1
|
Ishihara S, Shiraishi JI, Shimamoto S, Ijiri D. Endogenous retrovirus loci and induced changes in gene expression in Japanese indigenous chickens. Sci Rep 2025; 15:12290. [PMID: 40210992 PMCID: PMC11986011 DOI: 10.1038/s41598-025-96881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
When retroviruses infect germ cells and are transmitted to offspring, they become endogenous retroviruses (ERVs), whose insertions may influence the expression of nearby genes. In this study, we aimed to identify the genomic loci of ERVs in commercial broiler (Ross308), Tosa-Jidori, and Yakido chickens, as well as to elucidate their impact on neighboring gene expression. Whole-genome data were obtained using next-generation sequencing, and candidate ERV loci were identified using the RetroSeq software. The Integrative Genomics Viewer tool was used to confirm target site duplications (TSDs) as evidence of ERV insertions. All reads within 200 bp of these TSDs were extracted to create contigs, confirming the presence of ERV sequences in the contigs using BLASTN. Gene expression levels were estimated by focusing on genes located near the 172 identified ERV loci. Among these, 119 loci were detected in broiler chickens, 80 in Tosa-Jidori chickens, and 86 in Yakido chickens, with 28 loci shared among them. Moreover, of these 172 loci, 75 were located within or near genes. Significant differences in gene expression were observed for N-acetylated alpha-linked acidic dipeptidase 2 (NAALAD2) and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS) depending on the presence of ERV insertions. These results suggest that ERV insertions may influence the expression of NAALAD2 and PAICS, providing insights into the genetic diversity and evolutionary background of commercial and indigenous chickens. Understanding the effects of ERV insertions on gene expression can inform future genetic research and poultry breeding programs aimed at improving health and productivity.
Collapse
Affiliation(s)
- Shinya Ishihara
- Department of Animal Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo, 180-8602, Japan.
| | - Jun-Ichi Shiraishi
- Department of Animal Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo, 180-8602, Japan
| | - Saki Shimamoto
- Department of Animal Science and Welfare, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Daichi Ijiri
- Department of Animal Science and Welfare, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| |
Collapse
|
2
|
van der Kuyl AC. Mutation Rate Variation and Other Challenges in 2-LTR Dating of Primate Endogenous Retrovirus Integrations. J Mol Evol 2025; 93:62-82. [PMID: 39715846 DOI: 10.1007/s00239-024-10225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The time of integration of germline-targeting Long Terminal Repeat (LTR) retroposons, such as endogenous retroviruses (ERVs), can be estimated by assessing the nucleotide divergence between the LTR sequences flanking the viral genes. Due to the viral replication mechanism, both LTRs are identical at the moment of integration, when the provirus becomes part of the host genome. After that time, proviral sequences evolve within the host DNA. When the mutation rate is known, nucleotide divergence between the LTRs would then be a measure of time elapsed since integration. Though frequently used, the approach has been complicated by the choice of host mutation rate and, to a lesser extent, by the method selected to estimate nucleotide divergence. As a result, outcomes can be incompatible with, for instance, speciation events identified from the fossil record. The review will give an overview of research reporting LTR-retroposon dating, and a summary of important factors to consider, including the quality, assembly, and alignment of sequences, the mutation rate of foreign DNA in host genomes, and the choice of a distance estimation method. Primates will here be the focus of the analysis because their genomes, ERVs, and fossil record have been extensively studied. However, most of the factors discussed have a wide applicability in the vertebrate field.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology & Infectious Diseases, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
da Costa AL, Prieto-Oliveira P, Duarte-Barbosa M, Andreata-Santos R, Peter CM, Prolo de Brito T, Antoneli F, Durães-Carvalho R, Briones MRS, Maricato JT, Zanotto PMA, Jacob Machado D, Janini LMR. The Relationship between HERV, Interleukin, and Transcription Factor Expression in ZIKV Infected versus Uninfected Trophoblastic Cells. Cells 2024; 13:1491. [PMID: 39273061 PMCID: PMC11394337 DOI: 10.3390/cells13171491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Zika virus (ZIKV) is an arbovirus with maternal, sexual, and TORCH-related transmission capabilities. After 2015, Brazil had the highest number of ZIVK-infected pregnant women who lost their babies or delivered them with Congenital ZIKV Syndrome (CZS). ZIKV triggers an immune defense in the placenta. This immune response counts with the participation of interleukins and transcription factors. Additionally, it has the potential involvement of human endogenous retroviruses (HERVS). Interleukins are immune response regulators that aid immune tolerance and support syncytial structure development in the placenta, where syncytin receptors facilitate vital cell-to-cell fusion events. HERVs are remnants of ancient viral infections that integrate into the genome and produce syncytin proteins crucial for placental development. Since ZIKV can infect trophoblast cells, we analyzed the relationship between ZIKV infection, HERV, interleukin, and transcription factor modulations in the placenta. To investigate the impact of ZIKV on trophoblast cells, we examined two cell types (BeWo and HTR8) infected with ZIKV-MR766 (African) and ZIKV-IEC-Paraíba (Asian-Brazilian) using Taqman and RT2 Profiler PCR Array assays. Our results indicate that early ZIKV infection (24-72 h) does not induce differential interleukins, transcription factors, and HERV expression. However, we show that the expression of a few of these host defense genes appears to be linked independently of ZIKV infection. Future studies involving additional trophoblastic cell lineages and extended infection timelines will illuminate the dynamic interplay between ZIKV, HERVs, interleukins, and transcription factors in the placenta.
Collapse
Affiliation(s)
- Anderson Luís da Costa
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
| | - Paula Prieto-Oliveira
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA; (P.P.-O.); (D.J.M.)
- Computational Intelligence to Predict Health and Environmental Risks Center, University of North Carolina at Charlotte, 9201 University City BLVD, Charlotte, NC 28223, USA
| | - Márcia Duarte-Barbosa
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
| | - Robert Andreata-Santos
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Cristina M. Peter
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Thamires Prolo de Brito
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Fernando Antoneli
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Ricardo Durães-Carvalho
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Marcelo R. S. Briones
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Juliana T. Maricato
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Paolo M. A. Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA; (P.P.-O.); (D.J.M.)
- Computational Intelligence to Predict Health and Environmental Risks Center, University of North Carolina at Charlotte, 9201 University City BLVD, Charlotte, NC 28223, USA
| | - Luiz M. R. Janini
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| |
Collapse
|
4
|
Williams ZH, Imedio AD, Gaucherand L, Lee DC, Mostafa SM, Phelan JP, Coffin JM, Johnson WE. Recombinant origin and interspecies transmission of a HERV-K(HML-2)-related primate retrovirus with a novel RNA transport element. eLife 2024; 13:e80216. [PMID: 39037763 PMCID: PMC11379458 DOI: 10.7554/elife.80216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.
Collapse
Affiliation(s)
| | | | - Lea Gaucherand
- Molecular Microbiology Program, Tufts University Graduate School of Biomedical SciencesBostonUnited States
| | - Derek C Lee
- Department of Biology, Boston CollegeBostonUnited States
| | - Salwa Mohd Mostafa
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of MedicineBostonUnited States
| | - James P Phelan
- Molecular Microbiology Program, Tufts University Graduate School of Biomedical SciencesBostonUnited States
| | - John M Coffin
- Molecular Microbiology Program, Tufts University Graduate School of Biomedical SciencesBostonUnited States
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of MedicineBostonUnited States
| | | |
Collapse
|
5
|
Simpson J, Kozak CA, Boso G. Evolutionary conservation of an ancient retroviral gagpol gene in Artiodactyla. J Virol 2023; 97:e0053523. [PMID: 37668369 PMCID: PMC10537755 DOI: 10.1128/jvi.00535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/28/2023] [Indexed: 09/06/2023] Open
Abstract
The genomes of mammals contain fingerprints of past infections by ancient retroviruses that invaded the germline of their ancestors. Most of these endogenous retroviruses (ERVs) contain only remnants of the original retrovirus; however, on rare occasions, ERV genes can be co-opted for a beneficial host function. While most studies of co-opted ERVs have focused on envelope genes, including the syncytins that function in placentation, there are examples of co-opted gag genes including one we recently discovered in simian primates. Here, we searched for other intact gag genes in non-primate mammalian lineages. We began by examining the genomes of extant camel species, which represent a basal lineage in the order Artiodactyla. This identified a gagpol gene with a large open reading frame (ORF) (>3,500 bp) in the same orthologous location in Artiodactyla species but that is absent in other mammals. Thus, this ERV was fixed in the common ancestor of all Artiodactyla at least 64 million years ago. The amino acid sequence of this gene, termed ARTgagpol, contains recognizable matrix, capsid, nucleocapsid, and reverse transcriptase domains in ruminants, with an RNase H domain in camels and pigs. Phylogenetic analysis and structural prediction of its reverse transcriptase and RNase H domains groups ARTgagpol with gammaretroviruses. Transcriptomic analysis shows ARTgagpol expression in multiple tissues suggestive of a co-opted host function. These findings identify the oldest and largest ERV-derived gagpol gene with an intact ORF in mammals, an intriguing milestone in the co-evolution of mammals and retroviruses. IMPORTANCE Retroviruses are unique among viruses that infect animals as they integrate their reverse-transcribed double-stranded DNA into host chromosomes. When this happens in a germline cell, such as sperm, egg, or their precursors, the integrated retroviral copies can be passed on to the next generation as endogenous retroviruses (ERVs). On rare occasions, the genes of these ERVs can be domesticated by the host. In this study we used computational similarity searches to identify an ancient ERV with an intact viral gagpol gene in the genomes of camels that is also found in the same genomic location in other even-toed ungulates suggesting that it is at least 64 million years old. Broad tissue expression and predicted preservation of the reverse transcriptase fold of this protein suggest that it may be domesticated for a host function. This is the oldest known intact gagpol gene of an ancient retrovirus in mammals.
