1
|
Surma M, Anbarasu K, Das A. Arp2/3 mediated dynamic lamellipodia of the hPSC colony edges promote liposome-based DNA delivery. Stem Cells 2024; 42:607-622. [PMID: 38717908 PMCID: PMC11228622 DOI: 10.1093/stmcls/sxae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/27/2024]
Abstract
Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.
Collapse
Affiliation(s)
- Michelle Surma
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN 46202, United States
| | - Kavitha Anbarasu
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN 46202, United States
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, United States
| | - Arupratan Das
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN 46202, United States
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN 46202, United States
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, United States
| |
Collapse
|
2
|
Morales-Palomo S, Navarrete C, Martínez JL, González-Fernández C, Tomás-Pejó E. Transcriptomic profiling of an evolved Yarrowia lipolytica strain: tackling hexanoic acid fermentation to increase lipid production from short-chain fatty acids. Microb Cell Fact 2024; 23:101. [PMID: 38566056 PMCID: PMC10988856 DOI: 10.1186/s12934-024-02367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.
Collapse
Affiliation(s)
| | - Clara Navarrete
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - José Luis Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Móstoles (Madrid), Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Valladolid, 47011, Spain
- Institute of Sustainable Processes, Valladolid, 47011, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Móstoles (Madrid), Spain.
| |
Collapse
|
3
|
Bigge BM, Rosenthal NE, Avasthi P. Initial ciliary assembly in Chlamydomonas requires Arp2/3 complex-dependent endocytosis. Mol Biol Cell 2023; 34:ar24. [PMID: 36753382 PMCID: PMC10092647 DOI: 10.1091/mbc.e22-09-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Ciliary assembly, trafficking, and regulation are dependent on microtubules, but the mechanisms of ciliary assembly also require the actin cytoskeleton. Here, we dissect subcellular roles of actin in ciliogenesis by focusing on actin networks nucleated by the Arp2/3 complex in the powerful ciliary model, Chlamydomonas. We find that the Arp2/3 complex is required for the initial stages of ciliary assembly when protein and membrane are in high demand but cannot yet be supplied from the Golgi complex. We provide evidence for Arp2/3 complex-dependent endocytosis of ciliary proteins, an increase in endocytic activity upon induction of ciliary growth, and relocalization of plasma membrane proteins to newly formed cilia.
Collapse
Affiliation(s)
- Brae M Bigge
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| | - Nicholas E Rosenthal
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| | - Prachee Avasthi
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| |
Collapse
|
4
|
Perrin L, Matic Vignjevic D. The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Semin Cell Dev Biol 2023:S1084-9521(23)00071-X. [PMID: 36948998 DOI: 10.1016/j.semcdb.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The intestinal epithelium must absorb many nutrients and water while forming a barrier that is impermeable to pathogens present in the external environment. Concurrently to fulfill this dual role, the intestinal epithelium is challenged by a rapid renewal of cells and forces resulting from digestion. Hence, intestinal homeostasis requires precise control of tissue integrity, tissue renewal, cell polarity, and force generation/transmission. In this review, we highlight the contribution of the cell cytoskeleton- actin, microtubules, and intermediate filaments- to intestinal epithelium homeostasis. With a focus on enterocytes, we first discuss the role of these networks in the formation and maintenance of cell-cell and cell-matrix junctions. Then, we cover their role in intracellular trafficking related to the apicobasal polarity of enterocytes. Finally, we report on the cytoskeletal changes that occur during tissue renewal. In conclusion, the importance of the cytoskeleton in maintaining intestinal homeostasis is emerging, and we think this field will keep evolving.
Collapse
Affiliation(s)
- Louisiane Perrin
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
5
|
Fusarium oxysporum f. sp. niveum Pumilio 1 Regulates Virulence on Watermelon through Interacting with the ARP2/3 Complex and Binding to an A-Rich Motif in the 3' UTR of Diverse Transcripts. mBio 2023; 14:e0015723. [PMID: 36856417 PMCID: PMC10128047 DOI: 10.1128/mbio.00157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Fusarium oxysporum f. sp. niveum (Fon), a soilborne phytopathogenic fungus, causes watermelon Fusarium wilt, resulting in serious yield losses worldwide. However, the underlying molecular mechanism of Fon virulence is largely unknown. The present study investigated the biological functions of six FonPUFs, encoding RNA binding Pumilio proteins, and especially explored the molecular mechanism of FonPUF1 in Fon virulence. A series of phenotypic analyses indicated that FonPUFs have distinct but diverse functions in vegetative growth, asexual reproduction, macroconidia morphology, spore germination, cell wall, or abiotic stress response of Fon. Notably, the deletion of FonPUF1 attenuates Fon virulence by impairing the invasive growth and colonization ability inside the watermelon plants. FonPUF1 possesses RNA binding activity, and its biochemical activity and virulence function depend on the RNA recognition motif or Pumilio domains. FonPUF1 associates with the actin-related protein 2/3 (ARP2/3) complex by interacting with FonARC18, which is also required for Fon virulence and plays an important role in regulating mitochondrial functions, such as ATP generation and reactive oxygen species production. Transcriptomic profiling of ΔFonPUF1 identified a set of putative FonPUF1-dependent virulence-related genes in Fon, possessing a novel A-rich binding motif in the 3' untranslated region (UTR), indicating that FonPUF1 participates in additional mechanisms critical for Fon virulence. These findings highlight the functions and molecular mechanism of FonPUFs in Fon virulence. IMPORTANCE Fusarium oxysporum is a devastating plant-pathogenic fungus that causes vascular wilt disease in many economically important crops, including watermelon, worldwide. F. oxysporum f. sp. nievum (Fon) causes serious yield loss in watermelon production. However, the molecular mechanism of Fusarium wilt development by Fon remains largely unknown. Here, we demonstrate that six putative Pumilio proteins-encoding genes (FonPUFs) differentially operate diverse basic biological processes, including stress response, and that FonPUF1 is required for Fon virulence. Notably, FonPUF1 possesses RNA binding activity and associates with the actin-related protein 2/3 complex to control mitochondrial functions. Furthermore, FonPUF1 coordinates the expression of a set of putative virulence-related genes in Fon by binding to a novel A-rich motif present in the 3' UTR of a diverse set of target mRNAs. Our study disentangles the previously unexplored molecular mechanism involved in regulating Fon virulence, providing a possibility for the development of novel strategies for disease management.
Collapse
|
6
|
Genomic instability caused by Arp2/3 complex inactivation results in micronucleus biogenesis and cellular senescence. PLoS Genet 2023; 19:e1010045. [PMID: 36706133 PMCID: PMC9907832 DOI: 10.1371/journal.pgen.1010045] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/08/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The Arp2/3 complex is an actin nucleator with well-characterized activities in cell morphogenesis and movement, but its roles in nuclear processes are relatively understudied. We investigated how the Arp2/3 complex affects genomic integrity and cell cycle progression using mouse fibroblasts containing an inducible knockout (iKO) of the ArpC2 subunit. We show that permanent Arp2/3 complex ablation results in DNA damage, the formation of cytosolic micronuclei, and cellular senescence. Micronuclei arise in ArpC2 iKO cells due to chromatin segregation defects during mitosis and premature mitotic exits. Such phenotypes are explained by the presence of damaged DNA fragments that fail to attach to the mitotic spindle, abnormalities in actin assembly during metaphase, and asymmetric microtubule architecture during anaphase. In the nuclei of Arp2/3-depleted cells, the tumor suppressor p53 is activated and the cell cycle inhibitor Cdkn1a/p21 mediates a G1 arrest. In the cytosol, micronuclei are recognized by the DNA sensor cGAS, which is important for stimulating a STING- and IRF3-associated interferon response. These studies establish functional requirements for the mammalian Arp2/3 complex in mitotic spindle organization and genome stability. They also expand our understanding of the mechanisms leading to senescence and suggest that cytoskeletal dysfunction is an underlying factor in biological aging.
