1
|
Pawlik K, Ciapała K, Ciechanowska A, Makuch W, Mika J. Pharmacological modulation of neutrophils, in contrast to that of macrophages/microglia, is sex independent and delays the development of morphine tolerance in a mouse model of neuropathic pain. Biomed Pharmacother 2025; 187:118149. [PMID: 40349556 DOI: 10.1016/j.biopha.2025.118149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
Identifying sex-specific mechanisms underlying neuropathic pain, as well as its therapy, remains a challenge. Recent studies suggest important roles for neutrophils, macrophages and microglia in the development of hypersensitivity and the morphine effectiveness. Therefore, the aim of this study was to test whether substances that inhibit the activation/influx of neutrophils (4-aminobenzoic hydrazide) and microglia/macrophages (minocycline) can help achieve pain relief in male/female mice and improve the analgesic effectiveness of morphine in neuropathy in both sexes. Our behavioral studies performed using chronic constriction injury of the sciatic nerve indicate that repeated twice-daily administrations of 4-aminobenzoic hydrazide (in both sexes) and minocycline (only in males) cause analgesia and delay morphine tolerance development. Observations in female include the absence of alleviation of tactile hypersensitivity (von Frey test) following minocycline, and even an increase in thermal hypersensitivity (cold plate test), which may be of clinical importance. This may be explained by a lack of impact on IBA-1 protein level after repeated administration of minocycline in females, along with increased levels of pronociceptive factors such as CCL2, CXCL2, and TNFα. Notably, the repeated twice-daily administration of 4-aminobenzoic hydrazide has beneficial analgesic effects and delays morphine tolerance development in both sexes. Its influence on male mice is likely caused by its impact on spinal neutrophil activation/influx and on the level of anti-(IL-4)/pro-(CCL2) nociceptive cytokines. Our studies provide the first evidence that the inhibition of neutrophil activation/influx during long-term morphine treatment can improve its efficacy and delay the development of opioid tolerance in neuropathy in both sexes.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, Krakow 31-343, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, Krakow 31-343, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, Krakow 31-343, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, Krakow 31-343, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, Krakow 31-343, Poland.
| |
Collapse
|
2
|
Ahlström FH, Viisanen H, Karhinen L, Velagapudi V, Blomqvist KJ, Lilius TO, Rauhala PV, Kalso EA. Gene expression in the dorsal root ganglion and the cerebrospinal fluid metabolome in polyneuropathy and opioid tolerance in rats. IBRO Neurosci Rep 2024; 17:38-51. [PMID: 38933596 PMCID: PMC11201153 DOI: 10.1016/j.ibneur.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP. We set out to further elucidate possible shared and separate mechanisms after chronic morphine treatment and oxaliplatin-induced and diabetic polyneuropathies, and to identify potential diagnostic markers and therapeutic targets. We analysed thermal nociceptive behaviour, the transcriptome of dorsal root ganglia (DRG) and the metabolome of cerebrospinal fluid (CSF) in these three conditions, in rats. Several genes were differentially expressed, most following oxaliplatin and least after chronic morphine treatment, compared with saline-treated rats. A few genes were differentially expressed in the DRGs in all three models (e.g. Csf3r and Fkbp5). Some, e.g. Alox15 and Slc12a5, were differentially expressed in both diabetic and oxaliplatin models. Other differentially expressed genes were associated with nociception, inflammation, and glial cells. The CSF metabolome was most significantly affected in the diabetic rats. Interestingly, we saw changes in nicotinamide metabolism, which has been associated with opioid addiction and withdrawal, in the CSF of morphine-tolerant rats. Our results offer new hypotheses for the pathophysiology and treatment of NP and opioid tolerance. In particular, the role of nicotinamide metabolism in opioid addiction deserves further study.
Collapse
Affiliation(s)
- Fredrik H.G. Ahlström
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Leena Karhinen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, FI-00014, Finland
| | - Kim J. Blomqvist
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00014, Finland
- Department of Emergency Medicine and Services, University of Helsinki and HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki 00290, Finland
| | - Pekka V. Rauhala
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Eija A. Kalso
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- SleepWell Research Programme, Faculty of Medicine, , University of Helsinki, Haartmaninkatu 3, 00014, Finland
- Department of Anaesthesiology and Intensive Care Medicine, Helsinki University Hospital and University of Helsinki, HUS, Stenbäckinkatu 9, P.O. Box 440, 00029, Finland
| |
Collapse
|
3
|
Garrido-Suárez BB, Garrido G, Bellma-Menéndez A, Aparicio-López G, Valdés-Martínez O, Morales-Aguiar RA, Fernández-Pérez MD, Ochoa-Rodríguez E, Verdecia-Reyes Y, Delgado-Hernández R. A multi-target ligand (JM-20) prevents morphine-induced hyperalgesia in naïve and neuropathic rats. Eur J Pharmacol 2024; 983:176992. [PMID: 39265881 DOI: 10.1016/j.ejphar.2024.176992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
The present study examines the possible inhibitory effect of JM-20, a multi-target neuroprotective compound, on the development of morphine-induced hyperalgesia in Male Sprague-Dawley naïve rats. Additionally, the impact of JM-20 on chronic constriction injury (CCI) rats under chronic morphine exposure was investigated, and its efficacy in reducing mechanical hypersensitivity and histopathological changes in the sciatic nerve was assessed. JM-20 (20 mg/kg, per os [p.o.]), administered 60 min before morphine (10 mg/kg, s.c. twice daily at 12 h intervals) for ten days, significantly inhibited the development of morphine-induced hyperalgesia assessed using an electronic pressure-meter paw test, hot-plate, and formalin test, as well as the appearance of spontaneous withdrawal somatic symptoms in rats. Furthermore, JM-20 decreases spinal pro-inflammatory interleukin-1β and restores glutathione to close physiological concentrations, biomarkers directly related to the intensity of mechanical hypernociception. After CCI and sham surgery, co-treatment with JM-20 (10 mg/kg, p.o.) for five days decreased morphine increased-mechanical hypersensitivity, even 12 days after its discontinuation. Continued morphine treatment imposed a neuroinflammatory challenge in CCI animals, further increasing cellularity (>75% immune cell infiltration) with lymphocytes and macrophages. However, JM-20 co-treatment still reduced the presence of cellular infiltrates (51-75%) with a predominance of lymphocytes. Even in the absence of nerve injury, JM-20 attenuated the peripheral neuroinflammatory response observed in morphine-treated sham-operated animals (0% vs. 1-25%). These findings suggest that JM-20 could prevent morphine-induced hyperalgesia by anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600, La Habana, Cuba; Instituto de Ciencias del Mar, Loma y 37, Nuevo Vedado, Havana, CP 10300, Cuba.
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Edificio Ñ3, Universidad Católica del Norte, Angamos, 0610, Antofagasta, CP 124000, Chile.
| | - Addis Bellma-Menéndez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600, La Habana, Cuba
| | - Guillermo Aparicio-López
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600, La Habana, Cuba
| | - Odalys Valdés-Martínez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600, La Habana, Cuba
| | | | | | - Estael Ochoa-Rodríguez
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado Plaza de la Revolución, CP 10400, La Habana, Cuba
| | - Yamila Verdecia-Reyes
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado Plaza de la Revolución, CP 10400, La Habana, Cuba
| | - René Delgado-Hernández
- Clinical Pharmacy and Pharmaceutical Care Unit, Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| |
Collapse
|
4
|
Jouvenel A, Tassou A, Thouaye M, Ruel J, Antri M, Leyris JP, Giraudin A, Mallié S, Sar C, Diouloufet L, Sonrier C, Daubeuf F, Bertin J, Alves S, Ventéo S, Frossard N, Carroll P, Mechaly I, Rognan D, Sokoloff P, Dallel R, Delmas P, Valmier J, Rivat C. FLT3 signaling inhibition abrogates opioid tolerance and hyperalgesia while preserving analgesia. Nat Commun 2024; 15:9633. [PMID: 39511220 PMCID: PMC11543937 DOI: 10.1038/s41467-024-54054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Navigating the duality of opioids' potent analgesia and side effects, including tolerance and hyperalgesia, is a significant challenge in chronic pain management, often prompting hazardous dose escalation to maintain analgesic effects. The peripheral mu-opioid receptor (MOR) is known to mediate these contradictory effects. Here, we show that the fms-like tyrosine kinase receptor 3 (FLT3) in peripheral somatosensory neurons drives morphine tolerance and hyperalgesia in a male rodent model. We found that chronic morphine treatment increases FLT3 and MOR co-expression, and that inhibiting FLT3 represses MOR-induced hyperactivation of the cyclic adenosine monophosphate (cAMP) signaling pathway, mitigating maladaptive excitatory processes engaged after chronic morphine treatment. Furthermore, in postsurgical or inflammatory models of chronic pain, co-administering morphine with a FLT3-specific inhibitor not only prevents or suppresses tolerance and hyperalgesia but also potentiates the analgesic efficacy of morphine, without aggravating other morphine-induced adverse effects. Our findings suggest that pairing morphine with FLT3 inhibitors could become a promising avenue for chronic pain management to safely harness the power of opioids, without the risk of dose escalation. By enhancing morphine analgesic potency through FLT3 inhibition, this approach could minimize opioid dosage, thereby curtailing the risk of addiction and other opioid-related side effects.
Collapse
Affiliation(s)
- Antoine Jouvenel
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Adrien Tassou
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Maxime Thouaye
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Jérôme Ruel
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 -INRAE 1260, Marseille, France
| | | | | | | | - Sylvie Mallié
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Chamroeum Sar
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Lucie Diouloufet
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - Corinne Sonrier
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Juliette Bertin
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - Stacy Alves
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Stéphanie Ventéo
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Patrick Carroll
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Ilana Mechaly
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Pierre Sokoloff
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | | | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 -INRAE 1260, Marseille, France
| | - Jean Valmier
- Université de Montpellier, Montpellier, France.
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| | - Cyril Rivat
- Université de Montpellier, Montpellier, France.
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Yao C, Fang X, Ru Q, Li W, Li J, Mehsein Z, Tolias KF, Li L. Tiam1-mediated maladaptive plasticity underlying morphine tolerance and hyperalgesia. Brain 2024; 147:2507-2521. [PMID: 38577773 PMCID: PMC11224607 DOI: 10.1093/brain/awae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.
