1
|
Kang JW, Ki Chan KW, Vasudevan SG, Low JG. α-Glucosidase Inhibitors as Broad-Spectrum Antivirals: Current Knowledge and Future Prospects. Antiviral Res 2025:106147. [PMID: 40120858 DOI: 10.1016/j.antiviral.2025.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Affiliation(s)
- James Wj Kang
- Department of Infectious Diseases, Singapore General Hospital, Singapore 168753, Singapore.
| | - Kitti Wing Ki Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Institute of Biomedicine and Glycomics, Griffith University, Queensland, Australia
| | - Jenny G Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore 168753, Singapore; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
| |
Collapse
|
2
|
Liu Q, Liu Y, Liu T, Fan J, Xia Z, Zhou Y, Deng X. Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:55. [PMID: 39325109 PMCID: PMC11427655 DOI: 10.1007/s13659-024-00477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Iminosugars, a class of polyhydroxylated cyclic alkaloids with intriguing properties, hold promising therapeutic potentials against a broad spectrum of enveloped viruses, including DENV, HCV, HIV, and influenza viruses. Mechanistically, iminosugars act as the competitive inhibitors of host endoplasmic reticular α-glucosidases I and II to disrupt the proper folding of viral nascent glycoproteins, which thereby exerts antiviral effects. Remarkably, the glycoproteins of many enveloped viruses are significantly more dependent on the calnexin pathway of the protein folding than most host glycoproteins. Therefore, extensive interests and efforts have been devoted to exploit iminosugars as broad-spectrum antiviral agents. This review provides the summary and insights into the recent advancements in the development of novel iminosugars as effective and selective antiviral agents against a variety of enveloped viruses, as well as the understandings of their antiviral mechanisms.
Collapse
Affiliation(s)
- Qiantong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yanyun Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zanxian Xia
- School of Life Science, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Li Z, He Y, Chen J, Ran D, Yue J, Fu Q, Shi H. Transcriptomic Analysis of Metformin's Effect on Bovine Viral Diarrhea Virus Infection. Vet Sci 2024; 11:376. [PMID: 39195830 PMCID: PMC11358930 DOI: 10.3390/vetsci11080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Background: Bovine viral diarrhea virus (BVDV) causes calf diarrhea, bovine respiratory syndrome, and cow abortion, resulting in substantial economic losses in the cattle industry. Owing to its persistent infection mechanism, BVDV is a major challenge in the treatment of cattle. (2) Methods: To determine how metformin (Met) inhibits the interaction between BVDV and host cells, we treated BVDV-infected cells with Met. We then performed an RNA sequencing (RNA-seq) analysis of Met-treated cells infected with BVDV to identify differentially expressed genes (DEGs). Consequently, the RNA-seq results were validated through real-time quantitative PCR (qPCR). (3) Results: Our analysis revealed 3169 DEGs in the Met-treated cells (Met group) vs. the negative controls (NC group) and 2510 DEGs in the BVDV-infected cells after pretreatment with Met (MetBVDV group) vs. the BVDV-infected cells (BVDV group). The DEGs were involved in MDBK interactions during BVDV infection, as indicated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The potential interactions of the DEGs were confirmed via a protein-protein interaction (PPI) network. Met treatment induced autophagy signaling activity and the expression of the autophagy-related genes ATG2A, ATG4B, ATG10, and ATG12 in BVDV-infected Met-pretreated cells. (4) Conclusions: We found that the host transcriptomic profile was affected by BVDV infection and Met pretreatment. These findings offer valuable new insights and provide support for future studies on the inhibition of BVDV replication by Met.
Collapse
Affiliation(s)
- Zeyu Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yuanxiu He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Junzhen Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Duoliang Ran
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Jianbo Yue
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan 215316, China;
| | - Qiang Fu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Huijun Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Z.L.); (Y.H.); (J.C.); (D.R.)
- Xinjiajng Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
4
|
Lanave G, Pellegrini F, Triggiano F, De Giglio O, Lucente MS, Diakoudi G, Catella C, Gentile A, Tardugno R, Fracchiolla G, Martella V, Camero M. In Vitro Virucidal Activity of Different Essential Oils against Bovine Viral Diarrhea Virus Used as Surrogate of Human Hepatitis C Virus. Antibiotics (Basel) 2024; 13:514. [PMID: 38927181 PMCID: PMC11201044 DOI: 10.3390/antibiotics13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The hepatitis C virus (HCV) is a major hepatotropic virus that affects humans with increased risk of developing hepatocellular carcinoma. The bovine viral diarrhea virus (BVDV) causes abortion, calf mortality and poor reproductive performance in cattle. Due the difficulties of in vitro cultivation for HCV, BVDV has been used as surrogate for in vitro assessment of the efficacy of antivirals. Essential oils (EOs) display antiviral and virucidal activity on several viral pathogens. In this study, the virucidal activity of five EOs, Salvia officinalis L. EO (SEO), Melissa officinalis L. EO (MEO), Citrus lemon EO (LEO), Rosmarinus officinalis L. EO (REO) and Thymus vulgaris L. EO (TEO) against BVDV was evaluated in vitro at different concentrations for several time contacts. MEO and LEO were able to considerably inactivate BVDV with a time- and dose-dependent fashion. MEO and LEO at the highest concentrations decreased viral titer by 2.00 and 2.25 log10 TCID50/50 μL at 8 h contact time, respectively. SEO, REO and TEO displayed mild virucidal activity at the highest concentrations for 8 h contact times. In this study, the virucidal efficacies of MEO and LEO against BVDV were observed regardless of compound concentration and contact time. Further studies are needed to confirm the potential use of MEO and LEO as surface disinfectants.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Francesco Triggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, 70124 Bari, Italy; (F.T.); (O.D.G.)
| | - Osvalda De Giglio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, 70124 Bari, Italy; (F.T.); (O.D.G.)
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Arturo Gentile
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Roberta Tardugno
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (R.T.); (G.F.)
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (R.T.); (G.F.)
