1
|
Li Y, Li X, Zhu L, Liu T, Huang L. Chitosan-based biomaterials for bone tissue engineering. Int J Biol Macromol 2025; 304:140923. [PMID: 39947561 DOI: 10.1016/j.ijbiomac.2025.140923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Common critical size bone defects encountered in clinical practice often result in inadequate bone regeneration,primarily due to the extent of damage surpassing the inherent capacity of the body for self-healing. Bone tissue engineering scaffolds possess the desirable characteristics of biomimetic bone structure, simulated extracellular matrix, optimal mechanical strength, and biological functionality, rendering them the preferred option for the treatment of bone defects. Chitosan demonstrates favorable biocompatibility, plasticity, and a range of biological activities, rendering it a highly appealing material. Chitosan and its derivatives have been found to exert an impact on bone repair through their ability to modulate macrophage polarization, angiogenesis, and the delicate equilibrium of bone remodeling. However, the efficacy of pure chitosan is constrained, necessitating its combination with other bioactive substances to achieve an optimal biomimetic scaffold that is compatible with the specific bone defect site. Chitosan is commonly utilized in the field of bone repair in four different application forms: rigid scaffold, hydrogel, membranes, and microspheres. In order to enhance comprehension of the benefits and constraints associated with chitosan, this review provides a comprehensive overview of the structure and biological properties of chitosan, the molecular mechanisms by which chitosan promotes osteogenic differentiation, the diverse methods of chitosan preparation for various applications, and the impacts of chitosan when loaded with bioactive substances.
Collapse
Affiliation(s)
- Youbin Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
2
|
Li W, Deng K, Zhang M, Xu Y, Zhang J, Liang Q, Yang Z, Jin L, Hu C, Zhao YT. Network Pharmacology Combined with Experimental Validation to Investigate the Effects and Mechanisms of Aucubin on Aging-Related Muscle Atrophy. Int J Mol Sci 2025; 26:2626. [PMID: 40141269 PMCID: PMC11941843 DOI: 10.3390/ijms26062626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Aucubin (AU) is one of the main components of the traditional Chinese medicine Eucommia ulmoides Oliv (EU). This study investigated the effects of AU on aging-related skeletal muscle atrophy in vitro and in vivo. The results of network pharmacology revealed the potential therapeutic effects of AU on muscle atrophy. In vitro, AU effectively attenuated D-gal-induced cellular damage, reduced the number of senescence-associated β-galactosidase (SA-β-Gal)-positive cells, down-regulated the expression levels of muscle atrophy-related proteins Atrogin-1 and MuRF1, and improved myotube differentiation, thereby mitigating myotube atrophy. Notably, AU was found to attenuate oxidative stress and apoptosis in skeletal muscle cells by reducing ROS production, regulating Cleaved caspase3 and BAX/Bcl-2 expression in apoptotic pathways, and enhancing Sirt1 and PGC-1α signaling pathways. In vivo studies demonstrated that AU treatment extended the average lifespan of Caenorhabditis elegans (C. elegans), increased locomotor activity, improved body wall muscle mitochondrial content, and alleviated oxidative damage in C. elegans. These findings suggested that AU can ameliorate aging-related muscle atrophy and show significant potential in preventing and treating muscle atrophy.
Collapse
Affiliation(s)
- Wenan Li
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Guangdong Ocean University, Zhanjiang 524088, China (K.D.); (M.Z.); (Y.X.); (J.Z.); (Q.L.); (Z.Y.)
| | - Kaishu Deng
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Guangdong Ocean University, Zhanjiang 524088, China (K.D.); (M.Z.); (Y.X.); (J.Z.); (Q.L.); (Z.Y.)
| | - Mengyue Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Guangdong Ocean University, Zhanjiang 524088, China (K.D.); (M.Z.); (Y.X.); (J.Z.); (Q.L.); (Z.Y.)
| | - Yan Xu
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Guangdong Ocean University, Zhanjiang 524088, China (K.D.); (M.Z.); (Y.X.); (J.Z.); (Q.L.); (Z.Y.)
| | - Jingxi Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Guangdong Ocean University, Zhanjiang 524088, China (K.D.); (M.Z.); (Y.X.); (J.Z.); (Q.L.); (Z.Y.)
| | - Qingsheng Liang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Guangdong Ocean University, Zhanjiang 524088, China (K.D.); (M.Z.); (Y.X.); (J.Z.); (Q.L.); (Z.Y.)
| | - Zhiyou Yang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Guangdong Ocean University, Zhanjiang 524088, China (K.D.); (M.Z.); (Y.X.); (J.Z.); (Q.L.); (Z.Y.)
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yun-Tao Zhao
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Guangdong Ocean University, Zhanjiang 524088, China (K.D.); (M.Z.); (Y.X.); (J.Z.); (Q.L.); (Z.Y.)
| |
Collapse
|
3
|
CHERIYAN BV, SRINIVASAN P, JAYARAJ G, KARUNAKAR KK, SAINATH PB, SHANMUGAM A, ROY A, ELUMALAI K. In silico and in vitro Evaluation of the Cytotoxic Potential of Hinokitiol against Osteosarcoma by Targeting Glycogen Synthase Kinase 3β. Turk J Pharm Sci 2025; 21:499-505. [PMID: 39801001 PMCID: PMC11730009 DOI: 10.4274/tjps.galenos.2023.65708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2025]
Abstract
Objectives The present study aimed to assess the antiproliferative and pro-apoptotic effects of hinokitiol in osteosarcoma cells via in vitro and in silico targeting of glycogen synthase kinase 3β (GSK3β). Materials and Methods The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cytotoxic potential of hinokitiol in osteosarcoma cells. Various concentrations of hinokitiol (5, 10, 20, 40, 60, and 80 μg/mL) were tested, and the half-maximal inhibitory concentration (IC50) was calculated. Cell morphology, migration (scratch assay), and gene expression analysis using real-time polymerase chain reaction for pro-apoptotic studies were conducted, with the IC50 dose of hinokitiol utilized in all these experiments. Additionally the anti-proliferative effect of hinokitiol on GSK3β was also examined using in silico and gene expression methods. Results Hinokitiol significantly (p < 0.05) and dose-dependently decreased the viability of MG-63 cells, with an IC50 value of 40 μg/mL. Cell morphology study revealed cellular shrinkage and reduced cell density. The scratch assay revealed anti-migratory activity, while gene expression studies indicated pro-apoptotic effects, including significant (p < 0.05) upregulation of BAX and down-regulation of BCL-2 and GSK3β. Bonding interactions were also observed with GSK3β and atomic contact energy of -5.69 kcal/mol. Conclusion According to the current study findings, hinokitiol prevented Morphological study of the effects of hinokitiol on osteosarcoma cells from proliferating, migrating, and induced apoptosis by upregulating BAX (a pro-apoptotic signal) expression and downregulating BCL-2 (anti-apoptotic signal) expression in osteosarcoma cells. In silico findings of hinokitiol showed a significant bonding interaction with GSK3β and its downregulated gene expression probably prevented cancer cell survival.
Collapse
Affiliation(s)
- Binoy Varghese CHERIYAN
- Saveetha University, Saveetha Institute of Medical and Technical Sciences, Saveetha College of Pharmacy, Department of Pharmaceutical Chemistry, Tamil Nadu, India
| | - Punithavel SRINIVASAN
- Saveetha University, Saveetha Institute of Medical and Technical Sciences, Saveetha College of Pharmacy, Department of Pharmaceutical Chemistry, Tamil Nadu, India
| | - Georgepush JAYARAJ
- Saveetha University, Saveetha Institute of Medical and Technical Sciences, Saveetha College of Pharmacy, Department of Pharmaceutical Chemistry, Tamil Nadu, India
| | - Karthik Kadhiri KARUNAKAR
- Saveetha University, Saveetha Institute of Medical and Technical Sciences, Saveetha College of Pharmacy, Department of Pharmacology, Tamil Nadu, India
| | - Prasanna Bharathi SAINATH
- Saveetha University, Saveetha Institute of Medical and Technical Sciences, Saveetha College of Pharmacy, Department of Pharmacology, Tamil Nadu, India
| | - Anandakumar SHANMUGAM
- University of Madras, Dr. ALM Post Graduate Institute of Basic Medical Science, Department of Microbiology, Tamil Nadu, India
| | - Anitha ROY
- Saveetha University, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Department of Pharmacology, Tamil Nadu, India
| | - Karthikeyan ELUMALAI
- Saveetha University, Saveetha Institute of Medical and Technical Sciences, Saveetha College of Pharmacy, Department of Pharmaceutical Chemistry, Tamil Nadu, India
| |
Collapse
|
4
|
Wei B, Yang Z, Guo H, Wang Y, Chen W, Zhou J, Jin R, Wang Z, Tang Y. Design, synthesis, and biological evaluation of evodiamine-indolequinone hybrids as novel NQO1 agonists against non-small cell lung cancer. ARAB J CHEM 2025; 18:106075. [DOI: 10.1016/j.arabjc.2024.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
|
5
|
Jia Z, Li H, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. MAM-mediated mitophagy and endoplasmic reticulum stress: the hidden regulators of ischemic stroke. Front Cell Neurosci 2024; 18:1470144. [PMID: 39640236 PMCID: PMC11617170 DOI: 10.3389/fncel.2024.1470144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke (IS) is the predominant subtype of stroke and a leading contributor to global mortality. The mitochondrial-associated endoplasmic reticulum membrane (MAM) is a specialized region that facilitates communication between the endoplasmic reticulum and mitochondria, and has been extensively investigated in the context of neurodegenerative diseases. Nevertheless, its precise involvement in IS remains elusive. This literature review elucidates the intricate involvement of MAM in mitophagy and endoplasmic reticulum stress during IS. PINK1, FUNDC1, Beclin1, and Mfn2 are highly concentrated in the MAM and play a crucial role in regulating mitochondrial autophagy. GRP78, IRE1, PERK, and Sig-1R participate in the unfolded protein response (UPR) within the MAM, regulating endoplasmic reticulum stress during IS. Hence, the diverse molecules on MAM operate independently and interact with each other, collectively contributing to the pathogenesis of IS as the covert orchestrator.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongtao Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
De Stefano S, Tiberi M, Salvatori I, De Bardi M, Gimenez J, Pirshayan M, Greco V, Borsellino G, Ferri A, Valle C, Mercuri NB, Chiurchiù V, Spalloni A, Longone P. Hydrogen Sulfide Modulates Astrocytic Toxicity in Mouse Spinal Cord Cultures: Implications for Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2024; 13:1241. [PMID: 39456494 PMCID: PMC11504967 DOI: 10.3390/antiox13101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Hydrogen sulfide (H2S), a known inhibitor of the electron transport chain, is endogenously produced in the periphery as well as in the central nervous system, where is mainly generated by glial cells. It affects, as a cellular signaling molecule, many different biochemical processes. In the central nervous system, depending on its concentration, it can be protective or damaging to neurons. In the study, we have demonstrated, in a primary mouse spinal cord cultures, that it is particularly harmful to motor neurons, is produced by glial cells, and is stimulated by inflammation. However, its role on glial cells, especially astrocytes, is still under-investigated. The present study was designed to evaluate the impact of H2S on astrocytes and their phenotypic heterogeneity, together with the functionality and homeostasis of mitochondria in primary spinal cord cultures. We found that H2S modulates astrocytes' morphological changes and their phenotypic transformation, exerts toxic properties by decreasing ATP production and the mitochondrial respiration rate, disturbs mitochondrial depolarization, and alters the energetic metabolism. These results further support the hypothesis that H2S is a toxic mediator, mainly released by astrocytes, possibly acting as an autocrine factor toward astrocytes, and probably involved in the non-cell autonomous mechanisms leading to motor neuron death.
