1
|
Panwar A, Malik SO, Adib M, Lopaschuk GD. Cardiac energy metabolism in diabetes: emerging therapeutic targets and clinical implications. Am J Physiol Heart Circ Physiol 2025; 328:H1089-H1112. [PMID: 40192025 DOI: 10.1152/ajpheart.00615.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Patients with diabetes are at an increased risk for developing diabetic cardiomyopathy and other cardiovascular complications. Alterations in cardiac energy metabolism in patients with diabetes, including an increase in mitochondrial fatty acid oxidation and a decrease in glucose oxidation, are important contributing factors to this increase in cardiovascular disease. A switch from glucose oxidation to fatty acid oxidation not only decreases cardiac efficiency due to increased oxygen consumption but it can also increase reactive oxygen species production, increase lipotoxicity, and redirect glucose into other metabolic pathways that, combined, can lead to heart dysfunction. Currently, there is a lack of therapeutics available to treat diabetes-induced heart failure that specifically target cardiac energy metabolism. However, it is becoming apparent that part of the benefit of existing agents such as GLP-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors may be related to their effects on cardiac energy metabolism. In addition, direct approaches aimed at inhibiting cardiac fatty acid oxidation or increasing glucose oxidation hold future promise as potential therapeutic approaches to treat diabetes-induced cardiovascular disease.
Collapse
Affiliation(s)
- Archee Panwar
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sufyan O Malik
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhtasim Adib
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Zou X, He Y, Zhao Z, Li J, Qu H, Liu Z, Chen P, Ji J, Zhao H, Shu D, Luo C. Single-cell RNA-seq offer new insights into the cell fate decision of the primordial germ cells. Int J Biol Macromol 2025; 293:139136. [PMID: 39740725 DOI: 10.1016/j.ijbiomac.2024.139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/19/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network. Here, the results of single-cell RNA-seq indicated that the cell cycle drove cellular heterogeneity. The active populations engaged in PGC self-renewal and the characteristics of the aging cell fate have been identified. The active self-renewal populations presented a rising expression of DNA repair genes, couple with a high proportion of cells in G1/S phase and a low frequency of cells in G2 phase. Notably, Hippo, FoxO, AMPK and MAPK pathways are active within these populations. The combination of six activator or inhibitors, targeting these active pathways, resulted in a significantly higher proliferation rate of PGCs and an increased number of cells entering the G1 and S phases. Importantly, they greatly reduced the establishment time to a minimum of 26 days and increased the efficiency of male PGC line establishment to 59 % in FS medium. Our results provided several new insights into the PGCs.
Collapse
Affiliation(s)
- Xian Zou
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhua He
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhifeng Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianbo Li
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zijing Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haoyi Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dingming Shu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
3
|
Pal C. Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2025; 25:216-247. [PMID: 39495464 DOI: 10.1007/s12012-024-09941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Doxorubicin (Dox) is a commonly used chemotherapy drug effective against a range of cancers, but its clinical application is greatly limited by dose-dependent and cumulative cardiotoxicity. Mitochondrial dysfunction is recognized as a key factor in Dox-induced cardiotoxicity, leading to oxidative stress, disrupted calcium balance, and activation of apoptotic pathways. Recent research has emphasized the potential of small molecules that specifically target mitochondria to alleviate these harmful effects. This review provides a comprehensive analysis of small molecules that offer cardioprotection by preserving mitochondrial function in the context of doxorubicin-induced cardiotoxicity (DIC). The mechanisms of action include the reduction of reactive oxygen species (ROS) production, stabilization of mitochondrial membrane potential, enhancement of mitochondrial biogenesis, and modulation of key signaling pathways involved in cell survival and apoptosis. By targeting mitochondria, these small molecules present a promising therapeutic strategy to prevent or reduce the cardiotoxic effects associated with Dox treatment. This review not only discusses the mechanistic actions of these agents but also emphasizes their potential in improving cardiovascular outcomes for cancer patients. Gaining insight into these mechanisms can help in creating more effective strategies to safeguard the heart during chemotherapy, allowing for the ongoing use of Dox with a lower risk to the patient's cardiovascular health. This review highlights the critical role of mitochondria-targeted therapies as a promising approach in addressing DIC.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
4
|
Fernandez A, Sarn N, Eng C, Wright KM. Altered primary somatosensory neuron development in a Pten heterozygous model for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.04.552039. [PMID: 37781577 PMCID: PMC10541114 DOI: 10.1101/2023.08.04.552039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social interactions, repetitive behaviors, and hyper- or hyposensitivity to sensory stimuli. The mechanisms underlying the emergence of sensory features in ASD are not fully understood, but recent studies in rodent models highlight that these may result from differences in primary sensory neurons themselves. We examined sensory behaviors in a Pten haploinsufficient mouse model ( Pten Het ) for syndromic ASD and identified elevated responses to mechanical stimuli and a higher threshold to thermal responses. Transcriptomic and in vivo anatomical analysis identified alterations in subtype-specific markers of primary somatosensory neurons in Pten Het dorsal root ganglia (DRG). These defects emerge early during DRG development and involve dysregulation of multiple signaling pathways downstream of Pten . Finally, we show that mice harboring an ASD-associated mutation ( Pten Y69H ) also show altered expression of somatosensory neuron subtype-specific markers. Together, these results show that precise levels of Pten are required for proper somatosensory development and provide insight into the molecular and cellular basis of sensory abnormalities in a model for syndromic ASD.
Collapse
|
5
|
Su L, Chen T, Hu H, Xu Z, Luan X, Fu K, Ren Y, Sun D, Sun Y, Guo D. Notch3 as a novel therapeutic target for the treatment of ADPKD by regulating cell proliferation and renal cyst development. Biochem Pharmacol 2024; 224:116200. [PMID: 38604258 DOI: 10.1016/j.bcp.2024.116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic kidney disease. Emerging research indicates that the Notch signaling pathway plays an indispensable role in the pathogenesis of numerous kidney diseases, including ADPKD. Herein, we identified that Notch3 but not other Notch receptors was overexpressed in renal tissues from mice with ADPKD and ADPKD patients. Inhibiting Notch3 with γ-secretase inhibitors, which block a proteolytic cleavage required for Notch3 activation, or shRNA knockdown of Notch3 significantly delayed renal cyst growth in vitro and in vivo. Subsequent mechanistic study elucidated that the cleaved intracellular domain of Notch3 (N3ICD) and Hes1 could bind to the PTEN promoter, leading to transcriptional inhibition of PTEN. This further activated the downstream PI3K-AKT-mTOR pathway and promoted renal epithelial cell proliferation. Overall, Notch3 was identified as a novel contributor to renal epithelial cell proliferation and cystogenesis in ADPKD. We envision that Notch3 represents a promising target for ADPKD treatment.
Collapse
Affiliation(s)
- Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ting Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hongtao Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zifan Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiande Luan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dong Sun
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
6
|
Artamonova N, Djanani A, Schmiederer A, Pipp I, Compérat E, di Santo G, Aigner F, von der Heidt A, Heidegger I. Small cell neuroendocrine prostate cancer with adenocarcinoma components-case report and literature review. Transl Androl Urol 2024; 13:868-878. [PMID: 38855597 PMCID: PMC11157388 DOI: 10.21037/tau-23-541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/02/2024] [Indexed: 06/11/2024] Open
Abstract
Background Small cell neuroendocrine prostate cancer (SCNC) is a rare aggressive type of neuroendocrine prostate cancer (NEPC) characterized by aggressive clinical course and lack of response to hormone therapy. Case Description We present a case report of a 60-year-old man diagnosed with a histologically confirmed primary metastatic (bone, lymph nodes and visceral) SCNC with small components of an adenocarcinoma with clinical symptoms mimicking an acute prostatitis. Of note, serum based neuroendocrine markers (carcinoembryonic antigen, chromogranin A) were negative and the patient had a prostate-specific antigen (PSA) elevation. Genetic testing of tumor tissue revealed breast cancer gene 2 (BRCA2) copy number loss and a retinoblastoma gene (RB1) mutation reflecting again the aggressiveness of the disease. Germline testing for the BRCA2 copy number loss was unremarkable. After 6 cycles of carboplatin and etoposide in combination with androgen deprivation therapy (ADT) the Eastern Cooperative Oncology Group (ECOG) performance status has improved from 3 to 0, in addition the patient was free of pain. In line with clinical improvement, both prostate-specific membrane antigen (PSMA) and fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) revealed a significant reduction of metastatic load. Currently, the patient is treated with ADT plus apalutamide. Conclusions We demonstrate for the first time a case of a primary metastatic SCNC with adenocarcinoma components successfully treated by the combination of platinum-based chemotherapy plus hormonal therapy. In addition, we provide a literature overview on management of SCNC as there is no standard treatment established for this disease.