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (G.L.); (F.P.); (M.S.L.); (G.D.); (C.C.); (A.G.); (V.M.)
| |
Collapse
|
5
|
Parra-Cadenas B, Fernández I, Carrillo-Hermosilla F, García-Álvarez J, Elorriaga D. Addition of allyl Grignard to nitriles in air and at room temperature: experimental and computational mechanistic insights in pH-switchable synthesis. Chem Sci 2024; 15:5929-5937. [PMID: 38665519 PMCID: PMC11040652 DOI: 10.1039/d3sc06403d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 04/28/2024] Open
Abstract
A straightforward and selective conversion of nitriles into highly substituted tetrahydropyridines, aminoketones or enamines by using allylmagnesium bromide as an addition partner (under neat conditions) and subsequent treatment with different aqueous-based hydrolysis protocols is reported. Refuting the conventional wisdom of the incompatibility of Grignard reagents with air and moisture, we herein report that the presence of water allows us to promote the chemoselective formation of the target tetrahydropyridines over other competing products (even in the case of highly challenging aliphatic nitriles). Moreover, the careful tuning of both the reaction media employed (acid or basic aqueous solutions for the hydrolysis protocol) and the electronic properties of the starting nitriles allowed us to design a multi-task system capable of producing either β-aminoketones or enamines in a totally selective manner. Importantly, and for the first time in the chemistry of main-group polar organometallic reagents in non-conventional protic solvents (e.g., water), both experimental and computational studies showed that the excellent efficiency and selectivity observed in aqueous media cannot be replicated by using standard dry volatile organic solvents (VOCs) under inert atmosphere conditions.
Collapse
Affiliation(s)
- Blanca Parra-Cadenas
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha 13071 Ciudad Real Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Fernando Carrillo-Hermosilla
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha 13071 Ciudad Real Spain
| | - Joaquín García-Álvarez
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo E33071 Oviedo Spain
| | - David Elorriaga
- Group of Bioorganometallic Chemistry and Catalysis (BIOMCAT), Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo E33071 Oviedo Spain
| |
Collapse
|
6
|
Liu J, Li JH, Zhao SY, Chang YQ, Chen QX, Wu WF, Jiao SM, Xiao H, Zhang Q, Zhao JF, Xu J, Sun PH. Discovery of N-(phenylsulfonyl)thiazole-2-carboxamides as potent α-glucosidase inhibitors. Drug Dev Res 2024; 85:e22128. [PMID: 37984820 DOI: 10.1002/ddr.22128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023]
Abstract
In a search for novel nonsugar α-glucosidase inhibitors for diabetes treatment, a series of N-(phenylsulfonyl)thiazole-2-carboxamide derivatives were designed and synthesized, the α-glucosidase inhibitory activities were then evaluated. Several compounds with promising α-glucosidase inhibitory effects were identified. Among these, compound W24 which shows low cytotoxicity and good α-glucosidase inhibitory activity with an IC50 value of 53.0 ± 7.7 μM, is more competitive compared with the commercially available drug acarbose (IC50 = 228.3 ± 9.2 μM). W24 was identified as a promising candidate in the development of α-glucosidase inhibitors. Molecular docking studies and molecular dynamics simulation were also performed to reveal the binding pattern of the active compound to α-glucosidase, and the binding free energy of the best compound W24 was 36.3403 ± 3.91 kcal/mol.
Collapse
Affiliation(s)
- Jun Liu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Jia-Hao Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Si-Yu Zhao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Yi-Qun Chang
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Qiu-Xian Chen
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Wen-Fu Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Shu-Meng Jiao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Haichuan Xiao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Qiang Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Ping-Hua Sun
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| |
Collapse
|
7
|
Jamil W, Shaikh J, Yousuf M, Taha M, Khan KM, Shah SAA. Synthesis, anti-diabetic and in silico QSAR analysis of flavone hydrazide Schiff base derivatives. J Biomol Struct Dyn 2022; 40:12723-12738. [PMID: 34514955 DOI: 10.1080/07391102.2021.1975565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study reports synthesis of flavone hydrazide Schiff base derivatives with diverse functionalities for the cure of diabetic mellitus and their a-glucosidase inhibitor and in silico studies. In this regard, Flavone derivatives 1-20 has synthesized and characterized by various spectroscopic techniques. These compounds showed significant potential towards a-glucosidase enzyme inhibition activity and found to be many fold better active than the standard Acarbose (IC50 = 39.45 ± 0.11 µM). The IC50values ranges 1.02-38.1 µM. Among these, compounds 1(IC50 = 4.6 ± 0.23 µM), 2(IC50 = 1.02 ± 0.2 µM), 3(IC50 = 7.1 ± 0.11 µM), 4(IC50 = 8.3 ± 0.34 µM), 5(IC50 = 7.4 ± 0.15 µM), 6(IC50 = 8.5 ± 0.27 µM) and 18 (IC50 = 1.09 ± 0.26 µM) showed highest activity. It was revealed that the analogues having -OH substitution have higher activity than their look likes. The molecular docking analysis revealed that these molecules have high potential to interact with the protein molecule and have high ability to bind with the enzyme. Furthermore, in silico pharmacokinetics, physicochemical studies were also performed for these derivatives. The bioavailability radar analysis explored that of all these compounds have excellent bioavailability for five (5) descriptors, however, the sixth descriptor of instauration is slightly increased in all compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Waqas Jamil
- Institute of Advance Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, Pakistan
| | - Javeria Shaikh
- Institute of Advance Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, Pakistan
| | - Maria Yousuf
- Dow College of Biotechnology, Department of Bioinformatics, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid Mohammed Khan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Adnan Ali Shah
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor D. E, Malaysia
| |
Collapse
|
8
|
Taha M, Salahuddin M, Almandil NB, Farooq RK, Rahim F, Uddin N, Nawaz M, Alhibshi AH, Anouar EH, Khan KM. In Vitro and in Vivo Antidiabetics Study of New Oxadiazole Derivatives Along with Molecular Docking Study. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2127799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University Mansehra, Mansehra, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amani H. Alhibshi
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Tetrahydropyridines’ Stereoselective Formation, How Lockdown Assisted in the Identification of the Features of Its Mechanism. Molecules 2022; 27:molecules27144367. [PMID: 35889242 PMCID: PMC9324243 DOI: 10.3390/molecules27144367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
The multicomponent reaction of aldehydes, cyano-containing C-H acids, esters of 3-oxocarboxylic acid and ammonium acetate led to unexpected results. The boiling of starting materials in methanol for one to two hours resulted in the formation of polysubstituted 1,4,5,6-tetrahydropyridines with two or three stereogenic centers. During the 2020 lockdown, we obtained key intermediates of this six-step domino reaction. A number of fast and slow reactions occurred during the prolonged stirring of the reaction mass at rt. Sequence: 1. Knoevenagel condensation; 2. Michael addition; 3. Mannich reaction; 4. cyclization—fast reactions and cyclization of the product polysubstituted 2-hydroxypiperidine—was isolated after 40 min stirring at rt. Further monitoring proved the slow dehydration of 2-hydroxypiperidine to obtain 3,4,5,6-tetrahydropyridine after 7 days. Then, four-month isomerization occurred with 1,4,5,6-tetrahydropyridine formation. All reactions were stereoselective. Key intermediates and products structures were verified by X-ray diffraction analysis. Additionally, we specified conditions for the selective intermediates’ preparation.