Collapse
|
7
|
Bellinvia E, García-González J, Cifrová P, Martinek J, Sikorová L, Havelková L, Schwarzerová K. CRISPR-Cas9 Arabidopsis mutants of genes for ARPC1 and ARPC3 subunits of ARP2/3 complex reveal differential roles of complex subunits. Sci Rep 2022; 12:18205. [PMID: 36307477 PMCID: PMC9616901 DOI: 10.1038/s41598-022-22982-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
Protein complex Arp2/3 has a conserved role in the nucleation of branched actin filaments. It is constituted of seven subunits, including actin-like subunits ARP2 and ARP3 plus five other subunits called Arp2/3 Complex Component 1 to 5, which are not related to actin. Knock-out plant mutants lacking individual plant ARP2/3 subunits have a typical phenotype of distorted trichomes, altered pavement cells shape and defects in cell adhesion. While knock-out mutant Arabidopsis plants for most ARP2/3 subunits have been characterized before, Arabidopsis plant mutants missing ARPC1 and ARPC3 subunits have not yet been described. Using CRISPR/Cas9, we generated knock-out mutants lacking ARPC1 and ARPC3 subunits. We confirmed that the loss of ARPC1 subunits results in the typical ARP2/3 mutant phenotype. However, the mutants lacking ARPC3 subunits resulted in plants with surprisingly different phenotypes. Our results suggest that plant ARP2/3 complex function in trichome shaping does not require ARPC3 subunit, while the fully assembled complex is necessary for the establishment of correct cell adhesion in the epidermis.
Collapse
Affiliation(s)
- Erica Bellinvia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Sikorová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Havelková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
8
|
Oikonomou P, Salatino R, Tavazoie S. In vivo mRNA display enables large-scale proteomics by next generation sequencing. Proc Natl Acad Sci U S A 2020; 117:26710-26718. [PMID: 33037152 PMCID: PMC7604504 DOI: 10.1073/pnas.2002650117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Large-scale proteomic methods are essential for the functional characterization of proteins in their native cellular context. However, proteomics has lagged far behind genomic approaches in scalability, standardization, and cost. Here, we introduce in vivo mRNA display, a technology that converts a variety of proteomics applications into a DNA sequencing problem. In vivo-expressed proteins are coupled with their encoding messenger RNAs (mRNAs) via a high-affinity stem-loop RNA binding domain interaction, enabling high-throughput identification of proteins with high sensitivity and specificity by next generation DNA sequencing. We have generated a high-coverage in vivo mRNA display library of the Saccharomyces cerevisiae proteome and demonstrated its potential for characterizing subcellular localization and interactions of proteins expressed in their native cellular context. In vivo mRNA display libraries promise to circumvent the limitations of mass spectrometry-based proteomics and leverage the exponentially improving cost and throughput of DNA sequencing to systematically characterize native functional proteomes.
Collapse
Affiliation(s)
- Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY 10027;
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY10032
| | - Roberto Salatino
- Department of Systems Biology, Columbia University, New York, NY 10032
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY 10027;
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY10032
| |
Collapse
|
9
|
Cifrová P, Oulehlová D, Kollárová E, Martinek J, Rosero A, Žárský V, Schwarzerová K, Cvrčková F. Division of Labor Between Two Actin Nucleators-the Formin FH1 and the ARP2/3 Complex-in Arabidopsis Epidermal Cell Morphogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:148. [PMID: 32194585 PMCID: PMC7061858 DOI: 10.3389/fpls.2020.00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 05/11/2023]
Abstract
The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their actin-related functions, both systems also modulate microtubule organization and dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing, while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell morphogenesis with focus on pavement cells and trichomes using a model system of single fh1 and arpc5, as well as double fh1 arpc5 mutants. While cotyledon pavement cell shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf epidermal morphology, as well as actin and microtubule organization and dynamics, revealed a more complex relationship between the two systems and similar, rather than antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin network density and increased cell shape complexity in pavement cells and trichomes of first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems have complementary roles in some aspects of cell morphogenesis in cotyledon pavement cells, they may act in parallel in other cell types and developmental stages.
Collapse
Affiliation(s)
- Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Fatima Cvrčková,
| |
Collapse
|
10
|
Babuta M, Kumar S, Gourinath S, Bhattacharya S, Bhattacharya A. Calcium-binding protein EhCaBP3 is recruited to the phagocytic complex of Entamoeba histolytica by interacting with Arp2/3 complex subunit 2. Cell Microbiol 2018; 20:e12942. [PMID: 30133964 DOI: 10.1111/cmi.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/07/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022]
Abstract
Phagocytosis is involved in invasive disease of the parasite Entamoeba histolytica. Upon binding of red blood cells, there is a sequential recruitment of EhC2PK, EhCaBP1, EhAK1, and Arp2/3 complex during the initiation phase. In addition, EhCaBP3 is also recruited to the site and, along with myosin 1B, is thought to be involved in progression of phagocytic cups from initiation to phagosome formation. However, it is not clear how EhCaBP3 gets recruited to the rest of the phagocytic machinery. Here, we show that EhARPC2, a subunit of Arp2/3 complex, interacts with EhCaBP3 in a Ca2+ -dependent manner both in vivo and in vitro. Imaging and pull down experiments suggest that interaction with EhARPC2 is required for the closure of cups and formation of phagosomes. Moreover, downregulation of EhARPC2 prevents localisation of EhCaBP3 to phagocytic cups, suggesting that EhCaBP3 is part of EhC2PK-EhCaBP1-EhAK1-Arp2/3 complex (EhARPC1) pathway. In conclusion, these results suggest that the EhCaBP3-EhARPC2 interaction helps to recruit EhCaBP3 along with myosin 1B to the phagocytic machinery that plays an indispensable role in E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sanjeev Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Bereketoglu C, Arga KY, Eraslan S, Mertoglu B. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure. Physiol Genomics 2017; 49:549-566. [PMID: 28887370 DOI: 10.1152/physiolgenomics.00034.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Bioaccumulative environmental estrogen, nonylphenol (NP; 4-nonylphenol), is widely used as a nonionic surfactant and can affect human health. Since genomes of Saccharomyces cerevisiae and higher eukaryotes share many structural and functional similarities, we investigated subcellular effects of NP on S. cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles. We examined effects of low (1 mg/l; <15% cell number reduction) and high (5 mg/l; >65% cell number reduction) inhibitory concentration exposures for 120 or 180 min. After 120 and 180 min of 1 mg/l NP exposure, 187 (63 downregulated, 124 upregulated) and 103 genes (56 downregulated, 47 upregulated), respectively, were differentially expressed. Similarly, 678 (168 repressed, 510 induced) and 688 genes (215 repressed, 473 induced) were differentially expressed in cells exposed to 5 mg/l NP for 120 and 180 min, respectively. Only 15 downregulated and 63 upregulated genes were common between low and high NP inhibitory concentration exposure for 120 min, whereas 16 downregulated and 31 upregulated genes were common after the 180-min exposure. Several processes/pathways were prominently affected by either low or high inhibitory concentration exposure, while certain processes were affected by both inhibitory concentrations, including ion transport, response to chemicals, transmembrane transport, cellular amino acids, and carbohydrate metabolism. While minimal expression changes were observed with low inhibitory concentration exposure, 5 mg/l NP treatment induced substantial expression changes in genes involved in oxidative phosphorylation, cell wall biogenesis, ribosomal biogenesis, and RNA processing, and encoding heat shock proteins and ubiquitin-conjugating enzymes. Collectively, these results provide considerable information on effects of NP at the molecular level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey; .,Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gümüşhane University; Baglarbasi, Gumushane, Turkey; and
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| |
Collapse
|
12
|
Xu A, Li X, Li S, Sun L, Wu S, Zhang B, Huang J. A novel role for 14-kDa phosphohistidine phosphatase in lamellipodia formation. Cell Adh Migr 2017; 11:488-495. [PMID: 27924678 DOI: 10.1080/19336918.2016.1268319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell migration involves dynamic regulation of the actin cytoskeleton, which exhibits rapid actin polymerization at the leading edge of migrating cells. This process relies on regulated recruitment of actin nucleators and actin-binding proteins to the leading edge to polymerize new actin filaments. Many of these proteins have been identified, including the actin-related protein (Arp) 2/3 complex, which has emerged as the core player in the initiation of actin polymerization. However, the functional coordination of these proteins is unclear. Previously, we have demonstrated that the 14-kDa phosphohistidine phosphatase (PHP14) is involved in cell migration regulation and affects actin cytoskeleton reorganization. Here, we show that PHP14 may regulate actin remodeling directly and play an important role in dynamic regulation of the actin cytoskeleton. We observed a colocalization of PHP14 with Arp3 and F-actin at the leading edge of migrating cells. Moreover, PHP14 was recruited to the actin remodeling sites in parallel with Arp3 during lamellipodia formation. Furthermore, PHP14 knockdown impaired Arp3 localization at the leading edge of lamellipodia, as well as lamellipodia formation. Most importantly, we found that PHP14 was a novel F-actin-binding protein, displaying an Arp2/3-dependent localization to the leading edge. Collectively, our results indicated a crucial role for PHP14 in the dynamic regulation of the actin cytoskeleton and cell migration.