Collapse
Affiliation(s)
- Changqun Yao
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Xing Fang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan 430056, China
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Jun Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Zeinab Mehsein
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingyong Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Chen Y, Li S, Guo F. Tsc22d3 promotes morphine tolerance in mice through the GPX4 ferroptosis pathway. Aging (Albany NY) 2024; 16:9859-9875. [PMID: 38843390 PMCID: PMC11210220 DOI: 10.18632/aging.205903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Morphine tolerance refers to gradual reduction in response to drug with continuous or repeated use of morphine, requiring higher doses to achieve same effect. METHODS The morphine tolerance dataset GSE7762 profiles, obtained from gene expression omnibus (GEO) database, were used to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) was applied to explore core modules of DEGs related to morphine tolerance. Core genes were input into Comparative Toxicogenomics Database (CTD). Animal experiments were performed to validate role of Tsc22d3 in morphine tolerance and its relationship with ferroptosis-related pathway. RESULTS 500 DEGs were identified. DEGs were primarily enriched in negative regulation of brain development, neuronal apoptosis processes, and neurosystem development. Core gene was identified as Tsc22d3. Tsc22d3 gene-associated miRNAs were mmu-miR-196b-5p and mmu-miR-196a-5p. Compared to Non-morphine tolerant group, Tsc22d3 expression was significantly upregulated in Morphine tolerant group. Tsc22d3 expression was upregulated in Morphine tolerant+Tsc22d3_OE, expression of HIF-1alpha, GSH, GPX4 in GPX4 ferroptosis-related pathway showed a more pronounced decrease. As Tsc22d3 expression was downregulated in Morphine tolerant+Tsc22d3_KO, expression of HIF-1alpha, GSH, GPX4 in GPX4 ferroptosis-related pathway exhibited a more pronounced increase. Upregulation of Tsc22d3 in Morphine tolerant+Tsc22d3_OE led to a more pronounced increase in expression of apoptosis proteins (P53, Caspase-3, Bax, SMAC, FAS). The expression of inflammatory factors (IL6, TNF-alpha, CXCL1, CXCL2) showed a more pronounced increase with upregulated Tsc22d3 expression in Morphine tolerant+Tsc22d3_OE. CONCLUSIONS Tsc22d3 is highly expressed in brain tissue of morphine-tolerant mice, activating ferroptosis pathway, enhancing apoptosis, promoting inflammatory responses in brain cells.
Collapse
Affiliation(s)
- Yan Chen
- Department of Anesthesiology, Children’s Hospital of Hebei Province, Shijiazhuang 050071, Hebei, P.R. China
| | - Shan Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei, P.R. China
| | - Fenghui Guo
- Department of Anesthesiology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, P.R. China
| |
Collapse
|
7
|
Cui D, Zhang Y, Zhang M. The effect of cannabinoid type 2 receptor agonist on morphine tolerance. IBRO Neurosci Rep 2024; 16:43-50. [PMID: 38145173 PMCID: PMC10733637 DOI: 10.1016/j.ibneur.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Pain highly impacts the quality of life of patients. Morphine is used for pain treatment; however, its side effects, especially morphine tolerance, limit its use in the clinic. The problem of morphine tolerance has plagued health workers and patients for years. Unfortunately, the exact mechanism of morphine tolerance has not been fully clarified. The mechanisms of morphine tolerance that are currently being studied may include μ-opioid receptor (MOR) desensitization and internalization, mitogen-activated protein kinase (MAPK) pathway activation and crosstalk, the effects of microglia and the increase in inflammatory factors. Morphine tolerance can be alleviated by improving the pathophysiological changes that lead to morphine tolerance. Previous studies have shown that a cannabinoid type 2 (CB2) receptor agonist could attenuate morphine tolerance in a variety of animal models. Many studies have shown an interaction between the cannabinoid system and the opioid system. The CB2 receptor may modulate the effect of morphine through a pathway that is common to the MOR, since both receptors are G protein-coupled receptors (GPCRs). This study introduces the potential mechanism of morphine tolerance and the effect of CB2 receptor agonists on reducing morphine tolerance, which can provide new ideas for researchers studying morphine and provide beneficial effects for patients suffering from morphine tolerance.
Collapse
Affiliation(s)
- Di Cui
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingyue Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
8
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
9
|
Gei L, Yan Y, Xing W, Li Q, Chen X, Yan F, Wang Y, Cao Y, Jiang W, E R, Luo D, Zhang Y, Zeng W, Chen D. Amiloride alleviates morphine tolerance by suppressing ASIC3-dependent neuroinflammation in the spinal cord. Eur J Pharmacol 2024; 963:176173. [PMID: 37918499 DOI: 10.1016/j.ejphar.2023.176173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The use of morphine in clinical medicine is severely constrained by tolerance. Therefore, it is essential to examine pharmacological therapies that suppress the development of morphine tolerance. Amiloride suppressed the expression of inflammatory cytokines by inhibiting microglial activation. Microglia play a crucial role in the establishment of morphine tolerance. Thus, we anticipated that amiloride might suppress the development of morphine tolerance. During this investigation, we assessed the impact of amiloride on mouse morphine tolerance. METHODS Mice received morphine (10 mg/kg, s.c.) twice daily with intrathecally injected amiloride (0.3 μg/5 μl, 1 μg/5 μl, and 3 μg/5 μl) for nine continuous days. To assess morphine tolerance, mice underwent the tail-flick and hot plate tests. BV-2 cells were used to investigate the mechanism of amiloride. By using Western blotting, real-time PCR, and immunofluorescence labeling methods, the levels of acid-sensing ion channels (ASICs), nuclear factor kappa B (NF-kB) p65, p38 mitogen-activated protein kinase (MAPK) proteins, and neuroinflammation-related cytokines were determined. RESULTS The levels of ASIC3 in the spinal cord were considerably increased after long-term morphine administration. Amiloride was found to delay the development of tolerance to chronic morphine assessed via tail-flick and hot plate tests. Amiloride reduced microglial activation and downregulated the cytokines IL-1β and TNF-a by inhibiting ASIC3 in response to morphine. Furthermore, amiloride reduced p38 MAPK phosphorylation and inhibited NF-κB expression. CONCLUSIONS Amiloride effectively reduces chronic morphine tolerance by suppressing microglial activation caused by morphine by inhibiting ASIC3.
Collapse
Affiliation(s)
- Liba Gei
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Department of Anaesthesiology, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010010, China
| | - Yan Yan
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Department of Anaesthesiology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Wei Xing
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiang Li
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangnan Chen
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Department of Anaesthesiology, Guangdong Women and Children Hospital, Guangzhou, 510060, China
| | - Fang Yan
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Wang
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Cao
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wenqi Jiang
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - RiQi E
- Department of Anaesthesiology, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010010, China
| | - DeXing Luo
- Department of Anaesthesiology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - YanHong Zhang
- Department of Anaesthesiology, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010010, China
| | - Weian Zeng
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Dongtai Chen
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Peng Y, Chen X, Rao Z, Wu W, Zuo H, Chen K, Li K, Lin H, Liu S, Xiao Y, Wang B, Quan D, Qing X, Bai Y, Shao Z. Multifunctional annulus fibrosus matrix prevents disc-related pain via inhibiting neuroinflammation and sensitization. Acta Biomater 2023; 170:288-302. [PMID: 37598791 DOI: 10.1016/j.actbio.2023.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Chronic low back pain mainly attributed to intervertebral disc (IVD) degeneration. Endogenous damage-associated molecular patterns (DAMPs) in the injured IVD, particularly mitochondria-derived nucleic acid molecules (CpG DNA), play a primary role in the inflammatory responses in macrophages. M1-type macrophages form a chronic inflammatory microenvironment by releasing pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia. We fabricated an amphiphilic polycarbonate that naturally forms cationic nanoparticles (cNP) in aqueous solutions, with the hydrophobic core loaded with TrkA-IN-1, an antagonist against the NGF receptor (TrkA). The drug delivery nanoparticles were denoted as TI-cNP. TrkA-IN-1 and TI-cNP were added to the decellularized annulus fibrosus matrix (DAF) hydrogel to form hybrid hydrogels, denoted as TI-DAF and TI-cNP-DAF, respectively. As a result, TrkA-IN-1 showed a delayed release profile both in TI-DAF and TI-cNP-DAF. Each mole of cNP could bind approximately 3 mol of CpG DNA to inhibit inflammation. cNP-DAF and TI-cNP-DAF significantly inhibited the M1 phenotype induced by CpG DNA. TI-DAF and TI-cNP-DAF reduced neurite branching and axon length, and inhibited the expression of neurogenic mediators (CGRP and substance P) in the presence of NGF. Besides, TI-cNP-DAF relieved mechanical hyperalgesia, reduced CGRP and substance P expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat disc herniation model. Summarily, TI-cNP-DAF, a novel composite IVD hydrogel, efficiently mediated the inflammatory environment, inhibited nerve ingrowth and sensitization, and could be clinically applied for treating discogenic pain. STATEMENT OF SIGNIFICANCE: Discogenic lower back pain, related to intervertebral disc degeneration (IDD), imposes a tremendous health and economic burden globally. M1-type macrophages release pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia and discogenic pain. Reconstructing matrix integrity and modulating the inflammatory microenvironment are promising strategies for preventing the ingrowth and activation of neurites. The TI-cNP-DAF hydrogel recovers tissue integrity, alleviates inflammation, and delivers the TrkA antagonist to inhibit the activity of NGF, thus restraining hyperinnervation and nociceptive input. Due to its simple production process, injectability, and acellular strategy, the hydrogel is operable and holds great potential for treating discogenic lower back pain.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zilong Rao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiying Zuo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kaibin Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daping Quan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
11
|
Baratzadeh M, Danialy S, Abtin S, Manaheji H. Naloxone could limit morphine hypersensitivity: Considering the molecular mechanisms. Neuropeptides 2023; 100:102345. [PMID: 37172403 DOI: 10.1016/j.npep.2023.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Naloxone has been used as an opioid antagonist to prevent multiple adverse side effects of opioid-like tolerance and hyperalgesia. This study has investigated naloxone combined with morphine to limit pain hypersensitivity. In addition, the expression of brain-derived neurotrophic factor (BDNF) and K+ Cl- cotransporter2 (KCC2) were also studied. METHODS Forty-eight adult male Wistar rats (180-220 g) were divided into eight groups, with six rats in each group. Rats were divided into two tolerance and hyperalgesia groups; the sham group, the morphine group, the treatment group (naloxone along with morphine), and the sham group (naloxone along with saline) for eight consecutive days. Tail-flick test was performed on days 1, 5, and 8, and the plantar test on days 1 and 10. On days 8 and 10, the lumbar segments of the spinal cord were collected, and BDNF and KCC2 expression were analyzed using western blotting and immunohistochemistry, respectively. RESULTS Results showed that tolerance and hyperalgesia developed following eight days of repeated morphine injection. BDNF expression significantly increased, but KCC2 was downregulated. Co-administration of naloxone and morphine decreased tolerance and hyperalgesia by decreasing BDNF and increasing KCC2 expression, respectively. CONCLUSION This study suggests that BDNF and KCC2 may be candidate molecules for decreased morphine tolerance and hyperalgesia.