Collapse
Affiliation(s)
- J'Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Kanholm T, Rentia U, Hadley M, Karlow JA, Cox OL, Diab N, Bendall ML, Dawson T, McDonald JI, Xie W, Crandall KA, Burns KH, Baylin SB, Easwaran H, Chiappinelli KB. Oncogenic Transformation Drives DNA Methylation Loss and Transcriptional Activation at Transposable Element Loci. Cancer Res 2023; 83:2584-2599. [PMID: 37249603 PMCID: PMC10527578 DOI: 10.1158/0008-5472.can-22-3485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation. SIGNIFICANCE Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.
Collapse
Affiliation(s)
- Tomas Kanholm
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at the George Washington University
| | - Uzma Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Melissa Hadley
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Jennifer A. Karlow
- Department of Pathology, Dana-Farber Cancer Institute / Harvard Medical School, Boston, MA, USA
| | - Olivia L. Cox
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Noor Diab
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- George Washington University School of Medicine and Health Sciences
| | - Matthew L. Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tyson Dawson
- The Institute for Biomedical Sciences at the George Washington University
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - James I. McDonald
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Wenbing Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Keith A. Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Kathleen H. Burns
- Department of Pathology, Dana-Farber Cancer Institute / Harvard Medical School, Boston, MA, USA
| | - Stephen B. Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Hari Easwaran
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Katherine B. Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at the George Washington University
| |
Collapse
|
7
|
Identification of Cartilaginous Fish Endogenous Foamy Virus Rooting to Vertebrate Counterparts. J Virol 2023; 97:e0181622. [PMID: 36651746 PMCID: PMC9972966 DOI: 10.1128/jvi.01816-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Foamy viruses (FVs) are ideal models for studying the long-term evolutionary history between viruses and their hosts. Currently, FVs have been documented in nearly all major taxa of vertebrates, but evidence is lacking for true FV infiltration in cartilaginous fish, the most basal living vertebrates with jaws. Here, we screened 11 available genomes and 10 transcriptome sequence assemblies of cartilaginous fish and revealed a novel endogenous foamy virus, termed cartilaginous fish endogenous foamy virus (CFEFV), in the genomes of sharks and rays. Genomic analysis of CFEFVs revealed feature motifs that were retained among canonical FVs. Phylogenetic analysis using polymerase sequences revealed the rooting nature of CFEFVs to vertebrate FVs, indicating their deep origin. Interestingly, three viral lineages were found in a shark (Scyliorhinus torazame), one of which was clustered with ray-finned fish foamy-like viruses, indicating that multiple episodes of viral infiltrations had occurred in this species. These findings fill a major gap in the Spumaretrovirinae taxon and reveal the aquatic origin of FVs found in terrestrial vertebrates. IMPORTANCE Although foamy viruses (FVs) have been found in major branches of vertebrates, the presence of these viruses in cartilaginous fish, the most basal living vertebrates with jaws, remains to be explored. This study revealed a collection of cartilaginous endogenous FVs in sharks and rays through in silico genomic mining. These viruses were rooted in the polymerase (POL) phylogeny, indicating the ancient aquatic origin of FVs. However, their envelope (ENV) protein grouped with those of amphibian FVs, suggesting different evolutionary histories of different FV genes. Overall, we provide the last missing gap for the taxonomic investigation of Spumaretrovirinae and provide concrete support for the aquatic origin of FVs.
Collapse
|
8
|
Burn A, Roy F, Freeman M, Coffin JM. Widespread expression of the ancient HERV-K (HML-2) provirus group in normal human tissues. PLoS Biol 2022; 20:e3001826. [PMID: 36256614 PMCID: PMC9578601 DOI: 10.1371/journal.pbio.3001826] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Human endogenous retrovirus (HERV) transcripts are known to be highly expressed in cancers, yet their activity in nondiseased tissue is largely unknown. Using the GTEx RNA-seq dataset from normal tissue sampled at autopsy, we characterized individual expression of the recent HERV-K (HML-2) provirus group across 13,000 different samples of 54 different tissues from 948 individuals. HML-2 transcripts could be identified in every tissue sampled and were elevated in the cerebellum, pituitary, testis, and thyroid. A total of 37 different individual proviruses were expressed in 1 or more tissues, representing all 3 LTR5 subgroups. Nine proviruses were identified as having long terminal repeat (LTR)-driven transcription, 7 of which belonged to the most recent LTR5HS subgroup. Proviruses of different subgroups displayed a bias in tissue expression, which may be associated with differences in transcription factor binding sites in their LTRs. Provirus expression was greater in evolutionarily older proviruses with an earliest shared ancestor of gorilla or older. HML-2 expression was significantly affected by biological sex in 1 tissue, while age and timing of death (Hardy score) had little effect. Proviruses containing intact gag, pro, and env open reading frames (ORFs) were expressed in the dataset, with almost every tissue measured potentially expressing at least 1 intact ORF (gag). Human endogenous retrovirus (HERV) transcripts are known to be highly expressed in cancers, but what is their activity in normal tissue? This study uses unique patterns of HERV-K RNA expression in the large GEx dataset from non-diseased tissue sites to provide new insights into both the coevolution of HERV-K with our primate ancestors and their current role in human biology.
Collapse
Affiliation(s)
- Aidan Burn
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Farrah Roy
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | - Michael Freeman
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - John M. Coffin
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Simpson J, Kozak CA, Boso G. Cross-species transmission of an ancient endogenous retrovirus and convergent co-option of its envelope gene in two mammalian orders. PLoS Genet 2022; 18:e1010458. [PMID: 36240227 PMCID: PMC9604959 DOI: 10.1371/journal.pgen.1010458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Endogenous retroviruses (ERVs) found in vertebrate genomes are remnants of retroviral invasions of their ancestral species. ERVs thus represent molecular fossil records of ancient retroviruses and provide a unique opportunity to study viral-host interactions, including cross-species transmissions, in deep time. While most ERVs contain the mutated remains of the original retrovirus, on rare occasions evolutionary selection pressures lead to the co-option/exaptation of ERV genes for a host function. Here, we report the identification of two ancient related non-orthologous ERV env genes, ARTenvV and CARenvV, that are preserved with large open reading frames (ORFs) in the mammalian orders Artiodactyla and Carnivora, respectively, but are not found in other mammals. These Env proteins lack a transmembrane motif, but phylogenetic analyses show strong sequence preservation and positive selection of the env surface ORF in their respective orders, and transcriptomic analyses show a broad tissue expression pattern for both ARTenvV and CARenvV, suggesting that these genes may be exapted for a host function. Multiple lines of evidence indicate that ARTenvV and CARenvV were derived from an ancient ancestral exogenous gamma-like retrovirus that was independently endogenized in two mammalian orders more than 60 million years ago, which roughly coincides with the K-Pg mass extinction event and subsequent mammalian diversification. Thus, these findings identify the oldest known retroviral cross-ordinal transmission of a gamma-like retrovirus with no known extant infectious counterpart in mammals, and the first discovery of the convergent co-option of an ERV gene derived from the same ancestral retrovirus in two different mammalian orders.
