1
|
Alyami EM, Tarar A, Peng CA. Less phagocytosis of viral vectors by tethering with CD47 ectodomain. J Mater Chem B 2021; 10:64-77. [PMID: 34846059 DOI: 10.1039/d1tb01815a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many viral vectors, which are effective when administrated in situ, lack efficacy when delivered intravenously. The key reason for this is the rapid clearance of the viruses from the blood circulation via the immune system before they reach target sites. Therefore, avoiding their clearance by the immune system is essential. In this study, lentiviral vectors were tethered with the ectodomain of self-marker protein CD47 to suppress phagocytosis via interacting with SIRPα on the outer membrane of macrophage cells. CD47 ectodomain and core-streptavidin fusion gene (CD47ED-coreSA) was constructed into pET-30a(+) plasmid and transformed into Lemo21 (DE3) competent E. coli cells. The expressed CD47ED-coreSA chimeric protein was purified by cobalt-nitrilotriacetate affinity column and characterized by SDS-PAGE and western blot. The purified chimeric protein was anchored on biotinylated lentivirus via biotin-streptavidin binding. The CD47ED-capped lentiviruses encoding GFP were used to infect J774A.1 macrophage cells to assess the impact on phagocytosis. Our results showed that the overexpressed CD47ED-coreSA chimeric protein was purified and bound on the surface of biotinylated lentivirus which was confirmed via immunoblotting assay. The process to produce biotinylated lentivirus did not affect native viral infectivity. It was shown that the level of GFP expression in J774A.1 macrophages transduced with CD47ED-lentiviruses was threefold lower in comparison to control lentiviruses, indicating an antiphagocytic effect triggered by the interaction of CD47ED and SIRPα. Through the test of blocking antibodies against CD47ED and/or SIRPα, it was confirmed that the phagocytosis inhibition was mediated through the CD47ED-SIRPα axis signaling. In conclusion, surface immobilization of CD47ED on lentiviral vectors inhibits their phagocytosis by macrophages. The chimeric protein of CD47 ectodomain and core-streptavidin is effective in mediating the surface binding and endowing the lentiviral nanoparticles with the antiphagocytic property.
Collapse
Affiliation(s)
- Esmael M Alyami
- Department of Chemical and Biological Engineering, University of Idaho, Engineering Physics Building 410, 875 Perimeter Drive, Moscow, ID 83844-0904, USA.
| | - Ammar Tarar
- Department of Chemical and Biological Engineering, University of Idaho, Engineering Physics Building 410, 875 Perimeter Drive, Moscow, ID 83844-0904, USA.
| | - Ching-An Peng
- Department of Chemical and Biological Engineering, University of Idaho, Engineering Physics Building 410, 875 Perimeter Drive, Moscow, ID 83844-0904, USA.
| |
Collapse
|
2
|
Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1545. [PMID: 30411529 PMCID: PMC6461522 DOI: 10.1002/wnan.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces. Synthetic virology takes an engineering approach, modifying the virus capsid through rational, combinatorial, and bioinformatics-driven design strategies. Advances in these three subfields of virology aim to develop virus-based materials and tools that can be applied to solve critical problems in biomedicine and biotechnology, including applications in gene therapy and drug delivery, diagnostics, and immunotherapy. Examples discussed include mammalian viruses, such as adeno-associated virus (AAV), plant viruses, such as cowpea mosaic virus (CPMV), and bacterial viruses, such as Qβ bacteriophage. Importantly, research efforts in physical, chemical, and synthetic virology have further unraveled the design principles foundational to the form and function of viruses. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | - Susan S Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
3
|
Devarajan K, Forrest ML, Detamore MS, Staecker H. Adenovector-mediated gene delivery to human umbilical cord mesenchymal stromal cells induces inner ear cell phenotype. Cell Reprogram 2013; 15:43-54. [PMID: 23379581 DOI: 10.1089/cell.2011.0097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hearing is one of our main sensory systems and having a hearing disorder can have a significant impact in an individual's quality of life. Sensory neural hearing loss (SNHL) is the most common form of hearing loss; it results from the degeneration of inner ear sensory hair cells and auditory neurons in the cochlea, cells that are terminally differentiated. Stem cell-and gene delivery-based strategies provide an opportunity for the replacement of these cells. In recent years, there has been an increasing interest in gene delivery to mesenchymal stem cells. In this study, we evaluated the potential of human umbilical cord mesenchymal stromal cells (hUCMSCs) as a possible source for regenerating inner ear hair cells. The expression of Atoh1 induced the differentiation of hUCMSCs into cells that resembled inner ear hair cells morphologically and immunocytochemically, evidenced by the expression of hair cell-specific markers. The results demonstrated for the first time that hUCMSCs can differentiate into hair cell-like cells, thus introducing a new potential tissue engineering and cell transplantation approach for the treatment of hearing loss.
Collapse
|
4
|
Directional gene-transfer into the brain by an adenoviral vector tagged with magnetic nanoparticles. J Neurosci Methods 2011; 194:316-20. [DOI: 10.1016/j.jneumeth.2010.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 11/24/2022]
|
5
|
Strategy for treating motor neuron diseases using a fusion protein of botulinum toxin binding domain and streptavidin for viral vector access: work in progress. Toxins (Basel) 2010; 2:2872-89. [PMID: 22069580 PMCID: PMC3153189 DOI: 10.3390/toxins2122872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 12/12/2022] Open
Abstract
Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors.
Collapse
|
6
|
Lesch HP, Kaikkonen MU, Pikkarainen JT, Ylä-Herttuala S. Avidin-biotin technology in targeted therapy. Expert Opin Drug Deliv 2010; 7:551-64. [PMID: 20233034 DOI: 10.1517/17425241003677749] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The goal of drug targeting is to increase the concentration of the drug in the vicinity of the cells responsible for disease without affecting healthy cells. Many approaches in cancer treatment are limited because of their broad range of unwanted side effects on healthy cells. Targeting can reduce side effects and increase efficacy of drugs in the patient. AREAS COVERED IN THIS REVIEW Avidin, originally isolated from chicken eggs, and its bacterial analogue, streptavidin, from Streptomyces avidinii, have extremely high affinity for biotin. This unique feature is the basis of avidin-biotin technology. This article reviews the current status of avidin-biotin systems and their use for pretargeted drug delivery and vector targeting. WHAT THE READER WILL GAIN The reader will gain an understanding of the following approaches using the avidin-biotin system: i) targeting antibodies and therapeutic molecules are administered separately leading to a reduction of drug dose in normal tissues compared with conventional (radio)immunotherapies; ii) introducing avidin gene into specific tissues by local gene transfer, which subsequently can sequester and concentrate considerable amounts of therapeutic ligands; and iii) enabling transductional targeting of gene therapy vectors. TAKE HOME MESSAGE Avidin and biotin technology has proved to be an extremely versatile tool with broad applications, such as pretargeting, delivering avidin gene into cells enabling targeting of biotinylated compounds and targeting of viral vectors.
Collapse
Affiliation(s)
- Hanna P Lesch
- University of Eastern Finland, A.I. Virtanen institute, Department of Biotechnology and Molecular Medicine, Kuopio, Finland
| | | | | | | |
Collapse
|
7
|
Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX. J Virol 2010; 84:10074-86. [PMID: 20631131 DOI: 10.1128/jvi.02665-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.