Collapse
Affiliation(s)
- Anjian Xu
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,b National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Xiaojin Li
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,b National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Siwen Li
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Lan Sun
- c Department of Pathology , Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Shanna Wu
- d Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Bei Zhang
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,b National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Jian Huang
- a Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,b National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
13
|
Lamason RL, Welch MD. Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr Opin Microbiol 2016; 35:48-57. [PMID: 27997855 DOI: 10.1016/j.mib.2016.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
Subversion of the host actin cytoskeleton is a critical virulence mechanism used by a variety of intracellular bacterial pathogens during their infectious life cycles. These pathogens manipulate host actin to promote actin-based motility and coordinate motility with cell-to-cell spread. Growing evidence suggests that the tactics employed by pathogens are surprisingly diverse. Here, we review recent advances suggesting that bacterial surface proteins exhibit divergent biochemical mechanisms of actin polymerization and recruit distinct host protein networks to drive motility, and that bacteria deploy secreted effector proteins that alter host cell mechanotransduction pathways to enable spread. Further investigation into the divergent strategies used by bacterial pathogens to mobilize actin will reveal new insights into pathogenesis and cytoskeleton regulation.
Collapse
Affiliation(s)
- Rebecca L Lamason
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation. PLoS Genet 2016; 12:e1006452. [PMID: 27870871 PMCID: PMC5147769 DOI: 10.1371/journal.pgen.1006452] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022] Open
Abstract
Fungal biofilms are complex, structured communities that can form on surfaces such as catheters and other indwelling medical devices. Biofilms are of particular concern with Candida albicans, one of the leading opportunistic fungal pathogens of humans. C. albicans biofilms include yeast and filamentous cells that are surrounded by an extracellular matrix, and they are intrinsically resistant to antifungal drugs such that resolving biofilm infections often requires surgery to remove the contaminated device. C. albicans biofilms form through a regulated process of adhesion to surfaces, filamentation, maturation, and ultimately dispersion. To uncover new strategies to block the initial stages of biofilm formation, we utilized a functional genomic approach to identify genes that modulate C. albicans adherence. We screened a library of 1,481 double barcoded doxycycline-repressible conditional gene expression strains covering ~25% of the C. albicans genome. We identified five genes for which transcriptional repression impaired adherence, including: ARC18, PMT1, MNN9, SPT7, and orf19.831. The most severe adherence defect was observed upon transcriptional repression of ARC18, which encodes a member of the Arp2/3 complex that is involved in regulation of the actin cytoskeleton and endocytosis. Depletion of components of the Arp2/3 complex not only impaired adherence, but also caused reduced biofilm formation, increased cell surface hydrophobicity, and increased exposure of cell wall chitin and β-glucans. Reduced function of the Arp2/3 complex led to impaired cell wall integrity and activation of Rho1-mediated cell wall stress responses, thereby causing cell wall remodelling and reduced adherence. Thus, we identify important functional relationships between cell wall stress responses and a novel mechanism that controls adherence and biofilm formation, thereby illuminating novel strategies to cripple a leading fungal pathogen of humans.
Collapse
|
15
|
Pizarro-Cerdá J, Chorev DS, Geiger B, Cossart P. The Diverse Family of Arp2/3 Complexes. Trends Cell Biol 2016; 27:93-100. [PMID: 27595492 DOI: 10.1016/j.tcb.2016.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/17/2022]
Abstract
The Arp2/3 complex has so far been considered to be a single seven-subunit protein complex required for actin nucleation and actin filament polymerization in diverse critical cellular functions including phagocytosis, vesicular trafficking and lamellipodia extension. The Arp2/3 complex is also exploited by bacterial pathogens and viruses during cellular infectious processes. Recent studies suggest that some subunits of the complex are dispensable in specific cellular contexts, pointing to the existence of alternative 'hybrid Arp2/3 complexes' containing other components such as vinculin or α-actinin, as well as different isoforms or phosphorylation variants of canonical Arp2/3 subunits. Therefore, this diversity should be now considered when assigning specific Arp2/3 assemblies to different actin-dependent cellular processes.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France; INSERM, U604, Paris F-75015, France; INRA, USC2020, Paris F-75015, France.
| | - Dror Shlomo Chorev
- The Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot 761001, Israel; Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, UK
| | - Benjamin Geiger
- The Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot 761001, Israel
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France; INSERM, U604, Paris F-75015, France; INRA, USC2020, Paris F-75015, France.
| |
Collapse
|
16
|
Wang PS, Chou FS, Ramachandran S, Xia S, Chen HY, Guo F, Suraneni P, Maher BJ, Li R. Crucial roles of the Arp2/3 complex during mammalian corticogenesis. Development 2016; 143:2741-52. [PMID: 27385014 PMCID: PMC5004905 DOI: 10.1242/dev.130542] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex – the unique actin nucleator that produces branched actin networks – plays essential roles in RGC polarity and morphogenesis. Disruption of the Arp2/3 complex in murine RGCs retards process outgrowth toward the basal surface and impairs apical polarity and adherens junctions. Whereas the former is correlated with an abnormal actin-based leading edge, the latter is consistent with blockage in membrane trafficking. These defects result in altered cell fate, disrupted cortical lamination and abnormal angiogenesis. In addition, we present evidence that the Arp2/3 complex is a cell-autonomous regulator of neuronal migration. Our data suggest that Arp2/3-mediated actin assembly might be particularly important for neuronal cell motility in a soft or poorly adhesive matrix environment. Summary: During mouse cortical development, the Arp2/3 actin branching complex regulates process formation and the maintenance of radial glial cell polarity, as well as affecting neuronal migration.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Fu-Sheng Chou
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Sreekumar Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Sheng Xia
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Huei-Ying Chen
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Praveen Suraneni
- Division of Hematology/Oncology, Robert Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 4940 Eastern Ave., Baltimore, MD 21224, USA Department of Neuroscience, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Rong Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Babuta M, Mansuri MS, Bhattacharya S, Bhattacharya A. The Entamoeba histolytica, Arp2/3 Complex Is Recruited to Phagocytic Cups through an Atypical Kinase EhAK1. PLoS Pathog 2015; 11:e1005310. [PMID: 26646565 PMCID: PMC4672914 DOI: 10.1371/journal.ppat.1005310] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022] Open
Abstract
The parasite Entamoeba histolytica is the etiological agent of amoebiasis and phagocytosis plays a key role in virulence of this organism. Signaling pathways involved in activation of cytoskeletal dynamics required for phagocytosis remain to be elucidated. Phagocytosis is initiated with sequential recruitment of EhC2PK, EhCaBP1, EhCaBP3 and an atypical kinase EhAK1 after particle attachment. Here we show that EhARPC1, an essential subunit of the actin branching complex Arp 2/3 is recruited to the phagocytic initiation sites by EhAK1. Imaging, expression knockdown of different molecules and pull down experiments suggest that EhARPC1 interacts with EhAK1 and that it is required during initiation of phagocytosis and phagosome formation. Moreover, recruitment of EhARPC2 at the phagocytosis initiation by EhAK1 is also observed, indicating that the Arp 2/3 complex is recruited. In conclusion, these results suggests a novel mechanism of recruitment of Arp 2/3 complex during phagocytosis in E. histolytica. E. histolytica is the causative agent of amoebiasis and leads to morbidity and mortality in developing countries. It is known to phagocytose immune and non-immune cells, epithelial tissue, erythrocytes and commensal bacteria. The high rate of phagocytosis in this protist parasite provides a unique system to study the signaling cascade that is activated after attachment of the particle to the cell surface. The major objective of the signaling pathway is to generate force for uptake of the particle and this is done through stimulating cytoskeleton to form appropriate structures. However, the molecular mechanism of the same is still largely unknown in E. histolytica, though this pathway has been characterized in many other systems. We have been investigating this pathway by using red blood cells as a particle and have identified different molecules required during the initial stages of phagocytosis. In this study we demonstrate the mechanism by which actin cytoskeleton branching complex EhARP2/3 is recruited at the site of erythrophagocytosis and show that the recruitment is through an atypical alpha kinase EhAK1. A number of different approaches, such as pull down assay, conditional suppression of EhAK1 expression and imaging were used to decipher this pathway. Therefore this study provides a mechanism by which actin dynamics couples to the initial signaling system, activated on attachment of RBC to the cell receptors.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - M Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of life Sciences, Shiv Nadar University, Uttar Pradesh, India
- * E-mail: ,
| |
Collapse
|
18
|
Bai J, Zhu X, Wang Q, Zhang J, Chen H, Dong G, Zhu L, Zheng H, Xie Q, Nian J, Chen F, Fu Y, Qian Q, Zuo J. Rice TUTOU1 Encodes a Suppressor of cAMP Receptor-Like Protein That Is Important for Actin Organization and Panicle Development. PLANT PHYSIOLOGY 2015; 169:1179-91. [PMID: 26243616 PMCID: PMC4587440 DOI: 10.1104/pp.15.00229] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/27/2015] [Indexed: 05/12/2023]
Abstract
Panicle development, a key event in rice (Oryza sativa) reproduction and a critical determinant of grain yield, forms a branched structure containing multiple spikelets. Genetic and environmental factors can perturb panicle development, causing panicles to degenerate and producing characteristic whitish, small spikelets with severely reduced fertility and yield; however, little is known about the molecular basis of the formation of degenerating panicles in rice. Here, we report the identification and characterization of the rice panicle degenerative mutant tutou1 (tut1), which shows severe defects in panicle development. The tut1 also shows a pleiotropic phenotype, characterized by short roots, reduced plant height, and abnormal development of anthers and pollen grains. Molecular genetic studies revealed that TUT1 encodes a suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous (SCAR/WAVE)-like protein. We found that TUT1 contains conserved functional domains found in eukaryotic SCAR/WAVE proteins, and was able to activate Actin-related protein2/3 to promote actin nucleation and polymerization in vitro. Consistently, tut1 mutants show defects in the arrangement of actin filaments in trichome. These results indicate that TUT1 is a functional SCAR/WAVE protein and plays an important role in panicle development.