Collapse
|
10
|
Ibba R, Riu F, Delogu I, Lupinu I, Carboni G, Loddo R, Piras S, Carta A. Benzimidazole-2-Phenyl-Carboxamides as Dual-Target Inhibitors of BVDV Entry and Replication. Viruses 2022; 14:v14061300. [PMID: 35746771 PMCID: PMC9231222 DOI: 10.3390/v14061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV), also known as Pestivirus A, causes severe infection mostly in cattle, but also in pigs, sheep and goats, causing huge economical losses on agricultural farms every year. The infections are actually controlled by isolation of persistently infected animals and vaccination, but no antivirals are currently available to control the spread of BVDV on farms. BVDV binds the host cell using envelope protein E2, which has only recently been targeted in the research of a potent and efficient antiviral. In contrast, RdRp has been successfully inhibited by several classes of compounds in the last few decades. As a part of an enduring antiviral research agenda, we designed a new series of derivatives that emerged from an isosteric substitution of the main scaffold in previously reported anti-BVDV compounds. Here, the new compounds were characterized and tested, where several turned out to be potent and selectively active against BVDV. The mechanism of action was thoroughly studied using a time-of-drug-addition assay and the results were validated using docking simulations.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.I.); (F.R.); (I.L.); (A.C.)
| | - Federico Riu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.I.); (F.R.); (I.L.); (A.C.)
| | - Ilenia Delogu
- Department of Biomedical Sciences, Cittadella Universitaria Monserrato, University of Cagliari, 09042 Monserrato, Italy;
| | - Ilenia Lupinu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.I.); (F.R.); (I.L.); (A.C.)
| | - Gavino Carboni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Roberta Loddo
- Department of Biomedical Sciences, Cittadella Universitaria Monserrato, University of Cagliari, 09042 Monserrato, Italy;
- Correspondence: (R.L.); (S.P.)
| | - Sandra Piras
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.I.); (F.R.); (I.L.); (A.C.)
- Correspondence: (R.L.); (S.P.)
| | - Antonio Carta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.I.); (F.R.); (I.L.); (A.C.)
| |
Collapse
|
11
|
Kumar K. Pavithran V, Rao VSP, Jaganmohan C, Mohanty S, Kumar J, Rao Battula V, Kalyani K, Kallam SR. An Efficient Synthesis of 3,4-dihydro-2(1H)-pyrimidinones from Aldehyde
Bisulfite Adducts using Recyclable Wang Resin Supported Sulfonic Acid
Catalyst. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210225113723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
An efficient one-pot multicomponent synthesis of 3,4- dihydropyrimidin-2(1H)-ones has
been developed from aldehyde bisulfite adducts, ethyl acetoacetate and urea using recyclable polymer-
supported sulfonic acid catalyst. This new method provides several advantages over the previous
synthesis, including high product yields, commercially viable, minimal workup operations and
sustainable chemical practices.
Collapse
Affiliation(s)
- Vinay Kumar K. Pavithran
- Process Research and Development, Dr. Reddy’s Laboratories Limited, API plant, Bollaram-III, Plot No’s 116, 126C,
Survey No.157, S.V. Co-operative Industrial Estate, IDA Bollaram, Jinnaram Mandal, Medak District, Hyderabad
502325, Telangana, India
| | - Vinti S. P. Rao
- Process Research and Development, Dr. Reddy’s Laboratories Limited, API plant, Bollaram-III, Plot No’s 116, 126C,
Survey No.157, S.V. Co-operative Industrial Estate, IDA Bollaram, Jinnaram Mandal, Medak District, Hyderabad
502325, Telangana, India
| | - Chikkanti Jaganmohan
- Process Research and Development, Dr. Reddy’s Laboratories Limited, API plant, Bollaram-III, Plot No’s 116, 126C,
Survey No.157, S.V. Co-operative Industrial Estate, IDA Bollaram, Jinnaram Mandal, Medak District, Hyderabad
502325, Telangana, India
| | - Sandeep Mohanty
- Process Research and Development, Dr. Reddy’s Laboratories Limited, API plant, Bollaram-III, Plot No’s 116, 126C,
Survey No.157, S.V. Co-operative Industrial Estate, IDA Bollaram, Jinnaram Mandal, Medak District, Hyderabad
502325, Telangana, India
| | - Jaydeep Kumar
- Process Research and Development, Dr. Reddy’s Laboratories Limited, API plant, Bollaram-III, Plot No’s 116, 126C,
Survey No.157, S.V. Co-operative Industrial Estate, IDA Bollaram, Jinnaram Mandal, Medak District, Hyderabad
502325, Telangana, India
| | | | - Kommineni Kalyani
- Department of Chemistry, RVR & JC College of Engineering, Guntur, Andhra
Pradesh, India
| | - Srinivasa Reddy Kallam
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s
Laboratories Ltd, Hyderabad 500 049, Telangana, India
| |
Collapse
|
12
|
Perera N, Brun J, Alonzi DS, Tyrrell BE, Miller JL, Zitzmann N. Antiviral effects of deoxynojirimycin (DNJ)-based iminosugars in dengue virus-infected primary dendritic cells. Antiviral Res 2022; 199:105269. [DOI: 10.1016/j.antiviral.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
|
13
|
Byrne AB, García CC, Damonte EB, Talarico LB. Murine models of dengue virus infection for novel drug discovery. Expert Opin Drug Discov 2022; 17:397-412. [PMID: 35098849 DOI: 10.1080/17460441.2022.2033205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dengue virus (DENV) is the causative agent of the most prevalent human disease transmitted by mosquitoes in tropical and subtropical regions worldwide. At present, no antiviral drug is available and the difficulties to develop highly protective vaccines against the four DENV serotypes maintain the requirement of effective options for dengue chemotherapy. AREAS COVERED The availability of animal models that reproduce human disease is a very valuable tool for the preclinical evaluation of potential antivirals. Here, the main murine models of dengue infection are described, including immunocompetent wild-type mice, immunocompromised mice deficient in diverse components of the interferon (IFN) pathway and humanized mice. The main findings in antiviral testing of DENV inhibitory compounds in murine models are also presented. EXPERT OPINION At present, there is no murine model that fully recapitulates human disease. However, immunocompromised mice deficient in IFN-α/β and -γ receptors, with their limitations, have shown to be the most suitable system for antiviral preclinical testing. In fact, the AG129 mouse model allowed the identification of celgosivir, an inhibitor of cellular glucosidases, as a promising option for DENV therapy. However, clinical trials still were not successful, emphasizing the difficulties in the transition from preclinical testing to human treatment.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cybele C García
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica-IQUIBICEN (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B Damonte
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica-IQUIBICEN (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Zhang X, Chen H, Zhang X, Xu L, Lei Y, Liu W, Li L, Xu H, Zhu C, Ma B. β-Aldehyde ketones as dual inhibitors of aldose reductase and α-glucosidase with antioxidant properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj03426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesized β-aldehyde ketone compounds have strong biological activity because of their ionizable hydroxyl groups.