Collapse
Affiliation(s)
| | - Angela Djanani
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Schmiederer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Iris Pipp
- Clinical Pathology and Cytodiagnostics, Tirol-Kliniken, Innsbruck, Austria
| | - Eva Compérat
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Friedrich Aigner
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Blitsman Y, Hollander E, Benafsha C, Yegodayev KM, Hadad U, Goldbart R, Traitel T, Rudich A, Elkabets M, Kost J. The Potential of PIP3 in Enhancing Wound Healing. Int J Mol Sci 2024; 25:1780. [PMID: 38339058 PMCID: PMC10855400 DOI: 10.3390/ijms25031780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Given the role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in modulating cellular processes such as proliferation, survival, and migration, we hypothesized its potential as a novel therapeutic agent for wound closure enhancement. In this study, PIP3 was examined in its free form or as a complex with cationic starch (Q-starch) as a carrier. The intracellular bioactivity and localization of free PIP3 and the Q-starch/PIP3 complexes were examined. Our results present the capability of Q-starch to form complexes with PIP3, facilitate its cellular membrane internalization, and activate intracellular paths leading to enhanced wound healing. Both free PIP3 and Q-starch/PIP3 complexes enhanced monolayer gap closure in scratch assays and induced amplified collagen production within HaCAT and BJ fibroblast cells. Western blot presented enhanced AKT activation by free or complexed PIP3 in BJ fibroblasts in which endogenous PIP3 production was pharmacologically inhibited. Furthermore, both free PIP3 and Q-starch/PIP3 complexes expedited wound closure in mice, after single or daily dermal injections into the wound margins. Free PIP3 and the Q-starch/PIP3 complexes inherently activated the AKT signaling pathway, which is responsible for crucial wound healing processes such as migration; this was also observed in wound assays in mice. PIP3 was identified as a promising molecule for enhancing wound healing, and its ability to circumvent PI3K inhibition suggests possible implications for chronic wound healing.
Collapse
Affiliation(s)
- Yossi Blitsman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Etili Hollander
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Chen Benafsha
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.M.Y.); (M.E.)
| | - Uzi Hadad
- The Ilse Katz Institute for Nanoscale Science and Technology, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Riki Goldbart
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Tamar Traitel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.M.Y.); (M.E.)
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| |
Collapse
|
8
|
Ramya V, Shyam KP, Angelmary A, Kadalmani B. Lauric acid epigenetically regulates lncRNA HOTAIR by remodeling chromatin H3K4 tri-methylation and modulates glucose transport in SH-SY5Y human neuroblastoma cells: Lipid switch in macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159429. [PMID: 37967739 DOI: 10.1016/j.bbalip.2023.159429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Lauric acid (LA) induces apoptosis in cancer and promotes the proliferation of normal cells by maintaining cellular redox homeostasis. Earlier, we postulated LA-mediated regulation of the NF-κB pathway by an epigenetic mechanism. However, the molecular mechanism and possible epigenetic events remained enigmatic. Herein, taking the lead from the alteration in cellular energetics in cancer cells upon LA exposure, we investigated whether LA exposure can epigenetically influence lncRNA HOTAIR, regulate glucose metabolism, and shift the cellular energetic state. Our results demonstrate LA induced modulation of lncRNA HOTAIR in a dose and time dependent manner. In addition, HOTAIR induces the expression of glucose transporter isoform 1 (GLUT1) and is regulated via NF-κB activation. Silencing HOTAIR by siRNA-mediated knockdown suppressed GLUT1 expression suggesting the key role of HOTAIR in LA-mediated metabolic reprogramming. Further, from our ChIP experiments, we observed that silencing HOTAIR subdues the recruitment of NF-κB on the GLUT1 (SLC2A1) promoter region. In addition, by performing western blot and immunocytochemistry studies, we found a dose dependent increase in Histone 3 Lysine 4 tri-methylation (H3K4me3) in the chromatin landscape. Taken together, our study demonstrates the epigenetic regulation in LA-treated SH-SY5Y cancer cells orchestrated by remodeling chromatin H3K4me3 and modulation of lncRNA HOTAIR that apparently governs the GLUT1 expression and regulates glucose uptake by exerting transcriptional control on NF-κB activation. Our work provides insights into the epigenetic regulation and metabolic reprogramming of LA through modulation of lncRNA HOTAIR, remodeling chromatin H3K4 tri-methylation, and shifting the energy metabolism in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Venkatesan Ramya
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Karuppiah Prakash Shyam
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Research and Development Division, VVD and Sons Private Limited, Thoothukudi, Tamilnadu 628003, India
| | - Arulanandu Angelmary
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Balamuthu Kadalmani
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India.
| |
Collapse
|
9
|
Latchney SE, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Neuronal deletion of phosphatase and tensin homolog in mice results in spatial dysregulation of adult hippocampal neurogenesis. Front Mol Neurosci 2023; 16:1308066. [PMID: 38130682 PMCID: PMC10733516 DOI: 10.3389/fnmol.2023.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adult neurogenesis is a persistent phenomenon in mammals that occurs in select brain structures in both healthy and diseased brains. The tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome 10 (Pten) has previously been found to restrict the proliferation of neural stem/progenitor cells (NSPCs) in vivo. In this study, we aimed to provide a comprehensive picture of how conditional deletion of Pten may regulate the genesis of adult NSPCs in the dentate gyrus of the hippocampus and the subventricular zone bordering the lateral ventricles. Using conventional markers and stereology, we quantified multiple stages of neurogenesis, including proliferating cells, immature neurons (neuroblasts), and apoptotic cells in several regions of the dentate gyrus, including the subgranular zone (SGZ), outer granule cell layer (oGCL), molecular layer, and hilus at 4 and 10 weeks of age. Our data demonstrate that conditional deletion of Pten in mice produces successive increases in dentate gyrus proliferating cells and immature neuroblasts, which confirms the known negative roles Pten has on cell proliferation and maturation. Specifically, we observe a significant increase in Ki67+ proliferating cells in the neurogenic SGZ at 4 weeks of age, but not 10 weeks of age. We also observe a delayed increase in neuroblasts at 10 weeks of age. However, our study expands on previous work by providing temporal, subregional, and neurogenesis-stage resolution. Specifically, we found that Pten deletion initially increases cell proliferation in the neurogenic SGZ, but this increase spreads to non-neurogenic dentate gyrus areas, including the hilus, oGCL, and molecular layer, as mice age. We also observed region-specific increases in apoptotic cells in the dentate gyrus hilar region that paralleled the regional increases in Ki67+ cells. Our work is accordant with the literature showing that Pten serves as a negative regulator of dentate gyrus neurogenesis but adds temporal and spatial components to the existing knowledge.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Brayan R. Ruiz Lopez
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Katherine J. Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
10
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
11
|
Vujovic F, Shepherd CE, Witting PK, Hunter N, Farahani RM. Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease. Antioxidants (Basel) 2023; 12:1873. [PMID: 37891951 PMCID: PMC10604469 DOI: 10.3390/antiox12101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state. While this network-level impact of redox is achieved by the modulation of individual redox-sensitive proteins, it is the population by these proteins of critical nodes in a network topology of signal transduction pathways that amplifies the impact of redox-mediated reprogramming. We propose that redox-mediated rewiring is essential to regulate the rate of transmission of biological signals, giving rise to a programmable cellular clock that orchestrates the pace of biological phenomena such as development and aging. We further review the evidence that an aberrant redox-mediated modulation of output of the cellular clock contributes to the emergence of pathological conditions affecting the human brain.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Paul K. Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Sinha S, Li J, Tam B, Wang SM. Classification of PTEN missense VUS through exascale simulations. Brief Bioinform 2023; 24:bbad361. [PMID: 37843401 DOI: 10.1093/bib/bbad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN), a tumor suppressor with dual phosphatase properties, is a key factor in PI3K/AKT signaling pathway. Pathogenic germline variation in PTEN can abrogate its ability to dephosphorylate, causing high cancer risk. Lack of functional evidence lets numerous PTEN variants be classified as variants of uncertain significance (VUS). Utilizing Molecular Dynamics (MD) simulations, we performed a thorough evaluation for 147 PTEN missense VUS, sorting them into 66 deleterious and 81 tolerated variants. Utilizing replica exchange molecular dynamic (REMD) simulations, we further assessed the variants situated in the catalytic core of PTEN's phosphatase domain and uncovered conformational alterations influencing the structural stability of the phosphatase domain. There was a high degree of agreement between our results and the variants classified by Variant Abundance by Massively Parallel Sequencing, saturation mutagenesis, multiplexed functional data and experimental assays. Our extensive analysis of PTEN missense VUS should benefit their clinical applications in PTEN-related cancer. SIGNIFICANCE STATEMENT Classification of PTEN variants affecting its lipid phosphatase activity is important for understanding the roles of PTEN variation in the pathogenesis of hereditary and sporadic malignancies. Of the 3000 variants identified in PTEN, 1296 (43%) were assigned as VUS. Here, we applied MD and REMD simulations to investigate the effects of PTEN missense VUS on the structural integrity of the PTEN phosphatase domain consisting the WPD, P and TI active sites. We classified a total of 147 missense VUS into 66 deleterious and 81 tolerated variants by referring to the control group comprising 54 pathogenic and 12 benign variants. The classification was largely in concordance with these classified by experimental approaches.