Collapse
Affiliation(s)
- Jiaoteng Bai
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Xudong Zhu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Qing Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Jian Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Hongqi Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Guojun Dong
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Lei Zhu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Huakun Zheng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Qingjun Xie
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Jinqiang Nian
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Fan Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Ying Fu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Qian Qian
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| |
Collapse
|
19
|
Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 2015; 128:2009-19. [DOI: 10.1242/jcs.165563] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity.
Collapse
Affiliation(s)
- Peter W. Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Umesh Ghoshdastider
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
| | - Shane Whitaker
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David Popp
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597
| |
Collapse
|
20
|
Zhou K, Sumigray KD, Lechler T. The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Mol Biol Cell 2015; 26:1995-2004. [PMID: 25833710 PMCID: PMC4472011 DOI: 10.1091/mbc.e14-10-1481] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 12/23/2022] Open
Abstract
The Arp2/3 complex has essential functions in the intestinal epithelium. Loss of ArpC3 results in vesicle-trafficking defects that prevent transcytosis of immunoglobulins and efficient absorption of lipids but does not affect levels of cortical F-actin. The Arp2/3 complex is the only known nucleator of branched F-actin filaments. Work in cultured cells has established a wide array of functions for this complex in controlling cell migration, shape, and adhesion. However, loss of Arp2/3 complex function in tissues has yielded cell type–specific phenotypes. Here we report essential functions of the Arp2/3 complex in the intestinal epithelium. The Arp2/3 complex was dispensable for intestinal development, generation of cortical F-actin, and cell polarity. However, it played essential roles in vesicle trafficking. We found that in the absence of ArpC3, enterocytes had defects in the organization of the endolysosomal system. These defects were physiologically relevant, as transcytosis of IgG was disrupted, lipid absorption was perturbed, and neonatal mice died within days of birth. These data highlight the important roles of the Arp2/3 complex in vesicle trafficking in enterocytes and suggest that defects in cytoplasmic F-actin assembly by the Arp2/3 complex, rather than cortical pools, underlie many of the phenotypes seen in the mutant small intestine.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Dermatology and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Kaelyn D Sumigray
- Department of Dermatology and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
21
|
Rotty JD, Wu C, Haynes EM, Suarez C, Winkelman JD, Johnson HE, Haugh JM, Kovar DR, Bear JE. Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev Cell 2014; 32:54-67. [PMID: 25543281 DOI: 10.1016/j.devcel.2014.10.026] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/12/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
Cells contain multiple F-actin assembly pathways, including the Arp2/3 complex, formins, and Ena/VASP, which have largely been analyzed separately. They collectively generate the bulk of F-actin from a common pool of G-actin; however, the interplay and/or competition between these pathways remains poorly understood. Using fibroblast lines derived from an Arpc2 conditional knockout mouse, we established matched-pair cells with and without the Arp2/3 complex. Arpc2(-/-) cells lack lamellipodia and migrate more slowly than WT cells but have F-actin levels indistinguishable from controls. Actin assembly in Arpc2(-/-) cells was resistant to cytochalasin-D and was highly dependent on profilin-1 and Ena/VASP but not formins. Profilin-1 depletion in WT cells increased F-actin and Arp2/3 complex in lamellipodia. Conversely, addition of exogenous profilin-1 inhibited Arp2/3 complex actin nucleation in vitro and in vivo. Antagonism of the Arp2/3 complex by profilin-1 in cells appears to maintain actin homeostasis by balancing Arp2/3 complex-dependent and -independent actin assembly pathways.
Collapse
Affiliation(s)
- Jeremy D Rotty
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Congying Wu
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth M Haynes
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jonathan D Winkelman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Heath E Johnson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - James E Bear
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Abstract
An exciting frontier in biology is understanding the functions of basic cell biological machinery in complex tissues. This approach is expected to uncover novel modes of regulation as well as reveal how core machinery is repurposed by different tissues to accomplish different physiological outputs. F-actin plays roles in cell shape, adhesion, migration and signaling – diverse functions that require a specific organization established by a myriad of regulators. Here, we discuss the role of the actin nucleating Arp2/3 complex and the unexpected roles that it plays in a stratified epithelial tissue, the epidermis. While many expected phenotypes such as defects in architecture and cell adhesion were lacking, loss of the Arp2/3 complex activity resulted in epidermal barrier and differentiation defects. This teaches us that, while informative, cell culture approaches are limiting and that studies of the Arp2/3 complex in diverse tissues are expected to yield many more surprises.
Collapse
Affiliation(s)
- Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University ; Durham, NC USA
| |
Collapse
|
23
|
Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks. PLoS Comput Biol 2014; 10:e1003654. [PMID: 24874694 PMCID: PMC4038459 DOI: 10.1371/journal.pcbi.1003654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/19/2014] [Indexed: 11/19/2022] Open
Abstract
Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and visualization of the hidden dynamics within protein interaction networks. Cells are complex dynamic systems, and a central challenge in modern cell biology is to capture information about interactions between the molecules underlying cellular processes. Proteins rarely act alone; more often they form functional partnerships that can specify the timing and/or location of activity. These partnerships are subject to dynamic changes, and thus protein interactions within complexes undergo continuous transitions. Genetic and biochemical evidence suggest that regulation or depletion of a single protein can alter the stability and activity of an entire protein complex. Experimental approaches that detect interactions within living cells provide critical information for the dynamical system that protein complexes represent; yet complexes are often depicted as static 2-dimensional networks. We have built a system that projects in vivo protein interaction datasets as 3-dimensional virtual protein complexes. By using this method to approximate the diffusion of complex components, we can predict transient conformational states and estimate their abundance in living cells. Our method offers biologists a framework to correlate experimental phenotypes with predicted complex dynamics such as short or long-range effects of a single perturbation to the function of the whole ensemble.