Collapse
|
8
|
Bai LY, Weng JR, Tsai CH, Sargeant A, Lin CW, Chiu CF. OSU-03012 sensitizes TIB-196 myeloma cells to imatinib mesylate via AMP-activated protein kinase and STAT3 pathways. Leuk Res 2009; 34:816-20. [PMID: 20006997 DOI: 10.1016/j.leukres.2009.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/16/2022]
Abstract
Although c-Kit is expressed on the surface of myeloma cells in one-third of myeloma patients, the efficacy of imatinib mesylate for patients with myeloma is still controversial. To investigate the combinatorial effect of OSU-03012 and imatinib mesylate, we treated a c-Kit-expressing myeloma cell line, TIB-196, with DMSO, OSU-03012 alone, imatinib mesylate alone and OSU-03012 plus imatinib mesylate. OSU-03012 sensitized TIB-196 cells to imatinib mesylate cytotoxicity. p-STAT3 (Tyr705), as well as down-stream cyclin D1 and Mcl-1, was down regulated. Additionally, there was markedly increased p-AMPK (Thr172) and down-regulation of p-p70S6K (Thr386) in the combination group. Combined treatments targeting c-Kit, AMPK and STAT3 may be a potential strategy for treating patients with myeloma.
Collapse
Affiliation(s)
- Li-Yuan Bai
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Sioud S, Genestie B, Jahouh F, Martin P, Banoub J. Gas-phase fragmentation study of biotin reagents using electrospray ionization tandem mass spectrometry on a quadrupole orthogonal time-of-flight hybrid instrument. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1941-1956. [PMID: 19496066 DOI: 10.1002/rcm.4091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we evaluated, by electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using a quadrupole orthogonal time-of-flight (QqToF)-MS/MS hybrid instrument, the gas-phase fragmentations of some commercially available biotinyl reagents. The biotin reagents used were: psoralen-BPE 1, p-diazobenzoyl biocytin (DBB) 2, photoreactive biotin 3, biotinyl-hexaethyleneglycol dimer 4, and the sulfo-SBED 5. The results showed that, during ESI-MS and CID-MS/MS analyses, the biotin reagents followed a similar gas-phase fragmentation pattern and the cleavages usually occurred at either end of the spacer arm of the biotin reagents. In general we have observed that the CID-MS/MS fragmentation routes of the five precursor protonated molecules obtained from the biotin linkers 1-5 afforded a series of product ions formed essentially by similar routes. The genesis and the structural identities of all the product ions obtained from the biotin linkers 1-5 have been assigned. All the exact mass assignments of the protonated molecules and the product ions were verified by conducting separate CID-MS/MS analysis of the deuterium-labelled precursor ions.
Collapse
Affiliation(s)
- Salim Sioud
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | | | | | | | | |
Collapse
|
10
|
(Strept)avidin-displaying lentiviruses as versatile tools for targeting and dual imaging of gene delivery. Gene Ther 2009; 16:894-904. [PMID: 19440224 DOI: 10.1038/gt.2009.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lentiviruses have shown great promise for human gene therapy. However, no optimal strategies are yet available for noninvasive imaging of virus biodistribution and subsequent transduction in vivo. We have developed a dual-imaging strategy based on avidin-biotin system allowing easy exchange of the surface ligand on HIV-derived lentivirus envelope. This was achieved by displaying avidin or streptavidin fused to the transmembrane anchor of vesicular stomatitis virus G protein on gp64-pseudotyped envelopes. Avidin and streptavidin were efficiently incorporated on virus particles, which consequently showed binding to biotin in ELISA. These vectors, conjugated to biotinylated radionuclides and engineered to express a ferritin transgene, enabled for the first-time dual imaging of virus biodistribution and transduction pattern by single-photon emission computed tomography and magnetic resonance imaging after stereotactic injection into rat brain. In addition, vector retargeting to cancer cells overexpressing CD46, epidermal growth factor and transferrin receptors using biotinylated ligands and antibodies was demonstrated in vitro. In conclusion, we have generated novel lentivirus vectors for noninvasive imaging and targeting of lentivirus-mediated gene delivery. This study suggests that these novel vectors could be applicable for the treatment of central nervous system disorders and cancer.
Collapse
|
11
|
Singh R, Kostarelos K. Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol 2009; 27:220-9. [DOI: 10.1016/j.tibtech.2009.01.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/02/2009] [Accepted: 01/07/2009] [Indexed: 01/15/2023]
|
12
|
Kaikkonen MU, Viholainen JI, Närvänen A, Ylä-Herttuala S, Airenne KJ. Targeting and purification of metabolically biotinylated baculovirus. Hum Gene Ther 2008; 19:589-600. [PMID: 18479188 DOI: 10.1089/hum.2007.177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Targeting viral entry is one of the major goals in the development of vectors for gene therapy. Ideally, the coupling of each new targeting motif would not require changes in vector structure. To achieve this, we developed novel metabolically biotinylated baculoviral vectors by displaying a small biotin acceptor peptide (BAP) fused either to different sites in the baculovirus glycoprotein gp64 or to the transmembrane anchor of vesicular stomatitis virus G protein. Baculoviral particles were biotinylated during vector production by coexpression of Escherichia coli biotin ligase (BirA). The insertion of BAP at amino acid position 283 of gp64 resulted in the most efficient biotin display. Unlike vectors with lower biotin display, these vectors also showed improved transduction when retargeted to transferrin, epidermal growth factor, and CD46 receptors overexpressed on rat glioma and human ovarian carcinoma cells. Biotinylated baculoviral vectors could also be concentrated by one-step magnetic particle-based capture to reach titers up to 10(10) plaque-forming units/ml. These results demonstrate the utility of metabolically biotinylated baculovirus for vector targeting and viral purification applications.
Collapse
Affiliation(s)
- Minna U Kaikkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, FIN-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
13
|
Abstract
Bifunctional polyethylene glycol (PEG) molecules provide a novel approach to retargeting viral vectors without the need to genetically modify the vector. Modification of the surface of adenovirus with heterofunctional PEG allows further modification of the capsid with ligands. In addition, heterofunctional PEG modification ablates the normal tropism of the virus and reduces transduction of non-target tissues in vivo. Moreover, the addition of PEG chains to the surface of the virus shields antigen-binding sites, significantly reducing the susceptibility of the virus to antibody neutralization. Finally, T cell subsets from mice exposed to the PEGylated vector demonstrate a marked decrease in Th1 and Th2 responses, suggesting that PEG modification may help reduce the immune response to the vector.
Collapse
|
14
|
Barat B, Wu AM. Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. BIOMOLECULAR ENGINEERING 2007; 24:283-91. [PMID: 17379573 PMCID: PMC2682619 DOI: 10.1016/j.bioeng.2007.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/01/2007] [Indexed: 11/23/2022]
Abstract
Due to its strength and specificity, the interaction between avidin and biotin has been used in a variety of scientific and medical applications ranging from immunohistochemistry to drug targeting. The present study describes two methods for biotinylation of proteins secreted from eukaryotic cells using the Escherichia coli biotin protein ligase. In one system the biotin ligase was co-secreted from the cells along with substrate protein enabling extracellular biotinylation of the tagged protein. In the other system, biotin ligase was engineered to be retained in the endoplasmic reticulum (ER) and metabolically biotinylates the secretory protein as it passes through the ER. An engineered antibody fragment, a diabody with specificity for carcinoembryonic antigen (CEA) was fused to the biotin acceptor domain (123 amino acid) of Propionibacterium shermanii. Coexpression of the fusion protein with ER retained biotin ligase showed higher biotinylation efficiency than biotinylation by co-secreted ligase. Biotinylation of the anti-CEA diabody tagged with a short (15 amino acid, Biotin Avitag) biotin acceptor peptide was also successful. Utilization of ER retained biotin ligase for biotinylation of protein is an attractive alternative for efficiently producing uniformly biotinylated recombinant proteins for a variety of avidin-biotin technologies.