Collapse
Affiliation(s)
- Susanna De Stefano
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (S.D.S.); (M.T.); (N.B.M.)
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| | - Marta Tiberi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (S.D.S.); (M.T.); (N.B.M.)
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Illari Salvatori
- Laboratory of Neurochemistry, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (I.S.); (A.F.); (C.V.)
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.D.B.); (G.B.)
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| | - Mahsa Pirshayan
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| | - Viviana Greco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.D.B.); (G.B.)
| | - Alberto Ferri
- Laboratory of Neurochemistry, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Cristiana Valle
- Laboratory of Neurochemistry, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (S.D.S.); (M.T.); (N.B.M.)
- Laboratory of Experimental Neurology, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Alida Spalloni
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (J.G.); (M.P.); (A.S.)
| |
Collapse
|
7
|
Yapryntseva MA, Zhivotovsky B, Gogvadze V. Permeabilization of the outer mitochondrial membrane: Mechanisms and consequences. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167317. [PMID: 38909847 DOI: 10.1016/j.bbadis.2024.167317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Permeabilization of the outer mitochondrial membrane is а physiological process that can allow certain molecules to pass through it, such as low molecular weight solutes required for cellular respiration. This process is also important for the development of various modes of cell death. Depending on the severity of this process, cells can die by autophagy, apoptosis, or necrosis/necroptosis. Distinct types of pores can be opened at the outer mitochondrial membrane depending on physiological or pathological stimuli, and different mechanisms can be activated in order to open these pores. In this comprehensive review, all these types of permeabilization, the mechanisms of their activation, and their role in various diseases are discussed.
Collapse
Affiliation(s)
- Maria A Yapryntseva
- Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Vladimir Gogvadze
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
8
|
Song I, Jeong Y, Yun JK, Lee J, Yang H, Park Y, Kim S, Hong S, Lee PC, Lee GD, Jang S. TIPRL Regulates Stemness and Survival in Lung Cancer Stem Cells through CaMKK2-CaMK4-CREB Feedback Loop Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406309. [PMID: 39076120 PMCID: PMC11423089 DOI: 10.1002/advs.202406309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Frequent recurrence and metastasis caused by cancer stem cells (CSCs) are major challenges in lung cancer treatment. Therefore, identifying and characterizing specific CSC targets are crucial for the success of prospective targeted therapies. In this study, it is found that upregulated TOR Signaling Pathway Regulator-Like (TIPRL) in lung CSCs causes sustained activation of the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) signaling pathway by binding to CaMKK2, thereby maintaining stemness and survival. CaMKK2-mediated activation of CaM kinase 4 (CaMK4) leads to phosphorylation of cAMP response element-binding protein (CREB) at Ser129 and Ser133, which is necessary for its maximum activation and the downstream constitutive expression of its target genes (Bcl2 and HMG20A). TIPRL depletion sensitizes lung CSCs to afatinib-induced cell death and reduces distal metastasis of lung cancer in vivo. It is determined that CREB activates the transcription of TIPRL in lung CSCs. The positive feedback loop consisting of CREB and TIPRL induces the sustained activation of the CaMKK2-CaMK4-CREB axis as a driving force and upregulates the expression of stemness- and survival-related genes, promoting tumorigenesis in patients with lung cancer. Thus, TIPRL and the CaMKK2 signaling axis may be promising targets for overcoming drug resistance and reducing metastasis in lung cancer.
Collapse
Affiliation(s)
- In‐Sung Song
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Yu‐Jeong Jeong
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Jae Kwang Yun
- Department of Thoracic and Cardiovascular SurgeryAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Jimin Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Hae‐Jun Yang
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
| | - Young‐Ho Park
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
- Department of Functional GenomicsKRIBBSchool of BioscienceKorea University of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Sun‐Uk Kim
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
- Department of Functional GenomicsKRIBBSchool of BioscienceKorea University of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Seung‐Mo Hong
- Department of PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Peter C.W. Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Geun Dong Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Sung‐Wuk Jang
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| |
Collapse
|
9
|
Song SY, Park DH, Lee SH, Lim HK, Park JW, Seo JW, Cho SS. Protective Effects of 7S,15R-Dihydroxy-16S,17S-Epoxy-Docosapentaenoic Acid (diHEP-DPA) against Blue Light-Induced Retinal Damages in A2E-Laden ARPE-19 Cells. Antioxidants (Basel) 2024; 13:982. [PMID: 39199228 PMCID: PMC11351242 DOI: 10.3390/antiox13080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
The purpose of this study was to investigate the protective effects of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) in retinal pigment epithelial (RPE) cell damage. ARPE-19 cells, a human RPE cell line, were cultured with diHEP-DPA and Bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E), followed by exposure to BL. Cell viability and cell death rates were determined. Western blotting was performed to determine changes in apoptotic factors, mitogen-activated protein kinase (MAPK) family proteins, inflammatory proteins, and oxidative and carbonyl stresses. The levels of pro-inflammatory cytokines in the culture medium supernatants were also measured. Exposure to A2E and BL increased the ARPE-19 cell death rate, which was alleviated by diHEP-DPA in a concentration-dependent manner. A2E and BL treatments induced apoptosis in ARPE-19 cells, which was also alleviated by diHEP-DPA. Analysis of the relationship with MAPK proteins revealed that the expression of p-JNK and p-P38 increased after A2E and BL treatments and decreased with exposure to diHEP-DPA in a concentration-dependent manner. DiHEP-DPA also affected the inflammatory response by suppressing the expression of inflammatory proteins and the production of pro-inflammatory cytokines. Furthermore, it was shown that diHEP-DPA regulated the proteins related to oxidative and carbonyl stresses. Taken together, our results provide evidence that diHEP-DPA can inhibit cell damage caused by A2E and BL exposure at the cellular level by controlling various pathways involved in apoptosis and inflammatory responses.
Collapse
Affiliation(s)
- Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si 58245, Jeonnam, Republic of Korea;
| | - Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Han-Kyu Lim
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Jeollabuk-do, Republic of Korea;
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| |
Collapse
|
10
|
Kim H, Yeo C, Hong JY, Jeon WJ, Kim H, Lee J, Lee YJ, Baek SH, Ha IH. Raphanus sativus Linne Protects Human Nucleus Pulposus Cells against H 2O 2-Induced Damage by Inhibiting TREM2. BIOLOGY 2024; 13:602. [PMID: 39194540 DOI: 10.3390/biology13080602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Intervertebral disc degeneration (IDD) progresses owing to damage and depletion of nucleus pulposus (NP) cells. Cytoprotection mitigates oxidative stress, nutrient deprivation, and mechanical stress, which lead to cell damage and necrosis. We aimed to examine the protective effect of Raphanus sativus Linne (RSL), common radish, against oxidative stress by H2O2 in human NP cells and whether the RSL extracts can inhibit triggering receptor expressed on myeloid cells 2 (TREM2), an inducer of apoptosis and degeneration in NP cells. We administered hydrogen peroxide (H2O2) to cultured human NP cells treated with RSL extracts. We used immunoblotting and quantitative PCR to investigate expression of the apoptosis-associated proteins in cultured cells. RSL significantly enhanced cell survival by suppressing the activation of cleaved caspase-3 and Bax. In contrast, RSL extract increased Bcl2 concentration to downregulate apoptosis. Additionally, RSL treatment notably enhanced the mRNA levels of ACAN and Col2a1 while significantly reducing those of ADAMTS-4, ADAMTS-5, MMP3, and MMP13, key genes involved in NP degeneration. While H2O2 elevated TREM2 expression, causing disc degeneration, RSL downregulated TREM2 expression. Thus, our findings imply that RSL supports human NP cells under oxidative stress and regulates the pathways underlying disc degeneration, particularly TREM2, and that RSL extracts may potentially prevent IDD.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea
| |
Collapse
|
11
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Saka N, Nishio M, Ohta K. Human parainfluenza virus type 2 V protein inhibits mitochondrial apoptosis pathway through two ways. Virology 2024; 594:110053. [PMID: 38492518 DOI: 10.1016/j.virol.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Paramyxoviruses are reported to block apoptosis for their replication, but the mechanisms remain unclear. Furthermore, regulation of mitochondrial apoptosis by paramyxoviruses has been hardly reported. We investigated whether and how human parainfluenza virus type 2 (hPIV-2) counteracts apoptosis. Infection of recombinant hPIV-2 carrying mutated V protein showed higher caspase 3/7 activity and higher cytochrome c release from mitochondria than wild type hPIV-2 infection. This indicates that V protein controls mitochondrial apoptosis pathway. hPIV-2 V protein interacted with Bad, an apoptotic promoting protein, and this interaction inhibited the binding of Bad to Bcl-XL. V protein also bound to 14-3-3ε, which was essential for inhibition of 14-3-3ε cleavage. Our data collectively suggest that hPIV-2 V protein has two means of preventing mitochondrial apoptosis pathway: the inhibition of Bad-Bcl-XL interaction and the suppression of 14-3-3ε cleavage. This is the first report of the mechanisms behind how paramyxoviruses modulate mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
13
|
Zhang T, Zhang M. NL-1 Promotes PINK1-Parkin-Mediated Mitophagy Through MitoNEET Inhibition in Subarachnoid Hemorrhage. Neurochem Res 2024; 49:1506-1516. [PMID: 37828361 DOI: 10.1007/s11064-023-04024-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
NL-1 is a mitoNEET ligand known for its antileukemic effects and has recently shown neuroprotective effects in an ischemic stroke model. However, its underlying process in subarachnoid hemorrhage (SAH) is still unclear. Thus, we aimed to investigate the possible mechanism of NL-1 after SAH in rats. 112 male adult Sprague-Dawley rats were used for experiments. SAH model was performed with endovascular perforation. Rats were dosed intraperitoneally (i.p.) with NL-1 (3 mg/kg, 10 mg/kg, 30 mg/kg) or a vehicle (10% DMSO aqueous solution) at 1 h after SAH. A novel mitophagy inhibitor liensinine (60 mg/kg) was injected i.p. 24 h before SAH. SAH grades, short-term and long-term neurological scores were measured for neurobehavior. TdTmediated dUTP nick end labeling (TUNEL) staining, dihydroethidium (DHE) staining and western blot measurements were used to detect the outcomes and mechanisms of NL-1 administration. NL-1 treatment significantly improved short-term neurological behavior in Modified Garcia and beam balance sores in comparison with SAH + vehicle group. NL-1 administration also increased mitoNEET which induced phosphatase and tensin-induced kinase 1 (PINK1), Parkin and LC3II related mitophagy compared with SAH + vehicle group. In addition, the expressions of apoptotic protein Cleaved Caspase-3 and oxidative stress related protein Romo1 in NL-1 treatment group were reversed from SAH + vehicle group. Meanwhile, NL-1 treatment notably reduced TUNEL-positive cells, DHE-positive cells compared with SAH + vehicle group. NL-1 treatment notably improved long-term neurological behavior in rotarod and water maze tests compared to SAH + vehicle group. However, the administration of liensinine may inhibit the treatment effect of NL-1, leading to reduced expression of mitophagy markers Pink1, Parkin, LC3I/II, and increased expressions of Romo1 and Cleaved Caspase-3. NL-1 induced PINK1/PARKIN related mitophagy via mitoNEET, which reduced oxidative stress and apoptosis in early brain injury after SAH in rats. NL-1 may serve as a prospective drug for the treatment of SAH.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Minghai Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Chongqing Tongnan District People's Hospital, Chongqing, China.