Collapse
Affiliation(s)
- Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| |
Collapse
|
13
|
Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in osteosarcoma. Pathol Res Pract 2023; 249:154743. [PMID: 37549518 DOI: 10.1016/j.prp.2023.154743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that originates from mesenchymal cells. It is considered as the eighth most frequent childhood cancer that mainly affects the tibia and femur among the teenagers and young adults. OS can be usually diagnosed by a combination of MRI and surgical biopsy. The intra-arterial cisplatin (CDDP) and Adriamycin is one of the methods of choices for the OS treatment. CDDP induces tumor cell death by disturbing the DNA replication. Although, CDDP has a critical role in improving the clinical complication in OS patients, a high ratio of CDDP resistance is observed among these patients. Prolonged CDDP administrations have also serious side effects in normal tissues and organs. Therefore, the molecular mechanisms of CDDP resistance should be clarified to define the novel therapeutic modalities in OS. Multidrug resistance (MDR) can be caused by various cellular and molecular processes such as drug efflux, detoxification, and signaling pathways. MicroRNAs (miRNAs) are the key regulators of CDDP response by the post transcriptional regulation of target genes involved in MDR. In the present review we have discussed all of the miRNAs associated with CDDP response in OS cells. It was observed that the majority of reported miRNAs increased CDDP sensitivity in OS cells through the regulation of signaling pathways, apoptosis, transporters, and autophagy. This review highlights the miRNAs as reliable non-invasive markers for the prediction of CDDP response in OS patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Xiang Y, Yang Y, Liu J, Yang X. Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma. Front Oncol 2023; 13:1219211. [PMID: 37404761 PMCID: PMC10315918 DOI: 10.3389/fonc.2023.1219211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that occurs in children and adolescents, and the PI3K/AKT pathway is overactivated in most OS patients. MicroRNAs (miRNAs) are highly conserved endogenous non-protein-coding RNAs that can regulate gene expression by repressing mRNA translation or degrading mRNA. MiRNAs are enriched in the PI3K/AKT pathway, and aberrant PI3K/AKT pathway activation is involved in the development of osteosarcoma. There is increasing evidence that miRNAs can regulate the biological functions of cells by regulating the PI3K/AKT pathway. MiRNA/PI3K/AKT axis can regulate the expression of osteosarcoma-related genes and then regulate cancer progression. MiRNA expression associated with PI3K/AKT pathway is also clearly associated with many clinical features. In addition, PI3K/AKT pathway-associated miRNAs are potential biomarkers for osteosarcoma diagnosis, treatment and prognostic assessment. This article reviews recent research advances on the role and clinical application of PI3K/AKT pathway and miRNA/PI3K/AKT axis in the development of osteosarcoma.
Collapse
|
15
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Kluck GE, Qian AS, Sakarya EH, Quach H, Deng YD, Trigatti BL. Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent High-Density Lipoprotein Suppression of Necroptosis in Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:45-63. [PMID: 36353992 PMCID: PMC9762725 DOI: 10.1161/atvbaha.122.318062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic disease affecting artery wall and a major contributor to cardiovascular diseases. Large necrotic cores increase risk of plaque rupture leading to thrombus formation. Necrotic cores are rich in debris from dead macrophages. Programmed necrosis (necroptosis) contributes to necrotic core formation. HDL (high-density lipoprotein) exerts direct atheroprotective effects on different cells within atherosclerotic plaques. Some of these depend on the SR-B1 (scavenger receptor class B type I) and the adapter protein PDZK1 (postsynaptic density protein/Drosophila disc-large protein/Zonula occludens protein containing 1). However, a role for HDL in protecting against necroptosis and necrotic core formation in atherosclerosis is not completely understood. METHODS Low-density lipoprotein receptor-deficient mice engineered to express different amounts of ApoA1 (apolipoprotein A1), or to lack PDZK1 were fed a high fat diet for 10 weeks. Atherosclerotic plaque areas, necrotic cores, and key necroptosis mediators, RIPK3 (receptor interacting protein kinase 3), and MLKL (mixed lineage kinase domain-like protein) were characterized. Cultured macrophages were treated with HDL to determine its effects, as well as the roles of SR-B1, PDZK1, and the PI3K (phosphoinositide 3-kinase) signaling pathway on necroptotic cell death. RESULTS Genetic overexpression reduced, and ApoA1 knockout increased necrotic core formation and RIPK3 and MLKL within atherosclerotic plaques. Macrophages were protected against necroptosis by HDL and this protection required SR-B1, PDZK1, and PI3K/Akt pathway. PDZK1 knockout increased atherosclerosis in LDLRKO mice, increasing necrotic cores and phospho-MLKL; both of which were reversed by restoring PDZK1 in BM-derived cells. CONCLUSIONS Our findings demonstrate that HDL in vitro and ApoA1, in vivo, protect against necroptosis in macrophages and necrotic core formation in atherosclerosis, suggesting a pathway that could be a target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- George E.G. Kluck
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Alexander S. Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Emmanuel H. Sakarya
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Henry Quach
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Yak D. Deng
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| |
Collapse
|
17
|
Kuo FC, Wang YT, Liu CH, Li YF, Lu CH, Su SC, Liu JS, Li PF, Huang CL, Ho LJ, Lin CM, Lee CH. LncRNA HOTAIR impairs the prognosis of papillary thyroid cancer via regulating cellular malignancy and epigenetically suppressing DLX1. Cancer Cell Int 2022; 22:396. [PMID: 36494673 PMCID: PMC9733112 DOI: 10.1186/s12935-022-02817-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Papillary thyroid cancer (PTC) is the most common endocrine malignancy with a fast-growing incidence in recent decades. HOTAIR as a long non-coding RNA has been shown to be highly expressed in papillary thyroid cancer tissues with only a limited understanding of its functional roles and downstream regulatory mechanisms in papillary thyroid cancer cells. METHODS We applied three thyroid cancer cell lines (MDA-T32, MDA-T41 and K1) to investigate the phenotypic influence after gain or loss of HOTAIR. The Cancer Genome Atlas (TCGA) database were utilised to select candidate genes possibly regulated by HOTAIR with validation in the cellular system and immunohistochemical (IHC) staining of PTC tissues. RESULTS We observed HOTAIR was highly expressed in MDA-T32 cells but presents significantly decreased levels in MDA-T41 and K1 cells. HOTAIR knockdown in MDA-T32 cells significantly suppressed proliferation, colony formation, migration with cell cycle retardation at G1 phase. On the contrary, HOTAIR overexpression in MDA-T41 cells dramatically enhanced proliferation, colony formation, migration with cell cycle driven toward S and G2/M phases. Similar phenotypic effects were also observed as overexpressing HOTAIR in K1 cells. To explore novel HOTAIR downstream mechanisms, we analyzed TCGA transcriptome in PTC tissues and found DLX1 negatively correlated to HOTAIR, and its lower expression associated with reduced progression free survival. We further validated DLX1 gene was epigenetically suppressed by HOTAIR via performing chromatin immunoprecipitation. Moreover, IHC staining shows a significantly stepwise decrease of DLX1 protein from normal thyroid tissues to stage III PTC tissues. CONCLUSIONS Our study pointed out that HOTAIR is a key regulator of cellular malignancy and its epigenetic suppression on DLX1 serves as a novel biomarker to evaluate the PTC disease progression.
Collapse
Affiliation(s)
- Feng-Chih Kuo
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ting Wang
- grid.260565.20000 0004 0634 0356Department and Graduate Institute of Life Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hsin Liu
- grid.260565.20000 0004 0634 0356Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Feng Li
- grid.260565.20000 0004 0634 0356Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Hua Lu
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Chiang Su
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Syuan Liu
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Fei Li
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Luen Huang
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ju Ho
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Ming Lin
- grid.260565.20000 0004 0634 0356Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Hsing Lee
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Department and Graduate Institute of Life Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
18
|
Li X, Shim S, Hardin KR, Vanaja KG, Song H, Levchenko A, Ming GL, Zheng JQ. Signal amplification in growth cone gradient sensing by a double negative feedback loop among PTEN, PI(3,4,5)P 3 and actomyosin. Mol Cell Neurosci 2022; 123:103772. [PMID: 36055521 PMCID: PMC9856701 DOI: 10.1016/j.mcn.2022.103772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/24/2023] Open
Abstract
Axon guidance during neural wiring involves a series of precisely controlled chemotactic events by the motile axonal tip, the growth cone. A fundamental question is how neuronal growth cones make directional decisions in response to extremely shallow gradients of guidance cues with exquisite sensitivity. Here we report that nerve growth cones possess a signal amplification mechanism during gradient sensing process. In neuronal growth cones of Xenopus spinal neurons, phosphatidylinositol-3,4,5-trisphosphate (PIP3), an important signaling molecule in chemotaxis, was actively recruited to the up-gradient side in response to an external gradient of brain-derived neurotrophic factor (BDNF), resulting in an intracellular gradient with approximate 30-fold amplification of the input. Furthermore, a reverse gradient of phosphatase and tensin homolog (PTEN) was induced by BDNF within the growth cone and the increased PTEN activity at the down-gradient side is required for the amplification of PIP3 signals. Mechanistically, the establishment of both positive PIP3 and reverse PTEN gradients depends on the filamentous actin network. Together with computational modeling, our results revealed a double negative feedback loop among PTEN, PIP3 and actomyosin for signal amplification, which is essential for gradient sensing of neuronal growth cones in response to diffusible cues.
Collapse
Affiliation(s)
- Xiong Li
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Sangwoo Shim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Katherine R Hardin
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Kiran G Vanaja
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
19
|
Song C, Zhang J, Liu X, Li M, Wang D, Kang Z, Yu J, Chen J, Pan H, Wang H, Li G, Huang H. PTEN loss promotes Warburg effect and prostate cancer cell growth by inducing FBP1 degradation. Front Oncol 2022; 12:911466. [PMID: 36237339 PMCID: PMC9552847 DOI: 10.3389/fonc.2022.911466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Rationale Fructose-1,6-bisphosphatase (FBP1) is a tumor suppressor and a key enzyme negatively regulating Warburg effect in cancer. However, regulation of FBP1 protein expression and its exact role in prostate cancer (PCa) is largely unclear. Phosphatase and tensin homolog (PTEN) is one of the most frequently deleted tumor suppressor genes in human PCa. However, the role of PTEN loss in aberrant Warburg effect in cancer remains poorly understood. Methods Expression of PTEN and FBP1 was analyzed in several PCa cell lines and prostate tumor tissues in mice. Western blot (WB) and RT-PCR approaches were used to examine how PTEN regulates FBP1 expression. Co-immunoprecipitation (co-IP) and in vivo ubiquitination assays were used to define the regulatory mechanisms. A PCa xenograft model was employed to determine the impact of PTEN regulation of FBP1 on PCa growth in vivo. Result We demonstrated that in a manner dependent of PI3K/AKT signal pathway PTEN regulated FBP1 expression in various PCa cell lines and tumors in mice. We confirmed that this regulation took place at the protein level and was mediated by SKP2 E3 ubiquitin ligase. Mechanistically, we showed that serine 271 phosphorylation of FBP1 by cyclin-dependent kinases (CDKs) was essential for SKP2-mediated degradation of FBP1 protein induced by PTEN loss. Most importantly, we further showed that loss of PTEN expression enhanced Warburg effect and PCa growth in mice in a manner dependent, at least partially on FBP1 protein degradation. Conclusions Our results reveal a novel tumor-suppressive feature of PTEN in restraining FBP1 degradation and the Warburg effect. These results also suggest that prohibiting FBP1 protein degradation could be a viable therapeutic strategy for PTEN-deficient PCa.