Collapse
Affiliation(s)
- Xiaonan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Long Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Yanqi Lei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Hulin Xu
- Beijing Qintian Science & Technology Development Co., Ltd, China
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| |
Collapse
|
15
|
Budhiraja M, Ali A, Tyagi V. First biocatalytic synthesis of piperidine derivatives via an immobilized lipase-catalyzed multicomponent reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj06232h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A robust and reusable biocatalyst was constructed via immobilization of lipase onto magnetic halloysite nanotubes for the synthesis of piperidine derivatives.
Collapse
Affiliation(s)
- Meenakshi Budhiraja
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| | - Amjad Ali
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| | - Vikas Tyagi
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| |
Collapse
|
16
|
Vereshchagin AN, Iliyasov TM, Karpenko KA, Smirnov VA, Ushakov IE, Elinson MN. Highly diastereoselective four-component synthesis of polysubstituted 1,4,5,6-tetrahydropyridines. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03002-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
18
|
Ansari S, Azizian H, Pedrood K, Yavari A, Mojtabavi S, Faramarzi MA, Golshani S, Hosseini S, Biglar M, Larijani B, Rastegar H, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M. Design, synthesis, and α-glucosidase-inhibitory activity of phenoxy-biscoumarin-N-phenylacetamide hybrids. Arch Pharm (Weinheim) 2021; 354:e2100179. [PMID: 34467580 DOI: 10.1002/ardp.202100179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022]
Abstract
Thirteen new phenoxy-biscoumarin-N-phenylacetamide derivatives (7a-m) were designed based on a molecular hybridization approach as new α-glucosidase inhibitors. These compounds were synthesized with high yields and evaluated in vitro for their inhibitory activity against yeast α-glucosidase. The obtained results revealed that a significant proportion of the synthesized compounds showed considerable α-glucosidase-inhibitory activity in comparison to acarbose as a positive control. Representatively, 2-(4-(bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)phenoxy)-N-(4-bromophenyl)acetamide (7f), with IC50 = 41.73 ± 0.38 µM against α-glucosidase, was around 18 times more potent than acarbose (IC50 = 750.0 ± 10.0 µM). This compound was a competitive α-glucosidase inhibitor. Molecular modeling and dynamic simulation of these compounds confirmed the obtained results through in vitro experiments. Prediction of the druglikeness/ADME/toxicity of the compound 7f and comparison with the standard drug acarbose showed that the new compound 7f was probably better than the standard drug in terms of toxicity.
Collapse
Affiliation(s)
- Samira Ansari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Yavari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Golshani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Singh V, Singh A, Singh G, Verma RK, Mall R. Benzoxazolyl linked benzylidene based rhodanine and analogs as novel antidiabetic agents: synthesis, molecular docking, and in vitro studies. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02781-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Zhang ZP, Xue WY, Hu JX, Xiong DC, Wu YF, Ye XS. Novel carbohydrate-triazole derivatives as potential α-glucosidase inhibitors. Chin J Nat Med 2021; 18:729-737. [PMID: 33039052 DOI: 10.1016/s1875-5364(20)60013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 10/23/2022]
Abstract
A series of novel pyrano[2, 3-d]trizaole compounds were synthesized and their α-glucosidase inhibitory activities were evaluated by in vitro enzyme assay. The experimental data demonstrated that compound 10f showed up to 10-fold higher inhibition (IC5074.0 ± 1.3 μmol·L-1) than acarbose. The molecular docking revealed that compound 10f could bind to α-glucosidase via the hydrophobic, π-π stacking, and hydrogen bonding interactions. The results may benefit further structural modifications to find new and potent α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Zi-Pei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wan-Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jian-Xing Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Fen Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
21
|
Glucosidase Inhibitors Screening in Microalgae and Cyanobacteria Isolated from the Amazon and Proteomic Analysis of Inhibitor Producing Synechococcus sp. GFB01. Microorganisms 2021; 9:microorganisms9081593. [PMID: 34442672 PMCID: PMC8402191 DOI: 10.3390/microorganisms9081593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Microalgae and cyanobacteria are good sources for prospecting metabolites of biotechnological interest, including glucosidase inhibitors. These inhibitors act on enzymes related to various biochemical processes; they are involved in metabolic diseases, such as diabetes and Gaucher disease, tumors and viral infections, thus, they are interesting hubs for the development of new drugs and therapies. In this work, the screening of 63 environmental samples collected in the Brazilian Amazon found activity against β-glucosidase, of at least 60 min, in 13.85% of the tested extracts, with Synechococcus sp. GFB01 showing inhibitory activity of 90.2% for α-glucosidase and 96.9% against β-glucosidase. It was found that the nutritional limitation due to a reduction in the concentration of sodium nitrate, despite not being sufficient to cause changes in cell growth and photosynthetic apparatus, resulted in reduced production of α and β-glucosidase inhibitors and differential protein expression. The proteomic analysis of cyanobacteria isolated from the Amazon is unprecedented, with this being the first work to evaluate the protein expression of Synechococcus sp. GFB01 subjected to nutritional stress. This evaluation helps to better understand the metabolic responses of this organism, especially related to the production of inhibitors, adding knowledge to the industrial potential of these cyanobacterial compounds.