Collapse
|
24
|
Petchampai N, Sunyakumthorn P, Guillotte ML, Verhoeve VI, Banajee KH, Kearney MT, Macaluso KR. Novel identification of Dermacentor variabilis Arp2/3 complex and its role in rickettsial infection of the arthropod vector. PLoS One 2014; 9:e93768. [PMID: 24733187 PMCID: PMC3986078 DOI: 10.1371/journal.pone.0093768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023] Open
Abstract
Tick-borne spotted fever group (SFG) Rickettsia species must be able to infect both vertebrate and arthropod host cells. The host actin-related protein 2/3 (Arp2/3) complex is important in the invasion process and actin-based motility for several intracellular bacteria, including SFG Rickettsia in Drosophila and mammalian cells. To investigate the role of the tick Arp2/3 complex in tick-Rickettsia interactions, open reading frames of all subunits of the protein including Arp2, Arp3, ARPC1, ARPC2, ARPC3, ARPC4, and ARPC5 were identified from Dermacentor variabilis. Amino acid sequence analysis showed variation (ranging from 25–88%) in percent identity compared to the corresponding subunits of the complex from Drosophila melanogaster, Mus musculus, Homo sapiens, and Saccharomyces cerevisiae. Potential ATP binding sites were identified in D. variabilis (Dv) Arp2 and Arp3 subunits as well as five putative WD (Trp-Asp) motifs which were observed in DvARPC1. Transcriptional profiles of all subunits of the DvArp2/3 complex revealed greater mRNA expression in both Rickettsia-infected and -uninfected ovary compared to midgut and salivary glands. In response to R. montanensis infection of the tick ovary, the mRNA level of only DvARPC4 was significantly upregulated compared to uninfected tissues. Arp2/3 complex inhibition bioassays resulted in a decrease in the ability of R. montanensis to invade tick tissues with a significant difference in the tick ovary, indicating a role for the Arp2/3 complex in rickettsial invasion of tick cells. Characterization of tick-derived molecules associated with rickettsial infection is imperative in order to better comprehend the ecology of tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- Natthida Petchampai
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| | - Piyanate Sunyakumthorn
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mark L. Guillotte
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Victoria I. Verhoeve
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kaikhushroo H. Banajee
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Michael T. Kearney
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kevin R. Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
25
|
Insall R. The interaction between pseudopods and extracellular signalling during chemotaxis and directed migration. Curr Opin Cell Biol 2013; 25:526-31. [PMID: 23747069 DOI: 10.1016/j.ceb.2013.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/22/2022]
Abstract
Eukaryotic chemotaxis is extremely complex. Cells can sense a wide range of stimuli, and many intracellular pathways are simultaneously involved. Recent genetic analyses of the steps between receptors and cytoskeleton, and how the cell controls actin and pseudopod behaviour, have yielded exciting new data but still no coherent understanding of chemotaxis. However, concentrating on pseudopods themselves and the physical processes that regulate them, rather than the internal signalling pathways, can simplify the data and help resolve the underlying mechanism. Direct action of electric fields and physical forces on cell migration suggest that mechanical forces and force-generating proteins like actin and myosin are centrally important in steering cells during chemotaxis.
Collapse
Affiliation(s)
- Robert Insall
- CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| |
Collapse
|
26
|
Actin-related protein2/3 complex regulates tight junctions and terminal differentiation to promote epidermal barrier formation. Proc Natl Acad Sci U S A 2013; 110:E3820-9. [PMID: 24043783 DOI: 10.1073/pnas.1308419110] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The epidermis provides an essential seal from the external environment and retains fluids within the body. To form an effective barrier, cells in the epidermis must form tight junctions and terminally differentiate into cornified envelopes. Here, we demonstrate that the branched actin nucleator, the actin-related protein (Arp)2/3 complex, is unexpectedly required for both these activities. Loss of the ArpC3 subunit of the Arp2/3 complex resulted in minimal changes in the morphogenesis and architecture of this stratified squamous epithelium, but resulted in profound defects in its physiology. Mutant embryos did not develop an effective barrier to the external environment and died within hours of birth. We discovered two underlying causes for these effects. First, ArpC3 was essential for robust assembly and function of tight junctions, specialized cell-cell adhesions that restrict water loss in the epidermis. Second, there were defects in differentiation of the epidermis and the production of cornified envelopes, structures essential for barrier activity. Underlying this defect, we found that YAP was inappropriately active not only in the ArpC3 mutant tissue, but also in cultured cells. Inhibition of YAP activity rescued the differentiation and barrier defects caused by loss of ArpC3. These results demonstrate previously unappreciated roles for the Arp2/3 complex and highlight the functions of branched actin networks in a complex tissue.
Collapse
|
27
|
Liu Z, Yang X, Chen C, Liu B, Ren B, Wang L, Zhao K, Yu S, Ming H. Expression of the Arp2/3 complex in human gliomas and its role in the migration and invasion of glioma cells. Oncol Rep 2013; 30:2127-36. [PMID: 23969835 DOI: 10.3892/or.2013.2669] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022] Open
Abstract
A hallmark of directional cell migration is localized actin polymerization at the leading protrusions of the cell. The Arp2/3 complex nucleates the formation of the dendritic actin network (lamellipodia) at the leading edge of motile cells. This study was designed to investigate the role of the Arp2/3 complex in the infiltrative behavior of glioma cells. Immunofluorescence and western blotting showed a positive correlation between the expression of Arp2/3 and the malignancy of glioma specimens (r=0.686, P=0.02) and confocal microscopy demonstrated localization of the Arp2/3 complex in lamellipodia of glioma cells. Furthermore, we examined the effects of Arp2/3 complex inhibition in U251, LN229 and SNB19 glioma cells using CK666, an Arp2/3 complex inhibitor. Glioma cells lost lamellipodia and cell polarity after treatment with CK666. Inhibition of the Arp2/3 complex significantly affected the ability of glioma cells to migrate and invade. In the wound-healing assay, CK666 markedly inhibited cell migration, U251 cell migration was inhibited to 38.73±3.45% of control, LN229 cells to 57.40±2.16% of control and SNB19 cells to 34.17±3.82% of control. Also, CK666 significantly impaired Transwell chamber invasion capability of U251, LN229 and SNB19 cells compared with DMSO control by 72.70±4.86, 39.12±8.42 and 41.41±4.66%, respectively. The Arp2/3 complex is, therefore, likely to be a crucial participant in glioma cell invasion and migration, and may represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhifeng Liu
- Neuro-Oncology Laboratory, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang C, Mallery E, Reagan S, Boyko VP, Kotchoni SO, Szymanski DB. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. PLANT PHYSIOLOGY 2013; 162:689-706. [PMID: 23613272 PMCID: PMC3668063 DOI: 10.1104/pp.113.217422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During plant cell morphogenesis, signal transduction and cytoskeletal dynamics interact to locally organize the cytoplasm and define the geometry of cell expansion. The WAVE/SCAR (for WASP family verprolin homologous/suppressor of cyclic AMP receptor) regulatory complex (W/SRC) is an evolutionarily conserved heteromeric protein complex. Within the plant kingdom W/SRC is a broadly used effector that converts Rho-of-Plants (ROP)/Rac small GTPase signals into Actin-Related Protein2/3 and actin-dependent growth responses. Although the components and biochemistry of the W/SRC pathway are well understood, a basic understanding of how cells partition W/SRC into active and inactive pools is lacking. In this paper, we report that the endoplasmic reticulum (ER) is an important organelle for W/SRC regulation. We determined that a large intracellular pool of the core W/SRC subunit NAP1, like the known positive regulator of W/SRC, the DOCK family guanine nucleotide-exchange factor SPIKE1 (SPK1), localizes to the surface of the ER. The ER-associated NAP1 is inactive because it displays little colocalization with the actin network, and ER localization requires neither activating signals from SPK1 nor a physical association with its W/SRC-binding partner, SRA1. Our results indicate that in Arabidopsis (Arabidopsis thaliana) leaf pavement cells and trichomes, the ER is a reservoir for W/SRC signaling and may have a key role in the early steps of W/SRC assembly and/or activation.
Collapse
|
29
|
Ydenberg CA, Padrick SB, Sweeney MO, Gandhi M, Sokolova O, Goode BL. GMF severs actin-Arp2/3 complex branch junctions by a cofilin-like mechanism. Curr Biol 2013; 23:1037-45. [PMID: 23727094 DOI: 10.1016/j.cub.2013.04.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/27/2013] [Accepted: 04/19/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Branched actin filament networks driving cell motility, endocytosis, and intracellular transport are assembled in seconds by the Arp2/3 complex and must be equally rapidly debranched and turned over. One of the only factors known to promote debranching of actin networks is the yeast homolog of glia maturation factor (GMF), which is structurally related to the actin filament-severing protein cofilin. However, the identity of the molecular mechanism underlying debranching and whether this activity extends to mammalian GMF have remained open questions. RESULTS Using scanning mutagenesis and total internal reflection fluorescence microscopy, we show that GMF depends on two separate surfaces for debranching. One is analogous to the G-actin and F-actin binding site on cofilin, but we show using fluorescence anisotropy and chemical crosslinking that it instead interacts with actin-related proteins in the Arp2/3 complex. The other is analogous to a second F-actin binding site on cofilin, which in GMF appears to contact the first actin subunit in the daughter filament. We further show that GMF binds to the Arp2/3 complex with low nanomolar affinity and promotes the open conformation. Finally, we show that this debranching activity and mechanism are conserved for mammalian GMF. CONCLUSIONS GMF debranches filaments by a mechanism related to cofilin-mediated severing, but in which GMF has evolved to target molecular junctions between actin-related proteins in the Arp2/3 complex and actin subunits in the daughter filament of the branch. This activity and mechanism are conserved in GMF homologs from evolutionarily distant species.