Collapse
Affiliation(s)
- Mojgan Baratzadeh
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Samira Danialy
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Shima Abtin
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.
| |
Collapse
|
12
|
Gamble MC, Williams BR, Singh N, Posa L, Freyberg Z, Logan RW, Puig S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front Syst Neurosci 2022; 16:1059089. [PMID: 36532632 PMCID: PMC9751598 DOI: 10.3389/fnsys.2022.1059089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via μ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.
Collapse
Affiliation(s)
- Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Navsharan Singh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Kaparelou M, Liontos M, Katsimbri P, Andrikopoulou A, Papatheodoridi A, Kyriazoglou A, Bamias A, Zagouri F, Dimopoulos MA. Retrospective analysis of bevacizumab-induced arthralgia and clinical outcomes in ovarian cancer patients. Single center experience. Gynecol Oncol Rep 2022; 40:100953. [PMID: 35265745 PMCID: PMC8898916 DOI: 10.1016/j.gore.2022.100953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Joint manifestations are a concerning issue among women undergoing bevacizumab maintenance treatment for ovarian cancer. Proper management results in treatment termination in only a small percentage of cases. Treatment interruption or early discontinuation does not adversely affect survival in these patients.
Background Joint manifestations are ill-defined adverse events that were frequently reported of bevacizumab in ovarian cancer patients. The aim of this study is to describe the incidence and severity of joint manifestations among bevacizumab treated patients as well as their relation to clinical outcomes. Methods Medical charts of all ovarian cancer patients that received bevacizumab from 2012 through 2017 were reviewed. Joint manifestations were staged. Kaplan-Meier Survival curves were generated; survival differences were estimated. Results 76 Patients diagnosed with stage III or IV ovarian cancer were included. 23 patients (30.3%) developed joint manifestations, 12 of them had Grade I, 4 Grade II and 7 Grade III. Only 3 patients developed arthritis. In 8 cases (34.8%) one joint was affected and in the remaining 15, multiple sites. Median number of bevacizumab cycles to arthralgia development was 7. 3 patients were managed with corticosteroids or methotrexate, all had grade 3 AEs. The remaining received common analgesics. Median duration of the AE was 4.8 months. 7 patients discontinued bevacizumab due to AE. In all but 3 patients AE was finally resolved. Median number of bevacizumab cycles received, frequency of treatment completion or treatment discontinuation due to disease progression did not differ significantly among patients that developed joint manifestations or not. Median PFS and median OS did not differ statistical significantly. Conclusion Joint manifestations are common AEs in bevacizumab treated ovarian cancer patients and led to treatment discontinuation in 9% of the patients. However, this has not adversely affected the clinical outcome of the patients. Further research is needed for the appropriate management of these patients.
Collapse
|
14
|
Rahban M, Danyali S, Zaringhalam J, Manaheji H. Pharmacological blockade of neurokinin1 receptor restricts morphine-induced tolerance and hyperalgesia in the rat. Scand J Pain 2022; 22:193-203. [PMID: 34525274 DOI: 10.1515/sjpain-2021-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The most notable adverse side effects of chronic morphine administration include tolerance and hyperalgesia. This study investigated the involvement of dorsal root ganglion (DRG) protein kinase Cɛ (PKCɛ) expression during chronic morphine administration and also considered the relationship between DRG PKCɛ expression and the substance P- neurokinin1 receptor (SP- NK1R) activity. METHODS Thirty-six animals were divided into six groups (n=6) in this study. In the morphine and sham groups, rats received 10 µg intrathecal (i.t.) morphine or saline for eight consecutive days, respectively. Behavioral tests were performed on days 1 and 8 before and after the first injections and then 48 h after the last injection (day 10). In the treatment groups, rats received NK1R antagonist (L-732,138, 25 µg) daily, either alone or 10 min before a morphine injection, Sham groups received DMSO alone or 10 min before a morphine injection. Animals were sacrificed on days 8 and 10, and DRG PKCɛ and SP expression were analyzed by western blot and immunohistochemistry techniques, respectively. RESULTS Behavioral tests indicated that tolerance developed following eight days of chronic morphine injection. Hyperalgesia was induced 48 h after the last morphine injection. Expression of SP and PKCɛ in DRG significantly increased in rats that developed morphine tolerance on day 8 and hyperalgesia on day 10, respectively. NK1R antagonist (L-732,138) not only blocked the development of hyperalgesia and the increase of PKCɛ expression but also alleviated morphine tolerance. CONCLUSIONS Our results provide evidence that DRG PKCɛ and SP-NK1R most likely participated in the generation of morphine tolerance and hyperalgesia. Pharmacological inhibition of SP-NK1R activity in the spinal cord suggests a role for NK1R and in restricting some side effects of chronic morphine. All experiments were performed by the National Institute of Health (NIH) Guidelines for the Care and Use of Laboratory Animals (NIH Publication No. 80-23, revised1996) and were approved by the Animal Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran (IR.SBMU.MSP.REC.1396.130).
Collapse
Affiliation(s)
- Mohammad Rahban
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Danyali
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kong Q, Tian S, Ma C, Wang G, Zhang M. Cannabinoid Receptor Type 2 Agonist Reduces Morphine Tolerance via Mitogen Activated Protein Kinase Phosphatase Induction and Mitogen Activated Protein Kinase Dephosphorylation. Neuroscience 2022; 480:56-64. [PMID: 34774714 DOI: 10.1016/j.neuroscience.2021.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Morphine is an opioid drug often used in treating moderate to severe pain. However, morphine tolerance in patients limits its used in clinical settings. Our previous study showed that a cannabinoid type 2 (CB2) receptor agonist attenuated morphine tolerance. However, the exact mechanism by which CB2 agonists reduce morphine tolerance remains unclear. In this study, we investigated the effect of mitogen activated protein kinase (MAPK) and mitogen activated protein kinase phosphatases 1 and 3 (MKP-1 and MKP-3) on the regulation of morphine tolerance by CB2 receptor agonist. Chronic morphine treatments for 7 days reduced the protein expression of MKP-1 and MKP-3 in the spinal cord and increased the phosphorylation of p38, ERK1/2 and the level of proinflammatory mediator, such as IL-1β, IL-6 and TNF-α. Coadministration of CB2 receptor agonist AM1241 alleviated the inhibition of MKP-1 and MKP-3 by chronic morphine administration and reduced the expression of phosphorylated MAPK and proinflammatory factors. The effect of the CB2 receptor agonist on morphine-induced downregulation of MKP-1 and MKP-3 was reversed by the MKP-1 and MKP-3 antagonist triptolide. Our findings suggested that CB2 receptor agonist may induce the expression of MKP-1 and MKP-3 to promote MAPK dephosphorylation and reduce the production of downstream cytokine, thereby reducing morphine tolerance. This finding suggested that MKPs may serve as a new target for alleviating morphine tolerance.
Collapse
Affiliation(s)
- Qingling Kong
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Songyu Tian
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Chao Ma
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China.
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China.
| | - Mingyue Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
16
|
Lipscombe D, Lopez-Soto EJ. Epigenetic control of ion channel expression and cell-specific splicing in nociceptors: Chronic pain mechanisms and potential therapeutic targets. Channels (Austin) 2021; 15:156-164. [PMID: 33323031 PMCID: PMC7808434 DOI: 10.1080/19336950.2020.1860383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Ion channels underlie all forms for electrical signaling including the transmission of information about harmful events. Voltage-gated calcium ion channels have dual function, they support electrical signaling as well as intracellular calcium signaling through excitation-dependent calcium entry across the plasma membrane. Mechanisms that regulate ion channel forms and actions are essential for myriad cell functions and these are targeted by drugs and therapeutics. When disrupted, the cellular mechanisms that control ion channel activity can contribute to disease pathophysiology. For example, alternative pre-mRNA splicing is a major step in defining the precise composition of the transcriptome across different cell types from early cellular differentiation to programmed apoptosis. An estimated 30% of disease-causing mutations are associated with altered alternative splicing, and mis-splicing is a feature of numerous highly prevalent diseases including neurodegenerative, cancer, and chronic pain. Here we discuss the important role of epigenetic regulation of gene expression and cell-specific alternative splicing of calcium ion channels in nociceptors, with emphasis on how these processes are disrupted in chronic pain, the potential therapeutic benefit of correcting or compensating for aberrant ion channel splicing in chronic pain.
Collapse
Affiliation(s)
- Diane Lipscombe
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI, USA
| | - E. Javier Lopez-Soto
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Ren WJ, Illes P. Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal 2021; 18:83-92. [PMID: 34799827 PMCID: PMC8850523 DOI: 10.1007/s11302-021-09796-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic pain is caused by cellular damage with an obligatory inflammatory component. In response to noxious stimuli, high levels of ATP leave according to their concentration gradient, the intracellular space through discontinuities generated in the plasma membrane or diffusion through pannexin-1 hemichannels, and activate P2X7Rs localized at peripheral and central immune cells. Because of the involvement of P2X7Rs in immune functions and especially the initiation of macrophage/microglial and astrocytic secretion of cytokines, chemokines, prostaglandins, proteases, reactive oxygen, and nitrogen species as well as the excitotoxic glutamate/ATP, this receptor type has a key role in chronic pain processes. Microglia are equipped with a battery of pattern recognition receptors that detect pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) from bacterial infections or danger associated molecular patterns (DAMPs) such as ATP. The co-stimulation of these receptors leads to the activation of the NLRP3 inflammasome and interleukin-1β (IL-1β) release. In the present review, we invite you to a journey through inflammatory and neuropathic pain, primary headache, and regulation of morphine analgesic tolerance, in the pathophysiology of which P2X7Rs are centrally involved. P2X7R bearing microglia and astrocyte-like cells playing eminent roles in chronic pain will be also discussed.