Collapse
Affiliation(s)
- J’Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
van der Kuyl AC. Analysis of Simian Endogenous Retrovirus (SERV) Full-Length Proviruses in Old World Monkey Genomes. Genes (Basel) 2022; 13:119. [PMID: 35052460 PMCID: PMC8775094 DOI: 10.3390/genes13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Simian endogenous retrovirus, SERV, is a successful germ line invader restricted to Old World monkey (OWM) species. (1) Background: The availability of high-quality primate genomes warrants a study of the characteristics, evolution, and distribution of SERV proviruses. (2) Methods: Cercopithecinae OWM genomes from public databases were queried for the presence of full-length SERV proviruses. A dataset of 81 Cer-SERV genomes was generated and analyzed. (3) Results: Full-length Cer-SERV proviruses were mainly found in terrestrial OWM, and less so in arboreal, forest- dwelling monkeys. Phylogenetic analysis confirmed the existence of two genotypes, Cer-SERV-1 and Cer-SERV-2, with Cer-SERV-1 showing evidence of recent germ-line expansions. Long Terminal Repeat (LTR) variation indicated that most proviruses were of a similar age and were estimated to be between <0.3 and 10 million years old. Integrations shared between species were relatively rare. Sequence analysis further showed extensive CpG methylation-associated mutations, variable Primer Binding Site (PBS) use with Cer-SERV-1 using PBSlys3 and Cer-SERV-2 using PBSlys1,2, and the recent gain of LTR motifs for transcription factors active during embryogenesis in Cer-SERV-1. (4) Conclusions: sequence analysis of 81 SERV proviruses from Cercopithecinae OWM genomes provides evidence for the adaptation of this retrovirus to germ line reproduction.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Jorritsma RN. How Well Does Evolution Explain Endogenous Retroviruses?-A Lakatosian Assessment. Viruses 2021; 14:v14010014. [PMID: 35062218 PMCID: PMC8781664 DOI: 10.3390/v14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most sophisticated philosophies of science is the methodology of scientific research programmes (MSRP), developed by Imre Lakatos. According to MSRP, scientists are working within so-called research programmes, consisting of a hard core of fixed convictions and a flexible protective belt of auxiliary hypotheses. Anomalies are accommodated by changes to the protective belt that do not affect the hard core. Under MSRP, research programmes are appraised as 'progressive' if they successfully predict novel facts but are judged as 'degenerative' if they merely offer ad hoc solutions to anomalies. This paper applies these criteria to the evolutionary research programme as it has performed during half a century of ERV research. It describes the early history of the field and the emergence of the endogenization-amplification theory on the origins of retroviral-like sequences. It then discusses various predictions and postdictions that were generated by the programme, regarding orthologous ERVs in different species, the presence of target site duplications and the divergence of long terminal repeats, and appraises how the programme has dealt with data that did not conform to initial expectations. It is concluded that the evolutionary research programme has been progressive with regard to the issues here examined.
Collapse
Affiliation(s)
- Ruben N Jorritsma
- Philosophy Group, Wageningen University & Research, 6700 EW Wageningen, The Netherlands
| |
Collapse
|
13
|
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021; 22:691-711. [PMID: 34354263 DOI: 10.1038/s41576-021-00385-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Collapse
Affiliation(s)
- Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Yang L, Malhotra R, Chikhi R, Elleder D, Kaiser T, Rong J, Medvedev P, Poss M. Recombination marks the evolutionary dynamics of a recently endogenized retrovirus. Mol Biol Evol 2021; 38:5423-5436. [PMID: 34480565 PMCID: PMC8662619 DOI: 10.1093/molbev/msab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
All vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term coevolution of ERV and host because germline infections are rare and expansion is slow, and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed. We previously established the locus-specific distribution of cervid ERV (CrERV) in populations of mule deer. In this study, we determine the molecular evolutionary processes acting on CrERV at each locus in the context of phylogenetic origin, genome location, and population prevalence. A mule deer genome was de novo assembled from short- and long-insert mate pair reads and CrERV sequence generated at each locus. We report that CrERV composition and diversity have recently measurably increased by horizontal acquisition of a new retrovirus lineage. This new lineage has further expanded CrERV burden and CrERV genomic diversity by activating and recombining with existing CrERV. Resulting interlineage recombinants then endogenize and subsequently expand. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion of one recombinant CrERV lineage. Thus, in mule deer, retroviral colonization is a dynamic period in the molecular evolution of CrERV that also provides a burst of genomic diversity to the host population.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Raunaq Malhotra
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rayan Chikhi
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Elleder
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 1083, 14220, Czech Republic Vídeňská Prague
| | - Theodora Kaiser
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse Rong
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Paul Medvedev
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mary Poss
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
15
|
Multiple Infiltration and Cross-Species Transmission of Foamy Viruses across the Paleozoic to the Cenozoic Era. J Virol 2021; 95:e0048421. [PMID: 33910951 DOI: 10.1128/jvi.00484-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses that can infect humans and other animals. In this study, by integrating transcriptomic and genomic data, we discovered 412 FVs from 6 lineages in amphibians, which significantly increased the known set of FVs in amphibians. Among these lineages, salamander FVs maintained a coevolutionary pattern with their hosts that could be dated back to the Paleozoic era, while in contrast, frog FVs were much more likely acquired from cross-species (class-level) transmission in the Cenozoic era. In addition, we found that three distinct FV lineages had integrated into the genome of a salamander. Unexpectedly, we identified a lineage of endogenous FVs in caecilians that expressed all complete major genes, demonstrating the potential existence of an exogenous form of FV outside of mammals. Our discovery of rare phenomena in amphibian FVs has significantly increased our understanding of the macroevolution of the complex retrovirus. IMPORTANCE Foamy viruses (FVs) represent, more so than other viruses, the best model of coevolution between a virus and a host. This study represents the largest investigation so far of amphibian FVs and reveals 412 FVs of 6 distinct lineages from three major orders of amphibians. Besides a coevolutionary pattern, cross-species and repeated infections were also observed during the evolution of amphibian FVs. Remarkably, expressed FVs including a potential exogenous form were discovered, suggesting that active FVs might be underestimated in nature. These findings revealed that the multiple origins and complex evolution of amphibian FVs started from the Paleozoic era.
Collapse
|
16
|
Katoh H, Yamazaki S, Fukuda T, Sonoda S, Nishigawa H, Natsuaki T. Detection of Fusarium oxysporum f. sp. fragariae by Using Loop-Mediated Isothermal Amplification. PLANT DISEASE 2021; 105:1072-1079. [PMID: 32897153 DOI: 10.1094/pdis-03-20-0590-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a loop-mediated isothermal amplification (LAMP) assay for detecting Fusarium oxysporum f. sp. fragariae, the causal agent of wilt in strawberry plants. This assay was based on genomic regions between the portions of transposable elements Han and Skippy of the fungus. The LAMP assay allowed the efficient detection of F. oxysporum f. sp. fragariae DNA by visual inspection, without requiring gel electrophoresis. The detection limit was 100 pg of genomic DNA, which is comparable to that of PCR. The LAMP primers successfully discriminated F. oxysporum f. sp. fragariae strains from nonpathogenic F. oxysporum strains and other fungi. The LAMP assay at 63°C, which was found to be the optimal treatment temperature, for 1.5 h successfully detected F. oxysporum f. sp. fragariae California strains GL1270 and GL1385. When the assay was performed using a Genelyzer FIII portable fluorometer, these California strains were successfully detected in 1 h. The assay facilitated the detection of conidia in soil samples after they were precultured on a selective medium for F. oxysporum (FoG2) as well as latent infection in strawberry plants after preculturing. The LAMP assay for visual inspection of DNA required only a heating block and an incubator, reducing the cost of this assay. Thus, it could be suitable for the detection of F. oxysporum f. sp. fragariae strains in centers that store prefoundation and foundation stocks of strawberry, including plant nurseries.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Shuichiro Yamazaki
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Takashi Fukuda
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Shoji Sonoda
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Hisashi Nishigawa
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Tomohide Natsuaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
17
|
Unexpected Discovery and Expression of Amphibian Class II Endogenous Retroviruses. J Virol 2021; 95:JVI.01806-20. [PMID: 33177199 DOI: 10.1128/jvi.01806-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of past retroviral infections. Fossil records of class II retroviruses have been discovered in a range of vertebrates, with the exception of amphibians, which are known only to possess class I and class III-like ERVs. Through genomic mining of all available amphibian genomes, we identified, for the first time, class II ERVs in amphibians. The class II ERVs were found only in Gymnophiona (caecilians) and not in the genomes of the other amphibian orders, Anura (frogs and toads) and Caudata (salamanders and newts), which are phylogenetically closely related. Therefore, the ERV endogenization occurred after the split of Gymnophiona, Anura, and Caudata (323 million years ago). Investigation of phylogenetic relationship and genomic structure revealed that the ERVs may originate from alpha- or betaretroviruses. We offer evidence that class II ERVs infiltrated amphibian genomes recently and may still have infectious members. Remarkably, certain amphibian class II ERVs can be expressed in diverse tissues. This discovery closes the major gap in the retroviral fossil record of class II ERVs and provides important insights into the evolution of class II ERVs in vertebrates.IMPORTANCE Class II retroviruses, largely distributed among mammals and birds, are of particular importance for medicine and economics. Class II ERVs have been discovered in a range of vertebrates, with the exception of amphibians, which are known only to possess class I and class III-like ERVs. Here, for the first time, we discovered class II ERVs in amphibians. We also revealed that the ERVs may originate from alpha- or betaretroviruses. We revealed that class II ERVs were integrated into amphibian genomes recently and certain amphibian class II ERVs can be expressed in diverse tissues. Our discovery closes the major gap in the retroviral fossil record of class II ERVs, and also indicates that amphibians may be still infected by class II retroviruses.