Collapse
Affiliation(s)
- Casey A Ydenberg
- Rosenstiel Center for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | | | | | | | | | | |
Collapse
|
30
|
Zhang C, Mallery EL, Szymanski DB. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. FRONTIERS IN PLANT SCIENCE 2013; 4:238. [PMID: 23874346 PMCID: PMC3709099 DOI: 10.3389/fpls.2013.00238] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/16/2013] [Indexed: 05/03/2023]
Abstract
In plant cells the actin cytoskeleton adopts many configurations, but is best understood as an unstable, interconnected track that rearranges to define the patterns of long distance transport of organelles during growth. Actin filaments do not form spontaneously; instead filament nucleators, such as the evolutionarily conserved actin-related protein (ARP) 2/3 complex, can efficiently generate new actin filament networks when in a fully activated state. A growing number of genetic experiments have shown that ARP2/3 is necessary for morphogenesis in processes that range from tip growth during root nodule formation to the diffuse polarized growth of leaf trichomes and pavement cells. Although progress has been rapid in the identification of proteins that function in series to positively regulate ARP2/3, less has been learned about the actual function of ARP2/3 in cells. In this paper, we analyze the localization of ARP2/3 in Arabidopsis leaf pavement cells. We detect a pool of ARP2/3 in the nucleus, and also find that ARP2/3 is efficiently and specifically clustered on multiple organelle surfaces and associates with both the actin filament and microtubule cytoskeletons. Our mutant analyses and ARP2/3 and actin double labeling experiments indicate that the clustering of ARP2/3 on organelle surfaces and an association with actin bundles does not necessarily reflect an active pool of ARP2/3, and instead most of the complex appears to exist as a latent organelle-associated pool.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Agronomy, Purdue UniversityWest Lafayette, IN, USA
| | | | - Daniel B. Szymanski
- Department of Agronomy, Purdue UniversityWest Lafayette, IN, USA
- Department of Biology, Purdue UniversityWest Lafayette, IN, USA
- *Correspondence: Daniel B. Szymanski, Department of Agronomy, Purdue University, Lily Hall of Life Sciences, 915 West State Street, West Lafayette, IN 47907-2054, USA e-mail:
| |
Collapse
|
31
|
Doolittle LK, Rosen MK, Padrick SB. Purification of native Arp2/3 complex from bovine thymus. Methods Mol Biol 2013; 1046:231-50. [PMID: 23868592 DOI: 10.1007/978-1-62703-538-5_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Arp2/3 complex is an actin filament nucleator involved in cell motility and vesicle trafficking. Owing to the role the complex plays in important and fundamental cell biological processes, the purified complex is used in biochemical assays, reconstituted motility assays, and structural biology. As this is a eukaryotic complex assembled from seven polypeptides, the complex is purified from eukaryotic sources. Described here is a detailed method for purification of the complex from a mammalian tissue, bovine thymus.
Collapse
Affiliation(s)
- Lynda K Doolittle
- Department of Biophysics, UT Southwestern Medical Center and Howard Hughes Medical Institute, Dallas, TX, USA
| | | | | |
Collapse
|
32
|
Doolittle LK, Rosen MK, Padrick SB. Purification of Arp2/3 complex from Saccharomyces cerevisiae. Methods Mol Biol 2013; 1046:251-71. [PMID: 23868593 DOI: 10.1007/978-1-62703-538-5_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Much of the cellular control over actin dynamics comes through regulation of actin filament initiation. At the molecular level, this is accomplished through a collection of cellular protein machines, called actin nucleation factors, which position actin monomers to initiate a new actin filament. The Arp2/3 complex is a principal actin nucleation factor used throughout the eukaryotic family tree. The budding yeast Saccharomyces cerevisiae has proven to be not only an excellent genetic platform for the study of the Arp2/3 complex, but also an excellent source for the purification of endogenous Arp2/3 complex. Here we describe a protocol for the preparation of endogenous Arp2/3 complex from wild type Saccharomyces cerevisiae. This protocol produces material suitable for biochemical study and yields milligram quantities of purified Arp2/3 complex.
Collapse
Affiliation(s)
- Lynda K Doolittle
- Department of Biophysics, UT Southwestern Medical Center and Howard Hughes Medical Institute, Dallas, TX, USA
| | | | | |
Collapse
|
33
|
Abstract
Many forms of cellular motility are driven by the growth of branched networks of actin filaments, which push against a membrane. In the dendritic nucleation model, Arp2/3 complex is critical, binding to the side of an existing mother filament, nucleating a new daughter filament, and thus creating a branch. Spatial and temporal regulation of Arp2/3 activity is critical for efficient generation of force and movement. A diverse collection of Arp2/3 regulatory proteins has been identified. They bind to and/or activate Arp2/3 complex via an acidic motif with a conserved tryptophan residue. We tested this model for Arp2/3 regulator function in vivo, by examining the roles of multiple Arp2/3 regulators in endocytosis in living yeast cells. We measured the molecular composition of the actin network in cells with mutations that removed the acidic motifs of the four Arp2/3 regulators previously shown to influence the proper function of the actin network. Unexpectedly, we did not find a simple or direct correlation between defects in patch assembly and movement and changes in the composition and dynamics of dendritic nucleation proteins. Taken together our data does not support the simple hypothesis that the primary role for Arp2/3 regulators is to recruit and activate Arp2/3. Rather our data suggests that these regulators may be playing more subtle roles in establishing functional networks in vivo.
Collapse
Affiliation(s)
- Brian J Galletta
- Department of Cell Biology and Physiology, Washington University, Saint Louis, MO, USA
| | | | | |
Collapse
|
34
|
Alibhoy AA, Giardina BJ, Dunton DD, Chiang HL. Vps34p is required for the decline of extracellular fructose-1,6-bisphosphatase in the vacuole import and degradation pathway. J Biol Chem 2012; 287:33080-93. [PMID: 22833678 DOI: 10.1074/jbc.m112.360412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
When Saccharomyces cerevisiae are starved of glucose for a prolonged period of time, gluconeogenic enzymes such as fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase are induced. However, when glucose is added to prolonged-starved cells, these enzymes are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. The Vid pathway merges with the endocytic pathway to remove intracellular and extracellular proteins simultaneously. Ultrastructural and cell extraction studies indicate that substantial amounts of FBPase were in the extracellular fraction (periplasm) during glucose starvation. FBPase levels in the extracellular fraction decreased after glucose re-feeding in wild-type cells. The decline of FBPase in the extracellular fraction was dependent on the SLA1 and ARC18 genes involved in actin polymerization and endocytosis. Moreover, the reduction of extracellular FBPase was also dependent on the VPS34 gene. VPS34 encodes the PI3 kinase and is also required for the Vid pathway. Vps34p co-localized with actin patches in prolonged-starved cells. In the absence of this gene, FBPase and the Vid vesicle protein Vid24p associated with actin patches before and after the addition of glucose. Furthermore, high levels of FBPase remained in the extracellular fraction in the Δvps34 mutant during glucose re-feeding. When the Asn-736 residue of Vps34p was mutated and when the C-terminal 11 amino acids were deleted, mutant proteins failed to co-localize with actin patches, and FBPase in the extracellular fraction did not decrease as rapidly. We suggest that VPS34 plays a critical role in the decline of extracellular FBPase in response to glucose.