Collapse
Affiliation(s)
- Bhaswati Barat
- Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, 700 Westwood Plaza, Los Angeles, CA 90095
| | - Anna M. Wu
- Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, 700 Westwood Plaza, Los Angeles, CA 90095
| |
Collapse
|
15
|
Goding S, Yang Q, Mi Z, Robbins PD, Basse PH. Targeting of products of genes to tumor sites using adoptively transferred A-NK and T-LAK cells. Cancer Gene Ther 2007; 14:441-50. [PMID: 17273184 DOI: 10.1038/sj.cgt.7701019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite successes in animals, cytokine gene expression selectively in human tumors is difficult to achieve owing to lack of efficient delivery methods. Since interleukin (IL)-2-activated natural killer (A-NK) and phytohemagglutinin and IL-2 activated killer T (T-LAK) cells, as previously demonstrated, localize and accumulate in murine lung tumor metastases following adoptive transfer, we transduced them to test their ability to deliver products of genes selectively to tumors. Assessments of transduction efficiency in vitro demonstrated that adenoviral transduction consistently resulted in high (>60%) transduction rates and substantial expression of transgenes such as GFP, Red2, luciferase, beta-galactosidase and mIL-12 for at least 4 days. In vivo experiments illustrated that Ad-GFP transduced A-NK and Ad-Red2 (RFP) transduced T-LAK or mIL-12 transduced A-NK cells localized 10-50-fold more or survived significantly better than mock transduced cells, respectively, within lung metastases than in the surrounding normal lung tissue. Most importantly, mIL-12 transduced A-NK cells provided a significantly greater antitumor response than non-transduced A-NK cells. Thus, adoptive transfer of A-NK and T-LAK cells represents an efficient method for targeting products of genes to tumor sites.
Collapse
Affiliation(s)
- S Goding
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
16
|
Emile Gras JC, Verkuijlen P, Frants RR, Havekes LM, van Berkel TJC, Biessen EAL, van Dijk KW. Specific and efficient targeting of adenovirus vectors to macrophages: application of a fusion protein between an adenovirus-binding fragment and avidin, linked to a biotinylated oligonucleotide. J Gene Med 2006; 8:668-78. [PMID: 16532513 DOI: 10.1002/jgm.895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The application of serotype 5 adenoviruses (Ad5) in macrophages is hampered by the absence of the endogenous coxsackie adenovirus receptor (CAR). METHODS To overcome this limitation, we first generated a linker protein consisting of the virus-binding domain of CAR and the C-terminus of avidin. Second, to target macrophages, this linker protein was equipped with the biotinylated (bio) oligonucleotide dA6G10, which was previously shown to display a high affinity for the scavenger receptor A (SR-A). RESULTS As compared to nontargeted virus, the linker protein equipped with bio-dA6G10 showed a 500-fold increased reporter gene expression in mouse macrophage RAW264.7 cells. A linker protein equipped with a bio-dA16 control oligonucleotide was inactive. Moreover, the bio-dA6G10-equipped linker showed a 390-fold increased luciferase expression in the macrophage cell line J774 and 276- and 150-fold increased reporter gene expression in primary peritoneal and bone marrow (BM)-derived macrophages, respectively. Using BM-derived macrophages from SR-A knockout mice, it was shown that the dA6G10-mediated uptake is predominantly SR-A-mediated. CONCLUSIONS Thus, we have developed a novel tool to link biotinylated ligands to a virus-binding fragment of CAR and have exploited this linker protein to extend the applicability of Ad5 to infect transformed and primary macrophages.
Collapse
Affiliation(s)
- J C Emile Gras
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Bonsted A, Engesaeter BØ, Høgset A, Maelandsmo GM, Prasmickaite L, D'Oliveira C, Hennink WE, van Steenis JH, Berg K. Photochemically enhanced transduction of polymer-complexed adenovirus targeted to the epidermal growth factor receptor. J Gene Med 2006; 8:286-97. [PMID: 16342300 DOI: 10.1002/jgm.853] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The development of methods for specific delivery of genes into target tissues is an important issue for the further progress of gene therapy. Biological and physical targeting techniques may be combined to redirect gene therapy vectors to specific cells and enhance gene transfer. METHODS The polymer poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA) was conjugated with avidin or poly(ethylene glycol) (PEG) and complexed with adenovirus serotype 5 (Ad5). Targeting of polymer-coated Ad5 to the epidermal growth factor receptor (EGFR) was accomplished by the binding of biotin-EGF to pDMAEMA-avidin. A photochemical treatment procedure using photosensitizer and light was applied to increase transduction with EGFR-targeted viral complexes. RESULTS pDMAEMA-avidin efficiently enhanced transduction through unspecific viral uptake into cells, while pDMAEMA-PEG provided charge shielding of the complexes and increased the specificity to EGFR when biotin-EGF ligands were used. Transduction of PEG-containing, EGFR-targeted viral complexes was inhibited by 66% in coxsackie and adenovirus receptor (CAR)-deficient RD cells and by 47% in CAR-expressing DU 145 cells in receptor antibody experiments. The photochemical treatment had a substantial effect on transduction, enhancing the percentage of reporter gene positive cells from 20% to 75% of the total viable RD cell population and from 10% to 70% in DU 145 cells. CONCLUSION Photochemical treatment of cells infected with targeted viral vectors exhibiting a neutral surface charge is a potent method for enhancing transgene expression.
Collapse
Affiliation(s)
- Anette Bonsted
- Department of Radiation Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet HF, Montebello, N-0310 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J Pathol 2006; 208:299-318. [PMID: 16362990 DOI: 10.1002/path.1896] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major impediment to the successful application of gene therapy for the treatment of a range of diseases is not a paucity of therapeutic genes, but the lack of an efficient non-toxic gene delivery system. Having evolved to deliver their genes to target cells, viruses are currently the most effective means of gene delivery and can be manipulated to express therapeutic genes or to replicate specifically in certain cells. Gene therapy is being developed for a range of diseases including inherited monogenic disorders and cardiovascular disease, but it is in the treatment of cancer that this approach has been most evident, resulting in the recent licensing of a gene therapy for the routine treatment of head and neck cancer in China. A variety of virus vectors have been employed to deliver genes to cells to provide either transient (eg adenovirus, vaccinia virus) or permanent (eg retrovirus, adeno-associated virus) transgene expression and each approach has its own advantages and disadvantages. Paramount is the safety of these virus vectors and a greater understanding of the virus-host interaction is key to optimizing the use of these vectors for routine clinical use. Recent developments in the modification of the virus coat allow more targeted approaches and herald the advent of systemic delivery of therapeutic viruses. In the context of cancer, the ability of attenuated viruses to replicate specifically in tumour cells has already yielded some impressive results in clinical trials and bodes well for the future of this approach, particularly when combined with more traditional anti-cancer therapies.
Collapse
Affiliation(s)
- Lawrence S Young
- Cancer Research UK Institute for Cancer Studies, University of Birmingham Medical School, UK.
| | | | | | | |
Collapse
|
19
|
Campos SK, Parrott MB, Barry MA. Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. Mol Ther 2005; 9:942-54. [PMID: 15194061 PMCID: PMC4308313 DOI: 10.1016/j.ymthe.2004.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Accepted: 03/07/2004] [Indexed: 10/26/2022] Open
Abstract
While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (K(d) = 10(-15) M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (K(d) = 10(-7) M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors.