Collapse
Affiliation(s)
- Changze Song
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Jianong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Xiao Liu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Meilu Li
- Department of Dermatology, The Second Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Zhijian Kang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Jiaao Yu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Jiuwei Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Hongxin Pan
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Honglei Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Guangbin Li
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, United States
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, United States
- *Correspondence: Haojie Huang,
| |
Collapse
|
20
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
21
|
Farmanzadeh A, Qujeq D, Yousefi T. The Interaction Network of MicroRNAs with Cytokines and Signaling Pathways in Allergic Asthma. Microrna 2022; 11:104-117. [PMID: 35507792 DOI: 10.2174/2211536611666220428134324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
Allergic asthma is a complicated disease that is affected by many factors. Numerous cytokines and signaling pathways are attributed to the cause of asthma symptoms. MicroRNAs (miRNAs) are a group of small non-coding single-stranded RNA molecules that are involved in gene silencing and posttranscriptional regulation of gene expression by targeting mRNAs. In pathological conditions, altered expression of microRNAs differentially regulates cytokines and signaling pathways and therefore, can be the underlying reason for the pathogenesis of allergic asthma. Indeed, microRNAs participate in airway inflammation via inducing airway structural cells and activating immune responses by targeting cytokines and signaling pathways. Thus, to make a complete understanding of allergic asthma, it is necessary to investigate the communication network of microRNAs with cytokines and signaling pathways which is contributed to the pathogenesis of allergic asthma. Here, we shed light on this aspect of asthma pathology by Summarizing our current knowledge of this topic.
Collapse
Affiliation(s)
- Ali Farmanzadeh
- Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
22
|
Computational identification of bioactive compounds from Cydonia oblonga Mill. against hepatocellular carcinoma by targeting pTEN and HBx-interacting protein. J Mol Model 2022; 28:191. [PMID: 35711004 DOI: 10.1007/s00894-022-05170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Phytochemicals derived from Cydonia oblonga have been investigated for their anti-oxidant and anti-cancer activities in various cancer cell lines. The reported bioactive compounds are evaluated in silico to develop a novel antagonist against pTEN (phosphatase and tensin homolog) and HBx (hepatitis B X-interacting protein) to target hepatocellular carcinoma. Lower expression of pTEN or higher expression of HBx represents the progression of hepatocellular carcinoma. This research is intended to identify the best candidate who interacts with our target proteins (pTEN and HBx) from the quince seeds by using computational methodologies. The ternary structures of the proteins and phytochemicals are retrieved from the online databases (RCSB and PubChem). The drug likeness analysis of the reported seventeen compounds was done, but only five follow the selection criteria. ADMET profiling of these five compounds was done, followed by docking analysis and molecular dynamics study of the best complexes to determine the stability of the complexes. A docking study revealed that caffeoylquinic acids (CQA) derivatives have the significant inhibitory potential of 3-O-caffeoylquinic acid (3CQA) and 5-O-caffeoylquinic acid (5CQA) with binding affinity of - 7.53 and - 7.49 against pTEN and - 5.94 and - 6.01 against HBx in comparison to the doxorubicin. The average root mean square deviation and root mean square fluctuation values for protein-ligand complexes were found quite stable compared to the standard, while parameters like gyration and SASA (solvent-accessible surface area) supported the complexes significant binding and stability. The results obtained from the evaluation show that 3CQA and 5CQA have the best stability, especially with the pTEN protein target. Hence, these compounds have to be considered for detailed experimental studies to understand their biological function against hepato-carcinoma.
Collapse
|
23
|
Abdulhasan M, Ruden X, Marben T, Harris S, Ruden DM, Awonuga AO, Puscheck EE, Rappolee DA. Using Live Imaging and Fluorescence Ubiquitinated Cell Cycle Indicator Embryonic Stem Cells to Distinguish G1 Cell Cycle Delays for General Stressors like Perfluoro-Octanoic Acid and Hyperosmotic Sorbitol or G2 Cell Cycle Delay for Mutagenic Stressors like Benzo(a)pyrene. Stem Cells Dev 2022; 31:296-310. [PMID: 35678645 PMCID: PMC9232235 DOI: 10.1089/scd.2021.0330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/17/2022] [Indexed: 12/15/2022] Open
Abstract
Lowest observable adverse effects level (LOAEL) is a standard point-of-departure dose in toxicology. However, first observable adverse effects level (FOAEL) was recently reported and is used, in this study, as one criterion to detect a mutagenic stimulus in a live imager. Fluorescence ubiquitinated cell cycle indicator (FUCCI) embryonic stem cells (ESC) are green in the S-G2-M phase of the cell cycle and not green in G1-phase. Standard media change here is a mild stress that delays G1-phase and media change increases green 2.5- to 5-fold. Since stress is mild, media change rapidly increases green cell number, but higher stresses of environmental toxicants and positive control hyperosmotic stress suppress increased green after media change. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) previously suppressed progression of nongreen to green cell cycle progression. Here, bisphenol A (BPA), cortisol, and positive control hyperosmotic sorbitol also suppress green fluorescence, but benzo(a)pyrene (BaP) at high doses (10 μM) increases green fluorescence throughout the 74-h exposure. Since any stress can affect many cell cycle phases, messenger RNA (mRNA) markers are best interpreted in ratios as dose-dependent mutagens increase in G2/G1 and nonmutagens increase G1/G2. After 74-h exposure, RNAseq detects G1 and G2 markers and increasing BaP doses increase G2/G1 ratios but increasing hyperosmotic sorbitol and PFOA doses increase G1/G2 marker ratios. BaP causes rapid green increase in FOAEL at 2 h of stimulus, whereas retinoic acid caused significant green fluorescence increases only late in culture. Using a live imager to establish FOAEL and G2 delay with FUCCI ESC is a new method to allow commercial and basic developmental biologists to detect drugs and environmental stimuli that are mutagenic. Furthermore, it can be used to test compounds that prevent mutations. In longitudinal studies, uniquely provided by this viable reporter and live imager protocol, follow-up can be done to test whether the preventative compound itself causes harm.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
| | - Ximena Ruden
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Teya Marben
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, Detroit, Michigan, USA
| | - Sean Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas M. Ruden
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Awoniyi O. Awonuga
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Elizabeth E. Puscheck
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, USA
| | - Daniel A. Rappolee
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, University of Windsor, Windsor, Canada
| |
Collapse
|
24
|
Khor ES, Noor SM, Wong PF. MiR-107 inhibits the sprouting of intersegmental vessels of zebrafish embryos. PROTOPLASMA 2022; 259:691-702. [PMID: 34368895 DOI: 10.1007/s00709-021-01695-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) play important roles in various biological processes. Our previous study showed that inhibition of MTOR with rapamycin treatment suppressed human endothelial cell tube formation, concomitant with the down-regulation of miR-107. Similarly, inhibition of Ztor by rapamycin also suppressed vascular development in zebrafish embryos. To gain a better understanding of the role of miR-107 and MTOR in vascular development, the present study sought to validate its function by over-expressing miR-107 in zebrafish embryos via microinjection with mimic miR-107 duplexes. Alkaline phosphatase (ALP) staining was used to visualise blood vessels in the zebrafish embryo, and expressions of Pten, Ztor and Rap1 were investigated by immunoblotting. Over-expression of miR-107 in zebrafish embryos inhibited the sprouting of intersegmental vessels (ISVs) with concomitant down-regulation of phosphorylated Rps6 expression, which confirmed the inhibition of Ztor signalling. As expected, pten, which is the target of miR-107, was down-regulated. Interestingly, Rap1, a small GTPase protein that is involved in intersomitic vessels sprouting during angiogenesis, was also down-regulated when miR-107 was over-expressed. Overall, our findings suggest that miR-107 and Ztor-mediated suppression of vascular development in zebrafish embryo involves Rap1.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Immune Landscape in PTEN-Related Glioma Microenvironment: A Bioinformatic Analysis. Brain Sci 2022; 12:brainsci12040501. [PMID: 35448032 PMCID: PMC9029006 DOI: 10.3390/brainsci12040501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: PTEN gene mutations are frequently found in the genetic landscape of high-grade gliomas since they influence cell proliferation, proangiogenetic pathways, and antitumoral immune response. The present bioinformatics analysis explores the PTEN gene expression profile in HGGs as a prognostic factor for survival, especially focusing on the related immune microenvironment. The effects of PTEN mutation on the susceptibility to conventional chemotherapy were also investigated. Methods: Clinical and genetic data of GBMs and normal tissue samples were acquired from The Cancer Genome Atlas (TCGA)-GBM and Genotype-Tissue Expression (GTEx) online databases, respectively. The genetic differential expressions were analyzed in both groups via the one-way ANOVA test. Kaplan−Meier survival curves were applied to estimate the overall survival (OS) and disease-free survival (DFS). The Genomics of Drug Sensitivity in Cancer platform was chosen to assess the response of PTEN-mutated GBMs to temozolomide (TMZ). p < 0.05 was fixed as statistically significant. On Tumor Immune Estimation Resource and Gene Expression Profiling Interactive Analysis databases, the linkage between immune cell recruitment and PTEN status was assessed through Spearman’s correlation analysis. Results: PTEN was found mutated in 22.2% of the 617 TCGA-GBMs patients, with a higher log2-transcriptome per million reads compared to the GTEx group (255 samples). Survival curves revealed a worse OS and DFS, albeit not significant, for the high-PTEN profile GBMs. Spearman’s analysis of immune cells demonstrated a strong positive correlation between the PTEN status and infiltration of Treg (ρ = 0.179) and M2 macrophages (ρ = 0.303). The half-maximal inhibitor concentration of TMZ was proven to be lower for PTEN-mutated GBMs compared with PTEN wild-types. Conclusions: PTEN gene mutations prevail in GBMs and are strongly related to poor prognosis and least survival. The infiltrating immune lymphocytes Treg and M2 macrophages populate the glioma microenvironment and control the mechanisms of tumor progression, immune escape, and sensitivity to standard chemotherapy. Broader studies are required to confirm these findings and turn them into new therapeutic perspectives.
