ChrIa* is found in the clonal lineages from North America and Europe and in older lineages in South America, where sexual recombination is more common. Although lineages from all three continents harbor the same conserved ChrIa* haplotype, strains from North America and Europe are genetically separate from those in South America, and these respective geographic regions show limited evidence of recent mixing. Genome-wide, array-based profiling of polymorphisms provided evidence for an ancestral flow from particular older southern lineages that gave rise to the clonal lineages now dominant in the north. Collectively, these data indicate that ChrIa* is widespread among nonclonal strains in South America and has more recently been associated with clonal expansion of specific lineages in North America and Europe. These findings have significant implications for the spread of genetic loci influencing transmission and virulence in pathogen populations. Understanding parasite population structure is important for evaluating the potential spread of pathogenicity determinants between different geographic regions. Examining the genetic makeup of different isolates of Toxoplasma gondii from around the world revealed that chromosome Ia is highly homogeneous among lineages that predominate on different continents and within genomes that were otherwise quite divergent. This pattern of recent shared ancestry is highly unusual and suggests that some gene(s) found on this chromosome imparts an unusual fitness advantage that has resulted in its recent spread. Although the basis for the conservation of this particularly homogeneous chromosome is unknown, it may have implications for the transmission of infection and spread of human disease.
Collapse
|
30
|
Snounou G, Escalante A, Kasenene J, Rénia L, Grüner AC, Krief S. Le paludisme chez les hominidés. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2011. [DOI: 10.1016/s0001-4079(19)31931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Sexual recombination is a signature of a persisting malaria epidemic in Peru. Malar J 2011; 10:329. [PMID: 22039962 PMCID: PMC3231964 DOI: 10.1186/1475-2875-10-329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/31/2011] [Indexed: 11/22/2022] Open
Abstract
Background The aim of this study was to consider the impact that multi-clone, complex infections have on a parasite population structure in a low transmission setting. In general, complexity of infection (minimum number of clones within an infection) and the overall population level diversity is expected to be minimal in low transmission settings. Additionally, the parasite population structure is predicted to be clonal, rather than sexual due to infrequent parasite inoculation and lack of recombination between genetically distinct clones. However, in this low transmission of the Peruvian Amazon, complex infections are becoming more frequent, in spite of decreasing infection prevalence. In this study, it was hypothesized that sexual recombination between distinct clonal lineages of Plasmodium falciparum parasites were altering the subpopulation structure and effectively maintaining the population-level diversity. Methods Fourteen microsatellite markers were chosen to describe the genetic diversity in 313 naturally occurring P. falciparum infections from Peruvian Amazon. The population and subpopulation structure was characterized by measuring: clusteredness, expected heterozygosity (He), allelic richness, private allelic richness, and linkage disequilibrium. Next, microsatellite haplotypes and alleles were correlated with P. falciparum merozoite surface protein 1 Block 2 (Pfmsp1-B2) to examine the presence of recombinant microsatellite haplotypes. Results The parasite population structure consists of six genetically diverse subpopulations of clones, called "clusters". Clusters 1, 3, 4, and 6 have unique haplotypes that exceed 70% of the total number of clones within each cluster, while Clusters 2 and 5 have a lower proportion of unique haplotypes, but still exceed 46%. By measuring the He, allelic richness, and private allelic richness within each of the six subpopulations, relatively low levels of genetic diversity within each subpopulation (except Cluster 4) are observed. This indicated that the number of alleles, and not the combination of alleles, are limited. Next, the standard index of association (IAS) was measured, which revealed a significant decay in linkage disequilibrium (LD) associated with Cluster 6, which is indicative of independent assortment of alleles. This decay in LD is a signature of this subpopulation approaching linkage equilibrium by undergoing sexual recombination. To trace possible recombination events, the two most frequent microsatellite haplotypes observed over time (defined by either a K1 or Mad20) were selected as the progenitors and then potential recombinants were identified in within the natural population. Conclusions Contrary to conventional low transmission models, this study provides evidence of a parasite population structure that is superficially defined by a clonal backbone. Sexual recombination does occur and even arguably is responsible for maintaining the substructure of this population.