| |
Collapse
|
14
|
Choi YJ, Wedamulla NE, Kim SH, Oh M, Seo KS, Han JS, Lee EJ, Park YH, Park YJ, Kim EK. Salvia miltiorrhiza Bunge Ameliorates Benign Prostatic Hyperplasia through Regulation of Oxidative Stress via Nrf-2/HO-1 Activation. J Microbiol Biotechnol 2024; 34:1059-1072. [PMID: 37994101 PMCID: PMC11180924 DOI: 10.4014/jmb.2308.08053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Oxidative stress is a key factor in the pathogenesis of benign prostatic hyperplasia (BPH) that leads to inflammation. This study aimed to evaluate the ameliorative effects of Salvia miltiorrhiza Bunge extract (HLT-101) on BPH through the regulation of oxidative stress and inflammation. A testosterone propionate (TP)-induced BPH rat model was orally administered HLT-101 (20, 40, or 80 mg/kg), and its effects on oxidative stress- and inflammation-related gene expression were examined. Further, HLT-101 was assessed for its effect on reactive oxygen species (ROS) levels and Nrf-2/HO-1 signaling pathways in BPH-1 cells. HLT-101 decreased testosterone-induced excessive free radical production and inflammatory factor activation. Moreover, HLT-101 treatment significantly decreased the intracellular ROS level in the TNF-α and IFN-γ treated BPH-1 cells through the activation of Nrf-2. In addition, HLT-101 treatment inhibited the NF-κB pathway and androgen receptor (AR) signaling, which is highly linked to the pathogenesis of BPH. Therefore, HLT-101 has the potential to be an effective treatment reagent for BPH because of its ability to reduce inflammation and oxidative stress via Nrf-2/HO-1 signaling.
Collapse
Affiliation(s)
- Young-Jin Choi
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Department of Food Science and Technology, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Seok-Hee Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Mirae Oh
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Kang Sik Seo
- Curome Bioscience Co., Ltd., Suwon 16506, Republic of Korea
| | - Jeong Su Han
- Curome Bioscience Co., Ltd., Suwon 16506, Republic of Korea
| | - Eun Joo Lee
- Healthism Corporation, Cheongju 28160, Republic of Korea
| | - Young Ho Park
- Healthism Corporation, Cheongju 28160, Republic of Korea
| | - Young Jin Park
- Department of Family Medicine, Dong-A University College of Medicine, Busan 49315, Republic of Korea
| | - Eun-Kyung Kim
- Educational Major, Graduate School of Education, Dong-A University, Busan 49315, Republic of Korea
- Nutrinomics Lab. Co., Ltd., Busan 49315, Republic of Korea
| |
Collapse
|
15
|
Popgeorgiev N, Gil C, Berthenet K, Bertolin G, Ichim G. Shedding light on mitochondrial outer-membrane permeabilization and membrane potential: State of the art methods and biosensors. Semin Cell Dev Biol 2024; 156:58-65. [PMID: 37438211 DOI: 10.1016/j.semcdb.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Membrane structural integrity is essential for optimal mitochondrial function. These organelles produce the energy needed for all vital processes, provided their outer and inner membranes are intact. This prevents the release of mitochondrial apoptogenic factors into the cytosol and ensures intact mitochondrial membrane potential (ΔΨm) to sustain ATP production. Cell death by apoptosis is generally triggered by outer mitochondrial membrane permeabilization (MOMP), tightly coupled with loss of ΔΨ m. As these two processes are essential for both mitochondrial function and cell death, researchers have devised various techniques to assess them. Here, we discuss current methods and biosensors available for detecting MOMP and measuring ΔΨ m, focusing on their advantages and limitations and discuss what new imaging tools are needed to improve our knowledge of mitochondrial function.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France; Institut Universitaire de France (IUF), Paris, France
| | - Clara Gil
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France
| | - Kevin Berthenet
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes), Rennes, France.
| | - Gabriel Ichim
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France.
| |
Collapse
|
16
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
17
|
Erkoc-Kaya D, Arikoglu H, Guclu E, Dursunoglu D, Menevse E. Juglone-ascorbate treatment enhances reactive oxygen species mediated mitochondrial apoptosis in pancreatic cancer. Mol Biol Rep 2024; 51:340. [PMID: 38393422 DOI: 10.1007/s11033-024-09254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Treatment of Pancreatic Cancer (PC) is challenging due to its aggressiveness and acquired resistance to conventional chemotherapy and radiotherapy. Therefore, the discovery of new therapeutic agents and strategies is essential. Juglone, a naphthoquinone, is a secondary metabolite produced naturally in walnut-type trees having allelopathic features in its native environment. Juglone was shown to prevent cell proliferation and induce ROS-mediated mitochondrial apoptosis. Ascorbate with both antioxidant and oxidant features, shows selective cytotoxicity in cancer cells. METHODS AND RESULTS In this study, we evaluated the anticancer effects of Juglone in combination with ascorbate in PANC-1 and BxPC-3 PC cells. The MTT assay was used to determine the IC50 dose of Juglone with 1 mM NaAscorbate (Jug-NaAsc). Subsequently, the cells were treated with 5, 10, 15 and 20 µM Jug-NaAsc for 24 h. Apoptotic effects were evaluated by analyzing the following genes using qPCR; proapoptotic Bax, antiapoptotic Bcl-2 related to the mitochondrial apoptotic pathway and apoptosis inhibitor Birc5 (Survivin). Immunofluorescence analysis was performed using Annexin V-FITC in PC cells. As an antioxidant enzyme, Trx2 protein levels were determined by a commercial ELISA test kit. Jug-NaAsc treatment decreased the expressions of antiapoptotic genes Bcl-2 and Birc5 while the apoptotic gene Bax expression increased at all doses. Additionally, a dose-dependently increase of apoptosis according to immunofluorescence analysis and the decreases of Trx2 enzyme levels at all treatments in both cell lines supported gene expression results. CONCLUSION Our results suggest that Juglone is a potential anticancer agent especially when combined with ascorbate.
Collapse
Affiliation(s)
- Dudu Erkoc-Kaya
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey.
| | - Hilal Arikoglu
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ebru Guclu
- Department of Basic Science and Health, Hemp Research Institute Yozgat Bozok University, Yozgat, Turkey
| | - Duygu Dursunoglu
- Department of Histology-Embryology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Esma Menevse
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
18
|
Sorour A, Aly RG, Ragab HM, Wahid A. Structure Modification Converts the Hepatotoxic Tacrine into Novel Hepatoprotective Analogs. ACS OMEGA 2024; 9:2491-2503. [PMID: 38250371 PMCID: PMC10795119 DOI: 10.1021/acsomega.3c07126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
The liver is responsible for critical functions such as metabolism, secretion, storage, detoxification, and the excretion of various compounds. However, there is currently no approved drug treatment for liver fibrosis. Hence, this study aimed to explore the potential hepatoprotective effects of chlorinated and nonchlorinated 4-phenyl-tetrahydroquinoline derivatives. Originally developed as tacrine analogs with reduced hepatotoxicity, these compounds not only lacked hepatotoxicity but also displayed a remarkable hepatoprotective effect. Treatment with these derivatives notably prevented the chemically induced elevation of hepatic indicators associated with liver injury. Additionally, the compounds restored the activities of defense antioxidant enzymes as well as levels of inflammatory markers (TNF-α and IL-6), apoptotic proteins (Bax and Bcl2), and fibrogenic mediators (α-SMA and TGF-β) to normal levels. Histopathologic analysis confirmed the hepatoprotective activity of tetrahydroquinolines. Furthermore, computer-assisted simulation docking results were highly consistent with those of the observed in vivo activities. In conclusion, the designed tacrine analogs exhibited a hepatoprotective role in acute liver damage, possibly through their antioxidative, anti-inflammatory, and antifibrotic effects.