Collapse
Affiliation(s)
- Wen-Jing Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany.
| |
Collapse
|
18
|
Subramanian G, Duclos B, Johnson PD, Williams T, Ross JT, Bowen SJ, Zhu Y, White JA, Hedke C, Huczek D, Collard W, Javens C, Vairagoundar R, Respondek T, Zachary T, Maddux T, Cox MR, Kamerling S, Gonzales AJ. In Pursuit of an Allosteric Human Tropomyosin Kinase A ( hTrkA) Inhibitor for Chronic Pain. ACS Med Chem Lett 2021; 12:1847-1852. [PMID: 34795875 DOI: 10.1021/acsmedchemlett.1c00483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Human β-nerve growth factor (β-NGF) and its associated receptor, human tropomyosin receptor kinase A (hTrkA), have been demonstrated to be key factors in the perception of pain. However, efficacious small molecule therapies targeting the intracellularly located hTrkA kinase have not been explored thoroughly for pain management. Herein, we report the pharmacological properties of a selective hTrkA allosteric inhibitor, 1. 1 was shown to be active against the full length hTrkA, showing preferential binding for the inactive kinase, and was confirmed through the X-ray of hTrkA···1 bound complex. 1 was also found to inhibit β-NGF induced neurite outgrowth in rat PC12 cells. Daily oral administration of 1 improved the joint compression threshold of rats injected intra-articularly with monoiodoacetate over a 14-day period. The efficacy of 1 in a relevant chronic pain model of osteoarthritis coupled with in vitro confirmation of target mediation makes allosteric hTrkA inhibitors potential candidates for modulating pain.
Collapse
Affiliation(s)
- Govindan Subramanian
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Brian Duclos
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Paul D. Johnson
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Tracey Williams
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Jason T. Ross
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Scott J. Bowen
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Yaqi Zhu
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Julie A. White
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Carolyn Hedke
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Dennis Huczek
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Wendy Collard
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Christopher Javens
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Rajendran Vairagoundar
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Tomasz Respondek
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Theresa Zachary
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Todd Maddux
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Mark R. Cox
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Steven Kamerling
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Andrea J. Gonzales
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| |
Collapse
|
19
|
Misir A, Uzun E, Kizkapan TB, Ozcamdalli M, Sekban H, Guney A. Factors Affecting Prolonged Postoperative Pain and Analgesic Use After Arthroscopic Full-Thickness Rotator Cuff Repair. Orthop J Sports Med 2021; 9:23259671211012406. [PMID: 34368377 PMCID: PMC8299889 DOI: 10.1177/23259671211012406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Postoperative pain and analgesic use after arthroscopic rotator cuff repair remain important issues that affect rehabilitation and overall outcomes. Purpose: To evaluate the pre- and intraoperative factors that may cause prolonged duration of postoperative pain and analgesic use. Study Design: Case-control study; Level of evidence, 3. Methods: We included 443 patients who underwent arthroscopic rotator cuff repair and subacromial decompression. Visual analog scale (VAS) scores for pain were obtained preoperatively and at 30 and 90 days postoperatively. Patients were divided into a group who had prolonged postoperative pain (duration ≥1 and <3 months; n = 86 patients) and a group with nonprolonged pain (duration <1 month; n = 357 patients). The following factors were compared between groups: age, sex, body mass index, repair technique, tear size, retraction amount, repair tension, tendon degeneration, preoperative pseudoparesis, symptom duration, application of microfracture to the rotator cuff footprint for marrow stimulation, smoking, degree of fatty degeneration, preoperative narcotic analgesic use, diabetes, acromioclavicular joint degeneration, and preoperative Douleur Neuropathique 4 (DN4) and American Shoulder and Elbow Society (ASES) scores. Results: Significant differences were seen between the prolonged and nonprolonged groups regarding the median duration of pain (54 vs 27 days, respectively; P < .001) and analgesic use (42 vs 28 days, respectively; P < .001). Significant differences were noted between the groups for symptom duration (P = .007), smoking status (P = .001), degree of fatty degeneration (P = .009), preoperative narcotic analgesic use (P < .001), preoperative DN4 and ASES scores, 30-day VAS score (P < .001), duration of opioid and nonopioid analgesic use (P < .001), tear size (P = .026), and retraction stage (P = .032). Tear size (P = .009), retraction amount (P = .005), preoperative narcotic analgesic use (P < .001), degree of fatty degeneration (P < .001), and preoperative DN4 score (P = .024) were factors independently associated with prolonged postoperative pain and analgesic use. Conclusion: Patients with larger size tears, retracted tendons, preoperative use of narcotic analgesics, higher tensioned tendon after repair, and Goutallier grade 3 or 4 fatty degeneration faced an increased risk of prolonged postoperative pain and analgesic use after arthroscopic rotator cuff repair. These factors might be mitigated by psychosocial support; gentle, controlled, and individualized postoperative rehabilitation approaches; detailed preoperative evaluation; and closer follow-up of patients who are treated operatively.
Collapse
Affiliation(s)
- Abdulhamit Misir
- Istanbul Basaksehir Pine and Sakura City Hospital, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Erdal Uzun
- Erciyes University Faculty of Medicine, Department of Orthopaedics and Traumatology, Kayseri, Turkey
| | - Turan Bilge Kizkapan
- Bursa Cekirge State Hospital, Department of Orthopaedics and Traumatology, Bursa, Turkey
| | - Mustafa Ozcamdalli
- Istanbul Basaksehir Pine and Sakura City Hospital, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Hazim Sekban
- Health Sciences University Kayseri City Training and Research Hospital, Department of Orthopaedics and Traumatology, Kayseri, Turkey
| | - Ahmet Guney
- Erciyes University Faculty of Medicine, Department of Orthopaedics and Traumatology, Kayseri, Turkey
| |
Collapse
|
20
|
Jia X, Zhang A, Li Z, Peng X, Tian X, Gao F. Activation of spinal PDGFRβ in microglia promotes neuronal autophagy via p38 MAPK pathway in morphine-tolerant rats. J Neurochem 2021; 158:373-390. [PMID: 33950542 DOI: 10.1111/jnc.15383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022]
Abstract
The adverse side effects of opioids, especially antinociceptive tolerance, limit their clinical application. A recent study reported that platelet-derived growth factor receptor β (PDGFRβ) blockage selectively inhibited morphine tolerance. Autophagy has been reported to contribute to the cellular and behavioral responses to morphine. However, little is known about the relationship between PDGFRβ and autophagy in the mechanisms of morphine tolerance. In this study, rats were intrathecally administered with morphine twice daily for 7 days to induce antinociceptive tolerance, which was evaluated using a tail-flick latency test. By administration autophagy inhibitor 3-Methyladenine, PDGFRβ inhibitor imatinib, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 hydrochloride and minocycline hydrochloride, western blot, immunofluorescence, and transmission electron microscopy techniques were used to elucidate the roles of PDGFRβ, autophagy, and related signaling pathways in morphine tolerance. This study demonstrated for the first time that spinal PDGFRβ in microglia promotes autophagy in gamma-aminobutyric acid (GABA) interneurons through activating p38 MAPK pathway during the development of morphine tolerance, which suggest a potential strategy for preventing the development of morphine tolerance clinically, thereby improving the use of opioids in pain management.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Leduc-Pessah H, Xu C, Fan CY, Dalgarno R, Kohro Y, Sparanese S, Burke NN, Jacobson KA, Altier C, Salvemini D, Trang T. Spinal A 3 adenosine receptor activation acutely restores morphine antinociception in opioid tolerant male rats. J Neurosci Res 2021; 100:251-264. [PMID: 34075613 DOI: 10.1002/jnr.24869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
Opioids are potent analgesics, but their pain-relieving effects diminish with repeated use. The reduction in analgesic potency is a hallmark of opioid analgesic tolerance, which hampers opioid pain therapy. In the central nervous system, opioid analgesia is critically modulated by adenosine, a purine nucleoside implicated in the beneficial and detrimental actions of opioid medications. Here, we focus on the A3 adenosine receptor (A3 AR) in opioid analgesic tolerance. Intrathecal administration of the A3 AR agonist MRS5698 with daily systemic morphine in male rats attenuated the reduction in morphine antinociception over 7 days. In rats with established morphine tolerance, intrathecal MRS5698 partially restored the antinociceptive effects of morphine. However, when MRS5698 was discontinued, these animals displayed a reduced antinociceptive response to morphine. Our results suggest that MRS5698 acutely and transiently potentiates morphine antinociception in tolerant rats. By contrast, in morphine-naïve rats MRS5698 treatment did not impact thermal nociceptive threshold or affect antinociceptive response to a single injection of morphine. Furthermore, we found that morphine-induced adenosine release in cerebrospinal fluid was blunted in tolerant animals, but total spinal A3 AR expression was not affected. Collectively, our findings indicate that spinal A3 AR activation acutely potentiates morphine antinociception in the opioid tolerant state.