Collapse
|
32
|
Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol Biol Evol 2011; 28:2761-72. [PMID: 21515811 DOI: 10.1093/molbev/msr083] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The α-proteobacteria Wolbachia are among the most common intracellular bacteria and have recently emerged as important drivers of arthropod biology. Wolbachia commonly act as reproductive parasites in arthropods by inducing cytoplasmic incompatibility (CI), a type of conditional sterility between hosts harboring incompatible infections. In this study, we examined the evolutionary histories of Wolbachia infections, known as wPip, in the common house mosquito Culex pipiens, which exhibits the greatest variation in CI crossing patterns observed in any insect. We first investigated a panel of 20 wPip strains for their genetic diversity through a multilocus scheme combining 13 Wolbachia genes. Because Wolbachia depend primarily on maternal transmission for spreading within arthropod populations, we also studied the variability in the coinherited Cx. pipiens mitochondria. In total, we identified 14 wPip haplotypes, which all share a monophyletic origin and clearly cluster into five distinct wPip groups. The diversity of Cx. pipiens mitochondria was extremely reduced, which is likely a consequence of cytoplasmic hitchhiking driven by a unique and recent Wolbachia invasion. Phylogenetic evidence indicates that wPip infections and mitochondrial DNA have codiverged through stable cotransmission within the cytoplasm and shows that a rapid diversification of wPip has occurred. The observed pattern demonstrates that a considerable degree of Wolbachia diversity can evolve within a single host species over short evolutionary periods. In addition, multiple signatures of recombination were found in most wPip genomic regions, leading us to conclude that the mosaic nature of wPip genomes may play a key role in their evolution.
Collapse
Affiliation(s)
- Célestine M Atyame
- Institut des Sciences de l'Evolution, CNRS, UMR5554, Université Montpellier 2, Place Eugène Bataillon, Montpellier, France
| | | | | | | | | |
Collapse
|
33
|
Hastings I. How artemisinin-containing combination therapies slow the spread of antimalarial drug resistance. Trends Parasitol 2011; 27:67-72. [PMID: 20971040 DOI: 10.1016/j.pt.2010.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 11/27/2022]
Abstract
Antimalarial drug therapies containing artemisinins, 'ACTs', have become the mainstay for treating uncomplicated malaria in endemic countries. This is a major public health achievement requiring substantial political, financial and scientific input. The most compelling scientific argument for ACT deployment employed a very simple basic rationale that emphasised their role in slowing the origin of drug resistance while largely neglecting the additional role(s) of ACTs in slowing or preventing the spread of resistance once it has arisen. Recent reports suggest that early stages of resistance to artemisinins and/or its partner drugs could be occurring, thus it is timely to briefly review exactly how ACTs slow the origin and spread of resistance and to interpret the threat of resistance within this context.
Collapse
Affiliation(s)
- Ian Hastings
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
34
|
Randall LM, Kenangalem E, Lampah DA, Tjitra E, Mwaikambo ED, Handojo T, Piera KA, Zhao ZZ, de Labastida Rivera F, Zhou Y, McSweeney KM, Le L, Amante FH, Haque A, Stanley AC, Woodberry T, Salwati E, Granger DL, Hobbs MR, Price RN, Weinberg JB, Montgomery GW, Anstey NM, Engwerda CR. A study of the TNF/LTA/LTB locus and susceptibility to severe malaria in highland papuan children and adults. Malar J 2010; 9:302. [PMID: 21029472 PMCID: PMC2978234 DOI: 10.1186/1475-2875-9-302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/29/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Severe malaria (SM) syndromes caused by Plasmodium falciparum infection result in major morbidity and mortality each year. However, only a fraction of P. falciparum infections develop into SM, implicating host genetic factors as important determinants of disease outcome. Previous studies indicate that tumour necrosis factor (TNF) and lymphotoxin alpha (LTα) may be important for the development of cerebral malaria (CM) and other SM syndromes. METHODS An extensive analysis was conducted of single nucleotide polymorphisms (SNPs) in the TNF, LTA and LTB genes in highland Papuan children and adults, a population historically unexposed to malaria that has migrated to a malaria endemic region. Generated P-values for SNPs spanning the LTA/TNF/LTB locus were corrected for multiple testing of all the SNPs and haplotype blocks within the region tested through 10,000 permutations. A global P-value of < 0.05 was considered statistically significant. RESULTS No associations between SNPs in the TNF/LTA/LTB locus and susceptibility to SM in highland Papuan children and adults were found. CONCLUSIONS These results support the notion that unique selective pressure on the TNF/LTA/LTB locus in different populations has influenced the contribution of the gene products from this region to SM susceptibility.