Collapse
|
18
|
Chen Y, Chen M, Duan X, Cui J. Ancient origin and complex evolution of porcine endogenous retroviruses. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
19
|
Abstract
Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.
Collapse
|
20
|
Sacco MA, Crosetti A. GGERV20, a recently integrated, segregating endogenous retrovirus in Gallus gallus. J Gen Virol 2020; 101:299-308. [PMID: 31916930 DOI: 10.1099/jgv.0.001379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) are widespread in vertebrate genomes. The recent availability of whole eukaryotic genomes has enabled their characterization in many organisms, including Gallus gallus (red jungle fowl), the progenitor of the domesticated chicken. Our bioinformatics analysis of a G. gallus ERV previously designated GGERV20 identified 35 proviruses with complete long terminal repeats (LTRs) and gag-pol open reading frames (ORFs) in the Genome Reference Consortium Chicken Build 6a, of which 8 showed potential for translation of functional retroviral polyproteins, including the integrase and reverse transcriptase enzymes. No elements were discovered with an env gene. Fifteen loci had LTR sequences with 100 % identity, indicative of recent integration. Chicken embryo fibroblast RNA-seq datasets showed reads representing the entire length of the GGERV20 provirus, supporting their potential for expressing viral proteins. To investigate the possibility that GGERV20 elements may not be fixed in the genome, we assessed the integration status of five loci in a meat-type chicken. PCRs targeting a GGERV20 locus on G. gallus chromosome one (GGERV201-1) reproducibly amplified both LTRs and the preintegration state, indicating that the bird from which the DNA was sampled was hemizygous at this locus. The four other loci examined only produced the preintegration state amplicons. These results reveal that GGERV20 is not fixed in the G. gallus population, and taken together with the lack of mutations seen in several provirus LTRs and their transcriptional activity, suggest that GGERV20 retroviruses have recently been and continue to be active in the chicken genome.
Collapse
Affiliation(s)
- Melanie Ann Sacco
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Anna Crosetti
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| |
Collapse
|
21
|
Bruno M, Mahgoub M, Macfarlan TS. The Arms Race Between KRAB–Zinc Finger Proteins and Endogenous Retroelements and Its Impact on Mammals. Annu Rev Genet 2019; 53:393-416. [DOI: 10.1146/annurev-genet-112618-043717] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nearly half of the human genome consists of endogenous retroelements (EREs) and their genetic remnants, a small fraction of which carry the potential to propagate in the host genome, posing a threat to genome integrity and cell/organismal survival. The largest family of transcription factors in tetrapods, the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs), binds to specific EREs and represses their transcription. Since their first appearance over 400 million years ago, KRAB-ZFPs have undergone dramatic expansion and diversification in mammals, correlating with the invasions of new EREs. In this article we review our current understanding of the structure, function, and evolution of KRAB-ZFPs and discuss growing evidence that the arms race between KRAB-ZFPs and the EREs they target is a major driving force for the evolution of new traits in mammals, often accompanied by domestication of EREs themselves.
Collapse
Affiliation(s)
- Melania Bruno
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mohamed Mahgoub
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Todd S. Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Chen Y, Wei X, Zhang G, Holmes EC, Cui J. Identification and evolution of avian endogenous foamy viruses. Virus Evol 2019; 5:vez049. [PMID: 31777663 PMCID: PMC6875641 DOI: 10.1093/ve/vez049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A history of long-term co-divergence means that foamy viruses (family Retroviridae) provide an ideal framework to understanding virus-host evolution over extended time periods. Endogenous foamy viruses (EndFVs) are rare, and to date have only been described in a limited number of mammals, amphibians, reptiles and fish genomes. By screening 414 avian genomes we identified EndFVs in two bird species: the Maguari Stork (Ciconia maguari) and the Oriental Stork (Ciconia boyciana). Analyses of phylogenetic relationships, genome structures and flanking sequences revealed a single origin of EndFVs in Ciconia species. In addition, the marked incongruence between the virus and host phylogenies suggested that this integration event occurred independently in birds. In sum, by providing evidence that birds can be infected with foamy viruses, we fill the last major gap in the taxonomic distribution of foamy viruses and their animal hosts.
Collapse
Affiliation(s)
- Yicong Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoman Wei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jie Cui
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Pisano MP, Grandi N, Cadeddu M, Blomberg J, Tramontano E. Comprehensive Characterization of the Human Endogenous Retrovirus HERV-K(HML-6) Group: Overview of Structure, Phylogeny, and Contribution to the Human Genome. J Virol 2019; 93:e00110-19. [PMID: 31167914 PMCID: PMC6675890 DOI: 10.1128/jvi.00110-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/27/2019] [Indexed: 11/20/2022] Open
Abstract
Eight percent of the human genome is composed of human endogenous retroviruses (HERVs), remnants of ancestral germ line infections by exogenous retroviruses, which have been vertically transmitted as Mendelian characters. The HML-6 group, a member of the class II betaretrovirus-like viruses, includes several proviral loci with an increased transcriptional activity in cancer and at least two elements that are known for retaining an intact open reading frame and for encoding small proteins such as ERVK3-1, which is expressed in various healthy tissues, and HERV-K-MEL, a small Env peptide expressed in samples of cutaneous and ocular melanoma but not in normal tissues.IMPORTANCE We reported the distribution and genetic composition of 66 HML-6 elements. We analyzed the phylogeny of the HML-6 sequences and identified two main clusters. We provided the first description of a Rec domain within the env sequence of 23 HML-6 elements. A Rec domain was also predicted within the ERVK3-1 transcript sequence, revealing its expression in various healthy tissues. Evidence about the context of insertion and colocalization of 19 HML-6 elements with functional human genes are also reported, including the sequence 16p11.2, whose 5' long terminal repeat overlapped the exon of one transcript variant of a cellular zinc finger upregulated and involved in hepatocellular carcinoma. The present work provides the first complete overview of the HML-6 elements in GRCh37(hg19), describing the structure, phylogeny, and genomic context of insertion of each locus. This information allows a better understanding of the genetics of one of the most expressed HERV groups in the human genome.
Collapse
Affiliation(s)
- Maria Paola Pisano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
24
|
Shankar A, Sibley SD, Goldberg TL, Switzer WM. Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes. Viruses 2019; 11:E605. [PMID: 31277268 PMCID: PMC6669568 DOI: 10.3390/v11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.