Collapse
|
26
|
Han X, Zhang G, Chen G, Wu Y, Xu T, Xu H, Liu B, Zhou Y. Buyang Huanwu Decoction promotes angiogenesis in myocardial infarction through suppression of PTEN and activation of the PI3K/Akt signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114929. [PMID: 34952189 DOI: 10.1016/j.jep.2021.114929] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial infarction (MI) is the most severe subtype of coronary artery disease. Recent studies have demonstrated that the repair process and prognosis of MI are closely related to microcirculatory function in myocardial tissue. Buyang Huanwu Decoction (BYHWD) has shown great potential in the treatment of MI. However, the effects and mechanisms of BYHWD on angiogenesis post-MI remain unclear. AIM OF THE STUDY The study aimed to explore the promotion of angiogenesis by BYHWD post-MI and the potential mechanisms in vivo and in vitro. MATERIALS AND METHODS MI in mice was induced by permanent ligature of the coronary artery. The sample was divided into sham, model, and BYHWD treatment groups. After four weeks, the effects of BYHWD treatment on cardiac function were evaluated by echocardiography and HE and Masson staining. Angiogenesis was detected by CD 31 immunofluorescence staining in vivo. Then, various databases were searched to identify the corresponding targets of BYHWD in order to explore the molecular mechanisms underlying its effects in MI. Moreover, Western blot and immunohistochemistry were employed to measure the PTEN/PI3K/Akt/GSK3β signalling pathway and VEGFA expression in MI mice. Finally, the effects of BYHWD on cell angiogenesis and the activation of the PTEN/PI3K/Akt/GSK3β pathway in primary HUVECs were investigated. Overexpression of PTEN was achieved by an adenovirus vector encoding PTEN. RESULTS BYHWD significantly promoted angiogenesis and improved cardiac function in MI mice. Target prediction analysis suggested that BYHWD ameliorates MI via the PI3K/Akt pathway. BYHWD promoted angiogenesis post-MI by suppressing PTEN and activating the PI3K/Akt/GSK3β signalling pathway in vivo and in vitro. Moreover, the effects of BYHWD on HUVEC angiogenesis and the expression of PI3K/Akt/GSK3β signalling pathway-associated proteins were partially abrogated by the overexpression of PTEN. CONCLUSION Collectively, this study demonstrates that BYHWD exerts cardioprotective effects against MI by targeting angiogenesis. These effects are related to suppressing PTEN and activating the PI3K/Akt/GSK3β signalling pathway by BYHWD.
Collapse
Affiliation(s)
- Xin Han
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Tong Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
27
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
28
|
Sunaoshi M, Blyth BJ, Shang Y, Tsuruoka C, Morioka T, Shinagawa M, Ogawa M, Shimada Y, Tachibana A, Iizuka D, Kakinuma S. Post-Irradiation Thymic Regeneration in B6C3F1 Mice Is Age Dependent and Modulated by Activation of the PI3K-AKT-mTOR Pathway. BIOLOGY 2022; 11:biology11030449. [PMID: 35336821 PMCID: PMC8945464 DOI: 10.3390/biology11030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Because children have a long life expectancy relative to adults and their tissues and organs are growing and developing rapidly, the risk of radiation carcinogenesis for children is considered higher than that for adults. However, the underlying mechanism(s) is unclear. To uncover the mechanism, we previously revealed that principal causative genes in mouse thymic lymphomas arising in irradiated infants or adults as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. Our results demonstrate that the dynamics of thymocytes during the post-irradiation period depends on the age at exposure. For irradiated infants in particular, the number of proliferating cells increase dramatically, and this correlate with activation of the PI3K-AKT-mTOR pathway. Thus, we conclude that the PI3K-AKT-mTOR pathway in infants contributed, at least in part, to thymus-cell dynamics through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma. Abstract The risk of radiation-induced carcinogenesis depends on age at exposure. We previously reported principal causative genes in lymphomas arising after infant or adult exposure to 4-fractionated irradiation as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. The thymocyte number initially decreased, followed by two regeneration phases. During the first regeneration, the proportion of phosphorylated-AKT-positive (p-AKT+) cells in cell-cycle phases S+G2/M of immature CD4−CD8− and CD4+CD8+ thymocytes and in phases G0/G1 of mature CD4+CD8− and CD4−CD8+ thymocytes was significantly greater in irradiated infants than in irradiated adults. During the second regeneration, the proportion of p-AKT+ thymocytes in phases G0/G1 increased in each of the three populations other than CD4−CD8− thymocytes more so than during the first regeneration. Finally, PI3K-AKT-mTOR signaling in infants contributed, at least in part, to biphasic thymic regeneration through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma.
Collapse
Affiliation(s)
- Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mari Ogawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan;
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
- Correspondence: ; Tel.: +81-43-206-3160
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| |
Collapse
|
29
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
30
|
Zhou X, Liu G, Xu M, Ying X, Li B, Cao F, Cheng S, Xiao B, Cheng M, Liang L, Jia M, Li W, Liu J, Li Z. Comprehensive analysis of PTEN-related ceRNA network revealing the key pathways WDFY3-AS2 - miR-21-5p/miR-221-3p/miR-222-3p - TIMP3 as potential biomarker in tumorigenesis and prognosis of kidney renal clear cell carcinoma. Mol Carcinog 2022; 61:508-523. [PMID: 35129856 DOI: 10.1002/mc.23396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most common malignancies, and there is still a lack of effective biomarkers for early detection and prognostic prediction. In here, we compared the characteristics of RNA sequencing data sets of KIRC samples based on the tumor suppressor gene phosphatase and tensin homolog (PTEN). The 1016 long noncoding RNAs, 48 microRNAs (miRNAs), and 2104 messenger RNAs associated with PTEN were identified and these genes were differentially expressed between tumor and paracancerous tissues. The most relevant pathway was found to be WDFY3-AS2 - miR-21-5p/miR-221-3p/miR-222-3p - TIMP3 according to the rules of competing endogenous RNA (ceRNA) regulation. WDFY3-AS2 and TIMP3 expression were positively correlated and reduced in KIRC samples, while miR-21-5p, miR-221-3p, and miR-222-3p were relatively highly expressed. The relatively low expression of WDFY3-AS2 and TIMP3 in KIRC were associated with poor prognosis in KIRC patients, while higher expression of miR-21-5p, miR-221-3p, and miR-222-3p predicted reduced survival (p < 0.05). Univariate and multivariate Cox regression analysis showed that lower expression of WDFY3-AS2 and TIMP3 was significantly related to tumor grade, tumor size, lymph node metastasis, distant metastasis, and TNM stage. The expression of TIMP3 in KIRC tissues was also verified by immunohistochemistry, and the results were consistent with our analytical data. In summary, this study constructed a new model with clinical predictive value and identified the WDFY3-AS2/TIMP3 pathway that was closely associated with the prognosis of KIRC, which could serve as a promising biomarker for the diagnosis and treatment of KIRC.
Collapse
Affiliation(s)
- Xishan Zhou
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Guofeng Liu
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Mo Xu
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Xintao Ying
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Bianfeng Li
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Fengxi Cao
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Shuqiang Cheng
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Beibei Xiao
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Miao Cheng
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Liang Liang
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Mingxi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Jiheng Liu
- Department of Hematology and Oncology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Yan Y, Shi H, Zhao Z, Wang S, Zhou S, Mu Y, Ding N, Lai Y, Zhao AZ, Cheng L, Li F. Adiponectin Deficiency Promotes Endometrial Carcinoma Pathogenesis and Development via Activation of
Mitogen‐Activated
Protein Kinase. J Pathol 2022; 257:146-157. [PMID: 35072951 DOI: 10.1002/path.5874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Yunjing Yan
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Hui Shi
- Department of Pathology Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu Province China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Ning Ding
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Yimei Lai
- Department of Pathology First Affiliated Hospital of Gannan Medical University Ganzhou Jiangxi Province China
| | - Allan Z. Zhao
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Lixian Cheng
- Key laboratory of Functional and Clinical Translational Medicine Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College Xiamen Fujian Province China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| |
Collapse
|
32
|
Cao P, Nie G, Luo J, Hu R, Li G, Hu G, Zhang C. Cadmium and molybdenum co-induce pyroptosis and apoptosis by PTEN/PI3K/AKT axis in the liver of ducks. Food Funct 2022; 13:2142-2154. [DOI: 10.1039/d1fo02855c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd) and excessive molybdenum (Mo) have adverse impacts on animals. However, the hepatotoxicity co-induced by Cd and Mo in ducks has not been fully elucidated. In order to explore...