Collapse
Affiliation(s)
- Louise M Randall
- Queensland Institute of Medical Research and Australian Centre for Vaccine Development, 300 Herston Road, Herston, QLD 4006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 2010; 467:420-5. [PMID: 20864995 DOI: 10.1038/nature09442] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.
Collapse
|
37
|
Oberle M, Balmer O, Brun R, Roditi I. Bottlenecks and the maintenance of minor genotypes during the life cycle of Trypanosoma brucei. PLoS Pathog 2010; 6:e1001023. [PMID: 20686656 PMCID: PMC2912391 DOI: 10.1371/journal.ppat.1001023] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/30/2010] [Indexed: 11/18/2022] Open
Abstract
African trypanosomes are digenetic parasites that undergo part of their developmental cycle in mammals and part in tsetse flies. We established a novel technique to monitor the population dynamics of Trypanosoma brucei throughout its life cycle while minimising the confounding factors of strain differences or variation in fitness. Clones derived from a single trypanosome were tagged with short synthetic DNA sequences in a non-transcribed region of the genome. Infections were initiated with mixtures of tagged parasites and a combination of polymerase chain reaction and deep sequencing were used to monitor the composition of populations throughout the life cycle. This revealed that a minimum of several hundred parasites survived transmission from a tsetse fly to a mouse, or vice versa, and contributed to the infection in the new host. In contrast, the parasites experienced a pronounced bottleneck during differentiation and migration from the midgut to the salivary glands of tsetse. In two cases a single tag accounted for > or =99% of the population in the glands, although minor tags could be also detected. Minor tags were transmitted to mice together with the dominant tag(s), persisted during a chronic infection, and survived transmission to a new insect host. An important outcome of the bottleneck within the tsetse is that rare variants can be amplified in individual flies and disseminated by them. This is compatible with the epidemic population structure of T. brucei, in which clonal expansion of a few genotypes in a region occurs against a background of frequent recombination between strains.
Collapse
Affiliation(s)
- Michael Oberle
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Institut für Zellbiologie, Universität Bern, Bern, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Isabel Roditi
- Institut für Zellbiologie, Universität Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Tanabe K, Mita T, Jombart T, Eriksson A, Horibe S, Palacpac N, Ranford-Cartwright L, Sawai H, Sakihama N, Ohmae H, Nakamura M, Ferreira MU, Escalante AA, Prugnolle F, Björkman A, Färnert A, Kaneko A, Horii T, Manica A, Kishino H, Balloux F. Plasmodium falciparum accompanied the human expansion out of Africa. Curr Biol 2010; 20:1283-9. [PMID: 20656209 DOI: 10.1016/j.cub.2010.05.053] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/11/2023]
Abstract
Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cserti-Gazdewich CM. Plasmodium falciparum malaria and carbohydrate blood group evolution. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1751-2824.2010.01380.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Malaria parasite sequences from chimpanzee support the co-speciation hypothesis for the origin of virulent human malaria (Plasmodium falciparum). Mol Phylogenet Evol 2010; 57:135-43. [PMID: 20541613 DOI: 10.1016/j.ympev.2010.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 05/24/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
Abstract
Phylogenetic analyses of the mitochondrial cytochrome b (cytb), apicoplast caseinolytic protease C (clpC), and 18S rRNA sequences of Plasmodium isolates from chimpanzees along with those of the virulent human malaria parasite P. falciparum showed that the common chimpanzee (Pan troglodytes) malaria parasites, assigned by Rich et al. (2009) to P. reichenowi, constitute a paraphyletic assemblage. The assumption that P. falciparum diverged from P. reichenowi as recently as 5000-50,000 years ago would require a rate of synonymous substitution/site/year in cytb and clpC on the order of 10(-5)-10(-6), several orders of magnitude higher than any known from eukaryotic organelle genomes, and would imply an unrealistically recent timing of the most recent common ancestor of P. falciparum mitochondrial genomes. The available data are thus most consistent with the hypothesis that P. reichenowi (in the strict sense) and P. falciparum co-speciated with their hosts about 5-7 million years ago.