Collapse
Affiliation(s)
- Samuel K. Campos
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Brandon Parrott
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A. Barry
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- To whom correspondence and reprint requests should be addressed at One Baylor Plaza, BCM505, Houston, TX 77030. Fax: +(713) 798-1481.
| |
Collapse
|
20
|
Meulenbroek RA, Sargent KL, Lunde J, Jasmin BJ, Parks RJ. Use of adenovirus protein IX (pIX) to display large polypeptides on the virion--generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 2004; 9:617-24. [PMID: 15093192 DOI: 10.1016/j.ymthe.2004.01.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/20/2004] [Indexed: 11/25/2022] Open
Abstract
The adenovirus (Ad) protein IX (pIX) is a minor component of the Ad capsid and associates with the hexons that make up the facets of the icosahedron. In this study, we investigated whether a large protein tag could be fused to pIX without compromising the Ad vector itself. As proof-of-principle, we generated a pIX-green fluorescent protein (GFP) fusion protein. We show that a virus encoding the pIX-GFP can be generated and that pIX-GFP fusion protein was incorporated into the Ad capsid as efficiently as native pIX. In tissue culture, translocation of Ad/pIX-GFP from the outside of the cell to the nucleus could be followed using fluorescence microscopy, and the timing of migration to the nucleus was similar to that previously reported for Ad. We also could track the virus after injection into the tibialis anterior muscle of mice. Shortly after injection, the majority of the Ad/pIX-GFP accumulated in pockets adjacent to the muscle fibers, with some migration of the virus between fibers. Our ability to attach GFP to the Ad virion, through fusion to pIX, provides a valuable tool for virus tracking in vitro and in vivo. Moreover, our data indicate that pIX can be used as a platform to anchor proteins to the Ad capsid, such as large ligands for cell-type-specific targeting of the vector.
Collapse
Affiliation(s)
- Robert A Meulenbroek
- Molecular Medicine Program, Ottawa Health Research Institute, Room, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | | | | | | | | |
Collapse
|
21
|
Räty JK, Airenne KJ, Marttila AT, Marjomäki V, Hytönen VP, Lehtolainen P, Laitinen OH, Mähönen AJ, Kulomaa MS, Ylä-Herttuala S. Enhanced gene delivery by avidin-displaying baculovirus. Mol Ther 2004; 9:282-91. [PMID: 14759812 DOI: 10.1016/j.ymthe.2003.11.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Accepted: 11/09/2003] [Indexed: 12/11/2022] Open
Abstract
Flexible alteration of virus surface properties would be beneficial for enhanced and targeted gene delivery. A useful approach could be based on a high-affinity receptor-ligand pair, such as avidin and biotin. In this study, we have constructed an avidin-displaying baculovirus, Baavi. Avidin display was expected to enhance cell transduction due to the high positive charge of avidin in physiological pH and to provide a binding site for covering the virus with desired biotinylated ligands. Successful incorporation of avidin on the virus envelope was detected by immunoblotting and electron microscopy. Multiple biotin-binding sites per virus were detected with fluorescence-correlation spectroscopy and tight biotin binding was observed using an optical biosensor, IAsys. Baavi showed a 5-fold increase in transduction efficiency in rat malignant glioma cells (BT4C) and a 26-fold increase in rabbit aortic smooth muscle (RAASMC) cells compared to wild-type baculovirus. Enhanced transduction was also observed with biotinylated target cells. Biotinylated epidermal growth factor (EGF) enabled specific targeting of the virus with high efficiency to EGF receptor-expressing (SKOV-3) cells. An additional advantage of the avidin display was demonstrated with biotinylated paramagnetic particles, which enabled magnetic targeting. Altogether, we show that avidin display is a rapid and versatile method to improve viral properties for gene delivery.
Collapse
Affiliation(s)
- Jani K Räty
- A. I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio, P.O. Box 1627, FIN-70120 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Itoh A, Okada T, Mizuguchi H, Hayakawa T, Mizukami H, Kume A, Takatoku M, Komatsu N, Hanazono Y, Ozawa K. A soluble CAR-SCF fusion protein improves adenoviral vector-mediated gene transfer to c-Kit-positive hematopoietic cells. J Gene Med 2004; 5:929-40. [PMID: 14601130 DOI: 10.1002/jgm.430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although adenoviral vectors primarily derived from the adenovirus serotype 5 (Ad5) are widely used for many gene transfer applications, they cannot efficiently infect hematopoietic cells, since these cells do not express the coxsackie-adenoviral receptor (CAR). METHODS We have developed a soluble fusion protein that bridges adenoviral fibers and the c-Kit receptor to alter Ad5 tropism to immature hematopoietic cells. The CAR-SCF fusion protein consists of the extracellular domains of CAR and stem cell factor (SCF). The human megakaryoblastic leukemia cell lines UT-7 and M07e, human chronic myelogenous leukemia cell line K-562, and erythroleukemia cell line TF-1 were used to assess CAR-SCF-assisted Ad5-mediated gene transfer. Hematopoietic cell lines were infected with an Ad5 vector (Ad5-eGFP) or a fiber-mutant Ad5/F35 (Ad5/F35-eGFP) expressing the enhanced green fluorescent protein gene in the presence or absence of CAR-SCF. RESULTS Twenty-four hours after infection, more than 80% of M07e cells infected in the presence of CAR-SCF were eGFP-positive, compared with very few eGFP-positive cells following Ad5-eGFP infection in the absence of CAR-SCF. The enhancement of Ad5-eGFP infection by CAR-SCF was greater than that caused by Ad5/F35-eGFP (50%). The ability of CAR-SCF to enhance Ad5-eGFP infectivity was highly dependent on cellular c-Kit expression levels. Furthermore, CAR-SCF also enhanced Ad5-mediated gene transfer into human primary CD34(+) cells. CONCLUSIONS The CAR-SCF fusion protein assists Ad5-mediated transduction to c-Kit(+) CAR(-) hematopoietic cells. The use of this fusion protein would enhance a utility of Ad5-mediated hematopoietic cell transduction strategies.
Collapse
Affiliation(s)
- Akira Itoh
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sundaresan G, Paulmurugan R, Berger F, Stiles B, Nagayama Y, Wu H, Gambhir SS. MicroPET imaging of Cre-loxP-mediated conditional activation of a herpes simplex virus type 1 thymidine kinase reporter gene. Gene Ther 2004; 11:609-18. [PMID: 14724687 PMCID: PMC4141556 DOI: 10.1038/sj.gt.3302194] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Site-specific recombination tools such as the Cre-loxP system are used to create animal models where conditional gene deletion/activation studies are required. In the current proof of principle study, we have demonstrated that a PET reporter gene (PRG), the herpes simplex virus type 1 thymidine kinase (HSV1-tk), can be made to remain silent and can be activated by Cre-loxP-mediated recombination in cell culture and in living mice. An adenovirus carrying a silent HSV1-tk was tail-vein injected (1 x 10(9) PFU) in six transgenic mice that express Cre recombinase in their liver (Cre+) and in four control mice (Cre-). The liver-specific expression of the PRG in Cre+ mice was detected in the microPET following injection of the reporter probe, 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine ([(18)F]-FHBG). The [(18)F]-FHBG accumulation in the liver in terms of percent-injected dose per gram of tissue was 7.72+/-1.13 for the Cre+ mice and 0.10+/-0.02 for the Cre- mice (P<0.05) 48 h after adenoviral injection. These results were further validated by quantitative RT-PCR, western blotting and by in vitro assays for herpes simplex virus type 1 thymidine kinase enzyme activity. Thus by using the Cre-loxP system it is possible to modulate a PRG and noninvasively monitor the extent of Cre-loxP-mediated gene activation by imaging in a microPET scanner.