Collapse
|
22
|
Malik NP, Naz M, Ashiq U, Jamal RA, Gul S, Saleem F, Khan KM, Yousuf S. Oxamide Derivatives as Potent
α
‐Glucosidase Inhibitors: Design, Synthesis,
In Vitro
Inhibitory Screening and
In Silico
Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202101709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Maira Naz
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Uzma Ashiq
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Rifat A. Jamal
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Sana Gul
- Department of Chemistry Federal Urdu University of Art Science and Technology Karachi Pakistan
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | - Khalid M. Khan
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
- Department of Clinical Pharmacy Institute for Research and Medical Consultations (IRMC) Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Sammer Yousuf
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
23
|
Ghamari Kargar P, Bagherzade G. Robust, highly active, and stable supported Co(ii) nanoparticles on magnetic cellulose nanofiber-functionalized for the multi-component reactions of piperidines and alcohol oxidation. RSC Adv 2021; 11:23192-23206. [PMID: 35479769 PMCID: PMC9036309 DOI: 10.1039/d1ra00208b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
The new recyclable cobalt three-core magnetic catalyst obtained by anchoring a Schiff base ligand sector and cellulose nanofiber slings on MNP (Fe3O4) was prepared and named as MNP@CNF@ATSM-Co(ii). Separately, MNPs and CNF have adsorbent properties of great interest. In this way, this catalyst was designed to synthesize piperidine derivatives under solvent-free conditions and alcohol oxidation reactions in EtOH as the solvent. It should be noted that this catalyst is environmentally safe and does not need an external base. This MNPs@CNF@ATSM-Co(ii) separable catalyst has been evaluated using various characterization techniques such as FT-IR, XRD, FE-SEM, EDX, EDS, ICP, TGA, DLS, HRTEM, and VSM. The catalyst was compatible with a variety of benzyl alcohols, benzaldehydes, and amines derivatives, and gave complimentary coupling products with sufficient interest for all of them. The synergistic performance of Co (trinuclear) in the catalyst was demonstrated and its different homologs such as MNPs, MNPs@CNF, MNPs@CNF@ATS-Co(ii), and MNPs@CNF@ATSM-Co(ii) were separately synthesized and applied to a model reaction, and then their catalytic activity was investigated. Also, the performance of these components for the oxidation reaction of alcohols was evaluated. The advantages of the current protocol include the use of a sustainable and safe low temperature, eco-friendly solvent no additive, and long-term stability and magnetic recyclability of the catalyst for at least five successive runs, thus following green chemistry principles. This protocol is a benign and environment-friendly method for oxidation and heterocycle synthesis. This powerful super-magnetic catalyst can use its three arms to advance the reactions, displaying its power for multi-component reactions and oxidation.
Collapse
Affiliation(s)
- Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| |
Collapse
|
24
|
Azimi F, Azizian H, Najafi M, Hassanzadeh F, Sadeghi-Aliabadi H, Ghasemi JB, Ali Faramarzi M, Mojtabavi S, Larijani B, Saghaei L, Mahdavi M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg Chem 2021; 114:105127. [PMID: 34246971 DOI: 10.1016/j.bioorg.2021.105127] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023]
Abstract
In this study, a new series of quinazolinone-pyrazole hybrids were designed, synthesized and screened for their α-glucosidase inhibitory activity. The results of the in vitro screening indicated that all the molecular hybrids exhibited more inhibitory activity (IC50 values ranging from 60.5 ± 0.3 µM-186.6 ± 20 μM) in comparison to standard acarbose (IC50 = 750.0 ± 10.0 µM). Limited structure-activity relationship suggested that the variation in the inhibitory activities of the compounds affected by different substitutions on phenyl rings of diphenyl pyrazole moiety. The enzyme kinetic studies of the most potent compound 9i revealed that it inhibited α-glucosidase in a competitive mode with a Ki of 56 μM. Molecular docking study was performed to predict the putative binding interaction. As expected, all pharmacophoric moieties used in the initial structure design playing a pivotal role in the interaction with the binding site of the enzyme. In addition, by performing molecular dynamic investigation and MM-GBSA calculation, we investigated the difference in structural perturbation and dynamic behavior that is observed over α-glycosidase in complex with the most active compound and acarbose relative to unbound α-glycosidase enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Mollazadeh M, Mohammadi-Khanaposhtani M, Valizadeh Y, Zonouzi A, Faramarzi MA, Kiani M, Biglar M, Larijani B, Hamedifar H, Mahdavi M, Hajimiri MH. Novel Coumarin Containing Dithiocarbamate Derivatives as Potent α-Glucosidase Inhibitors for Management of Type 2 Diabetes. Med Chem 2021; 17:264-272. [PMID: 32851964 DOI: 10.2174/1573406416666200826101205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND α-Glucosidase is a hydrolyzing enzyme that plays a crucial role in the degradation of carbohydrates and starch to glucose. Hence, α-glucosidase is an important target in carbohydrate mediated diseases such as diabetes mellitus. OBJECTIVE In this study, novel coumarin containing dithiocarbamate derivatives 4a-n were synthesized and evaluated against α-glucosidase in vitro and in silico. METHODS These compounds were obtained from the reaction between 4-(bromomethyl)-7- methoxy-2H-chromen-2-one 1, carbon disulfide 2, and primary or secondary amines 3a-n in the presence of potassium hydroxide and ethanol at room temperature. In vitro α-glucosidase inhibition and kinetic study of these compounds were performed. Furthermore, a docking study of the most potent compounds was also performed by Auto Dock Tools (version 1.5.6). RESULTS Obtained results showed that all the synthesized compounds exhibited prominent inhibitory activities (IC50 = 85.0 ± 4.0-566.6 ± 8.6 μM) in comparison to acarbose as a standard inhibitor (IC50 = 750.0 ± 9.0 μM). Among them, the secondary amine derivative 4d with pendant indole group was the most potent inhibitor. Enzyme kinetic study of the compound 4d revealed that this compound competes with a substrate to connect to the active site of α-glucosidase and therefore is a competitive inhibitor. Moreover, a molecular docking study predicted that this compound interacted with the α-glucosidase active site pocket. CONCLUSION Our results suggest that the coumarin-dithiocarbamate scaffold can be a promising lead structure for designing potent α-glucosidase inhibitors for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Marjan Mollazadeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yousef Valizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Zonouzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Kiani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
27
|
Ullah H, Rahim F, Taha M, Hussain R, Wadood A, Nawaz M, Wahab Z, Kanwal, Khan KM. Synthesis, In vitro α-Glucosidase Inhibitory Potential and Molecular Docking Studies of 2-Amino-1,3,4-Oxadiazole Derivatives. Med Chem 2021; 16:724-734. [PMID: 31195948 DOI: 10.2174/1573406415666190612150447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the recent past, we have synthesized and reported different derivatives of oxadiazoles as potential α-glucosidase inhibitors, keeping in mind, the pharmacological aspects of oxadiazole moiety and in continuation of our ongoing research on the chemistry and bioactivity of new heterocyclic compounds. METHODS 1,3,4-Oxadiazole derivatives (1-14) have been synthesized and characterized by different spectroscopic techniques such as 1H-, 13C-NMR and HREI-MS. RESULTS The synthetic derivatives were screened for α-glucosidase inhibitory potential. All compounds exhibited good inhibitory activity with IC50 values ranging between 0.80 ± 0.1 to 45.1 ± 1.7 μM in comparison with the standard acarbose having IC50 value 38.45 ± 0.80 μM. CONCLUSION Thirteen compounds 1-6 and 8-14 showed potential inhibitory activity as compared to the standard acarbose having IC50 value 38.45 ± 0.80 μM, however, only one compound 7 (IC50 = 45.1 ± 1.7 μM) was found to be less active. Compound 14 (IC50 = 0.80 ± 0.1 μM) showed promising inhibitory activity among all synthetic derivatives. Molecular docking studies were also conducted for the active compounds to understand the ligand-enzyme binding interactions.