Collapse
Affiliation(s)
- Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
25
|
Abd Elkodous M, El-Sayyad GS, Nasser HA, Elshamy AA, Morsi M, Abdelrahman IY, Kodous AS, Mosallam FM, Gobara M, El-Batal AI. Engineered Nanomaterials as Potential Candidates for HIV Treatment: Between Opportunities and Challenges. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01533-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Halo JV, Pendleton AL, Jarosz AS, Gifford RJ, Day ML, Kidd JM. Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids. Retrovirology 2019; 16:6. [PMID: 30845962 PMCID: PMC6407205 DOI: 10.1186/s12977-019-0468-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/20/2023] Open
Abstract
Background Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs. Electronic supplementary material The online version of this article (10.1186/s12977-019-0468-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abigail S Jarosz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Robert J Gifford
- Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Malika L Day
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
27
|
Wei X, Chen Y, Duan G, Holmes EC, Cui J. A reptilian endogenous foamy virus sheds light on the early evolution of retroviruses. Virus Evol 2019; 5:vez001. [PMID: 30838130 PMCID: PMC6393741 DOI: 10.1093/ve/vez001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) represent host genomic 'fossils' of ancient viruses. Foamy viruses, including those that form endogenous copies, provide strong evidence for virus-host co-divergence across the vertebrate phylogeny. Endogenous foamy viruses (EFVs) have previously been discovered in mammals, amphibians, and fish. Here we report a novel endogenous foamy virus, termed ERV-Spuma-Spu, in genome of the tuatara (Sphenodon punctatus), an endangered reptile species endemic to New Zealand. Phylogenetic analyses revealed that foamy viruses have likely co-diverged with their hosts over many millions of years. The discovery of ERV-Spuma-Spu fills a major gap in the fossil record of foamy viruses and provides important insights into the early evolution of retroviruses.
Collapse
Affiliation(s)
- Xiaoman Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yicong Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangqian Duan
- University of Chinese Academy of Sciences, Beijing, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jie Cui
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
28
|
Chen M, Cui J. Discovery of endogenous retroviruses with mammalian envelopes in avian genomes uncovers long-term bird-mammal interaction. Virology 2019; 530:27-31. [PMID: 30772620 DOI: 10.1016/j.virol.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/28/2022]
Abstract
Endogenous retroviruses (ERVs) arise from the infection and integration of past retroviruses into animal hosts. We performed large-scale genomic mining of 101 avian genomes for discovery of ERVs having none-avian origin and investigated the cross-species transmission events. Phylogenetic analysis of the reverse transcriptase (RT) of polymerase gene (pol) and the transmembrane subunit (TM) of the envelope gene (env) supported that avian ERVs with a mammalian env gene existed in at least 15 avian species and can be divided into two major groups: Group-1 were of recombinant ERVs with an alpha-like pol gene and a gamma-like env gene, and Group-2 included ERVs with both gamma-like pol and env genes. Group-1 represented the avian alpharetroviral/mammalian gammaretroviral recombinant while Group-2 documented viral jump from mammals to birds. Molecular dating analysis suggested that Group-1 ERVs had integrated into avian genomes continuously, until recent past. We have expanded the knowledge of ERVs with cross-order transmission.
Collapse
Affiliation(s)
- Mingyue Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jie Cui
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
29
|
Gorillas have been infected with the HERV-K (HML-2) endogenous retrovirus much more recently than humans and chimpanzees. Proc Natl Acad Sci U S A 2019; 116:1337-1346. [PMID: 30610173 DOI: 10.1073/pnas.1814203116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retrovirus-K (HERV-K) human mouse mammary tumor virus-like 2 (HML-2) is the most recently active endogenous retrovirus group in humans, and the only group with human-specific proviruses. HML-2 expression is associated with cancer and other diseases, but extensive searches have failed to reveal any replication-competent proviruses in humans. However, HML-2 proviruses are found throughout the catarrhine primates, and it is possible that they continue to infect some species today. To investigate this possibility, we searched for gorilla-specific HML-2 elements using both in silico data mining and targeted deep-sequencing approaches. We identified 150 gorilla-specific integrations, including 31 2-LTR proviruses. Many of these proviruses have identical LTRs, and are insertionally polymorphic, consistent with very recent integration. One identified provirus has full-length ORFs for all genes, and thus could potentially be replication-competent. We suggest that gorillas may still harbor infectious HML-2 virus and could serve as a model for understanding retrovirus evolution and pathogenesis in humans.
Collapse
|
30
|
Hwang J, Park SY, Lee S, Lee TK. High diversity and potential translocation of DNA viruses in ballast water. MARINE POLLUTION BULLETIN 2018; 137:449-455. [PMID: 30503454 DOI: 10.1016/j.marpolbul.2018.10.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 05/22/2023]
Abstract
Ballast water is a common vector for the transport of invasive species to new marine and aquatic environments. We used a metagenomics approach to examine the composition and diversity of viral communities in ballast water from ships originating in Mexico, Saudi Arabia, New York, and Panama, and in water from the port of their destination in Busan, Korea. Myoviridae was the most abundant virus family in ballast water, followed Podoviridae and Siphoviridae. We also identified viruses that infect invertebrates, amoebas, and algae in ballast water and in the Busan port water. Interestingly, there were several viruses that infect humans or other animals (Swinepox virus, Raccoonpox virus, Suid herpesvirus, and Human endogenous retrovirus) in the samples from New York and Panama. In addition, there were giant viruses in all the ballast water samples, especially, identified Megavirus chilensis in New York and Panama, and Pandoravirus salinus in Mexico and Saudi Arabia. These results provide detailed descriptions of the characteristics of the viruses present in ballast water, document significant viral diversity, and indicate the potential translocation of viruses via ballast water.
Collapse
Affiliation(s)
- Jinik Hwang
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Marine Ecology and Resource Convergence Center, AICT, Suwon, 16229, Republic of Korea
| | - So Yun Park
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taek-Kyun Lee
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea.
| |
Collapse
|
31
|
Ikeda M, Satomura K, Sekizuka T, Hanada K, Endo T, Osada N. Comprehensive phylogenomic analysis reveals a novel cluster of simian endogenous retroviral sequences in Colobinae monkeys. Am J Primatol 2018; 80:e22882. [PMID: 29896810 DOI: 10.1002/ajp.22882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/10/2023]
Abstract
Simian retrovirus (SRV) is a type-D betaretrovirus infectious to the Old World monkeys causing a variety of symptoms. SRVs are also present in the Old World monkey genomes as endogenous forms, which are referred to as Simian endogenous retroviruses (SERVs). Although many SERV sequences have been identified in Cercopithecinae genomes, with potential of encoding all functional genes, the distribution of SERVs in genomes and evolutionary relationship between exogeneous SRVs and SERVs remains unclear. In this study, we comprehensively investigated seven draft genome sequences of the Old World monkeys, and identified a novel cluster of SERVs in the two Rhinopithecus (R. roxellana and R. bieti) genomes, which belong to the Colobinae subfamily. The Rhinopithecus genomes harbored higher copy numbers of SERVs than the Cercopithecinae genomes. A reconstructed phylogenetic tree showed that the Colobinae SERVs formed a distinct cluster from SRVs and Cercopithecinae SERVs, and more closely related to exogenous SRVs than Cercopithecinae SERVs. Three radical amino acid substitutions specific to Cercopithecinae SERVs, which potentially affect the infectious ability of SERVs, were also identified in the proviral envelope protein. In addition, we found many integration events of SERVs were genus- or species-specific, suggesting the recent activity of SERVs in the Old World monkey genomes. The results suggest that SERVs in Cercopithecinae and Colobinae monkeys were endogenized after the divergence of subfamilies and do not transmit across subfamilies. Our findings also support the hypothesis that Colobinae SERVs are direct ancestors of SRV-6, which has a different origin from the other exogenous SRVs. These findings shed novel insight into the evolutionary history of SERVs, and may help to understand the process of endogenization of SRVs.