Collapse
Affiliation(s)
- G Sundaresan
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - R Paulmurugan
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - F Berger
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - B Stiles
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Y Nagayama
- Department of Pharmacology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - H Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - SS Gambhir
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford, CA, USA
| |
Collapse
|
24
|
Bramson JL, Grinshtein N, Meulenbroek RA, Lunde J, Kottachchi D, Lorimer IA, Jasmin BJ, Parks RJ. Helper-Dependent Adenoviral Vectors Containing Modified Fiber for Improved Transduction of Developing and Mature Muscle Cells. Hum Gene Ther 2004; 15:179-88. [PMID: 14975190 DOI: 10.1089/104303404772679986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adenoviruses (Ads) have shown great utility as vectors for the delivery of genes to mammalian cells, partly because of their ability to infect a wide range of different cell types independent of the replicative state of the cell. However, Ads do not transduce mature muscle efficiently because of low levels of the natural viral primary receptor, the coxsackie virus and adenovirus receptor, on the surface of adult muscle cells. In this study, we have addressed whether incorporation of polylysine [p(K)] or arginine-glycine-aspartic acid (RGD) placed in the H-I loop of the adenoviral fiber protein can improve helper-dependent Ad vector (hdAd) transduction of mature muscle cells. We show that incorporation of the p(K) motif into the fiber of early region 1 (E1)-deleted Ad results in enhanced transduction of undifferentiated and differentiated C2C12 cells relative to a virus, containing a wild-type fiber (12- and 21-fold enhancement, respectively). Incorporation of the RGD motif resulted in only a 60-70% increase in transduction efficiency in these cells. The two fiber modifications were then incorporated into helper viruses for use in the Cre-lox system for generating hdAd, and the resulting retargeted Ad vectors, which encoded the beta-galactosidase reporter gene (beta-Gal), demonstrated enhanced transduction of C2C12 cells in culture. Although hdAdpK also showed enhanced infection of mature mouse muscle in vivo, hdAdRGD did not. All hdAd vectors elicited only minor anti-Ad immune responses, compared with an E1-deleted control vector, but each vector elicited strong anti-beta-Gal immunoreactivity. Our results demonstrate that hdAd with modified cell tropism can be generated efficiently and, in the case of polylysine-modified hdAd, can lead to improved transduction of adult muscle cells in vivo.
Collapse
Affiliation(s)
- Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 325 Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Parrott MB, Adams KE, Mercier GT, Mok H, Campos SK, Barry MA. Metabolically biotinylated adenovirus for cell targeting, ligand screening, and vector purification. Mol Ther 2003; 8:688-700. [PMID: 14529842 DOI: 10.1016/s1525-0016(03)00213-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Development of cell-targeting vectors is an important focus for gene therapy. While some ligands can be genetically inserted into virus capsid proteins for cell targeting, for many ligands, this approach can disrupt either ligand function or vector function. To address this problem for adenovirus type 5 vectors, the fiber capsid protein was genetically fused to a biotin acceptor peptide (BAP). Adenovirus particles bearing this BAP were metabolically biotinylated during vector production by the endogenous biotin ligase in 293 cells to produce covalently biotinylated virions. The resulting biotinylated vector could be retargeted to new receptors by conjugation to biotinylated antibodies using tetrameric avidin (K(d) = 10(-15) M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (K(d) = 10(-7) M). Finally, this vector was used as a ligand screening platform for dendritic cells in which a variety of structurally diverse protein, carbohydrate, and nucleic acid ligands were easily added to the vector using the biotin-avidin interaction. This work demonstrates the utility of metabolically biotinylated viruses for ligand screening, vector targeting, and virus purification applications.
Collapse
Affiliation(s)
- M Brandon Parrott
- Center for Cell and Gene Therapy and Department of Immunology, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
26
|
Barry MA, Campos SK, Ghosh D, Adams KE, Mok H, Mercier GT, Parrott MB. Biotinylated gene therapy vectors. Expert Opin Biol Ther 2003; 3:925-40. [PMID: 12943452 DOI: 10.1517/14712598.3.6.925] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The avidin-biotin system is a fundamental technology in biomedicine for immunolocalisation, imaging, nucleic acid blotting and protein labelling. This technology has recently been adapted for use in gene therapy vector applications to add proteins or cell-targeting ligands to non-viral and viral vectors. Two biotinylation technologies are being used in these applications: chemical biotinylation and metabolic biotinylation. In chemical biotinylation, reactive alkylating agents couple biotin to proteins by random covalent attachment to amino acid side chains. In metabolic biotinylation, proteins are genetically engineered with a biotin acceptor peptide (BAP), such that they are covalently biotinylated by cellular biotin ligases during viral vector production. Both technologies show promise for cell-targeting in vitro and in vivo, and for ligand screening applications. Metabolic biotinylation has the added feature of allowing viruses, vectors and vaccines to be produced from cells already biotinylated, thereby allowing them to purified by affinity chromatography on monomeric avidin columns.
Collapse
Affiliation(s)
- Michael A Barry
- Center for Cell and Gene Therapy, Baylor College of Medicine, Rice University, One Baylor Plaza, N1020, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lanciotti J, Song A, Doukas J, Sosnowski B, Pierce G, Gregory R, Wadsworth S, O'Riordan C. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther 2003; 8:99-107. [PMID: 12842433 DOI: 10.1016/s1525-0016(03)00139-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bifunctional PEG (polyethylene glycol) molecules provide a novel approach to retargeting viral vectors without the need to genetically modify the vector. In a previous report we showed that modification of the viral capsid by the addition of a peptide with binding preference for differentiated ciliated airway epithelia allowed gene delivery to those cells by a novel entry pathway. Here we demonstrate further the versatility of this method by coupling a protein, FGF2, to the surface of an adenovirus (Ad). This modification results in the elimination of the endogenous tropism of the virus and confers upon the virus a novel route of entry. Adenoviral vectors modified by the addition of FGF2 show enhanced efficiency of transduction of the ovarian cancer cell line SKOV3.ip1. This enhancement in transduction is dependent on the binding of the coupled FGF2 to its high-affinity receptor and is independent of coxsackie and adenovirus viral receptors. In an intraperitoneal model of ovarian cancer, Ad/PEG/FGF2 generates increased transgene expression in tumor tissue compared to unmodified Ad. Furthermore, polymer modification of adenovirus vectors results in reduced localization of adenovirus to nontarget tissues and a marked decrease in Th1 and Th2 T cell responses. In conclusion, the approach described here may lead to the development of a gene therapy vector capable of targeting a therapeutic gene to diseased cells, while minimizing toxicity and expression in other tissues.