Collapse
Affiliation(s)
- Abbas A Alibhoy
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
35
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
36
|
Suraneni P, Rubinstein B, Unruh JR, Durnin M, Hanein D, Li R. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. ACTA ACUST UNITED AC 2012; 197:239-51. [PMID: 22492726 PMCID: PMC3328382 DOI: 10.1083/jcb.201112113] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Embryonic stem cell–derived fibroblasts with genetic disruption of the Arp2/3 complex are unable to form lamellipodia or undergo sustained directional migration. The Arp2/3 complex nucleates the formation of the dendritic actin network at the leading edge of motile cells, but it is still unclear if the Arp2/3 complex plays a critical role in lamellipodia protrusion and cell motility. Here, we differentiated motile fibroblast cells from isogenic mouse embryonic stem cells with or without disruption of the ARPC3 gene, which encodes the p21 subunit of the Arp2/3 complex. ARPC3−/− fibroblasts were unable to extend lamellipodia but generated dynamic leading edges composed primarily of filopodia-like protrusions, with formin proteins (mDia1 and mDia2) concentrated near their tips. The speed of cell migration, as well as the rates of leading edge protrusion and retraction, were comparable between genotypes; however, ARPC3−/− cells exhibited a strong defect in persistent directional migration. This deficiency correlated with a lack of coordination of the protrusive activities at the leading edge of ARPC3−/− fibroblasts. These results provide insights into the Arp2/3 complex’s critical role in lamellipodia extension and directional fibroblast migration.
Collapse
Affiliation(s)
- Praveen Suraneni
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
37
|
Raymond F, Boisvert S, Roy G, Ritt JF, Légaré D, Isnard A, Stanke M, Olivier M, Tremblay MJ, Papadopoulou B, Ouellette M, Corbeil J. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res 2011; 40:1131-47. [PMID: 21998295 PMCID: PMC3273817 DOI: 10.1093/nar/gkr834] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage.
Collapse
Affiliation(s)
- Frédéric Raymond
- Infectious Disease Research Centre, CHUL Research Centre (CHUQ), Quebec City,Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Amicucci A, Balestrini R, Kohler A, Barbieri E, Saltarelli R, Faccio A, Roberson RW, Bonfante P, Stocchi V. Hyphal and cytoskeleton polarization in Tuber melanosporum: A genomic and cellular analysis. Fungal Genet Biol 2011; 48:561-72. [DOI: 10.1016/j.fgb.2010.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
|
39
|
Cabrera R, Suo J, Young E, Chang EC. Schizosaccharomyces pombe Arc3 is a conserved subunit of the Arp2/3 complex required for polarity, actin organization, and endocytosis. Yeast 2011; 28:495-503. [PMID: 21449051 DOI: 10.1002/yea.1853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/24/2011] [Indexed: 11/12/2022] Open
Abstract
We characterized the Schizosaccharomyces pombe arc3 gene, whose product shares sequence homology with that of the budding yeast ARC18 and human ARPC3/p21 subunits of the Arp2/3 complex. Our data showed that Arc3p co-localizes with F-actin patches at the cell ends, but not with F-actin cables or the equatorial actin ring, and binds other subunits of the Arp2/3 complex. Gene deletion analysis showed that arc3 is essential for viability. When arc3 expression was repressed, F-actin patches became dispersed throughout the cell with greatly reduced mobility. Furthermore, in arc3-repressed cells, endocytosis was also inhibited. Human ARPC3 rescued the viability of the Sz. pombe arc3 null mutant; in addition, ARPC3 also localized to F-actin patches in human cells. These data suggest that Arc3p is an evolutionarily conserved subunit of the Arp2/3 complex required for proper F-actin organization and efficient endocytosis.
Collapse
Affiliation(s)
- Rodrigo Cabrera
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
40
|
Fang X, Luo J, Nishihama R, Wloka C, Dravis C, Travaglia M, Iwase M, Vallen EA, Bi E. Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II. J Cell Biol 2010; 191:1333-50. [PMID: 21173112 PMCID: PMC3010076 DOI: 10.1083/jcb.201005134] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/29/2010] [Indexed: 02/07/2023] Open
Abstract
Cytokinesis in animal and fungal cells utilizes a contractile actomyosin ring (AMR). However, how myosin II is targeted to the division site and promotes AMR assembly, and how the AMR coordinates with membrane trafficking during cytokinesis, remains poorly understood. Here we show that Myo1 is a two-headed myosin II in Saccharomyces cerevisiae, and that Myo1 localizes to the division site via two distinct targeting signals in its tail that act sequentially during the cell cycle. Before cytokinesis, Myo1 localization depends on the septin-binding protein Bni5. During cytokinesis, Myo1 localization depends on the IQGAP Iqg1. We also show that the Myo1 tail is sufficient for promoting the assembly of a "headless" AMR, which guides membrane deposition and extracellular matrix remodeling at the division site. Our study establishes a biphasic targeting mechanism for myosin II and highlights an underappreciated role of the AMR in cytokinesis beyond force generation.
Collapse
Affiliation(s)
- Xiaodong Fang
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jianying Luo
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ryuichi Nishihama
- Department of Genetics, Stanford University of School of Medicine, Stanford, CA 94305
| | - Carsten Wloka
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, D-14195 Berlin, Germany
| | - Christopher Dravis
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Mirko Travaglia
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Masayuki Iwase
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | - Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
41
|
Bhadauria V, Wang LX, Peng YL. Proteomic changes associated with deletion of the Magnaporthe oryzae conidial morphology-regulating gene COM1. Biol Direct 2010; 5:61. [PMID: 21040590 PMCID: PMC2989938 DOI: 10.1186/1745-6150-5-61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rice blast disease caused by Magnaporthe oryzae is a major constraint on world rice production. The conidia produced by this fungal pathogen are the main source of disease dissemination. The morphology of conidia may be a critical factor in the spore dispersal and virulence of M. oryzae in the field. Deletion of a conidial morphology regulating gene encoding putative transcriptional regulator COM1 in M. oryzae resulted in aberrant conidial shape, reduced conidiation and attenuated virulence. RESULTS In this study, a two-dimensional gel electrophoresis/matrix assisted laser desorption ionization- time of flight mass spectrometry (2-DE/MALDI-TOF MS) based proteomics approach was employed to identify the cellular and molecular components regulated by the COM1 protein (COM1p) that might contribute to the aberrant phenotypes in M. oryzae. By comparing the conidial proteomes of COM1 deletion mutant and its isogenic wild-type strain P131, we identified a potpourri of 31 proteins that exhibited statistically significant alterations in their abundance levels. Of these differentially regulated proteins, the abundance levels of nine proteins were elevated and twelve were reduced in the Δcom1 mutant. Three proteins were detected only in the Δcom1 conidial proteome, whereas seven proteins were apparently undetectable. The data obtained in the study suggest that the COM1p plays a key role in transcriptional reprogramming of genes implicated in melanin biosynthesis, carbon and energy metabolism, structural organization of cell, lipid metabolism, amino acid metabolism, etc. Semi-quantitative RT-PCR analysis revealed the down-regulation of genes encoding enzymes involved in melanin biosynthesis in the COM1 mutant. CONCLUSIONS Our results suggest that the COM1p may regulate the transcription of genes involved in various cellular processes indispensable for conidial development and appressorial penetration. These functions are likely to contribute to the effects of COM1p upon the aberrant phenotypes of M. oryzae.
Collapse
Affiliation(s)
- Vijai Bhadauria
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Molecular Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
42
|
Kawai S, Hashimoto W, Murata K. Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng Bugs 2010; 1:395-403. [PMID: 21468206 PMCID: PMC3056089 DOI: 10.4161/bbug.1.6.13257] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/25/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022] Open
Abstract
Transformation (i.e., genetic modification of a cell by the incorporation of exogenous DNA) is indispensable for manipulating fungi. Here, we review the transformation methods for Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris and Aspergillus species and discuss some common modifications to improve transformation efficiency. We also present a model of the mechanism underlying S. cerevisiae transformation, based on recent reports and the mechanism of transfection in mammalian systems. This model predicts that DNA attaches to the cell wall and enters the cell via endocytotic membrane invagination, although how DNA reaches the nucleus is unknown. Polyethylene glycol is indispensable for successful transformation of intact cells and the attachment of DNA and also possibly acts on the membrane to increase the transformation efficiency. Both lithium acetate and heat shock, which enhance the transformation efficiency of intact cells but not that of spheroplasts, probably help DNA to pass through the cell wall.