Collapse
Affiliation(s)
- Heather Leduc-Pessah
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Cynthia Xu
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Churmy Y Fan
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Rebecca Dalgarno
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Yuta Kohro
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sydney Sparanese
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nikita N Burke
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kenneth A Jacobson
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Christophe Altier
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Tuan Trang
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Akhtar S, Abbas M, Naeem K, Faheem M, Nadeem H, Mehmood A. Benzimidazole Derivative Ameliorates Opioid-Mediated Tolerance during Anticancer- Induced Neuropathic Pain in Mice. Anticancer Agents Med Chem 2021; 21:365-371. [PMID: 32819235 DOI: 10.2174/1871520620999200818155031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is known to be the second significant cause of death worldwide. Chemotherapeutic agents such as platinum-based compounds are frequently used single-handedly or accompanied by additional chemotherapies to treat cancer patients. Chemotherapy-induced peripheral painful neuropathy is seen in around 40% of patients who are treated with platinum-based compounds, including cisplatin. This not only decreases the quality of life of patients but also patients' compliance with cisplatin. OBJECTIVES Nalbuphine, an opioid, is frequently used to treat acute and chronic pain, coupled with cisplatin in cancer patients. However, long term use of nalbuphine induces tolerance to its analgesic effects. We employed the same strategy to induce tolerance in mice. METHODS Here, we investigated analgesic effects of 2-[(pyrrolidin-1-yl) methyl]-1H-benzimidazole (BNZ), a benzimidazole derivative, on nalbuphine-induced tolerance during cisplatin-induced neuropathic pain using hot plate test, tail-flick tests and von Frey filament in mouse models. Furthermore, we investigated the effects of BNZ on the expression of Tumor Necrosis Factor-alpha (TNF-α) in the spinal cord. RESULTS The results showed that BNZ reduced tolerance to analgesic effects of nalbuphine and TNF-α expression in mice. CONCLUSION BNZ could be a potential drug candidate for the management of nalbuphine-induced tolerance in cisplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Sana Akhtar
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Komal Naeem
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Amber Mehmood
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
23
|
Mena-Valdés LC, Blanco-Hernández Y, Espinosa-Juárez JV, López-Muñoz FJ. Haloperidol potentiates antinociceptive effects of morphine and disrupt opioid tolerance. Eur J Pharmacol 2021; 893:173825. [PMID: 33347818 DOI: 10.1016/j.ejphar.2020.173825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/06/2023]
Abstract
Haloperidol is an antipsychotic agent recently described as an antinociceptive drug able to mediate the antagonism of sigma-1 receptors while morphine is an opioid used in the treatment of neuropathic pain. The objectives of this work were to determine the type of interaction generated by the combination of morphine and haloperidol in neuropathic pain induced by chronic constriction injury and to evaluate morphine tolerance and side effects. The antiallodynic and anti-hyperalgesic effects of morphine (0.01-3.16 mg/kg, s.c.) and haloperidol (0.0178-0.1778 mg/kg, s.c.) were determined after single-doses, in monotherapy and combined, using the acetone and von Frey tests, respectively. Evaluations were performed until 10-days postsurgery. Data were processed using "Surface of Synergic Interaction analysis". The rotarod test was used to evaluate motor coordination, and the constipation test was performed using 5% charcoal. The effects of haloperidol and BD-1063, sigma-1 receptor antagonists, naloxone and PRE-084 (sigma-1 agonist) were determined using the morphine-tolerance model. Morphine (0.0316 mg/kg)+haloperidol (0.0178 mg/kg) was determined to be the optimal combination. Morphine-tolerance was observed on day 5 after 11 administrations, although in animals that received the combination, tolerance was delayed until day 8. PRE-084 and naloxone administered on day 5 in animals treated with the combination resulted in a blockade of its antiallodynic effects. Adverse effects of constipation or motor incoordination were not shown in animals treated with morphine + haloperidol. In conclusion, haloperidol enhances the antinociceptive effects of morphine without significant adverse effects, as it is able to disrupt or delay the morphine-tolerance in neuropathic pain.
Collapse
Affiliation(s)
- Licet Caridad Mena-Valdés
- Laboratorio No.7 "Dolor y Analgesia" Del Departamento de Farmacobiología, Cinvestav-Sede Sur, Calz. de Los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Ciudad de México, Mexico.
| | - Yisel Blanco-Hernández
- Laboratorio No.7 "Dolor y Analgesia" Del Departamento de Farmacobiología, Cinvestav-Sede Sur, Calz. de Los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Ciudad de México, Mexico.
| | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas Sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa, Chiapas, Mexico.
| | - Francisco Javier López-Muñoz
- Laboratorio No.7 "Dolor y Analgesia" Del Departamento de Farmacobiología, Cinvestav-Sede Sur, Calz. de Los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Ciudad de México, Mexico.
| |
Collapse
|
24
|
Cetin Z, Gunduz O, Topuz RD, Dokmeci D, Karadag HC, Ulugol A. The Role of Hydrogen Sulfide in the Development of Tolerance and Dependence to Morphine in Mice. Neuropsychobiology 2020; 80:264-270. [PMID: 33207349 DOI: 10.1159/000511541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Hydrogen sulfide is an endogenous gaseous mediator that has been indicated to have a role in pain mechanisms. In this study, we aimed to detect brain and spinal cord hydrogen sulfide levels during different phases of tolerance and dependence to morphine and to determine the effects of inhibition of endogenous hydrogen sulfide production on the development of tolerance and dependence. METHODS Morphine tolerance and dependence was developed by subcutaneous injection of morphine (10 mg/kg) twice daily for 12 days. Physical dependence was determined by counting the jumps for 20 min, which is a withdrawal symptom occurring after a single dose of naloxone (5 mg/kg) administered intraperitoneally (i.p.). Propargylglycine (30 mg/kg, i.p.), a cystathionine-γ-lyase inhibitor, and hydroxylamine (12.5 mg/kg, i.p.), a cystathionine-β-synthase inhibitor, were used as hydrogen sulfide synthase inhibitors. The tail-flick and hot-plate tests were used to determine the loss of antinociceptive effects of morphine and development of tolerance. RESULTS It was found that chronic and acute uses of both propargylglycine and hydroxylamine prevented the development of tolerance to morphine, whereas they had no effect on morphine dependence. Chronic and acute administrations of hydrogen sulfide synthase inhibitors did not exert any difference in hydrogen sulfide levels in brain and spinal cords of both morphine-tolerant and -dependent animals. CONCLUSION It has been concluded that hydrogen sulfide synthase inhibitors may have utility in preventing morphine tolerance.
Collapse
Affiliation(s)
- Zeynep Cetin
- Vocational College of Arda, Chemistry and Chemical Processing Technologies Department, Trakya University, Edirne, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ruhan D Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Dikmen Dokmeci
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan C Karadag
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ahmet Ulugol
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey,
| |
Collapse
|
25
|
EGFR Signaling Causes Morphine Tolerance and Mechanical Sensitization in Rats. eNeuro 2020; 7:ENEURO.0460-18.2020. [PMID: 32111605 PMCID: PMC7218007 DOI: 10.1523/eneuro.0460-18.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/29/2018] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
The safety and efficacy of opioids are compromised as analgesic tolerance develops. Opioids are also ineffective against neuropathic pain. Recent reports have suggested that inhibitors of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), may have analgesic effects in cancer patients suffering from neuropathic pain. It has been shown that the platelet-derived growth factor receptor-β (PDGFR-β), an RTK that has been shown to interact with the EGFR, mediates opioid tolerance but does not induce analgesia. Therefore, we sought to determine whether EGFR signaling was involved in opioid tolerance and whether EGFR and PDGFR signaling could induce pain in rats. We found that gefitinib, an EGFR antagonist, eliminated morphine tolerance. In addition, repeated EGF administration rendered animals unresponsive to subsequent analgesic doses of morphine, a phenomenon we call "pre-tolerance." Using a nerve injury model, we found that gefitinib alone was not analgesic. Rather, it reversed insensitivity to morphine analgesia (pre-tolerance) caused by the release of EGF by injured nerves. We also showed that repeated, but not acute EGF or PDGF-BB administration induced mechanical hypersensitivity in rats. EGFR and PDGFR-β signaling interacted to produce this sensitization. EGFR was widely expressed in primary sensory afferent cell bodies, demonstrating a neuroanatomical substrate for our findings. Taken together, our results suggest a direct mechanistic link between opioid tolerance and mechanical sensitization. EGFR antagonism could eventually play an important clinical role in the treatment of opioid tolerance and neuropathic pain that is refractory to opioid treatment.
Collapse
|
26
|
Qian J, Zhu Y, Bai L, Gao Y, Jiang M, Xing F, Zhang J, Zhao W, Gu H, Mi Y, Tao YX, Xu JT. Chronic morphine-mediated upregulation of high mobility group box 1 in the spinal cord contributes to analgesic tolerance and hyperalgesia in rats. Neurotherapeutics 2020; 17:722-742. [PMID: 31879851 PMCID: PMC7283437 DOI: 10.1007/s13311-019-00800-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Analgesic tolerance and hyperalgesia hinder the long-term utility of opioids. We examined whether spinal high mobility group box 1 (HMGB1) is involved in morphine tolerance and its underlying mechanisms by using a model of repeated intrathecal (i.t.) injections of morphine. The results showed that chronic i.t. morphine exposure led to increased expression of HMGB1, Toll-like receptor 4 (TLR4), and receptor for advanced glycation end products (RAGE) and their mRNAs in the dorsal horn. Morphine challenge also promoted HMGB1 expression and release in cultured spinal neurons, but these effects were inhibited by TAK-242, naloxone (antagonists of TLR4), and TLR4 siRNA. Intrathecal coadministration of morphine with TAK-242 or PDTC (inhibitor of NF-κB activation) also reduced HMGB1 expression in the spinal cord. Repeated i.t. coinjections of morphine with glycyrrhizin (GL, an HMGB1 inhibitor) or HMGB1 siRNA prevented reduction of the maximal possible analgesic effect (MPAE) of morphine and alleviated morphine withdrawal-induced hyperalgesia. The established morphine tolerance and hyperalgesia were partially reversed when i.t. injections of GL or HMGB1 antibody started at day 7 of morphine injection. Repeated i.t. injections of morphine with HMGB1 siRNA inhibited the activation of NF-κB, but not that of JNK and p38. A single i.t. injection of HMGB1 in naïve rats caused pain-related hypersensitivity and reduction in MPAE. Moreover, phosphorylated NF-κB p65, TNF-α, and IL-1β levels in the dorsal horn were upregulated following this treatment, but this upregulation was prevented by coinjection with TAK-242. Together, these results suggest that morphine-mediated upregulation of spinal HMGB1 contributes to analgesic tolerance and hyperalgesia via activation of TLR4/NF-κB signaling, and the HMGB1 inhibitor might be a promising adjuvant to morphine in the treatment of intractable pain in the clinic.