Collapse
Affiliation(s)
- Amani
A. Sorour
- Department
of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Rania G. Aly
- Department
of Pathology, Faculty of Medicine, Alexandria
University, Alexandria 21521, Egypt
| | - Hanan M. Ragab
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed Wahid
- Department
of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
19
|
Anbara H, Ghorbani M, Shahriary A. Anti-oxidant and anti-apoptotic effects of royal jelly against polystyrene microplastic-induced testicular injury in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1515-1528. [PMID: 39539451 PMCID: PMC11556760 DOI: 10.22038/ijbms.2024.78787.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/13/2024] [Indexed: 11/16/2024]
Abstract
Objectives In recent years, microplastics (MPs), which are novel environmental contaminants measuring 5 mm in diameter, have garnered considerable attention. However, information regarding substances that can mitigate the dangers of MPs for animals remains extremely limited. Materials and Methods Ninety days were devoted to the exposure of mature male mice to royal jelly (RJ) and 2 µm virgin polystyrene microplastics (PS-MPs) in this study. Pre-implantation embryo development; the structure of testis tissue; the gonadosomatic index; sperm parameters; RNA damage in germinal cells; the anti-oxidant capacity of the entire testis; and the activity of anti-oxidant enzymes in serum and testicular tissue, including TAC, SOD dismutase, CAT, GSH, and MDA, histomorphometric indices of the testis (tubular differentiation index, spermatogenesis index, and repopulation index), steroidogenic foci, and the quantity of apoptosis were assessed in the testis, respectively, through the measurement of pro-apoptosis (p53, Bax, and Caspase-3) and anti-apoptosis (Bcl-2) factors, as well as Hsp70 mediator. Results The results indicate that concurrent administration of RJ can confer a protective effect on mice exposed to microplastics by maintaining the structure of mitochondria and enhancement of the anti-oxidant defense system. Furthermore, RJ co-treatment decreased apoptosis and oxidant/anti-oxidant status, enhanced pre-implantation embryo development, and improved sperm characteristics and RNA damage in germ cells. Conclusion The data confirm that royal jelly could protect the testis structure against polystyrene microplastic-induced testicular injury through anti-oxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Ghorbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Uppu JL, Challa VS, Syamprasad NP, Manepalli P, Naidu V, Syed A, Roshan S, Tazneem B, Almalki WH, Alharbi KS, Gupta G. Apoptosis-driven synergistic anti-cancer efficacy of ethyl acetate extract of Memecylon sisparense Gamble leaves and doxorubicin in in-vitro and in-vivo models of triple-negative breast cancer. Pathol Res Pract 2024; 253:155032. [PMID: 38176306 DOI: 10.1016/j.prp.2023.155032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
In the spectrum of breast neoplasms, approximately 15 to 20% of all diagnosed cases are triple-negative breast carcinoma. TNBC grows and spreads faster than other invasive breast cancers and has a worse prognosis. The existing therapies and chemotherapeutic drugs have several limitations, so the development of safe and affordable treatment options is currently in demand. Hence, this research focuses on scientifically evaluating the therapeutic anticancer effect of ethyl acetate extract of MSG and its combined efficacy with doxorubicin against TNBC. MSG has shown an IC50 value of 48.40 ± 1.68 µg/ml on the MDA-MB-231 cell line, and the combination of MSG with Dox demonstrated the synergistic effect. Apoptotic changes such as membrane blebbing chromatin condensation were observed in MSG alone and in combination with doxorubicin treatments. Apoptosis was confirmed with Annexin V-FITC/PI staining and increased apoptotic markers such as Cleaved caspase-3 Bax and decreased anti-apoptotic markers Bcl-2 by western blotting. The tumor burden significantly decreased in MSG and combination treatment groups while restoring their body weights. Meanwhile, the Dox-treated group indicated a decreased tumor burden combined with weight loss. The present investigation revealed that MSG and doxorubicin have a synergistic anticancer effect in TNBC.
Collapse
Affiliation(s)
- Jaya Lakshmi Uppu
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, Andhra Pradesh, India; Pharmacology and Toxicology Department, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Veerabhadra Swamy Challa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India; Pharmacology and Toxicology Department, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - N P Syamprasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Pavanprasanth Manepalli
- Novartis, Salarpuria-Sattva Knowledge City, Inorbit Mall Rd, Durgam Cheruvu Rd, HITEC City, Hyderabad, India
| | - Vgm Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India; Pharmacology and Toxicology Department, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Asha Syed
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, Andhra Pradesh, India.
| | - S Roshan
- Deccan School of Pharmacy, Hyderabad, India
| | - B Tazneem
- Deccan School of Pharmacy, Hyderabad, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.
| |
Collapse
|
21
|
Amiri S, Pashizeh F, Moeinabadi-Bidgoli K, Eyvazi Y, Akbari T, Salehi Moghaddam Z, Eskandarisani M, Farahmand F, Hafezi Y, Nouri Jevinani H, Seif M, Mousavi-Niri N, Chiani M, Tavakkoli Yaraki M. Co-encapsulation of hydrophilic and hydrophobic drugs into niosomal nanocarrier for enhanced breast cancer therapy: In silico and in vitro studies. ENVIRONMENTAL RESEARCH 2023; 239:117292. [PMID: 37806480 DOI: 10.1016/j.envres.2023.117292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Combination therapy has been considered one of the most promising approaches for improving the therapeutic effects of anticancer drugs. This is the first study that uses two different antioxidants in full-characterized niosomal formulation and thoroughly evaluates their synergistic effects on breast cancer cells. In this study, in-silico studies of hydrophilic and hydrophobic drugs (ascorbic acid: Asc and curcumin: Cur) interactions and release were investigated and validated by a set of in vitro experiments to reveal the significant improvement in breast cancer therapy using a co-delivery approach by niosomal nanocarrier. The niosomal nanoparticles containing surfactants (Span 60 and Tween 60) and cholesterol at 2:1 M ratio were prepared through the film hydration method. A systematic evaluation of nanoniosomes was carried out. The release profile demonstrated two phases (initial burst followed by sustained release) and a pH-dependent release schedule over 72 h. The optimized niosomal preparation displayed superior storage stability for up to 2 months at 4 °C, exhibiting extremely minor changes in pharmaceutical encapsulation efficiency and size. Free dual drugs (Asc + Cur) and dual-drug loaded niosomes (Niosomal (Asc + Cur)) enhanced the apoptotic activity and cytotoxicity and inhibited cell migration which confirmed the synergistic effect of co-encapsulated drugs. Also, significant up-regulation of p53 and Bax genes was observed in cells treated with Asc + Cur and Niosomal (Asc + Cur), while the anti-apoptotic Bcl-2 gene was down-regulated. These results were in correlation with the increase in the enzyme activity of SOD, CAT, and caspase, and the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) upon treatment with the mentioned drugs. Furthermore, these anti-cancer effects were higher when using Niosomal (Asc + Cur) than Asc + Cur. Histopathological examination also revealed that Niosomal (Asc + Cur) had a lower mitosis index, invasion, and pleomorphism than Asc + Cur. These findings indicated that niosomal formulation for co-delivery of Asc and Cur would offer a promising delivery system for an effective breast cancer treatment.
Collapse
Affiliation(s)
- Sahar Amiri
- Department of Genetic, Islamic Azad University, Tehran North Branch, Iran
| | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science Yazd, Iran
| | - Kasra Moeinabadi-Bidgoli
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA
| | - Yalda Eyvazi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Tanin Akbari
- Department of Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Iran
| | | | - Faranak Farahmand
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Hafezi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hoda Nouri Jevinani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Seif
- Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Chiani
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
22
|
Liu Z, Li C, Mu L, Hu H, Qin X. Menthol induces apoptosis and inhibits proliferation and migration of nonsmall cell lung carcinoma in vitro and in vivo through Akt pathway. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1265-1275. [PMID: 38012058 PMCID: PMC10730467 DOI: 10.1111/crj.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 08/12/2023] [Accepted: 09/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND About 40% of nonsmall cell lung cancers (NSCLCs) have already progressed in an advanced stage at the time of diagnosis. Development of effective prevention and therapy approaches against NSCLC is critical for reducing mortality. As a fundamental ingredient of peppermint oil, menthol has been demonstrated to possess an antitumor activity in several types of carcinomas. However, the potential role of menthol on NSCLC has not been reported. The present study aims to investigate the effect and underlying mechanism of menthol on proliferation, apoptosis, and mobility of human lung adenocarcinoma. METHODS Cell apoptosis was examined by MTT and flow cytometry. The motility of cells was determined by Transwell assay. Western blot analysis was performed to determine expression level of proteins. In vivo model of nude mice was established for evaluating the influence of menthol on tumorigenicity of A549 cells. The expression lentiviral vector of Akt was established in NSCLC cells for further verifying the inhibiting effect of menthol on survival and mobility of NSCLC cells via Akt pathway. RESULTS The results showed that menthol promoted A549 cell apoptosis, suppressed cell proliferation, and motility by altering the phosphorylated protein level of Akt. Menthol enhanced the expression level of Bax while decreasing expression of Bcl-2, Caspase-3, and MMPs proteins. In vivo experiments suggested that menthol exhibited an inhibitory effect in tumor growth on xenografts. These results were further validated in Akt over-expressed A549 and H1299 cells. CONCLUSIONS Menthol could display an inhibitory effect on NSCLC cells through Akt signaling pathway, making it a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Critical Care Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Chunlin Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of MedicineShandong UniversityJinnanChina
- Trauma Center, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ling Mu
- Department of Vascular SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyang Hu
- Department of Vascular SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary HospitalSchool of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
23
|
Talib NF, Zhu Z, Kim KS. Vitamin D3 Exerts Beneficial Effects on C2C12 Myotubes through Activation of the Vitamin D Receptor (VDR)/Sirtuins (SIRT)1/3 Axis. Nutrients 2023; 15:4714. [PMID: 38004107 PMCID: PMC10674540 DOI: 10.3390/nu15224714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The onset of sarcopenia is associated with a decline in vitamin D receptor (VDR) expression, wherein reduced VDR levels contribute to muscle atrophy, while heightened expression promotes muscle hypertrophy. Like VDR, the age-related decline in protein deacetylase sirtuin (SIRT) expression is linked to the development of sarcopenia and age-related muscle dysfunction. This study aimed to investigate whether the VDR agonist 1,25-dihydroxyvitamin D3 (1,25VD3) exerts beneficial effects on muscles through interactions with sirtuins and, if so, the underlying molecular mechanisms. Treatment of 1,25VD3 in differentiating C2C12 myotubes substantially elevated VDR, SIRT1, and SIRT3 expression, enhancing their differentiation. Furthermore, 1,25VD3 significantly enhanced the expression of key myogenic markers, including myosin heavy chain (MyHC) proteins, MyoD, and MyoG, and increased the phosphorylation of AMPK and AKT. Conversely, VDR knockdown resulted in myotube atrophy and reduced SIRT1 and SIRT3 levels. In a muscle-wasting model triggered by IFN-γ/TNF-α in C2C12 myotubes, diminished VDR, SIRT1, and SIRT3 levels led to skeletal muscle atrophy and apoptosis. 1,25VD3 downregulated the increased expression of muscle atrophy-associated proteins, including FoxO3a, MAFbx, and MuRF1 in an IFN-γ/TNF-α induced atrophy model. Importantly, IFN-γ/TNF-α significantly reduced the mtDNA copy number in the C2C12 myotube, whereas the presence of 1,25VD3 effectively prevented this decrease. These results support that 1,25VD3 could serve as a potential preventive or therapeutic agent against age-related muscle atrophy by enhancing the VDR/SIRT1/SIRT3 axis.