Collapse
Affiliation(s)
- Hayat Ullah
- Department of Chemistry, Hazara University, Mansehra-21300, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra-21300, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Raffaqat Hussain
- Department of Chemistry, Hazara University, Mansehra-21300, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan
| | - Mohsan Nawaz
- Department of Chemistry, Hazara University, Mansehra-21300, Pakistan
| | - Zainul Wahab
- Department of Conservation Sciences, Hazara University, Mansehra-21300, Pakistan
| | - Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Khalid M Khan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.,H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
28
|
Shaheen A, Ashiq U, Jamal RA, Khan KM, Gul S, Yousuf S, Ali ST. Design and Synthesis of Fluoroquinolone Derivatives as Potent α‐Glucosidase Inhibitors: In Vitro Inhibitory Screening with In Silico Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202003956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Aasia Shaheen
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Uzma Ashiq
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Rifat Ara Jamal
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
- Department of Clinical Pharmacy Institute for Research and Medical Consultations (IRMC) Imam Abdulrahman Bin Faisal University, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Sana Gul
- Department of Chemistry Federal Urdu University of Art, Science and Technology Karachi Pakistan
| | - Sammer Yousuf
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | - Syed Tahir Ali
- Department of Chemistry Federal Urdu University of Art, Science and Technology Karachi Pakistan
| |
Collapse
|
29
|
Kalník M, Zajičková M, Kóňa J, Šesták S, Moncoľ J, Koóš M, Bella M. Synthesis of hydroxymethyl analogues of mannostatin A and their evaluation as inhibitors of GH38 α-mannosidases. NEW J CHEM 2021. [DOI: 10.1039/d1nj02351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analogues of mannostatin A were synthesised and evaluated as inhibitors of GH38 α-mannosidases. Different regioselectivity of aziridine opening with sodium methanethiolate was observed and investigated by quantum mechanics calculations.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Mária Zajičková
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry
- Faculty of Chemical and Food Technology
- Radlinského 9
- SK-812 37 Bratislava
- Slovakia
| | - Miroslav Koóš
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Maroš Bella
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
30
|
Peytam F, Adib M, Shourgeshty R, Mohammadi-Khanaposhtani M, Jahani M, Imanparast S, Faramarzi MA, Moghadamnia AA, Larijani B, Mahdavi M. Synthesis and biological evaluation of new dihydroindolizino[8,7-b]indole derivatives as novel α-glucosidase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Isatin based thiosemicarbazide derivatives as potential inhibitor of α-glucosidase, synthesis and their molecular docking study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Evans DeWald L, Starr C, Butters T, Treston A, Warfield KL. Iminosugars: A host-targeted approach to combat Flaviviridae infections. Antiviral Res 2020; 184:104881. [PMID: 32768411 PMCID: PMC7405907 DOI: 10.1016/j.antiviral.2020.104881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
N-linked glycosylation is the most common form of protein glycosylation and is required for the proper folding, trafficking, and/or receptor binding of some host and viral proteins. As viruses lack their own glycosylation machinery, they are dependent on the host's machinery for these processes. Certain iminosugars are known to interfere with the N-linked glycosylation pathway by targeting and inhibiting α-glucosidases I and II in the endoplasmic reticulum (ER). Perturbing ER α-glucosidase function can prevent these enzymes from removing terminal glucose residues on N-linked glycans, interrupting the interaction between viral glycoproteins and host chaperone proteins that is necessary for proper folding of the viral protein. Iminosugars have demonstrated broad-spectrum antiviral activity in vitro and in vivo against multiple viruses. This review discusses the broad activity of iminosugars against Flaviviridae. Iminosugars have shown favorable activity against multiple members of the Flaviviridae family in vitro and in murine models of disease, although the activity and mechanism of inhibition can be virus-specfic. While iminosugars are not currently approved for the treatment of viral infections, their potential use as future host-targeted antiviral (HTAV) therapies continues to be investigated.
Collapse
Affiliation(s)
| | - Chloe Starr
- Emergent BioSolutions, Gaithersburg, MD, 20879, USA
| | | | | | - Kelly L. Warfield
- Emergent BioSolutions, Gaithersburg, MD, 20879, USA,Corresponding author. 400 Professional Drive, Gaithersburg, MD, 20879, USA
| |
Collapse
|
33
|
Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro. Microorganisms 2020; 8:microorganisms8121872. [PMID: 33256227 PMCID: PMC7760777 DOI: 10.3390/microorganisms8121872] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
With over 50 million currently confirmed cases worldwide, including more than 1.3 million deaths, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a major impact on the economy and health care system. Currently, limited prophylactic or therapeutic intervention options are available against SARS-CoV-2. In this study, 400 compounds from the antimicrobial “pandemic response box” library were screened for inhibiting properties against SARS-CoV-2. An initial screen on Vero E6 cells identified five compounds that inhibited SARS-CoV-2 replication. However, validation of the selected hits in a human lung cell line highlighted that only a single compound, namely Retro-2.1, efficiently inhibited SARS-CoV-2 replication. Additional analysis revealed that the antiviral activity of Retro-2.1 occurs at a post-entry stage of the viral replication cycle. Combined, these data demonstrate that stringent in vitro screening of preselected compounds in multiple cell lines refines the rapid identification of new potential antiviral candidate drugs targeting SARS-CoV-2.