Collapse
Affiliation(s)
- Junliang Qian
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yanan Zhu
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China
| | - Liying Bai
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China
| | - Mingjun Jiang
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China
| | - Fei Xing
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Jian Zhang
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China
| | - Wenchao Zhao
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China
| | - Hanwen Gu
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Yang Mi
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, 100 Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
27
|
|
28
|
Assessment of anti-nociceptive effect of allopurinol in a neuropathic pain model. Brain Res 2019; 1720:146238. [DOI: 10.1016/j.brainres.2019.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
|
29
|
The mitochondrial calcium uniporter contributes to morphine tolerance through pCREB and CPEB1 in rat spinal cord dorsal horn. Br J Anaesth 2019; 123:e226-e238. [PMID: 31253357 DOI: 10.1016/j.bja.2019.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The long-term use of opioid analgesics is limited by the development of unwanted side-effects, such as tolerance. The molecular mechanisms of morphine anti-nociceptive tolerance are still unclear. The mitochondrial calcium uniporter (MCU) is involved in painful hyperalgesia, but the role of MCU in morphine tolerance has not been uncharacterised. METHODS Rats received intrathecal injection of morphine for 7 days to induce morphine tolerance. The mechanical withdrawal threshold was measured using von Frey filaments, and thermal latency using the hotplate test. The effects of an MCU inhibitor, antisense oligodeoxynucleotide against cyclic adenosine monophosphate response element (CRE)-binding protein (CREB) or cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in morphine tolerance were examined. RESULTS Spinal morphine tolerance was associated with an increased expression of neuronal MCU, phospho-CREB (pCREB), and CPEB1 in the spinal cord dorsal horn. MCU inhibition increased the mechanical threshold and thermal latency, and reduced the accumulation of mitochondrial calcium in morphine tolerance. Intrathecal antisense oligodeoxynucleotide against CREB or CPEB1 restored the anti-nociceptive effects of morphine compared with mismatch oligodeoxynucleotide in von Frey test and hotplate test. Chromatin immunoprecipitation with quantitative PCR assay showed that CREB knockdown reduced the interaction of pCREB with the ccdc109a gene (encoding MCU expression) promoter and decreased the MCU mRNA transcription. RNA immunoprecipitation assay suggested that CPEB1 binds to the MCU mRNA 3' untranslated region. CPEB1 knockdown decreased the expression of MCU protein. CONCLUSIONS These findings suggest that spinal MCU is regulated by pCREB and CPEB1 in morphine tolerance, and that inhibition of MCU, pCREB, or CPEB1 may be useful in preventing the development of opioid tolerance.
Collapse
|
30
|
Ghanavatian S, Wie CS, Low RS, Butterfield RJ, Zhang N, Dhaliwal GS, Montoya JM, Swanson DL. Parameters associated with efficacy of epidural steroid injections in the management of postherpetic neuralgia: the Mayo Clinic experience. J Pain Res 2019; 12:1279-1286. [PMID: 31118750 PMCID: PMC6503501 DOI: 10.2147/jpr.s190646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2019] [Indexed: 12/04/2022] Open
Abstract
Purpose: Thirty percent of patients with postherpetic neuralgia (PHN) receiving conservative treatment report unsatisfactory pain relief. Epidural steroid injections (ESIs) are commonly used as a therapeutic intervention in these patients. In this study, we aimed to determine if there are variables that predict the efficacy of ESI in patients with PHN. Patients and methods: We retrospectively identified patients seen at Mayo Clinic who had PHN and received ESI. From their medical records, we abstracted the demographic variables, concurrent medication use, anatomic approach and medication for ESI, and degree of pain relief at 2 and 12 weeks' postintervention. Results: None of the studied variables were significantly associated with efficacy of ESI in patients with PHN. PHN that began <11 months before treatment was predictive of a response to ESI at 12 weeks postintervention (positive predictive value, 55%). Patients who reported poor ESI efficacy 2 weeks after the intervention had a 94% chance of still having pain at 12 weeks. Conclusion: For this cohort of patients with PHN being treated with ESI, no demographic characteristics, concurrently used medications, or type of ESI were associated with ESI treatment efficacy at 2 or 12 weeks after the intervention.
Collapse
Affiliation(s)
| | - Christopher S Wie
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - Rhonda S Low
- Division of Preventive, Occupational, and Aerospace Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Nan Zhang
- Biostatistics, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | |
Collapse
|
31
|
The Emerging Perspective of Morphine Tolerance: MicroRNAs. Pain Res Manag 2019; 2019:9432965. [PMID: 31182985 PMCID: PMC6515020 DOI: 10.1155/2019/9432965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Morphine has unfavorable side effects including analgesic tolerance. Morphine tolerance counteracts analgesic efficacy and drives dose escalation. The mechanisms underlying morphine tolerance remain disputed, which has prevented the development of therapies to maximize and sustain analgesic efficacy. Morphine tolerance is an adaptive process induced by chronic morphine that has been shown to result from complex alterations at the molecular level with μ opioid receptors (MORs), as well as at the synaptic, cellular, and circuit levels. MicroRNAs are noncoding RNAs that have been proposed to regulate gene expression and degradation at the posttranscriptional level, including the MOR, as well as synaptic plasticity and neuroplasticity, in both the peripheral and central nervous systems. This review covers some of the most striking microRNA functions involved in morphine tolerance and presents limitations on our knowledge of their physiological roles.
Collapse
|
32
|
Ruan J, Chen L, Ma Z. Activation of spinal Extacellular Signal‐Regulated Kinases and c‐jun N‐terminal kinase signaling pathways contributes to morphine‐induced acute and chronic hyperalgesia in mice. J Cell Biochem 2019; 120:15045-15056. [PMID: 31016764 DOI: 10.1002/jcb.28766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Jia‐Ping Ruan
- Department of Anesthesiology Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing Jiangsu China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Ling Chen
- Laboratory of Reproductive Medicine Nanjing Medical University Nanjing Jiangsu China
| | - Zheng‐liang Ma
- Department of Anesthesiology Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
33
|
Analgesic tolerance induced by repeated morphine injections induces cross-tolerance to the analgesic effect of orexin-A in rats. Neuroreport 2019; 29:224-228. [PMID: 29293172 DOI: 10.1097/wnr.0000000000000964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Repeated administration of morphine or orexin-A produces tolerance to their antinociceptive effects. We investigated the possible incidence of cross-tolerance between orexin-A and morphine. Adult male Sprague-Dawley rats (200-250 g) were used. Under deep anesthesia, a stereotaxic apparatus was used to implant a 23 G cannula into the lateral ventricle for an intracerebroventricular (ICV) microinjection. The antinociceptive effect of three different doses of orexin-A (5, 20, and 40 µM; dissolved in 5 µl sterile saline; ICV) was examined using the hot-plate test at 15, 30, 60, and 90 min after infusion. To evaluate tolerance, orexin-A (20 µM; ICV) or morphine (10 mg/kg; intraperitoneal) was administered for 7 consecutive days (twice per day) and the analgesic response was assessed at days 1, 4, and 7. Cross-tolerance was investigated at day 8 with a single injection of morphine (10 mg/kg; intraperitoneal) to the repeated orexin-A group and a single microinjection of orexin-A (20 µM; ICV) to the repeated morphine group. Analgesic responses were then examined. Administration of both orexin-A and morphine produced significant antinociception at day 1 (P<0.001 compared with the saline group). However, a significant reduction in the analgesic effects of both morphine and orexin-A appeared at day 7, following repeated administration (P<0.01). Orexin-A microinjection at day 8 in the repeated morphine group did not result in significant antinociception (P>0.05), whereas morphine injection in the repeated orexin-A group at day 8 showed a significant analgesic effect (P<0.001). These results indicate cross-tolerance to the analgesic effect of orexin-A following morphine tolerance.
Collapse
|
34
|
Daneshparvar H, Sadat-Shirazi MS, Fekri M, Khalifeh S, Ziaie A, Esfahanizadeh N, Vousooghi N, Zarrindast MR. NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study. Eur Arch Psychiatry Clin Neurosci 2019; 269:309-315. [PMID: 29766293 DOI: 10.1007/s00406-018-0900-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Addiction is a chronic relapsing disorder and is one of the most important issues in the world. Changing the level of neurotransmitters and the activities of their receptors, play a major role in the pathophysiology of substance abuse disorders. It is well-established that N-methyl-D-aspartate receptors (NMDARs) play a significant role in the molecular basis of addiction. NMDAR has two obligatory GluN1 and two regionally localized GluN2 subunits. This study investigated changes in the protein level of GluN1, GluN2A, and GluN2B in the prefrontal cortex of drug abusers. The medial prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), and orbitofrontal cortex (OFC) were dissected from the brain of 101 drug addicts brains and were compared with the brains of non-addicts (N = 13). Western blotting technique was used to show the alteration in NMDAR subunits level. Data obtained using Western blotting technique showed a significant increase in the level of GluN1 and GluN2B, but not in GluN2A subunits in all the three regions (mPFC, lPFC, and OFC) of men whom suffered from addiction as compared to the appropriate controls. These findings showed a novel role for GluN1, GluN2B subunits, rather than the GluN2A subunit of NMDARs, in the pathophysiology of addiction and suggested their role in the drug-induced plasticity of NMDARs.
Collapse
Affiliation(s)
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Monir Fekri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience research Center (CNRC), Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | - Nasrin Esfahanizadeh
- Department of Periodontics, Tehran Dental Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Vousooghi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Low-dose ketamine infusion reduces postoperative hydromorphone requirements in opioid-tolerant patients following spinal fusion. Eur J Anaesthesiol 2019; 36:8-15. [DOI: 10.1097/eja.0000000000000877] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Zhang J, Wang Y, Qi X. Systemic Rapamycin Attenuates Morphine-Induced Analgesic Tolerance and Hyperalgesia in Mice. Neurochem Res 2018; 44:465-471. [DOI: 10.1007/s11064-018-2699-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
37
|
Dalgarno R, Leduc-Pessah H, Pilapil A, Kwok CH, Trang T. Intrathecal delivery of a palmitoylated peptide targeting Y382-384 within the P2X7 receptor alleviates neuropathic pain. Mol Pain 2018; 14:1744806918795793. [PMID: 30146934 PMCID: PMC6111392 DOI: 10.1177/1744806918795793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pain hypersensitivity resulting from peripheral nerve injury depends on
pathological microglial activation in the dorsal horn of the spinal cord. This
microglial activity is critically modulated by P2X7 receptors (P2X7R) and ATP
stimulation of these receptors produces mechanical allodynia, a defining feature
of neuropathic pain. Peripheral nerve injury increases P2X7R expression and
potentiates its cation channel function in spinal microglia. Here, we report a
means to preferentially block the potentiation of P2X7R function by delivering a
membrane permeant small interfering peptide that targets Y382-384, a
putative tyrosine phosphorylation site within the P2X7R intracellular C-terminal
domain. Intrathecal administration of this palmitoylated peptide
(P2X7R379-389) transiently reversed mechanical allodynia caused
by peripheral nerve injury in both male and female rats. Furthermore, targeting
Y382-384 suppressed P2X7R-mediated release of cytokine tumor
necrosis factor alpha and blocked the adoptive transfer of mechanical allodynia
caused by intrathecal injection of P2X7R-stimulated microglia. Thus,
Y382-384 site-specific modulation of P2X7R is an important
microglial mechanism in neuropathic pain.