Collapse
Affiliation(s)
- Julia Lanciotti
- Genzyme Corporation, 31 New York Avenue, Framingham, Massachusetts 01701, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Suzuki M, Takayanagi A, Shimizu N. Recombinant single-chain antibodies with various oligopeptide tails for targeted gene delivery. Gene Ther 2003; 10:781-8. [PMID: 12704417 DOI: 10.1038/sj.gt.3301952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The single-chain antibody (scFv) made by recombinant DNA technology is one of the most useful tools for basic research and clinical applications. To develop a novel targeted gene delivery method, we engineered the scFv gene for the antibody against human epidermal growth factor (EGF) receptor by connecting with DNA sequences for various oligopeptides with negative or positive charges. The resulting recombinant genes encoding artificial scFv with negative or positive tails were expressed in Escherichia coli and yeast Pichia pastris. In E. coli, all the scFv with negatively charged tails were expressed but mainly as an insoluble form, whereas those with positively charged tails were barely expressed. In yeast P. pastris, all the scFv with negatively charged tails were efficiently expressed and secreted into the culture medium. Addition of high salt into the yeast culture increased their secretion. Purification procedure was established for the scFv with the longest negatively charged tail (D4S x 5), yielding 5 mg/l with a purity of over 95%. The scFv-D4S x 5 was designated as a recombinant immunoporter, which was then mixed with plasmid DNA and polyethylenimine (PEI). The resulting DNA/PEI/immunoporter complex (designated recombinant immunogene) exhibited efficient gene delivery to EGF receptor overexpressing A431 tumor cells.
Collapse
Affiliation(s)
- M Suzuki
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Castro MG, Cowen R, Williamson IK, David A, Jimenez-Dalmaroni MJ, Yuan X, Bigliari A, Williams JC, Hu J, Lowenstein PR. Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 2003; 98:71-108. [PMID: 12667889 DOI: 10.1016/s0163-7258(03)00014-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GB) is the most common subtype of primary brain tumor in adults. These tumors are highly invasive, very aggressive, and often infiltrate critical neurological areas within the brain. The mean survival time after diagnosis of GB has remained unchanged during the last few decades, in spite of advances in surgical techniques, radiotherapy, and also chemotherapy; patients' survival ranges from 9 to 12 months after initial diagnosis. In the same time frame, with our increasing understanding and knowledge of the physiopathology of several cancers, meaningful advances have been made in the treatment and control of several cancers, such as breast, prostate, and hematopoietic malignancies. Although a number of the genetic lesions present in GB have been elucidated and our understanding of the progressions of this cancer has increased dramatically over the last few years, it has not yet been possible to harness this information towards developing effective cures. In this review, we will focus on the classical ways in which GB is currently being treated, and will introduce a novel therapeutic modality, i.e., gene therapy, which we believe will be used in combination with classical treatment strategies to prolong the life-span of patients and to ultimately be able to control and/or cure these brain tumors. We will discuss the use of several vector systems that are needed to introduce the therapeutic genes within either the tumor mass, if these are not resectable, or the tumor bed, after successful tumor resection. We also discuss different therapeutic modalities that could be exploited using gene therapy, i.e., conditional cytotoxic approach, direct cytotoxicity, immunotherapy, inhibition of angiogenesis, and the use of pro-apoptotic genes. The advantages and disadvantages of each of the current vector systems available to transfer genes into the CNS are also discussed. With the advances in molecular techniques, both towards the elucidation of the physiopathology of GB and the development of novel, more efficient and less toxic vectors to deliver putative therapeutic genes into the CNS, it should be possible to develop new rationale and effective therapeutic approaches to treat this devastating cancer.
Collapse
Affiliation(s)
- M G Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Research Pavilion, 8700 Beverly Boulevard, Suite 5090, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marini FC, Shayakhmetov D, Gharwan H, Lieber A, Andreeff M. Advances in gene transfer into haematopoietic stem cells by adenoviral vectors. Expert Opin Biol Ther 2002; 2:847-56. [PMID: 12517264 DOI: 10.1517/14712598.2.8.847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Until recently, the cells of haematopoietic origin were not considered good adenoviral (Adv) targets, primarily because they lacked the specific Adv receptors required for productive and efficient Adv infections. In addition, because of limitations inherent in Adv infections, such as short-term expression and a non-integrating nature, their application has been precluded from haematopoietic stem cell (HSC) and bone marrow transduction protocols where long-term expression has been required. Therefore, limited research utilising Adv-mediated gene transfer into haematopoietic cells had been conducted. With recent insights into the critical interactions between adenovirus (Adv) and cells, new Adv-mediated gene transduction strategies have now been reported that may overcome these limitations. These new strategies include Adv possessing synthetic polymer coatings, genetically modified capsid proteins or antibody-redirected fibres that can efficiently redirect and retarget Adv to transfer genes into HSC. Additionally, new hybrid Advs, engineered with both modified capsid proteins and novel cis-acting integration sequences, are also being developed which can efficiently deliver and integrate Adv delivered genes into HSC. This is an area of research that is now rapidly gaining momentum in terms of techniques and applications. Here we review the current status of adenovirus-based vectors as a means to achieve high-level gene transfer into haematopoietic cell types.
Collapse
Affiliation(s)
- Frank C Marini
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
31
|
Ponnazhagan S, Mahendra G, Kumar S, Thompson JA, Castillas M. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol 2002; 76:12900-7. [PMID: 12438615 PMCID: PMC136730 DOI: 10.1128/jvi.76.24.12900-12907.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of targeted vectors, capable of tissue-specific transduction, remains one of the important aspects of vector modification for gene therapy applications. Recombinant adeno-associated virus type 2 (rAAV-2)-based vectors are nonpathogenic, have relatively low immunogenicity, and are capable of long-term transgene expression. AAV-2 vectors bind primarily to heparan sulfate proteoglycan (HSPG), a receptor that is present in many tissues and cell types. Because of the widespread expression of HSPG on many tissues, targeted transduction in vivo appears to be limited with AAV-2 vectors. Thus, development of strategies to achieve transductional targeting will have a profound benefit in the future application of these vectors. We report here a novel conjugate-based targeting method to enhance tissue-specific transduction of AAV-2-based vectors. The present report utilized a high-affinity biotin-avidin interaction as a molecular bridge to cross-link purified targeting ligands, produced genetically as fusion proteins to core-streptavidin, in a prokaryotic expression system. Conjugation of the bispecific targeting protein to the vector was achieved by biotinylating purified rAAV-2 without abolishing the capsid structure, internalization, and subsequent transgene expression. The tropism-modified vectors, targeted via epidermal growth factor receptor (EGFR) or fibroblast growth factor 1alpha receptor (FGFR1alpha), resulted in a significant increase in transduction efficiency of EGFR-positive SKOV3.ip1 cells and FGFR1alpha-positive M07e cells, respectively. Further optimization of this method of targeting should enhance the potential of AAV-2 vectors in ex vivo and in vivo gene therapy and may form the basis for developing targeting methods for other AAV serotype capsids.
Collapse
Affiliation(s)
- Selvarangan Ponnazhagan
- Department of Pathology, LHRB 513, The University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
32
|
DOUGLAS JOANNET. Targeted adenoviral vectors. Mol Phys 2002. [DOI: 10.1080/00268970210130263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Abstract
Replication-defective vectors based on human adenovirus serotypes 2 and 5 (Ad2 and Ad5) possess a number of attributes which favor their use as gene delivery vehicles in gene therapy applications. However, the widespread distribution of the primary cellular receptor for Ad, the coxsackievirus and adenovirus receptor (CAR), allows Ad vectors to infect a broad range of cells in the host. Conversely, a number of tissues which represent important targets for gene therapy, such as the airway epithelium and cancer cells, are refractory to Ad infection due a paucity of CAR. Thus, there is a strong rationale for the development of CAR-independent Ad vectors capable of enhanced specificity and efficiency of gene transfer to target cells. In this article we review the approaches which have been employed to generate tropism-modified Ad vectors. These targeting strategies have led to improvements in the safety and efficacy of Ad vectors and have the potential to yield an increased therapeutic benefit in the human clinical context.