Collapse
Affiliation(s)
- Shigeyuki Kawai
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
43
|
Balcer HI, Daugherty-Clarke K, Goode BL. The p40/ARPC1 subunit of Arp2/3 complex performs multiple essential roles in WASp-regulated actin nucleation. J Biol Chem 2010; 285:8481-91. [PMID: 20071330 PMCID: PMC2832997 DOI: 10.1074/jbc.m109.054957] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/11/2010] [Indexed: 11/06/2022] Open
Abstract
The Arp2/3 complex is a conserved seven-subunit actin-nucleating machine activated by WASp (Wiskott Aldrich syndrome protein). Despite its central importance in a broad range of cellular processes, many critical aspects of the mechanism of the Arp2/3 complex have yet to be resolved. In particular, some of the individual subunits in the complex have not been assigned clear functional roles, including p40/ARPC1. Here, we dissected the structure and function of Saccharomyces cerevisiae p40/ARPC1, which is encoded by the essential ARC40 gene, by analyzing 39 integrated alleles that target its conserved surfaces. We identified three distinct sites on p40/ARPC1 required for function in vivo: one site contacts p19/ARPC4, one contacts p15/ARPC5, and one site resides in an extended structural "arm" of p40/ARPC1. Using a novel strategy, we purified the corresponding lethal mutant Arp2/3 complexes from yeast and compared their actin nucleation activities. Lethal mutations at the contact with p19/ARPC4 specifically impaired WASp-induced nucleation. In contrast, lethal mutations at the contact with p15/ARPC5 led to unregulated ("leaky") nucleation in the absence of WASp. Lethal mutations in the extended arm drastically reduced nucleation, and the same mutations disrupted the ability of the purified p40/ARPC1 arm domain to bind the VCA domain of WASp. Together, these data indicate that p40/ARPC1 performs at least three distinct, essential functions in regulating Arp2/3 complex-mediated actin assembly: 1) suppression of spontaneous nucleation by the Arp2/3 complex, which requires proper contacts with p15/ARPC5; 2) propagation of WASp activation signals via contacts with p19/ARPC2; and 3) direct facilitation of actin nucleation through interactions of the extended arm with the VCA domain of WASp.
Collapse
Affiliation(s)
- Heath I. Balcer
- From the Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | | | - Bruce L. Goode
- From the Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
44
|
Epp E, Walther A, Lépine G, Leon Z, Mullick A, Raymond M, Wendland J, Whiteway M. Forward genetics in Candida albicans that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Mol Microbiol 2010; 75:1182-98. [PMID: 20141603 DOI: 10.1111/j.1365-2958.2009.07038.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Candida albicans is a diploid fungal pathogen lacking a defined complete sexual cycle, and thus has been refractory to standard forward genetic analysis. Instead, transcription profiling and reverse genetic strategies based on Saccharomyces cerevisiae have typically been used to link genes to functions. To overcome restrictions inherent in such indirect approaches, we have investigated a forward genetic mutagenesis strategy based on the UAU1 technology. We screened 4700 random insertion mutants for defects in hyphal development and linked two new genes (ARP2 and VPS52) to hyphal growth. Deleting ARP2 abolished hyphal formation, generated round and swollen yeast phase cells, disrupted cortical actin patches and blocked virulence in mice. The mutants also showed a global lack of induction of hyphae-specific genes upon the yeast-to-hyphae switch. Surprisingly, both arp2 Delta/Delta and arp2 Delta/Delta arp3 Delta/Delta mutants were still able to endocytose FM4-64 and Lucifer Yellow, although as shown by time-lapse movies internalization of FM4-64 was somewhat delayed in mutant cells. Thus the non-essential role of the Arp2/3 complex discovered by forward genetic screening in C. albicans showed that uptake of membrane components from the plasma membrane to vacuolar structures is not dependent on this actin nucleating machinery.
Collapse
Affiliation(s)
- Elias Epp
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC H4P 2R2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Actin polymerization driven mitochondrial transport in mating S. cerevisiae. Proc Natl Acad Sci U S A 2009; 107:721-5. [PMID: 20080741 DOI: 10.1073/pnas.0908338107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic microenvironment of cells depends on macromolecular architecture, equilibrium fluctuations, and nonequilibrium forces generated by cytoskeletal proteins. We studied the influence of these factors on the motions of mitochondria in mating S. cerevisiae using Fourier imaging correlation spectroscopy (FICS). Our measurements provide detailed length-scale dependent information about the dynamic behavior of mitochondria. We investigate the influence of the actin cytoskeleton on mitochondrial motion and make comparisons between conditions in which actin network assembly and disassembly is varied either by using disruptive pharmacological agents or mutations that alter the rates of actin polymerization. Under physiological conditions, nonequilibrium dynamics of the actin cytoskeleton leads to 1.5-fold enhancement of the long-time mitochondrial diffusion coefficient and a transient subdiffusive temporal scaling of the mean-square displacement (MSD proportional, variant tau (alpha), with alpha = 2/3). We find that nonequilibrium forces associated with actin polymerization are a predominant factor in driving mitochondrial transport. Moreover, our results lend support to an existing model in which these forces are directly coupled to mitochondrial membrane surfaces.
Collapse
|
47
|
Kotchoni SO, Zakharova T, Mallery EL, Le J, El-Assal SED, Szymanski DB. The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. PLANT PHYSIOLOGY 2009; 151:2095-109. [PMID: 19801398 PMCID: PMC2785977 DOI: 10.1104/pp.109.143859] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/28/2009] [Indexed: 05/18/2023]
Abstract
In growing plant cells, the combined activities of the cytoskeleton, endomembrane, and cell wall biosynthetic systems organize the cytoplasm and define the architecture and growth properties of the cell. These biosynthetic machineries efficiently synthesize, deliver, and recycle the raw materials that support cell expansion. The precise roles of the actin cytoskeleton in these processes are unclear. Certainly, bundles of actin filaments position organelles and are a substrate for long-distance intracellular transport, but the functional linkages between dynamic actin filament arrays and the cell growth machinery are poorly understood. The Arabidopsis (Arabidopsis thaliana) "distorted group" mutants have defined protein complexes that appear to generate and convert small GTPase signals into an Actin-Related Protein2/3 (ARP2/3)-dependent actin filament nucleation response. However, direct biochemical knowledge about Arabidopsis ARP2/3 and its cellular distribution is lacking. In this paper, we provide biochemical evidence for a plant ARP2/3. The plant complex utilizes a conserved assembly mechanism. ARPC4 is the most critical core subunit that controls the assembly and steady-state levels of the complex. ARP2/3 in other systems is believed to be mostly a soluble complex that is locally recruited and activated. Unexpectedly, we find that Arabidopsis ARP2/3 interacts strongly with cell membranes. Membrane binding is linked to complex assembly status and not to the extent to which it is activated. Mutant analyses implicate ARP2 as an important subunit for membrane association.
Collapse
|
48
|
Motizuki M, Xu Z. Importance of Polarisome Proteins in Reorganization of Actin Cytoskeleton at Low pH in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2009; 146:705-12. [DOI: 10.1093/jb/mvp116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Watanabe M, Watanabe D, Nogami S, Morishita S, Ohya Y. Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth. Curr Genet 2009; 55:365-80. [PMID: 19466415 DOI: 10.1007/s00294-009-0251-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 11/24/2022]
Abstract
To obtain a comprehensive understanding of the budding phase transition, 4,711 Saccharomyces cerevisiae haploid nonessential gene deletion mutants were screened with the image processing program CalMorph, and 35 mutants with a round bud and 173 mutants with an elongated bud were statistically identified. We classified round and elongated bud mutants based on factors thought to affect the duration of the apical bud growth phase. Two round bud mutants (arc18 and sac6) were found to be defective in apical actin patch localization. Several elongated bud mutants demonstrated a delay of cell cycle progression at the apical growth phase, suggesting that these mutants have a defect in the control of cell cycle progression.
Collapse
Affiliation(s)
- Machika Watanabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | | | | | | | | |
Collapse
|
50
|
Pavlopoulos GA, Moschopoulos CN, Hooper SD, Schneider R, Kossida S. jClust: a clustering and visualization toolbox. Bioinformatics 2009; 25:1994-6. [PMID: 19454618 PMCID: PMC2712340 DOI: 10.1093/bioinformatics/btp330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
jClust is a user-friendly application which provides access to a set of widely used clustering and clique finding algorithms. The toolbox allows a range of filtering procedures to be applied and is combined with an advanced implementation of the Medusa interactive visualization module. These implemented algorithms are k-Means, Affinity propagation, Bron–Kerbosch, MULIC, Restricted neighborhood search cluster algorithm, Markov clustering and Spectral clustering, while the supported filtering procedures are haircut, outside–inside, best neighbors and density control operations. The combination of a simple input file format, a set of clustering and filtering algorithms linked together with the visualization tool provides a powerful tool for data analysis and information extraction. Availability:http://jclust.embl.de/ Contact:pavlopou@embl.de; rschneid@embl.de; skossida@bioacademy.gr Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
|