Collapse
Affiliation(s)
- Rebecca Dalgarno
- 1 Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,2 Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Heather Leduc-Pessah
- 1 Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,2 Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra Pilapil
- 1 Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,2 Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Charlie Ht Kwok
- 1 Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,2 Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tuan Trang
- 1 Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,2 Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,3 Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Evaluation of Immunomodulatory and Hematologic Cell Outcome in Heroin/Opioid Addicts. JOURNAL OF ADDICTION 2018; 2018:2036145. [PMID: 30631635 PMCID: PMC6304569 DOI: 10.1155/2018/2036145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 01/16/2023]
Abstract
The long-term use of opioids leads alternations in both innate-adaptive immune systems and other diagnostic hematologic cells. The purpose of this study is to evaluate the alterations of these parameters in patients with heroin/opioid addictions. Adults, meeting the Fifth Edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria of the American Psychiatric Association regarding opioid use disorder (Heroin Group or HG, n = 51) and healthy controls (Control Group or CG, n = 50), were included in the study. All hematological parameters, inflammation indexes (neutrophil-lymphocyte ratio and platelet-lymphocyte ratio), and iron panel were compared with the controls. Mean corpuscular volume, red blood cell distribution width, mean corpuscular hemoglobin content, unsaturated iron-binding capacity, and total iron-binding capacity were significantly higher in HG compared to CG, while red blood cell count, hemoglobin, hematocrit, and serum iron levels were significantly lower. Additionally, platelet and platelet distribution width were significantly high while mean platelet volume was low in HG. Regarding the parameters related to immunity, white blood cell, neutrophil count, and neutrophil percentage were significantly high while lymphocyte percentage and basophils count were significantly low. Besides, inflammatory indexes were significantly higher in HG compared to CG. Intravenous administration of heroin resulted in lower levels of hemoglobin, hematocrit, and mean corpuscular volume than inhalation and intranasal administration. Our data demonstrated that chronic use of opioids is related to all of the hematologic series. The chronic use of opioid alters the immunologic balance in favor of innate immunity cells and changes the hematometric/morphometric characteristics of erythrocytes. What is more, the route of heroin administration should be taken into consideration as well. This study may lead to a better understanding of the hematological effects of heroin/opioid use in patients with relevant addictions.
Collapse
|
39
|
Gauvin DV, Zimmermann ZJ, Baird TJ. In further defense of nonclinical abuse liability testing of biologics. Regul Toxicol Pharmacol 2018; 101:103-120. [PMID: 30465804 DOI: 10.1016/j.yrtph.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023]
Abstract
Risk assessment is not a choice. Drug Abuse Liability (DAL) is mandated under international and national drug control statutes for all drugs targeting the CNS. Once administered to humans many biologics may have long-lived or permanent physiological effects that make DAL testing arduous. We respond to premises of a recently published position on DAL testing of biologics by de Zafra et al. (2018). We propose that, at a minimum, Sponsors submitting a Biologics Licensure Application (BLA) must think "outside the box" and include differential study designs for the same three core small NME assays detailed in the current DAL guidelines (self-administration, drug discrimination, and dependence liability). Abuse liability testing for drug scheduling decisions for marketing approval are not excluded or limited from risk assessment analysis simply because the entity is a biologic. In fact, more robust study designs may be necessary to address alterations in the reinforcing and discriminative stimulus effects of common drugs of abuse, as well as the dependence liability of the biologic, itself.
Collapse
|
40
|
Rashki A, Mumtaz F, Jazayeri F, Shadboorestan A, Esmaeili J, Ejtemaei Mehr S, Ghahremani MH, Dehpour AR. Cyclosporin A attenuating morphine tolerance through inhibiting NO/ERK signaling pathway in human glioblastoma cell line: the involvement of calcineurin. EXCLI JOURNAL 2018; 17:1137-1151. [PMID: 30713473 PMCID: PMC6341459 DOI: 10.17179/excli2018-1693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/06/2018] [Indexed: 12/16/2022]
Abstract
Cyclosporin A (CsA) is known to have an immunosuppressive action. However, it is also attracting attention due to its effects on the nervous system, such as inhibiting the development and expression of morphine-induced tolerance and dependence through unknown mechanisms. It has been shown that CsA modulates the nitric oxide (NO) synthesis and extracellular signal-regulated kinases (ERK) activation, which are potentially involved in signaling pathways in morphine-induced tolerance in cellular models. Therefore, the current study was designed to evaluate the modulatory role of CsA on the MOR tolerance, by targeting the downstream signaling pathway of NO and ERK using an in vitro model. For this purpose, T98G cells were pretreated with CsA, calcineurin autoinhibitory peptide (CAIP), and NG-nitro-l-arginine methyl ester (L-NAME) 30 min before 18 h exposure to MOR. Then, we analyzed the intracellular cyclic adenosine monophosphate (cAMP) levels and also the expression of phosphorylated ERK and nitric oxide synthase (nNOS) proteins. Our results showed that CsA (1 nM, 10 nM, and 100 nM) and CAIP (50 µM) have significantly reduced cAMP and nitrite levels as compared to MOR-treated (2.5 µM) T98G cells. This clearly revealed the attenuation of MOR tolerance by CsA. The expression of nNOS and p-ERK proteins were down-regulated when the T98G cells were pretreated with CsA (1 nM, 10 nM, and 100 nM), CAIP (50 µM), and L-NAME (0.1 mM) as compared to MOR. In conclusion, the CsA pretreatment had a modulatory role in MOR-induced tolerance, which was possibly mediated through NO/ERK signaling pathway.
Collapse
Affiliation(s)
- Asma Rashki
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Jazayeri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamileh Esmaeili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Kuthati Y, Lin SH, Chen IJ, Wong CS. Melatonin and their analogs as a potential use in the management of Neuropathic pain. J Formos Med Assoc 2018; 118:1177-1186. [PMID: 30316678 DOI: 10.1016/j.jfma.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), secreted by the pineal gland is known to perform multiple functions including, antioxidant, anti-hypertensive, anti-cancerous, immunomodulatory, sedative and tranquilizing functions. Melatonin is also known to be involved in the regulation of body mass index, control the gastrointestinal system and play an important role in cardioprotection, thermoregulation, and reproduction. Recently, several studies have reported the efficacy of Melatonin in treating various pain syndromes. The current paper reviews the studies on Melatonin and its analogs, particularly in Neuropathic pain. Here, we first briefly summarized research in preclinical studies showing the possible mechanisms through which Melatonin and its analogs induce analgesia in Neuropathic pain. Second, we reviewed research indicating the role of Melatonin in attenuating analgesic tolerance. Finally, we discussed the recent studies that reported novel Melatonin agonists, which were proven to be effective in treating Neuropathic pain.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Sheng-Hsiung Lin
- Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan; Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan; Institute of Medical Sciences, National Defense Medical Center, Taiwan; Department of Anesthesiology, Tri-Service General Hospital, Taiwan.
| |
Collapse
|
42
|
Rojewska E, Wawrzczak-Bargiela A, Szucs E, Benyhe S, Starnowska J, Mika J, Przewlocki R, Przewlocka B. Alterations in the Activity of Spinal and Thalamic Opioid Systems in a Mice Neuropathic Pain Model. Neuroscience 2018; 390:293-302. [DOI: 10.1016/j.neuroscience.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/29/2023]
|
43
|
Li S, Zeng J, Wan X, Yao Y, Zhao N, Yu Y, Yu C, Xia Z. Enhancement of spinal dorsal horn neuron NMDA receptor phosphorylation as the mechanism of remifentanil induced hyperalgesia: Roles of PKC and CaMKII. Mol Pain 2018; 13:1744806917723789. [PMID: 28714352 PMCID: PMC5549877 DOI: 10.1177/1744806917723789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Modulation of N-methyl-D-aspartate receptor subunits NR1 and NR2 through phosphorylation mediates opioid-induced hyperalgesia, and activations of protein kinase C and extracellular signal-regulated kinase 1/2 potentiate while activation of calcium/calmodulin-dependent protein kinase II inhibits opioid-induced hyperalgesia. However, the mechanism of opioid-induced hyperalgesia development and in particular the potential interplay between N-methyl-D-aspartate receptors and protein kinase C or calcium/calmodulin-dependent protein kinase II or extracellular signal-regulated kinase 1/2 in the development of remifentanil-induced hyperalgesia is unclear. Methods Remifentanil (1 µg ċ kg−1 ċ min−1) was given intravenously over 60 min in rats, followed by the infusion of either vehicle solution or the respective inhibitors of protein kinase C (chelerythrine), extracellular signal-regulated kinase II (KN93), or extracellular signal-regulated kinase 1/2 (PD98059). Thereafter, the pain behaviors were evaluated by the paw withdrawal mechanical threshold and paw withdrawal thermal latency. In in vitro studies, fetal spinal cord dorsal horn neurons were primary cultured in the presence of 4 nM remifentanil for 60 min, and then the remifentanil was washed out and replaced immediately by culturing in the absence or presence of chelerythrine, KN93 or PD98059, respectively for up to 8 h. The expressions of N-methyl-D-aspartate receptors subunits and their phosphorylation (NR1, NR2B, p-NR1, p-NR2B) were analyzed by Western blotting after the completion of treatments. Functional changes of N-methyl-D-aspartate receptors were evaluated by electrophysiologic recordings of N-methyl-D-aspartate currents. Results Remifentanil induced significant thermal and mechanical hyperalgesia, which were significantly attenuated by Chelerythrine or KN93 but not PD98059. The expressions of NR1, NR2B, p-NR1, and p-NR2B were increased significantly and progressively over time after remifentanil administration, and these increases were all significantly attenuated by either chelerythrine or KN93 but not PD98059. Intriguingly, N-methyl-D-aspartate receptor functional enhancement induced by remifentanil was attenuated by Chelerythrine, KN93, and PD98059. Conclusions It is concluded that the enhancements in function and quantity of N-methyl-D-aspartate receptor via phosphorylation of its subunits through protein kinase C and calcium/calmodulin-dependent protein kinase II activation may represent the major mechanism whereby remifentanil induced hyperalgesia.