Collapse
Affiliation(s)
- Nurul Fatihah Talib
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Zunshu Zhu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Kyoung-Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| |
Collapse
|
24
|
Liu S, Zhu X, Pei H, Zhao Y, Zong Y, Chen W, He Z, Du R. Ginseng Stem-and-Leaf Saponins Mitigate Chlorpyrifos-Evoked Intestinal Toxicity In Vivo and In Vitro: Oxidative Stress, Inflammatory Response and Apoptosis. Int J Mol Sci 2023; 24:15968. [PMID: 37958950 PMCID: PMC10650881 DOI: 10.3390/ijms242115968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, the phenomenon of acute poisoning and organ damage caused by organophosphorus pesticides (OPs) has been a frequent occurrence. Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides. The main active components of ginseng stems and leaves are total ginseng stem-and-leaf saponins (GSLSs), which have various biological effects, including anti-inflammatory, antioxidant and anti-tumor activities. We speculate that these could have great potential in the treatment of severe diseases and the relief of organophosphorus-pesticide-induced side effects; however, their mechanism of action is still unknown. At present, our work aims to evaluate the effects of GSLSs on the antioxidation of CPF in vivo and in vitro and their potential pharmacological mechanisms. Mice treated with CPF (5 mg/kg) showed severe intestinal mucosal injury, an elevated diamine oxidase (DAO) index, the decreased expression of occlusive protein-1 (ZO-1) and occlusive protein, an impaired intestinal mucosal oxidation system and intestinal villi relaxation. In addition, chlorpyrifos exposure significantly increased the contents of the inflammatory factor TNF-α and the oxidative-stress-related indicators superoxide dismutase (SOD), catalase (CAT), glutathione SH (GSH), glutathione peroxidase (GSH-PX), reactive oxygen species (ROS) and total antioxidant capacity (T-AOC); elevated the level of lipid peroxide malondialdehyde (MDA); reversed the expression of Bax and caspase; and activated NF-κB-related proteins. Interestingly, GSLS supplementation at doses of 100 and 200 mg/kg significantly reversed these changes after treatment. Similar results were observed in cultured RAW264.7 cells. Using flow cytometry, Hoechst staining showed that GSLSs (30 μg/mL, 60 μg/mL) could improve the cell injury and apoptosis caused by CPF and reduce the accumulation of ROS in cells. In conclusion, GSLSs play a protective role against CPF-induced enterotoxicity by inhibiting NF-κB-mediated apoptosis and alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Xiaoying Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
25
|
Zhu Z, Liao R, Shi Y, Li J, Cao J, Liao B, Wu J, Li G. Polystyrene nanoplastics induce apoptosis of human kidney proximal tubular epithelial cells via oxidative stress and MAPK signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110579-110589. [PMID: 37792190 DOI: 10.1007/s11356-023-30155-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Polystyrene nanoplastics (PS-NPs) have recently been found to be present in human blood and kidney. However, the renal toxicity of PS-NPs and the underlying mechanisms have not been fully elucidated. Here, we found that exposure of PS-NPs induced apoptosis of human renal proximal tubular epithelial cells (HK-2) in a size- and dose-dependent manner as revealed by AnnexinV-FITC assay. In addition, PS-NPs promoted ROS production and caused structure changes of mitochondrial and endoplasmic reticulum. Mechanistically, transcriptional sequencing indicated the involvement of MAPK pathway in apoptosis, which was further confirmed by the upregulation of p-p38, p-ERK, CHOP, BAX, cytochrome C, and caspase 3 expression. This study clarified the molecular mechanism underlying PS-NP-induced apoptosis in HK-2 cells and contributed to our risk estimation of PS-NPs in human kidney.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory and Collaborative Innovation Center for the Prevention and Treatment of Cardiovascular Diseases of Sichuan Province, Institute of Cardiovascular Research, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Ruixue Liao
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory and Collaborative Innovation Center for the Prevention and Treatment of Cardiovascular Diseases of Sichuan Province, Institute of Cardiovascular Research, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Yang Shi
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory and Collaborative Innovation Center for the Prevention and Treatment of Cardiovascular Diseases of Sichuan Province, Institute of Cardiovascular Research, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Jingyan Li
- Department of Cardiovascular Surgery, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
| | - Jimin Cao
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory and Collaborative Innovation Center for the Prevention and Treatment of Cardiovascular Diseases of Sichuan Province, Institute of Cardiovascular Research, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Bin Liao
- Department of Cardiovascular Surgery, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory and Collaborative Innovation Center for the Prevention and Treatment of Cardiovascular Diseases of Sichuan Province, Institute of Cardiovascular Research, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Guang Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory and Collaborative Innovation Center for the Prevention and Treatment of Cardiovascular Diseases of Sichuan Province, Institute of Cardiovascular Research, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
26
|
Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells RW. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. Mol Neurodegener 2023; 18:67. [PMID: 37752598 PMCID: PMC10521527 DOI: 10.1186/s13024-023-00659-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy. METHODS The kinetics of BAX translocation were assessed by both static and live-cell imaging of a GFP-BAX fusion protein introduced into RGCs using AAV2-mediated gene transfer in mice. Activation of BAX was achieved using an acute optic nerve crush (ONC) protocol. Live-cell imaging of GFP-BAX was achieved using explants of mouse retina harvested 7 days after ONC. Kinetics of translocation in RGCs were compared to GFP-BAX translocation in 661W tissue culture cells. Permeabilization of GFP-BAX was assessed by staining with the 6A7 monoclonal antibody, which recognizes a conformational change in this protein after MOM insertion. Assessment of individual kinases associated with both stages of activation was made using small molecule inhibitors injected into the vitreous either independently or in concert with ONC surgery. The contribution of the Dual Leucine Zipper-JUN-N-Terminal Kinase cascade was evaluated using mice with a double conditional knock-out of both Mkk4 and Mkk7. RESULTS ONC induces the translocation of GFP-BAX in RGCs at a slower rate and with less intracellular synchronicity than 661W cells, but exhibits less variability among mitochondrial foci within a single cell. GFP-BAX was also found to translocate in all compartments of an RGC including the dendritic arbor and axon. Approximately 6% of translocating RGCs exhibited retrotranslocation of BAX immediately following translocation. Unlike tissue culture cells, which exhibit simultaneous translocation and permeabilization, RGCs exhibited a significant delay between these two stages, similar to detached cells undergoing anoikis. Translocation, with minimal permeabilization could be induced in a subset of RGCs using an inhibitor of Focal Adhesion Kinase (PF573228). Permeabilization after ONC, in a majority of RGCs, could be inhibited with a broad spectrum kinase inhibitor (sunitinib) or a selective inhibitor for p38/MAPK14 (SB203580). Intervention of DLK-JNK axis signaling abrogated GFP-BAX translocation after ONC. CONCLUSIONS A comparison between BAX activation kinetics in tissue culture cells and in cells of a complex tissue environment shows distinct differences indicating that caution should be used when translating findings from one condition to the other. RGCs exhibit both a delay between translocation and permeabilization and the ability for translocated BAX to be retrotranslocated, suggesting several stages at which intervention of the activation process could be exploited in the design of a therapeutic strategy.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Ryan J Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - Olivia J Marola
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Xiao L, Yang X, Sharma VK, Abebe D, Loh YP. Hippocampal delivery of neurotrophic factor-α1/carboxypeptidase E gene prevents neurodegeneration, amyloidosis, memory loss in Alzheimer's Disease male mice. Mol Psychiatry 2023; 28:3332-3342. [PMID: 37369719 PMCID: PMC10618095 DOI: 10.1038/s41380-023-02135-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's Disease (AD) is a prevalent neurodegenerative disease characterized by tau hyperphosphorylation, Aβ1-42 aggregation and cognitive dysfunction. Therapeutic agents directed at mitigating tau aggregation and clearing Aβ1-42, and delivery of growth factor genes (BDNF, FGF2), have ameliorated cognitive deficits, but these approaches did not prevent or stop AD progression. Here we report that viral-(AAV) delivery of Neurotrophic Factor-α1/Carboxypeptidase E (NF-α1/CPE) gene in hippocampus at an early age prevented later development of cognitive deficits as assessed by Morris water maze and novel object recognition assays, neurodegeneration, and tau hyperphosphorylation in male 3xTg-AD mice. Additionally, amyloid precursor protein (APP) expression was reduced to near non-AD levels, and insoluble Aβ1-42 was reduced significantly. Pro-survival proteins: mitochondrial Bcl2 and Serpina3g were increased; and mitophagy inhibitor Plin4 and pro-inflammatory protein Card14 were decreased in AAV-NF-α1/CPE treated versus untreated AD mice. Thus NF-α1/CPE gene therapy targets many regulatory components to prevent cognitive deficits in 3xTg-AD mice and has implications as a new therapy to prevent AD progression by promoting cell survival, inhibiting APP overexpression and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Vinay Kumar Sharma
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Daniel Abebe
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA.
| |
Collapse
|
28
|
Lee K, Jeong JW, Shim JJ, Hong HS, Kim JY, Lee JL. Lactobacillus fermentum HY7302 Improves Dry Eye Symptoms in a Mouse Model of Benzalkonium Chloride-Induced Eye Dysfunction and Human Conjunctiva Epithelial Cells. Int J Mol Sci 2023; 24:10378. [PMID: 37373526 DOI: 10.3390/ijms241210378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
(1) We investigated the effects of the Lactobacillus fermentum HY7302 (HY7302) in a mouse model of benzalkonium chloride (BAC)-induced dry eye, and the possibility of using HY7302 as a food supplement for preventing dry eye. (2) The ocular surface of Balb/c mice was exposed to 0.2% BAC for 14 days to induce dry eye (n = 8), and the control group was treated with the same amount of saline (n = 8). HY7302 (1 × 109 CFU/kg/day, 14 days, n = 8) was orally administered daily to the mice, and omega-3 (200 mg/kg/day) was used as a positive control. To understand the mechanisms by which HY7302 inhibits BAC-induced dry eye, we performed an in vitro study using a human conjunctival cell line (clone-1-5c-4). (3) The probiotic HY7302 improved the BAC-induced decreases in the corneal fluorescein score and tear break-up time. In addition, the lactic acid bacteria increased tear production and improved the detached epithelium. Moreover, HY7302 lowered the BAC-induced increases in reactive oxygen species production in a conjunctival cell line and regulated the expression of several apoptosis-related factors, including phosphorylated protein kinase B (AKT), B-cell lymphoma protein 2 (Bcl-2), and activated caspase 3. Also, HY7302 alleviated the expression of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and IL-8, and also regulated the matrix metallopeptidase-9 production in the conjunctival cell line. (4) In this study, we showed that L. fermentum HY7302 helps prevent dry eye disease by regulating the expression of pro-inflammatory and apoptotic factors, and could be used as a new functional food composition to prevent dry eye disease.