Collapse
Affiliation(s)
- Masaki Ikeda
- Department of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Kazuhiro Satomura
- Department of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshinori Endo
- Department of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Naoki Osada
- Department of Information Science and Technology, Hokkaido University, Hokkaido, Japan.,Global Station for Bid Data and Cybersecurity, GI-CoRE, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
32
|
Hron T, Farkašová H, Gifford RJ, Benda P, Hulva P, Görföl T, Pačes J, Elleder D. Remnants of an Ancient Deltaretrovirus in the Genomes of Horseshoe Bats (Rhinolophidae). Viruses 2018; 10:v10040185. [PMID: 29642581 PMCID: PMC5923479 DOI: 10.3390/v10040185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/31/2018] [Accepted: 04/07/2018] [Indexed: 12/24/2022] Open
Abstract
Endogenous retrovirus (ERV) sequences provide a rich source of information about the long-term interactions between retroviruses and their hosts. However, most ERVs are derived from a subset of retrovirus groups, while ERVs derived from certain other groups remain extremely rare. In particular, only a single ERV sequence has been identified that shows evidence of being related to an ancient Deltaretrovirus, despite the large number of vertebrate genome sequences now available. In this report, we identify a second example of an ERV sequence putatively derived from a past deltaretroviral infection, in the genomes of several species of horseshoe bats (Rhinolophidae). This sequence represents a fragment of viral genome derived from a single integration. The time of the integration was estimated to be 11-19 million years ago. This finding, together with the previously identified endogenous Deltaretrovirus in long-fingered bats (Miniopteridae), suggest a close association of bats with ancient deltaretroviruses.
Collapse
Affiliation(s)
- Tomáš Hron
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Helena Farkašová
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Robert J Gifford
- MRC-University of Glasgow, Centre for Virus Research, 464 Bearsden Road, Glasgow G12 8TA, UK.
| | - Petr Benda
- Department of Zoology, Charles University, Vinicna 7, 12844 Prague, Czech Republic.
- Department of Zoology, National Museum (Natural History), Vaclavske nam. 68, 11579 Prague, Czech Republic.
| | - Pavel Hulva
- Department of Zoology, Charles University, Vinicna 7, 12844 Prague, Czech Republic.
- Department of Biology and Ecology, University of Ostrava, Chitussiho 10, 71000 Ostrava, Czech Republic.
| | - Tamás Görföl
- Department of Zoology, Hungarian Natural History Musem, Baross Utca 13, 1088 Budapest, Hungary.
| | - Jan Pačes
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Daniel Elleder
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
33
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
34
|
Grandi N, Cadeddu M, Pisano MP, Esposito F, Blomberg J, Tramontano E. Identification of a novel HERV-K(HML10): comprehensive characterization and comparative analysis in non-human primates provide insights about HML10 proviruses structure and diffusion. Mob DNA 2017; 8:15. [PMID: 29118853 PMCID: PMC5667498 DOI: 10.1186/s13100-017-0099-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Background About half of the human genome is constituted of transposable elements, including human endogenous retroviruses (HERV). HERV sequences represent the 8% of our genetic material, deriving from exogenous infections occurred millions of years ago in the germ line cells and being inherited by the offspring in a Mendelian fashion. HERV-K elements (classified as HML1–10) are among the most studied HERV groups, especially due to their possible correlation with human diseases. In particular, the HML10 group was reported to be upregulated in persistent HIV-1 infected cells as well as in tumor cells and samples, and proposed to have a role in the control of host genes expression. An individual HERV-K(HML10) member within the major histocompatibility complex C4 gene has even been studied for its possible contribution to type 1 diabetes susceptibility. Following a first characterization of the HML10 group at the genomic level, performed with the innovative software RetroTector, we have characterized in detail the 8 previously identified HML10 sequences present in the human genome, and an additional HML10 partial provirus in chromosome 1p22.2 that is reported here for the first time. Results Using a combined approach based on RetroTector software and a traditional Genome Browser Blat search, we identified a novel HERV-K(HML10) sequence in addition to the eight previously reported in the human genome GRCh37/hg19 assembly. We fully characterized the nine HML10 sequences at the genomic level, including their classification in two types based on both structural and phylogenetic characteristics, a detailed analysis of each HML10 nucleotide sequence, the first description of the presence of an Env Rec domain in the type II HML10, the estimated time of integration of individual members and the comparative map of the HML10 proviruses in non-human primates. Conclusions We performed an unambiguous and exhaustive analysis of the nine HML10 sequences present in GRCh37/hg19 assembly, useful to increase the knowledge of the group’s contribution to the human genome and laying the foundation for a better understanding of the potential physiological effects and the tentative correlation of these sequences with human pathogenesis. Electronic supplementary material The online version of this article (10.1186/s13100-017-0099-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Pisano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
35
|
Gim JA, Kim HS. Identification and Expression Analyses of Equine Endogenous Retroviruses in Horses. Mol Cells 2017; 40:796-804. [PMID: 29047258 PMCID: PMC5682256 DOI: 10.14348/molcells.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 11/27/2022] Open
Abstract
Endogenous retroviruses (ERVs) have been integrated into vertebrate genomes and have momentously affected host organisms. Horses (Equus caballus) have been domesticated and selected for elite racing ability over centuries. ERVs played an important role in the evolutionary diversification of the horse genome. In the present study, we identified six equine ERV families (EqERVs-E1, I1, M2, P1, S1, and Y4), their full-length viral open reading frames (ORFs), and elucidated their phylogenetic relationships. The divergence time of EqERV families assuming an evolutionary rate of 0.2%/Myr indicated that EqERV-S3 (75.4 million years ago; mya) on chromosome 10 is an old EqERV family and EqERV-P5 (1.2 Mya) on chromosome 12 is a young member. During the evolutionary diversification of horses, the EqERV-I family diverged 1.7 Mya to 38.7 Mya. Reverse transcription quantitative real-time PCR (RT-qPCR) amplification of EqERV pol genes showed greater expression in the cerebellum of the Jeju horse than the Thoroughbred horse. These results could contribute further dynamic studies for horse genome in relation to EqERV gene function.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
- The Genomics Institute, Life Sciences Department, UNIST, Ulsan 44919,
Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
36
|
Twilprawat P, Kim S, Srikulnath K, Han K. Structural variations generated by simian foamy virus-like (SFV) in Crocodylus siamensis. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet 2017; 13:e1006883. [PMID: 28700586 PMCID: PMC5529029 DOI: 10.1371/journal.pgen.1006883] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/26/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Human endogenous retroviruses (HERVs) and other long terminal repeat (LTR)-type retrotransposons (HERV/LTRs) have regulatory elements that possibly influence the transcription of host genes. We systematically identified and characterized these regulatory elements based on publicly available datasets of ChIP-Seq of 97 transcription factors (TFs) provided by ENCODE and Roadmap Epigenomics projects. We determined transcription factor-binding sites (TFBSs) using the ChIP-Seq datasets and identified TFBSs observed on HERV/LTR sequences (HERV-TFBSs). Overall, 794,972 HERV-TFBSs were identified. Subsequently, we identified "HERV/LTR-shared regulatory element (HSRE)," defined as a TF-binding motif in HERV-TFBSs, shared within a substantial fraction of a HERV/LTR type. HSREs could be an indication that the regulatory elements of HERV/LTRs are present before their insertions. We identified 2,201 HSREs, comprising specific associations of 354 HERV/LTRs and 84 TFs. Clustering analysis showed that HERV/LTRs can be grouped according to the TF binding patterns; HERV/LTR groups bounded to pluripotent TFs (e.g., SOX2, POU5F1, and NANOG), embryonic endoderm/mesendoderm TFs (e.g., GATA4/6, SOX17, and FOXA1/2), hematopoietic TFs (e.g., SPI1 (PU1), GATA1/2, and TAL1), and CTCF were identified. Regulatory elements of HERV/LTRs tended to locate nearby and/or interact three-dimensionally with the genes involved in immune responses, indicating that the regulatory elements play an important role in controlling the immune regulatory network. Further, we demonstrated subgroup-specific TF binding within LTR7, LTR5B, and LTR5_Hs, indicating that gains or losses of the regulatory elements occurred during genomic invasions of the HERV/LTRs. Finally, we constructed dbHERV-REs, an interactive database of HERV/LTR regulatory elements (http://herv-tfbs.com/). This study provides fundamental information in understanding the impact of HERV/LTRs on host transcription, and offers insights into the transcriptional modulation systems of HERV/LTRs and ancestral HERVs.
Collapse
|
38
|
Sundaram V, Choudhary MNK, Pehrsson E, Xing X, Fiore C, Pandey M, Maricque B, Udawatta M, Ngo D, Chen Y, Paguntalan A, Ray T, Hughes A, Cohen BA, Wang T. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus. Nat Commun 2017; 8:14550. [PMID: 28348391 PMCID: PMC5379053 DOI: 10.1038/ncomms14550] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/11/2017] [Indexed: 01/30/2023] Open
Abstract
Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome.