Collapse
|
34
|
Wu J, Hu B, Sun X, Wang H, Huang Y, Zhang Y, Liu M, Liu Y, Zhao Y, Wang J, Yu Z. In silico study reveals existing drugs as α-glucosidase inhibitors: Structure-based virtual screening validated by experimental investigation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Ibba R, Piras S, Delogu I, Loddo R, Carta A. Anti-BVDV Activity Evaluation of Naphthoimidazole Derivatives Compared with Parental Imidazoquinoline Compounds. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Pestivirus genus includes animal pathogens which are involved in economic impact for the livestock industry. Among others, Bovine Viral Diarrhoea Virus (BVDV) establish a persistent infection in cattle causing a long list of symptoms and a high mortality rate. In the last decades, we synthesised and reported a certain number of anti-BVDV compounds.
Methods:
In them, imidazoquinoline derivatives turned out as the most active. Their mechanism of actions has been deeply investigated, BVDV RNA-dependent RNA polymerase (RpRd) resulted as target and the way of binding was predicted in silico through three main H-bond interaction with the target.
The prediction could be confirmed by target or ligand mutation. The first approach has already been performed and published confirming the in silico prediction.
Results:
Here, we present how the ligand chemical modification affects the anti-BVDV activity. The designed compounds were synthesised and tested against BVDV as in silico assay negative control.
Conclusion:
The antiviral results confirmed the predicted mechanism of action, as the newly synthesised compounds resulted not active in the in vitro BVDV infection inhibition.
Collapse
|
36
|
Patel N, Prajapati AK, Jadeja RN, Tripathi IP, Dwivedi N. Experimental, quantum computational study and in vitro antidiabetic activity of oxidovanadium(IV) complexes incorporating 2,2’-bis(pyridylmethyl)amine and polypyridyl ligands. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1774562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Neetu Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - A. K. Prajapati
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - R. N. Jadeja
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - I. P. Tripathi
- Department of Chemistry, MGCGV, Chitrakoot, Satna, Madhya Pradesh, India
| | - N. Dwivedi
- Department of Chemistry, MGCGV, Chitrakoot, Satna, Madhya Pradesh, India
| |
Collapse
|
37
|
Mora L, González-Rogel D, Heres A, Toldrá F. Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103840] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorg Chem 2020; 95:103555. [DOI: 10.1016/j.bioorg.2019.103555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023]
|
39
|
Akhundova FN, Kurbanova MM, Huseynzada AE, Alves MJ, Sujayev AR. Synthesis and Bioactivity of New Analogue of Bicyclic 1‐Azafagomine. ChemistrySelect 2019. [DOI: 10.1002/slct.201903190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fidan N. Akhundova
- Baku State UniversityOrganic Chemistry Department Z. Khalilov 23 Baku AZ 1148
| | | | | | - Maria J. Alves
- Universidade do Minho de GualtarDepartment of Organic Chemistry 4710-057 Braga Portugal
| | - Afsun R. Sujayev
- Laboratory of Organic chemistryInstitute of Chemistry of AdditivesAzerbaijan National Academy of Sciences 1029 Baku, Azerbaijan
| |
Collapse
|
40
|
Menteşe E, Baltaş N, Bekircan O. Synthesis and kinetics studies of
N′
‐(2‐(3,5‐disubstituted‐4
H
‐1,2,4‐triazol‐4‐yl)acetyl)‐6/7/8‐substituted‐2‐oxo‐2
H
‐chromen‐3‐carbohydrazide derivatives as potent antidiabetic agents. Arch Pharm (Weinheim) 2019; 352:e1900227. [PMID: 31609028 DOI: 10.1002/ardp.201900227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Emre Menteşe
- Department of Chemistry, Faculty of Arts and SciencesRecep Tayyip Erdogan University Rize Turkey
| | - Nimet Baltaş
- Department of Chemistry, Faculty of Arts and SciencesRecep Tayyip Erdogan University Rize Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of SciencesKaradeniz Technical University Trabzon Turkey
| |
Collapse
|
41
|
Bakherad Z, Mohammadi-Khanaposhtani M, Sadeghi-Aliabadi H, Rezaei S, Fassihi A, Bakherad M, Rastegar H, Biglar M, Saghaie L, Larijani B, Mahdavi M. New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Nasli‐Esfahani E, Mohammadi‐Khanaposhtani M, Rezaei S, Sarrafi Y, Sharafi Z, Samadi N, Faramarzi MA, Bandarian F, Hamedifar H, Larijani B, Hajimiri M, Mahdavi M. A new series of Schiff base derivatives bearing 1,2,3‐triazole: Design, synthesis, molecular docking, and α‐glucosidase inhibition. Arch Pharm (Weinheim) 2019; 352:e1900034. [DOI: 10.1002/ardp.201900034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ensieh Nasli‐Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical Sciences Babol Iran
| | - Sepideh Rezaei
- School of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | | | - Zeinab Sharafi
- Razi Herbal Medicines Research CenterLorestan University of Medical Sciences Khorramabad Iran
| | - Nasser Samadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research CenterTehran University of Medical Sciences Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research CenterTehran University of Medical Sciences Tehran Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research CenterAlborz University of Medical Sciences Karaj Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Mirhamed Hajimiri
- Nano Alvand Company, Avicenna Tech ParkTehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
43
|
Synthesis and exploration of in-silico and in-vitro α-glucosidase and α-amylase inhibitory activities of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)arylamides. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-01580-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Gazzotti S, Rainoldi G, Silvani A. Exploitation of the Ugi–Joullié reaction in drug discovery and development. Expert Opin Drug Discov 2019; 14:639-652. [DOI: 10.1080/17460441.2019.1604676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stefano Gazzotti
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Giulia Rainoldi
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
45
|
Adib M, Peytam F, Shourgeshty R, Mohammadi-Khanaposhtani M, Jahani M, Imanparast S, Faramarzi MA, Larijani B, Moghadamnia AA, Esfahani EN, Bandarian F, Mahdavi M. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies. Bioorg Med Chem Lett 2019; 29:713-718. [DOI: 10.1016/j.bmcl.2019.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/13/2023]
|
46
|