Collapse
Affiliation(s)
- Kippeum Lee
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Ji Woong Jeong
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Jae Jung Shim
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Hyun Sook Hong
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Joo Yun Kim
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Jung Lyoul Lee
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| |
Collapse
|
29
|
Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells R. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. RESEARCH SQUARE 2023:rs.3.rs-2846437. [PMID: 37292963 PMCID: PMC10246290 DOI: 10.21203/rs.3.rs-2846437/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy. Methods The kinetics of BAX translocation were assessed by both static and live-cell imaging of a GFP-BAX fusion protein introduced into RGCs using AAV2-mediated gene transfer in mice. Activation of BAX was achieved using an acute optic nerve crush (ONC) protocol. Live-cell imaging of GFP-BAX was achieved using explants of mouse retina harvested 7 days after ONC. Kinetics of translocation in RGCs were compared to GFP-BAX translocation in 661W tissue culture cells. Permeabilization of GFP-BAX was assessed by staining with the 6A7 monoclonal antibody, which recognizes a conformational change in this protein after MOM insertion. Assessment of individual kinases associated with both stages of activation was made using small molecule inhibitors injected into the vitreous either independently or in concert with ONC surgery. The contribution of the Dual Leucine Zipper-JUN-N-Terminal Kinase cascade was evaluated using mice with a double conditional knock-out of both Mkk4 and Mkk7 . Results ONC induces the translocation of GFP-BAX in RGCs at a slower rate and with less intracellular synchronicity than 661W cells, but exhibits less variability among mitochondrial foci within a single cell. GFP-BAX was also found to translocate in all compartments of an RGC including the dendritic arbor and axon. Approximately 6% of translocating RGCs exhibited retrotranslocation of BAX immediately following translocation. Unlike tissue culture cells, which exhibit simultaneous translocation and permeabilization, RGCs exhibited a significant delay between these two stages, similar to detached cells undergoing anoikis. Translocation, with minimal permeabilization could be induced in a subset of RGCs using an inhibitor of Focal Adhesion Kinase (PF573228). Permeabilization after ONC, in a majority of RGCs, could be inhibited with a broad spectrum kinase inhibitor (sunitinib) or a selective inhibitor for p38/MAPK14 (SB203580). Intervention of DLK-JNK axis signaling abrogated GFP-BAX translocation after ONC. Conclusions A comparison between BAX activation kinetics in tissue culture cells and in cells of a complex tissue environment shows distinct differences indicating that caution should be used when translating findings from one condition to the other. RGCs exhibit both a delay between translocation and permeabilization and the ability for translocated BAX to be retrotranslocated, suggesting several stages at which intervention of the activation process could be exploited in the design of a therapeutic strategy.
Collapse
|
30
|
Gao T, Huang J, Yin H, Huang J, Xie J, Zhou T, Fan W, Yang X, Gao G, Li Z. Inhibition of extranodal NK/T-cell lymphoma by Chiauranib through an AIF-dependent pathway and its synergy with L-asparaginase. Cell Death Dis 2023; 14:316. [PMID: 37160920 PMCID: PMC10169864 DOI: 10.1038/s41419-023-05833-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Extranodal NK/T-cell lymphoma (NKTL) is a rare and aggressive form of extranodal lymphoma with a poor prognosis. Currently, there are very limited treatment options for patients with advanced-stage disease or those with relapsed/recurrent disease. Here we show that Chiauranib, an orally small molecule inhibitor of select serine-threonine kinases (aurora B, VEGFRs, PDGFR, CSF1R, c-Kit), inhibited NKTL cell proliferation, induced cell cycle arrest, as well as suppressed the microvessel density in vitro and in vivo similar as in other types of cancer cells. Surprisingly, Chiauranib unfolded a new effect to induce apoptosis of NKTL cells by triggering AIF-dependent apoptosis other than the traditional cyt-c/caspase mitochondrial apoptosis pathway. The knockdown of AIF in vitro and in vivo dramatically blocked the efficacy of Chiauranib on NKTL. Mechanistically, the release of AIF from mitochondria is due to the upregulation of VDAC1 by the AKT-GSK3β pathway and activation of calcium-dependent m-calpain, which promotes the cleavage of VDAC1 and therefore permits the release of AIF. Notably, the low expression of Bax in both NKTL cells and patient tissues restrained the cyt-c release. It resulted in the inhibition of cyt-c/caspase mitochondrial pathway, suggesting that drugs targeting this traditional pathway may not be effective in NKTL. Furthermore, we found that L-asparaginase triggered CD95 (Fas/Apo-1)-caspase 8-caspase 3 apoptotic pathway in NKTL cells, and combination of Chiauranib and L-asparaginase exhibited a synergistic effect, suggesting a feasibility to combine these two drugs for effective treatment of NKTL. This study demonstrates Chiauranib's positive efficacy toward NKTL through the activation of the AIF-dependent apoptosis pathway for the first time. The novel and multi-targets of Chiauranib and the synergistic effect with L-asparaginase may provide a promising therapy for NKTL patients.
Collapse
Affiliation(s)
- Tianxiao Gao
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China
| | - Jieye Huang
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China
| | - Haofan Yin
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China
| | - Jiajia Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China
| | - Jinye Xie
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China.
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Zhiming Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China.
| |
Collapse
|
31
|
Abd-Rabou AA, Shalby AB, Kotob SE. An ellagitannin-loaded CS-PEG decorated PLGA nano-prototype promotes cell cycle arrest in colorectal cancer cells. Cell Biochem Biophys 2023:10.1007/s12013-023-01132-5. [PMID: 37067762 DOI: 10.1007/s12013-023-01132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
Colorectal cancer is associated with significant morbidity and mortality worldwide. Egypt, as a developing country, has a high-rise incidence of cancer. The current study objective was to investigate the antitumor influences of ellagitannin-loaded CS-PEG-decorated PLGA nano-prototypes against human colorectal cancer cell lines (HCT 116 as well as Caco-2) in vitro. Doxorubicin (DOX), punicalin (PN), and punicalagin (PNG)-encapsulated chitosan-polyethylene glycol-decorated PLGA (PLGA-CS-PEG) nanoparticles (NPs) were described. The cytotoxicity of each preparation was evaluated using MTT assays in HCT 116 as well as Caco-2 cells during G0, G1, S, and G2 cell cycle phases. Cell cycle-related gene expression and protein levels were measured after treatment. Reactive oxygen species (ROS) levels were also measured. Both PN and PNG PLGA-CS-PEG NPs induce colon cancer cell death with cell cycle arrest in the G1 phase in vitro. Caco-2 cells were more sensitive to the nano-therapy than HCT 116 cells. Upon treatment, the ratio of Bax to Bcl-2 expression was increased following nano-therapy, with increased levels of Cas-3 and decreased expression of Bcl-2, PI3k, and NF-ĸB compared to control. The nitric oxide level (NO), a marker of ROS, was increased following nano-therapy compared to control. In conclusion, ROS-mediated cell cycle arrest can be induced by PN as well as PNG nano-therapy in cell lines of colorectal cancer.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Aziza B Shalby
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Soheir E Kotob
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
32
|
Mai Z, Sun H, Yang F, Du M, Cheng X, Chen H, Sun B, Wen J, Wang X, Chen T. Bad is essential for Bcl-xL-enhanced Bax shuttling between mitochondria and cytosol. Int J Biochem Cell Biol 2023; 155:106359. [PMID: 36586532 DOI: 10.1016/j.biocel.2022.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Although Bcl-xL has been shown to retrotranslocate Bax from mitochondria to cytosol, other studies have found that Bcl-xL also stabilizes the mitochondrial localization of Bax. It is still unclear what causes the difference in Bcl-xL-regulated Bax localization. Bad, a BH3-only protein with a high affinity for Bcl-xL, may play an important role in Bcl-xL-regulated Bax shuttling. Here, we found that Bcl-xL enhanced both translocalization and retrotranslocation of mitochondrial Bax, as evidenced by quantitative co-localization, western blots and fluorescence loss in photobleaching (FLIP) analyses. Notably, Bad knockdown prevented Bcl-xL-mediated Bax retrotranslocation, indicating Bad was essential for this process. Quantitative fluorescence resonance energy transfer (FRET) imaging in living cells and co-immunoprecipitation analyses showed that the interaction of Bcl-xL with Bad was stronger than that with Bax. The Bad mimetic ABT-737 dissociated Bax from Bcl-xL on isolated mitochondria, suggesting that mitochondrial Bax was directly liberated to cytosol due to Bad binding to Bcl-xL. In addition, MK-2206, an Akt inhibitor, decreased Bad phosphorylation while increasing cytosolic Bax proportion. Our data firmly demonstrate a notion that Bad binds to mitochondrial Bcl-xL to release Bax, resulting in retrotranslocation of Bax to cytosol, and that the amount of Bad involved is regulated by Akt signaling.