Collapse
Affiliation(s)
- Vasavi Sundaram
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Mayank N. K. Choudhary
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Erica Pehrsson
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Christopher Fiore
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Manishi Pandey
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Brett Maricque
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Methma Udawatta
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Duc Ngo
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Yujie Chen
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Asia Paguntalan
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Tammy Ray
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Ava Hughes
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Barak A. Cohen
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| |
Collapse
|
39
|
Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae). Proc Natl Acad Sci U S A 2017; 114:3145-3150. [PMID: 28280099 DOI: 10.1073/pnas.1621224114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviruses can create endogenous forms on infiltration into the germline cells of their hosts. These forms are then vertically transmitted and can be considered as genetic fossils of ancient viruses. All retrovirus genera, with the exception of deltaretroviruses, have had their representation identified in the host genome as a virus fossil record. Here we describe an endogenous Deltaretrovirus, identified in the germline of long-fingered bats (Miniopteridae). A single, heavily deleted copy of this retrovirus has been found in the genome of miniopterid species, but not in the genomes of the phylogenetically closest bat families, Vespertilionidae and Cistugonidae. Therefore, the endogenization occurred in a time interval between 20 and 45 million years ago. This discovery closes the last major gap in the retroviral fossil record and provides important insights into the history of deltaretroviruses in mammals.
Collapse
|
40
|
Broecker F, Horton R, Heinrich J, Franz A, Schweiger MR, Lehrach H, Moelling K. The intron-enriched HERV-K(HML-10) family suppresses apoptosis, an indicator of malignant transformation. Mob DNA 2016; 7:25. [PMID: 27980690 PMCID: PMC5142424 DOI: 10.1186/s13100-016-0081-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/19/2016] [Indexed: 02/06/2023] Open
Abstract
Background Human endogenous retroviruses (HERVs) constitute 8% of the human genome and contribute substantially to the transcriptome. HERVs have been shown to generate RNAs that modulate host gene expression. However, experimental evidence for an impact of these regulatory transcripts on the cellular phenotype has been lacking. Results We characterized the previously little described HERV-K(HML-10) endogenous retrovirus family on a genome-wide scale. HML-10 invaded the ancestral genome of Old World monkeys about 35 Million years ago and is enriched within introns of human genes when compared to other HERV families. We show that long terminal repeats (LTRs) of HML-10 exhibit variable promoter activity in human cancer cell lines. One identified HML-10 LTR-primed RNA was in opposite orientation to the pro-apoptotic Death-associated protein 3 (DAP3). In HeLa cells, experimental inactivation of HML-10 LTR-primed transcripts induced DAP3 expression levels, which led to apoptosis. Conclusions Its enrichment within introns suggests that HML-10 may have been evolutionary co-opted for gene regulation more than other HERV families. We demonstrated such a regulatory activity for an HML-10 RNA that suppressed DAP3-mediated apoptosis in HeLa cells. Since HML-10 RNA appears to be upregulated in various tumor cell lines and primary tumor samples, it may contribute to evasion of apoptosis in malignant cells. However, the overall weak expression of HML-10 transcripts described here raises the question whether our result described for HeLa represent a rare event in cancer. A possible function in other cells or tissues requires further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0081-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland ; Current affiliation: Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Roger Horton
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Jochen Heinrich
- Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland
| | - Alexandra Franz
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Current affiliation: University of Zurich, Institute of Molecular Life Sciences, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Michal-Ruth Schweiger
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Current affiliation: Functional Epigenomics, CCG, Cologne University Hospital, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Hans Lehrach
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Dahlem Centre for Genome Research and Medical Systems Biology, Fabeckstr. 60-62, 14195 Berlin, Germany
| | - Karin Moelling
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland
| |
Collapse
|
41
|
Hron T, Farkašová H, Padhi A, Pačes J, Elleder D. Life History of the Oldest Lentivirus: Characterization of ELVgv Integrations in the Dermopteran Genome. Mol Biol Evol 2016; 33:2659-69. [DOI: 10.1093/molbev/msw149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
42
|
Abstract
Recent discoveries indicate that the foamy virus (FV) (Spumavirus) ancestor may have been among the first retroviruses to appear during the evolution of vertebrates, demonstrated by foamy endogenous retroviruses present within deeply divergent hosts including mammals, coelacanth, and ray-finned fish. If they indeed existed in ancient marine environments hundreds of millions of years ago, significant undiscovered diversity of foamy-like endogenous retroviruses might be present in fish genomes. By screening published genomes and by applying PCR-based assays of preserved tissues, we discovered 23 novel foamy-like elements in teleost hosts. These viruses form a robust, reciprocally monophyletic sister clade with sarcopterygian host FV, with class III mammal endogenous retroviruses being the sister group to both clades. Some of these foamy-like retroviruses have larger genomes than any known retrovirus, exogenous or endogenous, due to unusually long gag-like genes and numerous accessory genes. The presence of genetic features conserved between mammalian FV and these novel retroviruses attests to a foamy-like replication biology conserved for hundreds of millions of years. We estimate that some of these viruses integrated recently into host genomes; exogenous forms of these viruses may still circulate.
Collapse
Affiliation(s)
- Ryan Ruboyianes
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St., Tucson, AZ 85721, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
43
|
Hanke K, Hohn O, Bannert N. HERV-K(HML-2), a seemingly silent subtenant - but still waters run deep. APMIS 2016; 124:67-87. [PMID: 26818263 DOI: 10.1111/apm.12475] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023]
Abstract
A large proportion of the human genome consists of endogenous retroviruses, some of which are well preserved, showing transcriptional activity, and expressing retroviral proteins. The HERV-K(HML-2) family represents the most intact members of these elements, with some having open and intact reading frames for viral proteins and the ability to form virus-like particles. Although generally suppressed in most healthy tissues by a variety of epigenetic processes and antiviral mechanisms, there is evidence that some members of this family are (at least partly) still active - particularly in certain stem cells and various tumors. This raises the possibility of their involvement in tumor induction or in developmental processes. In recent years, many new insights into this fascinating field have been attained, and this review focuses on new discoveries about coevolutionary events and intracellular defense mechanisms against HERV-K(HML-2) activity. We also describe what might occur when these mechanisms fail or become modulated by viral proteins or other viruses and discuss the new vistas opened up by the reconstitution of ancestral viral proteins and even complete HML-2 viruses.
Collapse
Affiliation(s)
- Kirsten Hanke
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Oliver Hohn
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
44
|
Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci U S A 2016; 113:E2326-34. [PMID: 27001843 DOI: 10.1073/pnas.1602336113] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) have contributed to more than 8% of the human genome. The majority of these elements lack function due to accumulated mutations or internal recombination resulting in a solitary (solo) LTR, although members of one group of human ERVs (HERVs), HERV-K, were recently active with members that remain nearly intact, a subset of which is present as insertionally polymorphic loci that include approximately full-length (2-LTR) and solo-LTR alleles in addition to the unoccupied site. Several 2-LTR insertions have intact reading frames in some or all genes that are expressed as functional proteins. These properties reflect the activity of HERV-K and suggest the existence of additional unique loci within humans. We sought to determine the extent to which other polymorphic insertions are present in humans, using sequenced genomes from the 1000 Genomes Project and a subset of the Human Genome Diversity Project panel. We report analysis of a total of 36 nonreference polymorphic HERV-K proviruses, including 19 newly reported loci, with insertion frequencies ranging from <0.0005 to >0.75 that varied by population. Targeted screening of individual loci identified three new unfixed 2-LTR proviruses within our set, including an intact provirus present at Xq21.33 in some individuals, with the potential for retained infectivity.