Collapse
Affiliation(s)
- Brian G Barnett
- Department of Medicine, Division of Human Gene Therapy and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
34
|
Wu SC, Yeung JC, Hwang PM, Wong SL. Design, production, and characterization of an engineered biotin ligase (BirA) and its application for affinity purification of staphylokinase produced from Bacillus subtilis via secretion. Protein Expr Purif 2002; 24:357-65. [PMID: 11922751 DOI: 10.1006/prep.2001.1583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major attraction in using Bacillus subtilis as an expression host for heterologous protein production is its ability to secrete extracellular proteins into the culture medium. To take full advantage of this system, an efficient method for recovering the target protein is crucial. For secretory proteins which cannot be purified by a simple scheme, in vitro biotinylation using biotin ligase (BirA) offers an effective alternative for their purification. The availability of large amounts of quality BirA can be critical for in vitro biotinylation. We report here the engineering and production of an Escherichia coli BirA and its application in the purification of staphylokinase, a fibrin-specific plasminogen activator, from the culture supernatant of Bacillus subtilis via in vitro biotinylation. BirA was tagged with both a chitin-binding domain and a hexahistidine tail to facilitate both its purification and its removal from the biotinylated sample. We show in this paper how, in a unique way, we solved the problem of protein aggregation in the E. coli BirA production system to achieve a yield of soluble functional BirA hitherto unreported in the literature. Application of this novel BirA to protein purification via in vitro biotinylation in general will also be discussed. Biotinylated staphylokinase produced in the study not only can act as an intermediate for easy purification, it can also serve as an important element in the creation of a blood clot targeting and dissolving agent.
Collapse
Affiliation(s)
- Sau-Ching Wu
- Department of Biological Sciences, Division of Cellular, Molecular, and Microbial Biology, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
35
|
Zhong Q, Oliver P, Huang W, Good D, La Russa V, Zhang Z, Cork JR, Veith RW, Theodossiou C, Kolls JK, Schwarzenberger P. Efficient c-kit receptor-targeted gene transfer to primary human CD34-selected hematopoietic stem cells. J Virol 2001; 75:10393-400. [PMID: 11581407 PMCID: PMC114613 DOI: 10.1128/jvi.75.21.10393-10400.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported effective gene transfer with a targeted molecular conjugate adenovirus vector through the c-kit receptor in hematopoietic progenitor cell lines. However, a c-kit-targeted recombinant retroviral vector failed to transduce cells, indicating the existence of significant differences for c-kit target gene transfer between these two viruses. Here we demonstrate that conjugation of an adenovirus to a c-kit-retargeted retrovirus vector enables retroviral transduction. This finding suggests the requirement of endosomalysis for successful c-kit-targeted gene transfer. Furthermore, we show efficient gene transfer to, and high transgene expression (66%) in, CD34-selected, c-kit(+) human peripheral blood stem cells using a c-kit-targeted adenovirus vector. These findings may have important implications for future vector development in c-kit-targeted stem cell gene transfer.
Collapse
Affiliation(s)
- Q Zhong
- Gene Therapy Program, Louisiana State University Health Sciences Center of New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Biermann V, Volpers C, Hussmann S, Stock A, Kewes H, Schiedner G, Herrmann A, Kochanek S. Targeting of high-capacity adenoviral vectors. Hum Gene Ther 2001; 12:1757-69. [PMID: 11560769 DOI: 10.1089/104303401750476258] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-capacity adenoviral (HC-Ad) vectors contain only the noncoding termini of the viral genome, can deliver large DNA fragments of up to 36 kb into target cells, and feature reduced toxicity and prolonged transgene expression in vivo. To enhance the potential of HC-Ad vectors to transduce specific cell types, we constructed a versatile infectious new helper virus plasmid that can be used readily to introduce peptide ligands into the HI loop of the fiber knob domain of Ad5-based HC-Ad vectors. Helper viruses with a 6x-His epitope or Arg-Gly-Asp (RGD) peptide insertion retained the full infectivity of the wild-type helper virus. The RGD-modified helper virus was used for production of a capsid-modified HC-Ad vector expressing beta-galactosidase. The RGD HC-Ad vector transduced the ovarian carcinoma cell lines SK-OV-3 and OVCAR-3 with 4- to 20-fold higher efficiency, compared to unmodified vectors. Transduction of both primary vascular smooth muscle cells as well as primary human endothelial cells was increased up to 15-fold with the RGD-modified vector. Competition experiments with recombinant knob protein and different RGD peptides indicated that the RGD-mediated transduction was Coxsackie and Adenovirus receptor (CAR)-independent and involved integrin alpha(v)beta(5). The use of fiber-modified helper viruses in the last amplification step of HC-Ad vector production allows for convenient and efficient targeting of these vectors towards different cell types. Targeting strategies will increase the spectrum of applications for HC-Ad vectors and will further add to their safety.
Collapse
MESH Headings
- Adenoviridae/genetics
- Binding, Competitive
- Blotting, Western
- Cells, Cultured
- Cloning, Molecular
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Endothelium/cytology
- Epitopes
- Gene Transfer Techniques
- Genetic Vectors
- Genome, Viral
- Helper Viruses/genetics
- Humans
- Ligands
- Models, Genetic
- Muscle, Smooth/cytology
- Oligopeptides/genetics
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Plasmids/metabolism
- Protein Structure, Tertiary
- Protozoan Proteins
- Receptors, Virus/metabolism
- Transduction, Genetic
- Tumor Cells, Cultured
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- V Biermann
- Center for Molecular Medicine (ZMMK) and Institute for Genetics, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yotnda P, Onishi H, Heslop HE, Shayakhmetov D, Lieber A, Brenner M, Davis A. Efficient infection of primitive hematopoietic stem cells by modified adenovirus. Gene Ther 2001; 8:930-7. [PMID: 11426333 DOI: 10.1038/sj.gt.3301488] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Accepted: 04/10/2001] [Indexed: 11/09/2022]
Abstract
Almost all studies of adenoviral vector-mediated gene transfer have made use of the adenovirus type 5 (Ad5). Unfortunately, Ad5 has been ineffective at infecting hematopoietic progenitor cells (HPC). Chimeric Ad5/F35 vectors that have been engineered to substitute the shorter-shafted fiber protein from Ad35 can efficiently infect committed hematopoietic cells and we now show highly effective gene transfer to primitive progenitor subsets. An Ad5GFP and Ad5/F35GFP vector was added to CD34(+) and CD34(-)lineage(-) (lin(-)) HPC. Only 5-20% of CD34(+) and CD34(-)lin(-) cells expressed GFP after Ad5 exposure. In contrast, with the Ad5/F35 vector, 30-70% of the CD34(+), 50-70% of the CD34(-)lin(-) and up to 60% of the CD38(-) HPC expressed GFP and there was little evident cellular toxicity. Because of these improved results, we also analyzed the ability of Ad5/F35 virus to infect the hoechst negative 'side population' (SP) of marrow cells, which appear to be among the very earliest multipotent HPC. Between 51% and 80% of marrow SP cells expressed GFP. The infected populations retained their ability to form colonies in two short-term culture systems, with no loss of viability. We also studied the transfer and expression of immunomodulatory genes, CD40L (cell surface expression) and interleukin-2 (secreted). Both were expressed at immunomodulatory levels for >5 days. The ability of Ad5/F35 to deliver transgenes to primitive HPC with high efficiency and low toxicity in the absence of growth factors provides an improved means of studying the consequences of transient gene expression in these cells.