Collapse
Affiliation(s)
- Sisi Li
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Wan
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ying Yao
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Nan Zhao
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yujia Yu
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
44
|
Kononenko O, Mityakina I, Galatenko V, Watanabe H, Bazov I, Gerashchenko A, Sarkisyan D, Iatsyshyna A, Yakovleva T, Tonevitsky A, Marklund N, Ossipov MH, Bakalkin G. Differential effects of left and right neuropathy on opioid gene expression in lumbar spinal cord. Brain Res 2018; 1695:78-83. [DOI: 10.1016/j.brainres.2018.05.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
|
45
|
Abstract
Back pain is a common health problem that reduces the quality of life for human beings worldwide. Several treatment modalities have been reported as effective for pain relief. Generally, patients often undergo surgical interventions as pain becomes intractable, after conservative treatment. With advances in surgical techniques, those choosing spinal surgery as an option have increased over time, and instrumentation is more popular than it was years ago. However, some patients still have back pain after spinal operations. The number of patients classified as having failed back surgery syndrome (FBSS) has increased over time as has the requirement for patients receiving long-term analgesics. Because pain relief is regarded as a human right, narcotics were prescribed more frequently than before. Narcotic addiction in patients with FBSS has become an important issue. Here, we review the prevalence of FBSS, the mechanism of narcotic addiction, and their correlations. Additionally, several potentially effective strategies for the prevention and treatment of narcotic addiction in FBSS patients are evaluated and discussed.
Collapse
Affiliation(s)
- Yuan-Chuan Chen
- 1 Program in Comparative Biochemistry, University of California, Berkeley, CA, USA.,2 National Applied Research Laboratories, Taipei, Taiwan
| | - Ching-Yi Lee
- 3 Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan.,4 Department of Medicine, Mackay Medicine College, New Taipei City, Taiwan
| | - Shiu-Jau Chen
- 3 Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan.,4 Department of Medicine, Mackay Medicine College, New Taipei City, Taiwan
| |
Collapse
|
46
|
García-Henares JF, Moral-Munoz JA, Salazar A, Del Pozo E. Effects of Ketamine on Postoperative Pain After Remifentanil-Based Anesthesia for Major and Minor Surgery in Adults: A Systematic Review and Meta-Analysis. Front Pharmacol 2018; 9:921. [PMID: 30174603 PMCID: PMC6107835 DOI: 10.3389/fphar.2018.00921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/26/2018] [Indexed: 01/22/2023] Open
Abstract
Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been postulated as an adjuvant analgesic for preventing remifentanil-induced hyperalgesia after surgery. This systematic review and meta-analysis aims to assess the effectiveness of ketamine [racemic mixture and S-(+)-ketamine] in reducing morphine consumption and pain intensity scores after remifentanil-based general anesthesia. We performed a literature search of the PubMed, Web of Science, Scopus, Cochrane, and EMBASE databases in June 2017 and selected randomized controlled trials using predefined inclusion and exclusion criteria. To minimize confounding and heterogeneity, studies of NMDA receptor antagonists other than ketamine were excluded and the selected studies were grouped into those assessing minor or major surgery. Methodological quality was evaluated with the PEDro and JADA scales. The data were extracted and meta-analyses were performed where possible. Twelve RCTs involving 156 adults who underwent minor surgery and 413 adults who underwent major surgery were included in the meta-analysis. When used as an adjuvant to morphine, ketamine reduced postoperative morphine consumption in the first 24 h and postoperative pain intensity in the first 2 h in the minor and major surgery groups. It was also associated with significantly reduced pain intensity in the first 24 h in the minor surgery group. Time to the first rescue analgesia was longer in patients who received ketamine and underwent major surgery. No significant differences in the incidence of ketamine-related adverse effects were observed among patients in the intervention group and controls. This systematic review and meta-analysis show that low-dose (≤0.5 mg/kg for iv bolus or ≤5 μg/kg/min for iv perfusion) of ketamine reduces postoperative morphine consumption and pain intensity without increasing the incidence of adverse effects.
Collapse
Affiliation(s)
| | - Jose A. Moral-Munoz
- Department of Nursing and Physiotherapy, University of Cádiz, Cádiz, Spain
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA) University of Cádiz, Cádiz, Spain
| | - Alejandro Salazar
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA) University of Cádiz, Cádiz, Spain
- Preventive Medicine and Public Health Area, University of Cádiz, Cádiz, Spain
- The Observatory of Pain (External Chair of Pain), University of Cádiz, Cádiz, Spain
| | - Esperanza Del Pozo
- Department of Pharmacology, Faculty of Medicine, Institute of Neurosciences, Biomedical Research Institute Granada, University of Granada, Granada, Spain
| |
Collapse
|
47
|
Abstract
Neuropathic pain is a common health problem that affects millions of people worldwide. Despite being studied extensively, the cellular and molecular events underlying the central immunomodulation and the pathophysiology of neuropathic pain is still controversial. The idea that 'glial cells are merely housekeepers' is incorrect and with respect to initiation and maintenance of neuropathic pain, microglia and astrocytes have important roles to play. Glial cells differentially express opioid receptors and are thought to be functionally modulated by the activation of these receptors. In this review, we discuss evidence for glia-opioid modulation of pain by focusing on the pattern of astrocyte and microglial activation throughout the progress of nerve injury/neuropathic pain. Activation of astrocytes and microglia is a key step in central immunomodulation in terms of releasing pro-inflammatory markers and propagation of a 'central immune response'. Inhibition of astrocytes before and after induction of neuropathic pain has been found to prevent and reverse neuropathic pain, respectively. Moreover, microglial inhibitors have been found to prevent (but not to reverse) neuropathic pain. As they are expressed by glia, opioid receptors are expected to have a role to play in neuropathic pain.
Collapse
|
48
|
Rizvi SMT, Lam P, Murrell GAC. Repair Integrity in Patients Returning for an Unscheduled Visit After Arthroscopic Rotator Cuff Repair: Retorn or Not? Orthop J Sports Med 2018; 6:2325967118775061. [PMID: 29888295 PMCID: PMC5989050 DOI: 10.1177/2325967118775061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background After rotator cuff repair, some patients have ongoing problems significant enough to warrant presentation to a clinic for reassessment. Purpose/Hypothesis The purpose of this study was to determine whether this cohort of patients was more likely to have a healed rotator cuff. We hypothesized that patients who had an unscheduled postoperative visit were more likely to have a healed rotator cuff than those who did not have an unscheduled postoperative visit. Study Design Cohort study; Level of evidence, 3. Methods A total of 321 consecutive patients who underwent arthroscopic rotator cuff repair were evaluated; of these, 50 patients had an unscheduled return to clinic that included an ultrasound assessment of the cuff repair within 4 months postoperatively. Repair integrity was evaluated in all patients at 6 months postoperatively via ultrasonography. Results The failure-to-heal rate was greater in patients who had an unscheduled assessment (8/50; 16%) than in those who did not (14/275; 5%) (P = .01). The patients most likely to have a repair failure were those who were assessed before 2 weeks and after 12 weeks (7/18; 39%) compared with those who were assessed between 3 and 12 weeks (1/32; 3%) (P = .001). The failure-to-heal rate was very low in patients who had an unscheduled assessment with a tear size smaller than 4 cm2 (0/34; 0%) compared with those with tear sizes greater than 4 cm2 (8/16; 50%) (P < .0001, Fisher exact text). Conclusion Patients who had an unscheduled clinic visit after rotator cuff repair had a 16% chance of a failed healing response, whereas those who did not have an unscheduled visit had a 5% rate of failed healing. The risk of a failed healing response was greater if the tear was larger than 4 cm2, if patients presented within 2 weeks following surgery, or if they presented after 12 weeks postsurgery.
Collapse
Affiliation(s)
| | - Patrick Lam
- Department of Orthopaedic Surgery, St George Hospital, Kogarah, NSW, Australia
| | - George A C Murrell
- Department of Orthopaedic Surgery, St George Hospital, Kogarah, NSW, Australia
| |
Collapse
|
49
|
Zhai ML, Chen Y, Liu C, Wang JB, Yu YH. Spinal glucocorticoid receptor‑regulated chronic morphine tolerance may be through extracellular signal‑regulated kinase 1/2. Mol Med Rep 2018; 18:1074-1080. [PMID: 29845273 DOI: 10.3892/mmr.2018.9057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Opioid use has been limited in the treatment of chronic pain due to their side effects, including analgesic tolerance. Previous studies demonstrated that glucocorticoid receptors (GRs) may be involved in the development of chronic morphine tolerance; however, the mechanism remains unknown. It was hypothesized that the expression of spinal phosphorylated mitogen‑activated protein kinase [MAPK; phosphorylated extracellular signal‑regulated kinase (ERK)] is regulated through the spinal GRs, following chronic treatment with morphine. In the first experiment, the experimental rats were randomly divided into four groups: Control, morphine, morphine+GR antagonist mifepristone (RU38486) and morphine+GR agonist dexamethasone (Dex). Each group was treated with continuous intrathecal (IT) injection of the drugs for 6 days. The expression of GRs and MAPK 3/1 (p‑ERK 1/2) in the spinal dorsal horn was detected by western blot analysis and immunofluorescence staining. In the second experiment, the MAPK inhibitor PD98059 was added and the rats were randomly divided into four groups: Control, morphine, PD98059+morphine and PD98059+morphine+Dex. The continuous IT injection lasted for 7 days in each group. For all experiments, the tail flick test was conducted 30 min following administration every day to assess the thermal hyperalgesia of the rats. The experimental results demonstrated that there was a co‑existence of GRs and p‑ERK 1/2 in the spinal cord dorsal horn by double immunofluorescence staining. The GR antagonist RU38486 attenuated the morphine analgesia tolerance by inhibiting the expression of GR and increasing the expression of p‑ERK. The MAPK inhibitor PD98059 increased the effect of morphine tolerance and prolonged the duration of morphine tolerance. The present results suggest that spinal GRs may serve an important role in the development of morphine tolerance through the ERK signaling pathway.
Collapse
Affiliation(s)
- Mei-Li Zhai
- Department of Anesthesiology, Tianjin Center Obstetrics and Gynecology Hospital, Central Obstetrics and Gynecology Hospital of Nankai University, Tianjin 300100, P.R. China
| | - Yi Chen
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Chong Liu
- Department of Anesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, P.R. China
| | - Jian-Bo Wang
- Department of Anesthesiology, Tianjin Center Obstetrics and Gynecology Hospital, Central Obstetrics and Gynecology Hospital of Nankai University, Tianjin 300100, P.R. China
| | - Yong-Hao Yu
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| |
Collapse
|
50
|
He XT, Zhou KX, Zhao WJ, Zhang C, Deng JP, Chen FM, Gu ZX, Li YQ, Dong YL. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats. Front Pharmacol 2018; 9:509. [PMID: 29867508 PMCID: PMC5962808 DOI: 10.3389/fphar.2018.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 01/21/2023] Open
Abstract
The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|