Collapse
|
33
|
|
34
|
Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021; 10:cells10123327. [PMID: 34943835 PMCID: PMC8699227 DOI: 10.3390/cells10123327] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.
Collapse
|
35
|
Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer's disease: a valuable target to stimulate or suppress? Cell Stress Chaperones 2021; 26:871-887. [PMID: 34386944 PMCID: PMC8578535 DOI: 10.1007/s12192-021-01231-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Among the long list of age-related complications, Alzheimer's disease (AD) has the most dreadful impact on the quality of life due to its devastating effects on memory and cognitive abilities. Although a plausible correlation between the phosphatidylinositol 3-kinase (PI3K) signaling and different processes involved in neurodegeneration has been evidenced, few articles reviewed the task. The current review aims to unravel the mechanisms by which the PI3K pathway plays pro-survival roles in normal conditions, and also to discuss the original data obtained from international research laboratories on this topic. Responses to questions on how alterations of the PI3K/Akt signaling pathway affect Tau phosphorylation and the amyloid cascade are given. In addition, we provide a general overview of the association between oxidative stress, neuroinflammation, alterations of insulin signaling, and altered autophagy with aberrant activation of this axis in the AD brain. The last section provides a special focus on the therapeutic possibility of the PI3K/Akt/mTOR modulators, either categorized as chemicals or herbals, in AD. In conclusion, determining the correct timing for the administration of the drugs seems to be one of the most important factors in the success of these agents. Also, the role of the PI3K/Akt signaling axis in the progression or repression of AD widely depends on the context of the cells; generally speaking, while PI3K/Akt activation in neurons and neural stem cells is favorable, its activation in microglia cells may be harmful.
Collapse
Affiliation(s)
- Elham Razani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Zoghi
- Department of Neurology, School of Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Shanaki-Bavarsad
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Choi BH, Colon TM, Lee E, Kou Z, Dai W. CBX8 interacts with chromatin PTEN and is involved in regulating mitotic progression. Cell Prolif 2021; 54:e13110. [PMID: 34592789 PMCID: PMC8560621 DOI: 10.1111/cpr.13110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Besides its role in regulating phosphatidylinositol-3 kinase (PI3K) signalling in the cytosol, PTEN also has a nuclear function. In this study, we attempted to understand the mechanism of chromatin PTEN in suppressing chromosomal instability during cell division. MATERIALS AND METHODS Immunocoprecipitation, ectopic expression, and deletional analyses were used to identify the physical interaction between Chromobox Homolog protein 8 (CBX8) and PTEN, as well as the functional domain(s) of PTEN mediating the interaction. Cell synchronization followed by immunoblotting was employed to study cell cycle regulation of CBX8 and the functional interaction between chromatin PTEN and CBX8. Small interfering RNAs (siRNAs) were used to study the role of PTEN and CBX8 in modulating histone epigenetic markers during the cell cycle. RESULTS Polycomb group (PcG) proteins including CBXs function to repress gene expression in a wide range of organisms including mammals. We recently showed that PTEN interacted with CBX8, a component of Polycomb Repressing Complex 1 (PRC1), and that CBX8 co-localized with PTEN in the nucleus. CBX8 levels were high, coinciding with its phosphorylation in mitosis. Phosphorylation of CBX8 was associated with monoubiquitinated PTEN and phosphorylated-BubR1 on chromatin. Moreover, CBX8 played an important role in cell proliferation and mitotic progression. Significantly, downregulation of either PTEN or CBX8 induced H3K27Me3 epigenetic marker in mitotic cells. CONCLUSION CBX8 is a new component that physically interacts with chromatin PTEN, playing an important role in regulating mitotic progression.
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
| | - Tania Marlyn Colon
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
| | - Eunji Lee
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
| | - Ziyue Kou
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
| | - Wei Dai
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Biochemistry and Molecular PharmacologyNew York University Langone Medical CenterNew YorkNYUSA
| |
Collapse
|
37
|
Wang J, Li Y, Wan CM, Gan ZJ, Gan LL, He BC, Yu Y, Hu XL. PTEN inhibition leads to the development of resistance to novel isoquinoline derivative TNBG-5602 in human liver cancer cells. Am J Cancer Res 2021; 11:4515-4527. [PMID: 34659902 PMCID: PMC8493403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023] Open
Abstract
TNBG-5602, a new synthesized derivative of tetrazanbigen, is a potential chemotherapeutic agent against cancer. However, its underlying mechanism is complex and still unknown. In this investigation, the anticancer effects of TNBG-5602 were determined in vitro and in vivo. Small RNA retroviral library plasmids that overexpress 19-bp fragments were used to generate TNBG-5602-resistant cells. After validation, the overexpressed 19-bp fragments were sequenced using next-generation sequencing (NGS) in the drug-resistant cells. Furthermore, the relationship of TNBG-5602, phosphatase and tensin homolog deleted on Chromosome 10 (PTEN), and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway was explored. The results showed that TNBG-5602 can effectively inhibit cancer cell proliferation and induce apoptosis in vitro and in vivo. Drug-resistant cells were screened using the small RNA library. Compared with naïve cells, drug-resistant cells were more resistant to TNBG-5602 in vitro and in vivo. NGS results revealed that the second highest overexpressed 19-bp fragment perfectly matched the PTEN gene, so the expression of PTEN in various cells and tissues was verified. Further research showed that exogenous overexpression of PTEN strengthened the anticancer effects of TNBG-5602 on p-Akt expression, whereas silencing of PTEN weakened these effects in naïve cells. Taken together, by using this library, we confirmed that PTEN is the target gene to the anticancer effects of TNBG-5602 via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Yingbo Li
- Department of Physiology, Chongqing Medical UniversityChongqing 400016, China
| | - Chun-Mei Wan
- Department of Pharmacy, Bishan District Hospital of Chinese MedicineChongqing 406720, China
- Department of Medical Chemistry, School of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Zong-Jie Gan
- Department of Medical Chemistry, School of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Lin-Ling Gan
- Department of Medical Chemistry, School of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Yu Yu
- Department of Medical Chemistry, School of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Xue-Lian Hu
- Department of Pharmacy, Xinqiao HospitalChongqing 400037, China
| |
Collapse
|
38
|
Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, Pang AL, Su X, Law PWN, Zhao Z, Chen Z, Chan W. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100849. [PMID: 34247447 PMCID: PMC8425920 DOI: 10.1002/advs.202100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The regulation of cardiomyocyte differentiation is a fundamental aspect of cardiac development and regenerative medicine. PTEN plays important roles during embryonic development. However, its role in cardiomyocyte differentiation remains unknown. In this study, a low-cost protocol for cardiomyocyte differentiation from mouse embryonic stem cells (ESCs) is presented and it is shown that Pten deletion potently suppresses cardiomyocyte differentiation. Transcriptome analysis shows that the expression of a series of cardiomyocyte marker genes is downregulated in Pten-/- cardiomyocytes. Pten ablation induces Dnmt3b expression via the AKT/FoxO3a pathway and regulates the expression of a series of imprinted genes, including Igf2. Double knockout of Dnmt3l and Dnmt3b rescues the deficiency of cardiomyocyte differentiation of Pten-/- ESCs. The DNA methylomes from wild-type and Pten-/- embryoid bodies and cardiomyocytes are analyzed by whole-genome bisulfite sequencing. Pten deletion significantly promotes the non-CG (CHG and CHH) methylation levels of genomic DNA during cardiomyocyte differentiation, and the non-CG methylation levels of cardiomyocyte genes and Igf2 are increased in Pten-/- cardiomyocytes. Igf2 or Igf1r deletion also suppresses cardiomyocyte differentiation through the MAPK/ERK signaling pathway, and IGF2 supplementation partially rescues the cardiomyocyte differentiation. Finally, Pten conditional knockout mice are generated and the role of PTEN in cardiomyocyte differentiation is verified in vivo.
Collapse
Affiliation(s)
- Wuming Wang
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Gang Lu
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Hong‐Bin Liu
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Zhiqiang Xiong
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Ho‐Duen Leung
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Ruican Cao
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Alan Lap‐Yin Pang
- R&D DivisionTGD Life Company Limited15W, Hong Kong Science ParkShatinHong KongChina
| | - Xianwei Su
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Patrick Wai Nok Law
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Zhiju Zhao
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Zi‐Jiang Chen
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Wai‐Yee Chan
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| |
Collapse
|
39
|
Ganguly P, Madonsela L, Chao JT, Loewen CJR, O’Connor TP, Verheyen EM, Allan DW. A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation. PLoS Genet 2021; 17:e1009774. [PMID: 34492006 PMCID: PMC8448351 DOI: 10.1371/journal.pgen.1009774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/17/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Gene variant discovery is becoming routine, but it remains difficult to usefully interpret the functional consequence or disease relevance of most variants. To fill this interpretation gap, experimental assays of variant function are becoming common place. Yet, it remains challenging to make these assays reproducible, scalable to high numbers of variants, and capable of assessing defined gene-disease mechanism for clinical interpretation aligned to the ClinGen Sequence Variant Interpretation (SVI) Working Group guidelines for 'well-established assays'. Drosophila melanogaster offers great potential as an assay platform, but was untested for high numbers of human variants adherent to these guidelines. Here, we wished to test the utility of Drosophila as a platform for scalable well-established assays. We took a genetic interaction approach to test the function of ~100 human PTEN variants in cancer-relevant suppression of PI3K/AKT signaling in cellular growth and proliferation. We validated the assay using biochemically characterized PTEN mutants as well as 23 total known pathogenic and benign PTEN variants, all of which the assay correctly assigned into predicted functional categories. Additionally, function calls for these variants correlated very well with our recent published data from a human cell line. Finally, using these pathogenic and benign variants to calibrate the assay, we could set readout thresholds for clinical interpretation of the pathogenicity of 70 other PTEN variants. Overall, we demonstrate that Drosophila offers a powerful assay platform for clinical variant interpretation, that can be used in conjunction with other well-established assays, to increase confidence in the accurate assessment of variant function and pathogenicity.