Collapse
Affiliation(s)
- Zihao Mai
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Han Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fangfang Yang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Mengyan Du
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xuecheng Cheng
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Junlin Wen
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
33
|
Ali FEM, Hassanein EHM, Abd El-Ghafar OAM, Rashwan EK, Saleh FM, Atwa AM. Exploring the cardioprotective effects of canagliflozin against cisplatin-induced cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/cytochrome C/Bcl-2 signals. J Biochem Mol Toxicol 2023; 37:e23309. [PMID: 36645100 DOI: 10.1002/jbt.23309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
Cardiotoxicity is a severe considerable side effect of cisplatin (CDDP) that requires much medical attention. The current study investigates the cardioprotective effects of canagliflozin (CA) against CDDP-induced heart toxicity. Rats were allocated to the control group; the CA group was administered CA 10 mg/kg/day orally for 10 days; the CDDP group was injected with 7 mg/kg, intraperitoneal as a single dose on the 5th day, and the CDDP + CA group. Compared to the CDDP-treated group, CA effectively attenuated CDDP-induced heart injury as evidenced by a decrease of serum aspartate aminotransferase, alkaline phosphatase, creatine kinase-MB, and lactate dehydrogenase enzymes and supported by the alleviation of histopathological changes in cardiac tissues. Biochemically, CA attenuated cardiac oxidative injury through upregulation of the nuclear factor-erythroid 2 related factor 2 (Nrf2) signal. CA suppressed inflammation by decreasing cardiac NO2 - , MPO, iNOS, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha, and interleukin 1-beta levels. Besides, CA significantly upregulated cardiac levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and p-AKT proteins. Moreover, CA remarkably mitigated CDDP-induced apoptosis via modulation of Bax, cytochrome C, and Bcl-2 protein levels. Together, the present study revealed that CA could be a good candidate for preventing CDDP-induced cardiac injury by modulating iNOS/NF-κB, Nrf2, PI3K/AKT, and Bax/cytochrome C/Bcl-2 signals.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assuit, Egypt
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
34
|
Genotoxic damage and apoptosis in rat glioma (F98) cell line following exposure to bromuconazole. Neurotoxicology 2023; 94:108-116. [PMID: 36370923 DOI: 10.1016/j.neuro.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Bromuconazole, a fungicide from the triazole family, is widely used to protect the crop from various fungal contaminations to increase product quality and productivity. Although the massive use of bromuconazole poses a serious risk to human health, the exact mechanism of bromuconazole toxicity, especially on brain support cells, called glia cells, remains unclear so far. This study aimed to determine the mechanism of cytotoxicity and genotoxicity of bromuconazole via inspection of apoptotic death in rat glioma (F98) cells. We observed that bromuconazole treatment caused concentration-dependent cell death with an IC50 of 60 µM, and disruption of the cytoskeleton was observed via immunocytochemical analysis. Further, bromuconazole inhibits cell proliferation, it arrests the cell cycle in the G0/G1 phase and so inhibits DNA synthesis. Genotoxic analysis showed that bromuconazole exposition causes DNA fragmentation (comet assay) and nuclear condensation (DAPI staining). Apoptotic cell death was confirmed through: positive Annexin-V/FITC-PI dyes, p53 and Bax overexpression, Bcl2 repression, an increase in Bax/BCL-2 ratios of the mRNA, mitochondrial membrane depolarization, and an increase of caspase-3 activity. All these results demonstrate that bromuconazole exerts its cytotoxic and genotoxic effects through apoptotic cell death, which could implicate mitochondria.
Collapse
|
35
|
Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina. J Ginseng Res 2023; 47:65-73. [PMID: 36644394 PMCID: PMC9834005 DOI: 10.1016/j.jgr.2022.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 01/18/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is a significant visual disease that induces impaired vision and irreversible blindness in the elderly. However, the effects of ginseng berry extract (GBE) on the retina have not been studied. Therefore, this study aimed to investigate the protective effects of GBE on blue light (BL)-induced retinal damage and elucidate its underlying mechanisms in human retinal pigment epithelial cells (ARPE-19 cells) and Balb/c retina. Methods To investigate the effects and underlying mechanisms of GBE on retinal damage in vitro, we performed cell viability assay, pre-and post-treatment of sample, reactive oxygen species (ROS) assay, quantitative real-time PCR (qRT-PCR), and western immunoblotting using A2E-laden ARPE-19 cells with BL exposure. In addition, Balb/c mice were irradiated with BL to induce retinal degeneration and orally administrated with GBE (50, 100, 200 mg/kg). Using the harvested retina, we performed histological analysis (thickness of retinal layers), qRT-PCR, and western immunoblotting to elucidate the effects and mechanisms of GBE against retinal damage in vivo. Results GBE significantly inhibited BL-induced cell damage in ARPE-19 cells by activating the SIRT1/PGC-1α pathway, regulating NF-kB translocation, caspase 3 activation, PARP cleavage, expressions of apoptosis-related factors (BAX/BCL-2, LC3-Ⅱ, and p62), and ROS production. Furthermore, GBE prevented BL-induced retinal degeneration by restoring the thickness of retinal layers and suppressed inflammation and apoptosis via regulation of NF-kB and SIRT1/PGC-1α pathway, cleavage of caspase 3 and PARP, and expressions of apoptosis-related factors in vivo. Conclusions GBE could be a potential agent to prevent dry AMD and progression to wet AMD.
Collapse
|
36
|
Shetty K, Yasaswi S, Dutt S, Yadav KS. Multifunctional nanocarriers for delivering siRNA and miRNA in glioblastoma therapy: advances in nanobiotechnology-based cancer therapy. 3 Biotech 2022; 12:301. [PMID: 36276454 PMCID: PMC9525514 DOI: 10.1007/s13205-022-03365-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal cancer due to poor diagnosis and rapid resistance developed towards the drug. Genes associated to cancer-related overexpression of proteins, enzymes, and receptors can be suppressed using an RNA silencing technique. This assists in obtaining tumour targetability, resulting in less harm caused to the surrounding healthy cells. RNA interference (RNAi) has scientific basis for providing potential therapeutic applications in improving GBM treatment. However, the therapeutic application of RNAi is challenging due to its poor permeability across blood-brain barrier (BBB). Nanobiotechnology has evolved the use of nanocarriers such as liposomes, polymeric nanoparticles, gold nanoparticles, dendrimers, quantum dots and other nanostructures in encasing the RNAi entities like siRNA and miRNA. The review highlights the role of these carriers in encasing siRNA and miRNA and promising therapy in delivering them to the glioma cells.
Collapse
Affiliation(s)
- Karishma Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS (Deemed to be University), Mumbai, India
| | - Soma Yasaswi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS (Deemed to be University), Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085 India
| | - Khushwant S. Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
37
|
Lee S, Jo SH, Hong CE, Lee J, Cha B, Park JM. Plastid methylerythritol phosphate pathway participates in the hypersensitive response-related cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1032682. [PMID: 36388595 PMCID: PMC9645581 DOI: 10.3389/fpls.2022.1032682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Programmed cell death (PCD), a characteristic feature of hypersensitive response (HR) in plants, is an important cellular process often associated with the defense response against pathogens. Here, the involvement of LytB, a gene encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase that participates in the final step of the plastid methylerythritol phosphate (MEP) pathway, in plant HR cell death was studied. In Nicotiana benthmiana plants, silencing of the NbLytB gene using virus-induced gene silencing (VIGS) caused plant growth retardation and albino leaves with severely malformed chloroplasts. In NbLytB-silenced plants, HR-related cell death mediated by the expression of either the human proapoptotic protein gene Bax or an R gene with its cognate Avr effector gene was inhibited, whereas that induced by the nonhost pathogen Pseudomonas syringae pv. syringae 61 was enhanced. To dissect the isoprenoid pathway and avoid the pleiotropic effects of VIGS, chemical inhibitors that specifically inhibit isoprenoid biosynthesis in plants were employed. Treatment of N. benthamiana plants with fosmidomycin, a specific inhibitor of the plastid MEP pathway, effectively inhibited HR-related PCD, whereas treatment with mevinolin (a cytoplasmic mevalonate pathway inhibitor) and fluridone (a carotenoid biosynthesis inhibitor) did not. Together, these results suggest that the MEP pathway as well as reactive oxygen species (ROS) generation in the chloroplast play an important role in HR-related PCD, which is not displaced by the cytosolic isoprenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Sanghun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Chi Eun Hong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Jiyoung Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
- Biological Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Jeongeup, South Korea
| | - Byeongjin Cha
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
38
|
Shim YY, Kim JH, Cho JY, Reaney MJT. Health benefits of flaxseed and its peptides (linusorbs). Crit Rev Food Sci Nutr 2022; 64:1845-1864. [PMID: 36193986 DOI: 10.1080/10408398.2022.2119363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flaxseed (Linum usitatissimum L.) has been associated with numerous health benefits. The flax plant synthesizes an array of biologically active compounds including peptides or linusorbs (LOs, a.k.a., cyclolinopeptides), lignans, soluble dietary fiber and omega-3 fatty acids. The LOs arise from post-translational modification of four or more ribosome-derived precursors. These compounds exhibit an array of biological activities, including suppression of T-cell proliferation, excessive inflammation, and osteoclast replication as well as induction of apoptosis in some cancer cell lines. The mechanisms of LO action are only now being elucidated but these compounds might interact with other active compounds in flaxseed and contribute to biological activity attributed to other flax compounds. This review focuses on both the biological interaction of LOs with proteins and other molecules and comprehensive knowledge of LO pharmacological and biological properties. The physicochemical and nutraceutical properties of LOs, as well as the biological effects of certain LOs, and their underlying mechanisms of action, are reviewed. Finally, strategies for producing LOs by either peptide synthesis or recombinant organisms are presented. This review will be the first to describe LOs as a versatile scaffold for the action of compounds to deliver physiochemically/biologically active molecules for developing novel nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Chronic Exposure to Vinclozolin Induced Fibrosis, Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis in Mice Kidney. Int J Mol Sci 2022; 23:ijms231911296. [PMID: 36232596 PMCID: PMC9570110 DOI: 10.3390/ijms231911296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Vinclozolin is one of the most used fungicides in the control of fungi in fruits, vegetables, and ornamental plants. The effects of its exposure on different organs have been described, but information regarding its relevance to vinclozolin-induced nephrotoxicity is largely missing. This study focuses on the potential mechanism of vinclozolin-induced nephrotoxicity. CD1 male mice were administered vinclozolin (100 mg/kg) by oral gavage for 28 days. Vinclozolin administration decreased body weight over the treatment period and at the end of the experiment, increased the ratio of kidney weight to body weight and increased serum urea nitrogen and creatinine contents. Vinclozolin also induced histopathological alterations, including tubular dilatation and necrosis and impaired the integrity of the renal-tubular architecture and kidney fibrosis. The analyses conducted showed that vinclozolin administration altered the mRNA levels of mitochondrial function-related proteins (SIRT3, SIRT1, PGC-1α, TFAM, NRF1, VDAC-1, and Cyt c) and oxidative stress (increased lipid peroxidation and decreased total antioxidative capacity, catalase, and superoxide dismutase activities, glutathione levels, and glutathione peroxidase activity) in the kidneys. Furthermore, vinclozolin induced toxicity that altered Nrf2 signalling and the related proteins (HO-1 and NQO-1). Vinclozolin administration also affected both the extrinsic and intrinsic apoptotic pathways, upregulating the expression of proapoptotic factors (Bax, Caspase 3, and FasL) and downregulating antiapoptotic factor (Bcl-2) levels. This study suggests that vinclozolin induced nephrotoxicity by disrupting the transcription of mitochondrial function-related factors, the Nrf2 signalling pathway, and the extrinsic and intrinsic apoptotic pathways.