Collapse
|
41
|
African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc Natl Acad Sci U S A 2010; 107:10561-6. [PMID: 20498054 DOI: 10.1073/pnas.1005435107] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated two mitochondrial genes (cytb and cox1), one plastid gene (tufA), and one nuclear gene (ldh) in blood samples from 12 chimpanzees and two gorillas from Cameroon and one lemur from Madagascar. One gorilla sample is related to Plasmodium falciparum, thus confirming the recently reported presence in gorillas of this parasite. The second gorilla sample is more similar to the recently defined Plasmodium gaboni than to the P. falciparum-Plasmodium reichenowi clade, but distinct from both. Two chimpanzee samples are P. falciparum. A third sample is P. reichenowi and two others are P. gaboni. The other chimpanzee samples are different from those in the ape clade: two are Plasmodium ovale, and one is Plasmodium malariae. That is, we have found three human Plasmodium parasites in chimpanzees. Four chimpanzee samples were mixed: one species was P. reichenowi; the other species was P. gaboni in three samples and P. ovale in the fourth sample. The lemur sample, provisionally named Plasmodium malagasi, is a sister lineage to the large cluster of primate parasites that does not include P. falciparum or ape parasites, suggesting that the falciparum + ape parasite cluster (Laverania clade) may have evolved from a parasite present in hosts not ancestral to the primates. If malignant malaria were eradicated from human populations, chimpanzees, in addition to gorillas, might serve as a reservoir for P. falciparum.
Collapse
|
42
|
Randall LM, Engwerda CR. TNF family members and malaria: old observations, new insights and future directions. Exp Parasitol 2010; 126:326-31. [PMID: 20433831 DOI: 10.1016/j.exppara.2010.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/26/2010] [Accepted: 04/19/2010] [Indexed: 11/27/2022]
Abstract
Tumor necrosis factor (TNF) has long been recognized to promote malaria parasite killing, but also to contribute to the development of severe malaria disease. The precise molecular mechanisms that influence these different outcomes in malaria patients are not well understood, but the virulence and drug-resistance phenotype of malaria parasites and the genetic background and age of patients are likely to be important determinants. In the past few years, important roles for other TNF family members in host immune responses to malaria parasites and the induction of disease pathology have been discovered. In this review, we will summarize these more recent findings and highlight major gaps in our current knowledge. We will also discuss future research strategies that may allow us to better understand the sometimes subtle and intricate effects of TNF family molecules during malaria infection.
Collapse
Affiliation(s)
- Louise M Randall
- Immunology and Infection Laboratory, Queensland Institute of Medical Research and The Australian Centre for Vaccine Development, 300 Herston Road, Herston, Brisbane, Queensland, Qld 4006, Australia
| | | |
Collapse
|
43
|
The Historical Ecology of Human and Wild Primate Malarias in the New World. DIVERSITY-BASEL 2010. [DOI: 10.3390/d2020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Krief S, Escalante AA, Pacheco MA, Mugisha L, André C, Halbwax M, Fischer A, Krief JM, Kasenene JM, Crandfield M, Cornejo OE, Chavatte JM, Lin C, Letourneur F, Grüner AC, McCutchan TF, Rénia L, Snounou G. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from Bonobos. PLoS Pathog 2010; 6:e1000765. [PMID: 20169187 PMCID: PMC2820532 DOI: 10.1371/journal.ppat.1000765] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/13/2010] [Indexed: 11/18/2022] Open
Abstract
The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria.