Collapse
Affiliation(s)
- Payel Ganguly
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Landiso Madonsela
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jesse T. Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher J. R. Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy P. O’Connor
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Douglas W. Allan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Yi X, Wang Z, Xiong X, Zheng X, Peng G, Xu H, Wei Q, Li H, Zhu Y, Ai J. Preparation and characterization of a polyclonal antibody against PTEN-Long. Biotechnol Appl Biochem 2021; 69:1622-1632. [PMID: 34338347 DOI: 10.1002/bab.2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/30/2021] [Indexed: 02/05/2023]
Abstract
Phosphatase and tensin homolog-long (PTEN-L) is a translational isoform of PTEN, which exists in both intracellular and extracellular locations. Previous studies demonstrated that PTEN-L could inhibit oncogenesis due to its lipid phosphatase activity. However, recent studies found that PTEN-L could promote the proliferation of some types of cancer cells. Moreover, as a protein phosphatase, PTEN-L can suppress mitophagy by counteracting PTEN-induced putative kinase protein 1 (PINK1)-Parkin-mediated ubiquitin phosphorylation, namely, PTEN-L is critical for exploring the mitophagy progression and the treatment of mitochondrial diseases. Accounting for the critical functions of PTEN-L, its antibody can be used for the treatment or prognosis of tumors and mitochondrial diseases. Currently, the commercial antibody of PTEN-L is not available. In our study, the recombinant PTEN-L protein was expressed in Escherichia coli BL21 and used as an antigen to immunize Japan's big-eared white rabbit for the preparation of polyclonal antibody. The PTEN-L protein can be captured by PTEN-L antibody specifically and effectively. Taken together, a PTEN_L antibody is a valuable tool for further exploring the function of PTEN-L in oncogenesis and mitochondrial diseases, and it would be a new choice for the prognosis or treatment of cancer and mitochondrial diseases.
Collapse
Affiliation(s)
- Xianyanling Yi
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyu Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
42
|
Jung K, Kim M, So J, Lee SH, Ko S, Shin D. Farnesoid X Receptor Activation Impairs Liver Progenitor Cell-Mediated Liver Regeneration via the PTEN-PI3K-AKT-mTOR Axis in Zebrafish. Hepatology 2021; 74:397-410. [PMID: 33314176 PMCID: PMC8605479 DOI: 10.1002/hep.31679] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/15/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Following mild liver injury, pre-existing hepatocytes replicate. However, if hepatocyte proliferation is compromised, such as in chronic liver diseases, biliary epithelial cells (BECs) contribute to hepatocytes through liver progenitor cells (LPCs), thereby restoring hepatic mass and function. Recently, augmenting innate BEC-driven liver regeneration has garnered attention as an alternative to liver transplantation, the only reliable treatment for patients with end-stage liver diseases. Despite this attention, the molecular basis of BEC-driven liver regeneration remains poorly understood. APPROACH AND RESULTS By performing a chemical screen with the zebrafish hepatocyte ablation model, in which BECs robustly contribute to hepatocytes, we identified farnesoid X receptor (FXR) agonists as inhibitors of BEC-driven liver regeneration. Here we show that FXR activation blocks the process through the FXR-PTEN (phosphatase and tensin homolog)-PI3K (phosphoinositide 3-kinase)-AKT-mTOR (mammalian target of rapamycin) axis. We found that FXR activation blocked LPC-to-hepatocyte differentiation, but not BEC-to-LPC dedifferentiation. FXR activation also suppressed LPC proliferation and increased its death. These defects were rescued by suppressing PTEN activity with its chemical inhibitor and ptena/b mutants, indicating PTEN as a critical downstream mediator of FXR signaling in BEC-driven liver regeneration. Consistent with the role of PTEN in inhibiting the PI3K-AKT-mTOR pathway, FXR activation reduced the expression of pS6, a marker of mTORC1 activation, in LPCs of regenerating livers. Importantly, suppressing PI3K and mTORC1 activities with their chemical inhibitors blocked BEC-driven liver regeneration, as did FXR activation. CONCLUSIONS FXR activation impairs BEC-driven liver regeneration by enhancing PTEN activity; the PI3K-AKT-mTOR pathway controls the regeneration process. Given the clinical trials and use of FXR agonists for multiple liver diseases due to their beneficial effects on steatosis and fibrosis, the detrimental effects of FXR activation on LPCs suggest a rather personalized use of the agonists in the clinic.
Collapse
Affiliation(s)
- Kyounghwa Jung
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Minwook Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Sungjin Ko
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA;,Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
43
|
Fry AL, Webster AK, Burnett J, Chitrakar R, Baugh LR, Hubbard EJA. DAF-18/PTEN inhibits germline zygotic gene activation during primordial germ cell quiescence. PLoS Genet 2021; 17:e1009650. [PMID: 34288923 PMCID: PMC8294487 DOI: 10.1371/journal.pgen.1009650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.
Collapse
Affiliation(s)
- Amanda L. Fry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Amy K. Webster
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Julia Burnett
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Rojin Chitrakar
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - L. Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - E. Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
44
|
Song B, Gu Y, Jiang W, Li Y, Ayre WN, Liu Z, Yin T, Janetopoulos C, Iijima M, Devreotes P, Zhao M. Electric signals counterbalanced posterior vs anterior PTEN signaling in directed migration of Dictyostelium. Cell Biosci 2021; 11:111. [PMID: 34127068 PMCID: PMC8201722 DOI: 10.1186/s13578-021-00580-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Background Cells show directed migration response to electric signals, namely electrotaxis or galvanotaxis. PI3K and PTEN jointly play counterbalancing roles in this event via a bilateral regulation of PIP3 signaling. PI3K has been proved essential in anterior signaling of electrotaxing cells, whilst the role of PTEN remains elusive. Methods Dictyostelium cells with different genetic backgrounds were treated with direct current electric signals to investigate the genetic regulation of electrotaxis. Results We demonstrated that electric signals promoted PTEN phosphatase activity and asymmetrical translocation to the posterior plasma membrane of the electrotaxing cells. Electric stimulation produced a similar but delayed rear redistribution of myosin II, immediately before electrotaxis started. Actin polymerization is required for the asymmetric membrane translocation of PTEN and myosin. PTEN signaling is also responsible for the asymmetric anterior redistribution of PIP3/F-actin, and a biased redistribution of pseudopod protrusion in the forwarding direction of electrotaxing cells. Conclusions PTEN controls electrotaxis by coordinately regulating asymmetric redistribution of myosin to the posterior, and PIP3/F-actin to the anterior region of the directed migration cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00580-x.
Collapse
Affiliation(s)
- Bing Song
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK. .,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| | - Yu Gu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Wenkai Jiang
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ying Li
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
| | - Wayne Nishio Ayre
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Zhipeng Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
| | - Tao Yin
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
| | | | - Miho Iijima
- School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter Devreotes
- School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, UC Davis, School of Medicine, Davis, CA, 95618, USA. .,Department of Dermatology, UC Davis, School of Medicine, Davis, CA, 95618, USA.
| |
Collapse
|
45
|
Pinoli P, Srihari S, Wong L, Ceri S. Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response. BMC Bioinformatics 2021; 22:250. [PMID: 33992077 PMCID: PMC8126165 DOI: 10.1186/s12859-021-04168-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A pair of genes is defined as synthetically lethal if defects on both cause the death of the cell but a defect in only one of the two is compatible with cell viability. Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality can be exploited for highly selective cancer therapies, which need to exploit differences between normal and cancer cells. RESULTS In this paper, we present a new method for predicting synthetic lethal (SL) gene pairs. As neighbouring genes in the genome have highly correlated profiles of copy number variations (CNAs), our method clusters proximal genes with a similar CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based method which takes into account the mutation frequencies of different subjects and genes. We use two different methods for selecting the pair of SL genes; the first is based on the gene essentiality measured in various conditions by means of the "Gene Activity Ranking Profile" GARP score; the second leverages the annotations of gene to biological pathways. CONCLUSIONS This method is unique among current SL prediction approaches, it reduces false-positive SL predictions compared to previous methods, and it allows establishing explicit collateral lethality relationship of gene pairs within mutually exclusive group pairs.