Collapse
|
40
|
Tiwari S, Gupta P, Singh A, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. 4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation. Neurochem Res 2022; 47:3385-3401. [PMID: 35922743 DOI: 10.1007/s11064-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Parul Gupta
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Chaturvedi
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - M Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
41
|
TRAIL & EGFR affibody dual-display on a protein nanoparticle synergistically suppresses tumor growth. J Control Release 2022; 349:367-378. [PMID: 35809662 DOI: 10.1016/j.jconrel.2022.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/02/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer drug candidate because it selectively binds to the proapoptotic death receptors, which are frequently overexpressed in a wide range of cancer cells, subsequently inducing strong apoptosis in these cells. However, the therapeutic benefit of TRAIL has not been clearly proven, mainly because of its poor pharmacokinetic characteristics and frequent resistance to its application caused by the activation of a survival signal via the EGF/epidermal growth factor receptor (EGFR) signaling pathway. Here, a lumazine synthase protein cage nanoparticle isolated from Aquifex aeolicus (AaLS) was used as a multiple ligand-displaying nanoplatform to display polyvalently both TRAIL and EGFR binding affibody molecules (EGFRAfb) via a SpyTag/SpyCatcher protein-ligation system, to form AaLS/TRAIL/EGFRAfb. The dual-ligand-displaying AaLS/TRAIL/EGFRAfb exhibited a dramatically enhanced cytotoxicity on TRAIL-resistant and EGFR-overexpressing A431 cancer cells in vitro, effectively disrupting the EGF-mediated EGFR survival signaling pathway by blocking EGF/EGFR binding as well as strongly activating both the extrinsic and intrinsic apoptotic pathways synergistically. The AaLS/TRAIL/EGFRAfb selectively targeted A431 cancer cells in vitro and actively reached the tumor sites in vivo. The A431 tumor-bearing mice treated with AaLS/TRAIL/EGFRAfb exhibited a significant suppression of the tumor growth without any significant side effects. Collectively, these findings showed that the AaLS/TRAIL/EGFRAfb could be used as an effective protein-based therapeutic for treating EGFR-positive cancers, which are difficult to manage using mono-therapeutic approaches.
Collapse
|
42
|
Zhou M, Li B, Li N, Li M, Xing C. Regulation of Ca 2+ for Cancer Cell Apoptosis through Photothermal Conjugated Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:2834-2842. [PMID: 35648094 DOI: 10.1021/acsabm.2c00236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ca2+ overload is caused by the abnormal accumulation of Ca2+, which is a potential therapeutic strategy for inhibiting tumor growth. However, due to the limited intracellular Ca2+ concentration, its anticancer effect is non-significant. Herein, near-infrared (NIR)-responsive nanoparticles NPs-PCa (DPPC-DSPE-PEG2000-NH2@PDPP@CaO2@DOX) were designed and prepared to achieve photothermal trigger of Ca2+ release, thereby increasing intracellular Ca2+ content. Furthermore, the nanoparticles convert light to heat to activate the transient receptor potential cation channel subfamily V member 1 (TRPV1) ion channels, allowing external Ca2+ to flow into the cells, further increasing the Ca2+ concentration. NPs-PCa nanoparticles overcome the limitation of insufficient concentration by increasing Ca2+ in both internal and external approaches. Meanwhile, an imbalance of intracellular Ca2+ induces mitochondrial dysfunction and ultimately results in cancer cell death. This study provides an effective strategy for inhibiting breast cancer tumor growth by regulating Ca2+ concentration.
Collapse
Affiliation(s)
- Mei Zhou
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Mengying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chengfen Xing
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.,School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
43
|
Exosomal circ-CACNG2 promotes cardiomyocyte apoptosis in multiple myeloma via modulating miR-197-3p/caspase3 axis. Exp Cell Res 2022; 417:113229. [DOI: 10.1016/j.yexcr.2022.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
44
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
45
|
Siddiqui SH, Subramaniyan SA, Park J, Kang D, Khan M, Belal SA, Lee SC, Shim K. Modulatory effects of cell–cell interactions between porcine skeletal muscle satellite cells and fibroblasts on the expression of myogenesis-related genes. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Shah Ahmed Belal
- Department of Poultry Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
46
|
GSPE Protects against Bleomycin-Induced Pulmonary Fibrosis in Mice via Ameliorating Epithelial Apoptosis through Inhibition of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8200189. [PMID: 35355866 PMCID: PMC8958066 DOI: 10.1155/2022/8200189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown cause which leads to alveolar epithelial cell apoptosis followed by basement membrane disruption and accumulation of extracellular matrix, destroying the lung architecture. Oxidative stress is involved in the development of alveolar injury, inflammation, and fibrosis. Oxidative stress-mediated alveolar epithelial cell (AEC) apoptosis is suggested to be a key process in the pathogenesis of IPF. Therefore, the present study investigated whether grape seed proanthocyanidin extract (GSPE) could inhibit the development of pulmonary fibrosis via ameliorating epithelial apoptosis through the inhibition of oxidative stress. We found that GSPE significantly ameliorated the histological changes and the level of collagen deposition in bleomycin (BLM)-induced lungs. Moreover, GSPE attenuated lung inflammation by reducing the total number of cells in bronchoalveolar lavage (BAL) fluid and decreasing the expression of IL-6. We observed that the levels of H2O2 leading to oxidative stress were increased following BLM instillation, which significantly decreased with GSPE treatment both in vivo and in vitro. These findings showed that GSPE attenuated BLM-induced epithelial apoptosis in the mouse lung and A549 alveolar epithelial cell through the inhibition of oxidative stress. Furthermore, GSPE could attenuate mitochondrial-associated cell apoptosis via decreasing the Bax/Bcl-2 ratio. The present study demonstrates that GSPE could ameliorate bleomycin-induced pulmonary fibrosis in mice via inhibition of epithelial apoptosis through the inhibition of oxidative stress.
Collapse
|
47
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
48
|
Cho HM, Jo YD, Choung SY. Protective Effects of Spirulina maxima against Blue Light-Induced Retinal Damages in A2E-Laden ARPE-19 Cells and Balb/c Mice. Nutrients 2022; 14:nu14030401. [PMID: 35276761 PMCID: PMC8840079 DOI: 10.3390/nu14030401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is a significant visual impairment in older people, and there is no treatment for dry AMD. Spirulina maxima (S. maxima), a cyanobacterium, has inhibitory effects against oxidative stress. However, the protective effects of S. maxima and its underlying mechanisms on blue light (BL)-caused macular degeneration are unknown. We aimed to investigate the protective effects of S. maxima on blue light-caused retinal damage and demonstrate its underlying mechanisms in human retinal pigment epithelial (ARPE-19) cells and Balb/c retinas. Additionally, the active component of S. maxima was examined in the RPE cells. In vitro, S. maxima decreased BL-induced RPE cell death by inhibiting reactive oxygen species (ROS) production. S. maxima inhibited BL-induced inflammation via regulating the NF-κB pathway, inflammatory-related gene expression, and the apoptosis pathway in RPE cells. In vivo, administration of S. maxima inhibited BL-induced retinal degeneration by restoring the thicknesses of whole retina, ONL (outer nuclear layer), INL (inner nuclear layer), and PL (photoreceptor layer) by BL exposure. Phycocyanin exerted protective effects in the pre-and post-treatment system. Therefore, S. maxima could be a potential nutraceutical approach to intercept the patho-physiological processes leading to dry AMD and advancement to wet AMD. Moreover, phycocyanin was a major active compound of S. maxima. These findings need to be investigated in human studies, particularly through a clinical trial.
Collapse
Affiliation(s)
- Hye-Mi Cho
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Ye-Dam Jo
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Se-Young Choung
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9198; Fax: +82-2-961-0372
| |
Collapse
|
49
|
TIAN Y, PANG X, WANG F. Isolation of curcumol from zedoary turmeric oil and its inhibitory effect on growth of human hepatocellular carcinoma xenografts in nude mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.46621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuan TIAN
- Tianjin Medical University, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, China; Artificial Cell Engineering Technology Research Center, China; Tianjin Institute of Hepatobiliary Disease, China
| | - Xin PANG
- Tianjin Medical University, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, China; Artificial Cell Engineering Technology Research Center, China; Tianjin Institute of Hepatobiliary Disease, China
| | - Fengmei WANG
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, China; Artificial Cell Engineering Technology Research Center, China; Tianjin Institute of Hepatobiliary Disease, China; The Third Central Hospital of Tianjin, China
| |
Collapse
|
50
|
Fatemizadeh M, Tafvizi F, Shamsi F, Amiri S, Farajzadeh A, Akbarzadeh I. Apoptosis Induction, Cell Cycle Arrest and Anti-Cancer Potential of Tamoxifen-Curcumin Loaded Niosomes Against MCF-7 Cancer Cells. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:183-190. [PMID: 35463725 PMCID: PMC9013861 DOI: 10.30699/ijp.2022.124340.2356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Background & Objective Breast cancer is the most common cancer among women. One of the most effective treatments for breast cancer is chemotherapy, in which specific drugs destroy the mass and its proliferation is inhibited. Chemotherapy is the most effective adjunctive therapy when multiple medications are used concurrently. Also, combining the drugs with nanocarrier has become an important strategy in targeted therapy. This study is designed to assess the apoptosis induction, cell cycle arrest, and anti-cancer potential of Tamoxifen-Curcumin-loaded niosomes against MCF-7 Cancer Cells. Methods A novel niosomal formulation of tamoxifen-curcumin with Span 80 and lipid to drug ratio of 20 was employed. The MCF-7 cells were cultured and then treated with IC50 value of tamoxifen-curcumin-loaded niosomes, the combination of tamoxifen and curcumin, tamoxifen, and curcumin alone. Flow cytometry, Real-Time PCR, and cell cycle analysis tests were conducted to evaluate the induction of apoptosis. Results Drug-loaded niosomes caused up-regulation of bax and p53 genes and down-regulation of bcl2 gene. Flow cytometry studies showed that niosomes containing tamoxifen-curcumin increased apoptosis rate in MCF-7 cells compared to the combination of tamoxifen and curcumin owing to the synergistic effect between the two drugs along with higher cell uptake by formulation niosomal. These results were also confirmed by cell cycle analysis. Conclusion Co-delivery of curcumin and tamoxifen using optimized niosomal formulation revealed that at acidic pH of MCF-7 cancer cells, released drugs from niosomal carriers would be more effective than physiological pH. This feature of niosomal nanoparticles can reduce the side effects of drugs in normal cells. Niosomal nanoparticles might be used as a biological anti-cancer factor in treatment of breast cancer.
Collapse
Affiliation(s)
- Mahdi Fatemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran,Corresponding Information: Farzaneh Tafvizi, Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Shamsi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Amiri
- Department of Genetics, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Afsaneh Farajzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|