Collapse
Affiliation(s)
- Sabrina Krief
- UMR 7206-USM 104, Eco-Anthropologie et Ethnobiologie, Muséum National d'Histoire Naturelle, Paris, France
| | - Ananias A. Escalante
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - M. Andreina Pacheco
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Lawrence Mugisha
- Chimpanzee Sanctuary & Wildlife Conservation Trust (CSWCT), Entebbe, Uganda
| | - Claudine André
- Lola Ya Bonobo Bonobo Sanctuary, “Petites Chutes de la Lukaya”, Kimwenza–Mont Ngafula, Kinshasa, Democratic Republic of Congo
| | - Michel Halbwax
- Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Fischer
- Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - John M. Kasenene
- Department of Botany, Makerere University, Kampala, Uganda; Makerere University Biological Field Station, Fort Portal, Uganda
| | - Mike Crandfield
- Research and Conservation Program, The Maryland Zoo in Baltimore, Baltimore, Maryland, United States of America
| | - Omar E. Cornejo
- Emory University, Program in Population Biology, Ecology, and Evolution, Atlanta, Georgia, United States of America
| | - Jean-Marc Chavatte
- USM0307, Parasitologie Comparée et Modèles Expérimentaux, Muséum National d'Histoire Naturelle, Paris, France
| | - Clara Lin
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Franck Letourneur
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; INSERM U567, Paris, France
| | - Anne Charlotte Grüner
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; INSERM U567, Paris, France
| | - Thomas F. McCutchan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, United States of America
| | - Laurent Rénia
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; INSERM U567, Paris, France
| | - Georges Snounou
- USM0307, Parasitologie Comparée et Modèles Expérimentaux, Muséum National d'Histoire Naturelle, Paris, France
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
- INSERM UMR S 945, Paris, France
- Université Pierre & Marie Curie, Faculté de Médecine Pitié-Salpêtrière, Paris, France
- Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
45
|
Calvo JH, Calvete C, Martinez-Royo A, Estrada R, Miranda MA, Borras D, Sarto I Monteys V, Pages N, Delgado JA, Collantes F, Lucientes J. Variations in the mitochondrial cytochrome c oxidase subunit I gene indicate northward expanding populations of Culicoides imicola in Spain. BULLETIN OF ENTOMOLOGICAL RESEARCH 2009; 99:583-591. [PMID: 19889254 DOI: 10.1017/s0007485309006622] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Culicoides imicola is the main vector for bluetongue (BT) and African horse sickness (AHS) viruses in the Mediterranean basin and in southern Europe. In this study, we analysed partial mitochondrial cytochrome c oxidase subunit I (COI) gene to characterize and confirm population expansion of Culicoides imicola across Spain. The data were analysed at two hierarchical levels to test the relationship between C. imicola haplotypes in Spain (n = 215 from 58 different locations) and worldwide (n = 277). We found nineteen different haplotypes within the Spanish population, including 11 new haplotypes. No matrilineal subdivision was found within the Spanish population, while western and eastern Mediterranean C. imicola populations were very structured. These findings were further supported by median networks and mismatch haplotype distributions. Median networks demonstrated that the haplotypes we observed in the western Mediterranean region were closely related with one another, creating a clear star-like phylogeny separated only by a single mutation from eastern haplotypes. The two, genetically distinct, sources of C. imicola in the Mediterranean basin, thus, were confirmed. This type of star-like population structure centred around the most frequent haplotype is best explained by rapid expansion. Furthermore, the proposed northern expansion was also supported by the statistically negative Tajima's D and Fu's Fs values, as well as predicted mismatch distributions of sudden and spatially expanding populations. Our results thus indicated that C. imicola population expansion was a rapid and recent phenomenon.
Collapse
Affiliation(s)
- J H Calvo
- Unidad de Tecnología en Producción animal, CITA-ARAID, Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Duplouy A, Hurst GDD, O'Neill SL, Charlat S. Rapid spread of male-killing Wolbachia in the butterfly Hypolimnas bolina. J Evol Biol 2009; 23:231-5. [PMID: 19912450 DOI: 10.1111/j.1420-9101.2009.01891.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reproductive parasites such as Wolbachia can spread through uninfected host populations by increasing the relative fitness of the infected maternal lineage. However, empirical estimates of how fast this process occurs are limited. Here we use nucleotide sequences of male-killing Wolbachia bacteria and co-inherited mitochondria to address this issue in the island butterfly Hypolimnas bolina. We show that infected specimens scattered throughout the species range harbour the same Wolbachia and mitochondrial DNA as inferred from 6337 bp of the bacterial genome and 2985 bp of the mitochondrial genome, suggesting this strain of Wolbachia has spread across the South Pacific Islands at most 3000 years ago, and probably much more recently.
Collapse
Affiliation(s)
- A Duplouy
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia.
| | | | | | | |
Collapse
|
47
|
Abstract
Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5-7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Côte d'Ivoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2-3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity.