Collapse
Affiliation(s)
- Pietro Pinoli
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Limsoon Wong
- School of Computing, National University of Singapore, Computing Drive 13, Singapore, Singapore
| | - Stefano Ceri
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
| |
Collapse
|
46
|
Thomas A, Reetz S, Stenzel P, Tagscherer K, Roth W, Schindeldecker M, Michaelis M, Rothweiler F, Cinatl J, Cinatl J, Dotzauer R, Vakhrusheva O, Albersen M, Macher-Goeppinger S, Haferkamp A, Juengel E, Neisius A, Tsaur I. Assessment of PI3K/mTOR/AKT Pathway Elements to Serve as Biomarkers and Therapeutic Targets in Penile Cancer. Cancers (Basel) 2021; 13:2323. [PMID: 34066040 PMCID: PMC8151654 DOI: 10.3390/cancers13102323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The PI3K/mTOR/AKT pathway might represent an intriguing option for treatment of penile cancer (PeCa). We aimed to assess whether members of this pathway might serve as biomarkers and targets for systemic therapy. Tissue of primary cancer from treatment-naïve PeCa patients was used for tissue microarray analysis. Immunohistochemical staining was performed with antibodies against AKT, pAKT, mTOR, pmTOR, pS6, pPRAS, p4EBP1, S6K1 and pp70S6K. Protein expression was correlated with clinicopathological characteristics as well as overall survival (OS), disease-specific survival (DSS), recurrence-free survival (RFS) and metastasis-free survival (MFS). AKT inhibition was tested in two primarily established, treatment-naïve PeCa cell lines by treatment with capivasertib and analysis of cell viability and chemotaxis. A total of 76 patients surgically treated for invasive PeCa were included. Higher expression of AKT was significantly more prevalent in high-grade tumors and predictive of DSS and OS in the Kaplan-Meier analysis, and an independent predictor of worse OS and DSS in the multivariate regression analysis. Treatment with pan-AKT inhibitor capivasertib in PeCa cell lines induced a significant downregulation of both total AKT and pAKT as well as decreased cell viability and chemotaxis. Selected protein candidates of the mTOR/AKT signaling pathway demonstrate association with histological and survival parameters of PeCa patients, whereas AKT appears to be the most promising one.
Collapse
Affiliation(s)
- Anita Thomas
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Sascha Reetz
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Philipp Stenzel
- Department of Pathology, University Medicine Mainz, 55122 Mainz, Germany; (P.S.); (K.T.); (W.R.); (M.S.)
| | - Katrin Tagscherer
- Department of Pathology, University Medicine Mainz, 55122 Mainz, Germany; (P.S.); (K.T.); (W.R.); (M.S.)
| | - Wilfried Roth
- Department of Pathology, University Medicine Mainz, 55122 Mainz, Germany; (P.S.); (K.T.); (W.R.); (M.S.)
| | - Mario Schindeldecker
- Department of Pathology, University Medicine Mainz, 55122 Mainz, Germany; (P.S.); (K.T.); (W.R.); (M.S.)
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Florian Rothweiler
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany; (F.R.); (J.C.J.); (J.C.)
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany; (F.R.); (J.C.J.); (J.C.)
| | - Jaroslav Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany; (F.R.); (J.C.J.); (J.C.)
| | - Robert Dotzauer
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Stephan Macher-Goeppinger
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| | - Andreas Neisius
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
- Department of Urology and Pediatric Urology, Krankenhaus der Barmherzigen Brüder Trier, 54292 Trier, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55122 Mainz, Germany; (A.T.); (S.R.); (R.D.); (O.V.); (S.M.-G.); (A.H.); (E.J.); (A.N.)
| |
Collapse
|
47
|
Zheng K, Wang Y. MiR-193a-3p Promotes Fracture Healing via Targeting PTEN Gene. Mol Biotechnol 2021; 63:605-612. [PMID: 33813678 DOI: 10.1007/s12033-021-00322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the role and potential mechanism of miR-193a-3p in fracture healing. The 70 fragility fracture patients and 45 healthy controls were enrolled in this study. Quantitative real-time PCR (qRT-PCR) was used for the measurement of the expression levels of miR-193a-3p and PTEN. MTT assay and flow cytometry were used to detect cell viability and apoptosis in the mouse osteoblastic cell line MC3T3-E1. Luciferase reporter assay was performed to confirm the correlation of miR-193a-3p with PTEN. The serum expression level of miR-193a-3p showed no significant change in fracture patients 7 days after fixation treatment, but over time, there was a significant decrease in the expression at 14 days and 21 days after treatment (P < 0.01). Overexpression of miR-193a-3p significantly enhanced cell viability and inhibited cell apoptosis in MC3T3-E1 cells (P < 0.001). Serum PTEN level in fracture patients was increased gradually during the fracture healing process (P < 0.01). PTEN was demonstrated to be a target gene of miR-9-5p and reversed the effect of miR-193a-3p on cell viability and apoptosis (P < 0.001). miR-193a-3p promoted fracture healing via regulating PTEN and may serve as a novel potential target for enhancing bone repair of fragility fracture.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Spine Surgery, Zhucheng People's Hospital, Weifang, 262200, Shandong, China
| | - Ying Wang
- Department of Hand and Foot Surgery, Zhucheng People's Hospital, No. 59 Nanhuan Road, Weifang, 262200, Shandong, China.
| |
Collapse
|
48
|
Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: A remarkable oncogenic promoter in human cancer metastasis. Oncol Lett 2021; 21:302. [PMID: 33732378 PMCID: PMC7905531 DOI: 10.3892/ol.2021.12563] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a new type of non-coding RNA that has an important regulatory influence on several human diseases, including cancer metastasis. HOX antisense intergenic RNA (HOTAIR), a newly discovered lncRNA, has an important effect on tumour proliferation, migration and metastasis. HOTAIR regulates cell proliferation, changes gene expression, and promotes tumour cell invasion and migration. However, its molecular mechanism of action remains unknown. The present review summarizes the molecular mechanism and role of HOTAIR in tumour invasion and metastasis, discusses the association between HOTAIR and tumour metastasis through different pathways, such as the transforming growth factor β, Wnt/β-catenin, PI3K/AKT/MAPK and vascular endothelial growth factor pathways, emphasizes the function of HOTAIR in human malignant tumour metastasis and provides a foundation for its application in the diagnosis, prognosis and medical treatment of various tumours.
Collapse
Affiliation(s)
- Lili Chen
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xinle Qian
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
49
|
Jiang H, Dempsey DR, Cole PA. Ubiquitin Ligase Activities of WWP1 Germline Variants K740N and N745S. Biochemistry 2021; 60:357-364. [PMID: 33470109 DOI: 10.1021/acs.biochem.0c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
WWP1 is an E3 ubiquitin ligase that has been reported to target the tumor suppressor lipid phosphatase PTEN. K740N and N745S are recently identified germline variants of WWP1 that have been linked to PTEN-associated cancers [Lee, Y. R., et al. (2020) N. Engl. J. Med.]. These WWP1 variants have been suggested to release WWP1 from its native autoinhibited state, thereby promoting enhanced PTEN ubiquitination as a mechanism for driving cancer. Using purified proteins and in vitro enzymatic assays, we investigate the possibility that K740N and N745S WWP1 possess enhanced ubiquitin ligase activity and demonstrate that these variants are similar to the wild type (WT) in both autoubiquitination and PTEN ubiquitination. Furthermore, K740N and N745S WWP1 show dependencies similar to those of WT in terms of allosteric activation by an engineered ubiquitin variant, upstream E2 concentration, and substrate ubiquitin concentration. Transfected WWP1 WT and mutants demonstrate comparable effects on cellular PTEN levels. These findings challenge the idea that K740N and N745S WWP1 variants promote cancer by enhanced PTEN ubiquitination.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Daniel R Dempsey
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
50
|
Wang RQ, Long XR, Zhou NN, Chen DN, Zhang MY, Wen ZS, Zhang LJ, He FZ, Zhou ZL, Mai SJ, Wang HY. Lnc-GAN1 expression is associated with good survival and suppresses tumor progression by sponging mir-26a-5p to activate PTEN signaling in non-small cell lung cancer. J Exp Clin Cancer Res 2021; 40:9. [PMID: 33407724 PMCID: PMC7786923 DOI: 10.1186/s13046-020-01819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of non-small-cell lung cancer (NSCLC); however, the role of most lncRNAs in NSCLC remains unknown. This study explored the clinical significance, biological function and underlying mechanism of lnc-GAN1 in NSCLC. METHODS With a custom lncRNA microarray we found that lnc-GAN1 is markedly downregulated in NSCLC tissues. Then lnc-GAN1 expression level was measured using qRT-PCR in NSCLC tissues and cell lines. Survival was assessed using the Kaplan-Meier method. The biological functions of lnc-GAN1 in lung cancer cells were evaluated in vitro and in vivo. RNA fluorescence in situ hybridization and subcellular localization assays revealed the subcellular distribution of lnc-GAN1 in cells. Bioinformatic analysis was adopted to predict miRNAs and signaling pathways regulated by lnc-GAN1. RNA immunoprecipitation and Dual-luciferase reporter assays were used to assess the interaction between lnc-GAN1 and miR-26a-5p in lung cancer cells. RESULTS lnc-GAN1 is downregulated in HCC tissues and associated with larger tumor size and poor overall survival and disease-free survival; its ectopic expression suppresses cell proliferation, colony formation, and cell cycle progression and induces apoptosis in NSCLC cells; it also inhibits tumor growth in the NSCLC xenograft model. We further proved that lnc-GAN1 is localized in cytoplasm and transcribed independently from its parental gene GAN. Mechanistically, lnc-GAN1 acts as a sponge for miR-26a-5p by two seed sequences, and the two non-coding RNAs have a negative relationship in NSCLC tissues; we further prove that PTEN is a direct target of miR-26a-5p and lnc-GAN1 inhibits cell cycle signaling pathway by activating PTEN, whose expression level correlated negatively with miR-26a-5p level but positively with lnc-GAN1 level in NSCLC samples. CONCLUSIONS Lnc-GAN1 is downregulated and associated with poor survival of NSCLC patients, and mechanistically acts as a tumor suppressor via sponging and inhibiting miR-26a-5p to upregulate PTEN. This study provides a potential prognostic biomarker and treatment target for NSCLC.
Collapse
Affiliation(s)
- Rui-Qi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Xiao-Ran Long
- Department of Gynecology and Obstetrics, Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Ning-Ning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Ni Chen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhe-Sheng Wen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lan-Jun Zhang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Fa-Zhong He
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Zhi-Lin Zhou
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|