Collapse
|
45
|
Diehl WE, Patel N, Halm K, Johnson WE. Tracking interspecies transmission and long-term evolution of an ancient retrovirus using the genomes of modern mammals. eLife 2016; 5:e12704. [PMID: 26952212 PMCID: PMC4798954 DOI: 10.7554/elife.12704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/26/2016] [Indexed: 12/03/2022] Open
Abstract
Mammalian genomes typically contain hundreds of thousands of endogenous retroviruses (ERVs), derived from ancient retroviral infections. Using this molecular 'fossil' record, we reconstructed the natural history of a specific retrovirus lineage (ERV-Fc) that disseminated widely between ~33 and ~15 million years ago, corresponding to the Oligocene and early Miocene epochs. Intercontinental viral spread, numerous instances of interspecies transmission and emergence in hosts representing at least 11 mammalian orders, and a significant role for recombination in diversification of this viral lineage were also revealed. By reconstructing the canonical retroviral genes, we identified patterns of adaptation consistent with selection to maintain essential viral protein functions. Our results demonstrate the unique potential of the ERV fossil record for studying the processes of viral spread and emergence as they play out across macro-evolutionary timescales, such that looking back in time may prove insightful for predicting the long-term consequences of newly emerging viral infections. DOI:http://dx.doi.org/10.7554/eLife.12704.001 Viruses have been with us for billions of years, and exist everywhere in nature that life is found. Viruses therefore have had a significant impact on the evolution of all organisms, from bacteria to humans. Unfortunately, viruses do not leave fossils, and so we know very little about how viruses originate and evolve over time. Fortunately, over the course of millions of years, genetic sequences from the viruses accumulate in the DNA genomes of living organisms (including humans). These sequences can serve as molecular “fossils” for exploring the natural history of viruses and their hosts. Diehl et al. have now searched the genomes of 50 modern mammals for “fossil” viral remnants of an ancient group of viruses known as ERV-Fc. This revealed that ERV-Fc viruses infected the ancestors of at least 28 of these mammal species between 15 million and 30 million years ago. The viruses affected a diverse range of hosts, including carnivores, rodents and primates. The distribution of ERV-Fc among different mammals indicates that the viruses spread to every continent except Antarctica and Australia, and that they jumped between species more than 20 times. Diehl et al. also pinpointed patterns of evolutionary change in the genes of the ERV-Fc viruses that reflect how the viruses adapted to different host mammals. As part of this process, the viruses often exchanged genes with each other and with other types of viruses. Such genetic recombination is likely to have played a significant role in the evolutionary success of the ERV-Fc viruses. Mammalian genomes contain hundreds of thousands of ancient viral fossils similar to ERV-Fc. Future work could study these to improve our understanding of when and why new viruses emerge and how long-term contact with viruses affects the evolution of their host organisms. DOI:http://dx.doi.org/10.7554/eLife.12704.002
Collapse
Affiliation(s)
- William E Diehl
- Biology Department, Boston College, Chestnut Hill, United States
| | - Nirali Patel
- Biology Department, Boston College, Chestnut Hill, United States
| | - Kate Halm
- Biology Department, Boston College, Chestnut Hill, United States
| | - Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, United States
| |
Collapse
|
46
|
Tang HB, Ouyang K, Rao GB, Ma L, Zhong H, Bai A, Qin S, Chen F, Lin J, Cao Y, Liao YJ, Zhang J, Wu J. Characterization of Complete Genome Sequences of a Porcine Endogenous Retrovirus Isolated From China Bama Minipig Reveals an Evolutionary Time Earlier Than That of Isolates From European Minipigs. Transplant Proc 2016; 48:222-8. [PMID: 26915872 DOI: 10.1016/j.transproceed.2015.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND A porcine endogenous retroviruses (PERV) isolate, PERV-A-BM, was isolated from a Guangxi Bama minipig in China. METHODS To understand its genetic variation and evolution, the complete PERV-A-BM genome sequences were determined and compared with isolates from different Sus scrofa breeds and porcine cell lines. A total of 69 nucleotide substitutions were found in the full-length genome, including 26 non-synonymous mutations. RESULTS Phylogenetic trees based on the complete genome sequence as well as the gag, pol, and env gene sequences from 21 PERV isolates demonstrated that the PERV-A-BM was closely related to the EF133960 isolate from Chinese Wuzhishan miniature pigs inbred in Hainan, China, and distantly related to strains isolated from European-born pigs. CONCLUSIONS The estimation of age in the proviral PERV-A-BM integrating into the host genome reveals that the age of PERV-A-BM is at least 8.3 × 10(6) years, an evolutionary time earlier than that of isolates from European-born pigs.
Collapse
Affiliation(s)
- H-B Tang
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - K Ouyang
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - G-B Rao
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - L Ma
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - H Zhong
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - A Bai
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - S Qin
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - F Chen
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - J Lin
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Y Cao
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Y-J Liao
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - J Zhang
- Laboratory for Viral Safety of National Centre of Biomedical Analysis, Institute of Transfusion Medicine, The Academy of Military Medical Sciences, Beijing, China
| | - J Wu
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China.
| |
Collapse
|
47
|
Vargiu L, Rodriguez-Tomé P, Sperber GO, Cadeddu M, Grandi N, Blikstad V, Tramontano E, Blomberg J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016; 13:7. [PMID: 26800882 PMCID: PMC4724089 DOI: 10.1186/s12977-015-0232-y] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background Human endogenous retroviruses (HERVs) represent the inheritance of ancient germ-line cell infections by exogenous retroviruses and the subsequent transmission of the integrated proviruses to the descendants. ERVs have the same internal structure as exogenous retroviruses. While no replication-competent HERVs have been recognized, some retain up to three of four intact ORFs. HERVs have been classified before, with varying scope and depth, notably in the RepBase/RepeatMasker system. However, existing classifications are bewildering. There is a need for a systematic, unifying and simple classification. We strived for a classification which is traceable to previous classifications and which encompasses HERV variation within a limited number of clades. Results The human genome assembly GRCh 37/hg19 was analyzed with RetroTector, which primarily detects relatively complete Class I and II proviruses. A total of 3173 HERV sequences were identified. The structure of and relations between these proviruses was resolved through a multi-step classification procedure that involved a novel type of similarity image analysis (“Simage”) which allowed discrimination of heterogeneous (noncanonical) from homogeneous (canonical) HERVs. Of the 3173 HERVs, 1214 were canonical and segregated into 39 canonical clades (groups), belonging to class I (Gamma- and Epsilon-like), II (Beta-like) and III (Spuma-like). The groups were chosen based on (1) sequence (nucleotide and Pol amino acid), similarity, (2) degree of fit to previously published clades, often from RepBase, and (3) taxonomic markers. The groups fell into 11 supergroups. The 1959 noncanonical HERVs contained 31 additional, less well-defined groups. Simage analysis revealed several types of mosaicism, notably recombination and secondary integration. By comparing flanking sequences, LTRs and completeness of gene structure, we deduced that some noncanonical HERVs proliferated after the recombination event. Groups were further divided into envelope subgroups (altogether 94) based on sequence similarity and characteristic “immunosuppressive domain” motifs. Intra and inter(super)group, as well as intraclass, recombination involving envelope genes (“env snatching”) was a common event. LTR divergence indicated that HERV-K(HML2) and HERVFC had the most recent integrations, HERVL and HUERSP3 the oldest. Conclusions A comprehensive HERV classification and characterization approach was undertaken. It should be applicable for classification of all ERVs. Recombination was common among HERV ancestors. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Vargiu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy. .,Center for Advanced Studies, Research and Development in Sardinia, CRS4, Pula, Italy. .,Nurideas S.r.l., Cagliari, Italy.
| | - Patricia Rodriguez-Tomé
- Center for Advanced Studies, Research and Development in Sardinia, CRS4, Pula, Italy. .,Nurideas S.r.l., Cagliari, Italy.
| | - Göran O Sperber
- Physiology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Vidar Blikstad
- Department of Medical Sciences, Uppsala University Hospital, Dag Hammarskjölds Väg 17, Uppsala, 751 85, Sweden.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University Hospital, Dag Hammarskjölds Väg 17, Uppsala, 751 85, Sweden.
| |
Collapse
|
48
|
Zhuo X, Feschotte C. Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages. PLoS Pathog 2015; 11:e1005279. [PMID: 26562410 PMCID: PMC4643047 DOI: 10.1371/journal.ppat.1005279] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13-25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts.
Collapse
Affiliation(s)
- Xiaoyu Zhuo
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
49
|
Meng F, Chen C, Wan H, Zhou Q. [Advances of lentiviral vectors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:870-6. [PMID: 25539614 PMCID: PMC6000409 DOI: 10.3779/j.issn.1009-3419.2014.12.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lentiviral vectors are currently very effective tools in molecular and cell experiment. Lentiviral vector, a kind of retroviral vectors, has a number of unique advantages in target gene transferation, for example, the ability of transfection to the dividing or nondividing cells, its high efficiency of transfection and a capacity of large target gene fragments. This paper describes the sources of lentiviral vectors, molecular characteristics, research progress, etc.
Collapse
Affiliation(s)
- Fanrong Meng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haisu Wan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
50
|
Abstract
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Collapse
Affiliation(s)
- Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467;
| |
Collapse
|