Collapse
|
48
|
Su XZ, Jiang H, Yi M, Mu J, Stephens RM. Large-scale genotyping and genetic mapping in Plasmodium parasites. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47:83-91. [PMID: 19488413 DOI: 10.3347/kjp.2009.47.2.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/03/2009] [Indexed: 11/23/2022]
Abstract
The completion of many malaria parasite genomes provides great opportunities for genomewide characterization of gene expression and high-throughput genotyping. Substantial progress in malaria genomics and genotyping has been made recently, particularly the development of various microarray platforms for large-scale characterization of the Plasmodium falciparum genome. Microarray has been used for gene expression analysis, detection of single nucleotide polymorphism (SNP) and copy number variation (CNV), characterization of chromatin modifications, and other applications. Here we discuss some recent advances in genetic mapping and genomic studies of malaria parasites, focusing on the use of high-throughput arrays for the detection of SNP and CNV in the P. falciparum genome. Strategies for genetic mapping of malaria traits are also discussed.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
49
|
Khan A, Taylor S, Ajioka JW, Rosenthal BM, Sibley LD. Selection at a single locus leads to widespread expansion of Toxoplasma gondii lineages that are virulent in mice. PLoS Genet 2009; 5:e1000404. [PMID: 19266027 PMCID: PMC2644818 DOI: 10.1371/journal.pgen.1000404] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/03/2009] [Indexed: 11/19/2022] Open
Abstract
Pathogenicity differences among laboratory isolates of the dominant clonal North American and European lineages of Toxoplasma gondii are largely controlled by polymorphisms and expression differences in rhoptry secretory proteins (ROPs). However, the extent to which such differences control virulence in natural isolates of T. gondii, including those from more diverse genetic backgrounds, is uncertain. We elucidated the evolutionary history and functional consequences of diversification in the serine/threonine kinase ROP18, a major virulence determinant in the mouse model. We characterized the extent of sequence polymorphism and the evolutionary forces acting on ROP18 and several antigen-encoding genes within a large collection of natural isolates, comparing them to housekeeping genes and introns. Surprisingly, despite substantial genetic diversity between lineages, we identified just three principal alleles of ROP18, which had very ancient ancestry compared to other sampled loci. Expression and allelic differences between these three alleles of ROP18 accounted for much of the variation in acute mouse virulence among natural isolates. While the avirulent type III allele was the most ancient, intermediate virulent (type II) and highly virulent (type I) lineages predominated and showed evidence of strong selective pressure. Out-group comparison indicated that historical loss of an upstream regulatory element increased ROP18 expression, exposing it to newfound diversifying selection, resulting in greatly enhanced virulence in the mouse model and expansion of new lineages. Population sweeps are evident in many genomes, yet their causes and evolutionary histories are rarely known. Our results establish that up-regulation of expression and selection at ROP18 in T. gondii has resulted in three distinct alleles with widely different levels of acute virulence in the mouse model. Preservation of all three alleles in the wild indicates they are likely adaptations for different niches. Our findings demonstrate that sweeping changes in population structure can result from alterations in a single gene.
Collapse
Affiliation(s)
- Asis Khan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sonya Taylor
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James W. Ajioka
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
50
|
Sibley LD, Ajioka JW. Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. Annu Rev Microbiol 2008; 62:329-51. [PMID: 18544039 DOI: 10.1146/annurev.micro.62.081307.162925] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxoplasma gondii is among the most successful parasites. It is capable of infecting all warm-blooded animals and causing opportunistic disease in humans. T. gondii has a striking clonal population structure consisting of three predominant lineages in North America and Europe. Clonality is associated with the recent emergence of a monomorphic version of Chr1a, which drove a selective genetic sweep within the past 10,000 years. Strains from South America diverged from those in North America some 1-2 mya; recently, however, the monomorphic Chr1a has extended into regions of South America, where it is also associated with clonality. The recent spread of a few dominant lineages has dramatically shaped the population structure of T. gondii and has resulted in most lineages sharing a highly pathogenic nature. Understanding the factors that have shaped the population structure of T. gondii has implications for the emergence and transmission of human pathogens.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63130, USA.
| | | |
Collapse
|