Collapse
Affiliation(s)
- P Yotnda
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Parrott MB, Barry MA. Metabolic biotinylation of secreted and cell surface proteins from mammalian cells. Biochem Biophys Res Commun 2001; 281:993-1000. [PMID: 11237761 DOI: 10.1006/bbrc.2001.4437] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to its strength and specificity, the interaction between avidin and biotin has been used in a variety of medical and scientific applications ranging from drug targeting to immunohistochemistry. To maximize the application of this technology in mammalian systems, we recently demonstrated the ability to metabolically biotinylate tagged proteins in mammalian cells using the endogenous biotin ligase enzymes of the mammalian cell. This technology allows site-specific biotinylation without any exogenous reagents and eliminates possible inactivation of the protein of interest by nonspecific biotinylation. Here, we report further expansion of the mammalian metabolic biotinylation technology to enable biotinylation of proteins secreted from mammalian cells and expressed on their cell surface by cosecretion with BirA, the biotin ligase of E. coli. This technique can be used to biotinylate secreted proteins for purification or targeting and also for biotinylating the surfaces of mammalian cells to facilitate their labeling and purification from other nontagged cells.
Collapse
Affiliation(s)
- M B Parrott
- Department of Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
39
|
Wojda U, Miller JL. Glycosylphosphatidylinositol-anchored proteins are not required for crosslinking-mediated endocytosis or transfection of avidin bioconjugates into biotinylated cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:144-52. [PMID: 10930517 DOI: 10.1016/s0005-2736(00)00213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Even though glycosylphosphatidylinositol (GPI)-anchored proteins lack direct structural contact with the intracellular space, these ubiquitously expressed surface receptors activate signaling cascades and endocytosis when crosslinked by extracellular ligands. Such properties may be due to their association with membrane microdomains composed of glycosphingolipids, cholesterol and some signaling proteins. In this study, we hypothesize that GPI proteins may be required for crosslinking-mediated endocytosis of extracellular bioconjugates. To test this hypothesis, we first biotinylated the surface membranes of native K562 erythroleukemia cells versus K562 cells incapable of surface GPI protein expression. We then compared the entry of fluorescently labeled avidin or DNA condensed on polyethylenimine-avidin bioconjugates into the two biotinylated cell populations. Using fluorescence microscopy, nearly 100% efficiency of fluorescent avidin endocytosis was demonstrated in both cell types over a 24 h period. Surprisingly, plasmid DNA transfer was slightly more efficient among the biotinylated GPI-negative cells as measured by the expression of green fluorescence protein. Our findings that GPI proteins are not required for the endocytosis of avidin bioconjugates into biotinylated cells suggest that endocytosis associated with general membrane crosslinking may be due to overall reorganization of the membrane domains rather than GPI protein-specific interactions.
Collapse
Affiliation(s)
- U Wojda
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
40
|
Thoma C, Wieland S, Moradpour D, von Weizsäcker F, Offensperger S, Madon J, Blum HE, Offensperger WB. Ligand-mediated retargeting of recombinant adenovirus for gene transfer in vivo. Gene Ther 2000; 7:1039-45. [PMID: 10871753 DOI: 10.1038/sj.gt.3301194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of efficient and safe methods for in vivo gene transfer is central to the success of gene therapy. Recombinant adenoviral vectors, although highly efficient, are limited by the host immune response, potential safety hazards due to obligatory cotransfer of viral proteins, and their broad tissue tropism. Here, we demonstrate in an animal model that host range and tissue tropism of a recombinant adenovirus from a distant species can be modified by complexing adenovirus with a cell-specific ligand. Thus, a replication-deficient lacZ recombinant human adenovirus, which naturally does not infect avian cells, allowed highly efficient and specific gene transfer to the liver of ducks in vivo when complexed with N-acetylglucosamine, a ligand for the chicken hepatic lectin. This combination of ligand-mediated receptor targeting with adenoviral uptake and intracellular processing of a given gene represents a novel approach to gene therapy of inherited and acquired liver diseases.
Collapse
Affiliation(s)
- C Thoma
- Department of Medicine II, University of Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wojda U, Miller JL. Targeted transfer of polyethylenimine-avidin-DNA bioconjugates to hematopoietic cells using biotinylated monoclonal antibodies. J Pharm Sci 2000; 89:674-81. [PMID: 10756333 DOI: 10.1002/(sici)1520-6017(200005)89:5<674::aid-jps13>3.0.co;2-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Here we examine whether attachment of biotinylated antibodies to proteins on the cell surface increases the transfection efficiency of polyethylenimine-avidin-DNA bioconjugate gene transfer. Preliminary experiments were performed to compare avidin endocytosis into cells incubated with biotinylated antibodies. Antibody biotinylation resulted in the endocytosis of avidin-FITC into nearly 100% of cells compared with no detectable binding or entry into unbiotinylated cells. Gene transfer was accomplished with avidin conjugated to polyethylenimine (PEI) at a molar ratio of 4:1 (PA4). Plasmid DNA encoding the green fluorescent protein (GFP) gene was condensed on the PA4, and transfection efficiencies were measured by flow cytometry as the percentage of cells that fluoresced at levels greater than two standard deviations above the negative control. Gene transfer efficiencies were compared among K562, HEL, and Jurkat leukemia cell lines. Control transfections with DNA alone or untargeted PEI-DNA resulted in </=2% GFP positive cells. Targeting PEI-avidin-DNA to antibody biotinylated cells increased transfection efficiency several fold over untargeted PEI. For each cell type, the increase in transfection efficiency was not significantly different among four biotinylated antibodies tested (antiCD55, antiCD59, antiCD71, and antiCD98). These data suggest biotinylated antibodies may be useful for targeting polyethylenimine-avidin mediated gene transfer.
Collapse
Affiliation(s)
- U Wojda
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
42
|
Parrott MB, Barry MA. Metabolic biotinylation of recombinant proteins in mammalian cells and in mice. Mol Ther 2000; 1:96-104. [PMID: 10933917 PMCID: PMC2002494 DOI: 10.1006/mthe.1999.0011] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The avidin-biotin system is a fundamental technology in biomedicine for immunolocalization, imaging, nucleic acid blotting, and protein labeling. While this technology is robust, it is limited by the fact that mammalian proteins must be expressed and purified prior to chemical biotinylation using cross-linking agents which modify proteins at random locations to heterogeneous levels and can inactivate protein function. To circumvent this limitation, we demonstrate the ability to metabolically biotinylate tagged proteins in mammalian cells and in mice using the endogenous biotinylation enzymes of the host. Endogenously biotinylated proteins were readily purified from mammalian cells using monomeric avidin and eluted under nondenaturing conditions using only biotin as the releasing agent. This technology should allow recombinant proteins and fragile protein complexes to be produced and purified from mammalian cells as well as from transgenic plants and animals. In addition, this technology may be particularly useful for cell-targeting applications in which proteins or viral gene therapy vectors can be biotinylated at genetically defined sites for combination with other targeting moieties complexed with avidin.
Collapse
Affiliation(s)
- M B Parrott
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|