Akhter P, Ashiq U, Jamal RA, Shaikh Z, Mahroof-Tahir M, Lateef M, Badar R. Chemistry, Alpha-glucosidase and Radical Scavenging Properties of Uranyl(VI) Hydrazide Complexes. Med Chem 2019; 15:923-936. [PMID: 30760191 DOI: 10.2174/1573406415666190213101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antioxidant, anti-inflammatory, antiviral and antitumoral activities among others are essential characteristics in the development of novel therapeutic compounds. Acid hydrazides can form complexation with certain metal ions that positively enhance these biological characteristics. OBJECTIVE Five new complexes of uranium with hydrazide ligands were synthesized at room temperature. METHODS The characterization was done by spectroscopic methods (ESI-Mass, IR, 1H-NMR, 13CNMR), CHN analysis and conductivity measurements. Metal complexes along with their respective ligands were further screened for their antioxidant (DPPH, superoxide and nitric oxide free radicals) properties and enzyme inhibition (α-glucosidase) activities. RESULTS Elemental and spectral data indicate octahedral geometry around uranyl (UO2 2+) species. Magnetic moments indicate the diamagnetic nature of uranyl(VI) ion in the complex in solid state. IC50 values showed potential antioxidant behavior of uranyl complexes demonstrating interesting structure-activity relationships. In general, hydrazide ligands were not active against superoxide and nitric oxide radicals while varying degree of results were observed against DPPH radical whereas all uranyl-complexes showed promising radical scavenging activities against all of them. Promising inhibitory potential was displayed by UO2 +2 hydrazide complexes against α- glucosidases whereas free hydrazide ligands were inactive. CONCLUSION Structure function relationship demonstrates that the nature of ligand, position of substituent, electronic and steric effects are significant factors affecting the radical scavenging and enzyme inhibition activities of the compounds.
Collapse
Affiliation(s)
- Parveen Akhter
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Uzma Ashiq
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Rifat A Jamal
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Zara Shaikh
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | | | - Mehreen Lateef
- Multi Disciplinary Research Lab, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Rooma Badar
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
47
|
Lewis acid-catalysed nucleophilic opening of a bicyclic hemiaminal followed by ring contraction: Access to functionalized L-idonojirimycin derivatives. Carbohydr Res 2019; 472:65-71. [PMID: 30496874 DOI: 10.1016/j.carres.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
The Lewis acid-catalyzed nucleophilic opening of a D-gluco-configured bicyclic hemiaminal has been examined. Several Lewis acids and silylated nucleophiles have been screened allowing the introduction of acetophenone, phosphonate or nitrile at the pseudoanomeric position in satisfactory yields and high 1,2 trans stereoselectivities. Their skeletal rearrangement triggered by the N-benzyl anchimeric assistance provided the corresponding L-ido-configured piperidines displaying various functional groups at C-6 position in good yield.
Collapse
|
48
|
Zha GF, Rakesh K, Manukumar H, Shantharam C, Long S. Pharmaceutical significance of azepane based motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162:465-494. [DOI: 10.1016/j.ejmech.2018.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/13/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
|
49
|
Mohammadi-Khanaposhtani M, Yahyavi H, Barzegaric E, Imanparast S, Heravi MM, Ali Faramarzi M, Foroumadi A, Adibi H, Larijani B, Mahdavi M. New Biscoumarin Derivatives as Potent α-Glucosidase Inhibitors: Synthesis, Biological Evaluation, Kinetic Analysis, and Docking Study. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1509359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hoda Yahyavi
- Faculty of Chemistry and Physics, Department of Chemistry, Alzahra University, Tehran, Iran
| | - Ebrahim Barzegaric
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somaye Imanparast
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Iran
| | - Majid M. Heravi
- Faculty of Chemistry and Physics, Department of Chemistry, Alzahra University, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Wetherill LF, Wasson CW, Swinscoe G, Kealy D, Foster R, Griffin S, Macdonald A. Alkyl-imino sugars inhibit the pro-oncogenic ion channel function of human papillomavirus (HPV) E5. Antiviral Res 2018; 158:113-121. [PMID: 30096339 PMCID: PMC6156294 DOI: 10.1016/j.antiviral.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Despite the availability of prophylactic vaccines the burden of human papillomavirus (HPV) associated malignancy remains high and there is a need to develop additional therapeutic strategies to complement vaccination. We have previously shown that the poorly characterised E5 oncoprotein forms a virus-coded ion channel or viroporin that was sensitive to the amantadine derivative rimantadine. We now demonstrate that alkylated imino sugars, which have antiviral activity against a number of viruses, inhibit E5 channel activity in vitro. Using molecular modelling we predict that imino sugars intercalate between E5 protomers to prevent channel oligomerisation. We explored the ability of these viroporin inhibitors to block E5-mediated activation of mitogenic signalling in keratinocytes. Treatment with either rimantadine or imino sugars prevented ERK-MAPK phosphorylation and reduced cyclin B1 expression in cells expressing E5 from a number of high-risk HPV types. Moreover, viroporin inhibitors also reduced ERK-MAPK activation and cyclin B1 expression in differentiating primary human keratinocytes containing high-risk HPV18. These observations provide evidence of a key role for E5 viroporin function during the HPV life cycle. Viroporin inhibitors could be utilised for stratified treatment of HPV associated tumours prior to virus integration, or as true antiviral therapies to eliminate virus prior to malignant transformation. Imino sugars inhibit the viroporin activity of the E5 oncoprotein. Imino sugars likely interact at E5 protomer interfaces within a channel to prevent oligomerisation. Imino sugars and adamantanes block mitogenic signalling mediated by E5 from a range of high-risk HPV types. Viroporin inhibitors reduce mitogenic signalling in differentiating primary keratinocytes containing high-risk HPV18.
Collapse
Affiliation(s)
- Laura F Wetherill
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; School of Medicine, Faculty of Medicine & Health, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Beckett St., Leeds, LS9 7TF, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Christopher W Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Gemma Swinscoe
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Foster
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen Griffin
- School of Medicine, Faculty of Medicine & Health, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Beckett St., Leeds, LS9 7TF, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|