1
|
Adiji OA, McConnell BS, Parker MW. The origin recognition complex requires chromatin tethering by a hypervariable intrinsically disordered region that is functionally conserved from sponge to man. Nucleic Acids Res 2024; 52:4344-4360. [PMID: 38381902 PMCID: PMC11077064 DOI: 10.1093/nar/gkae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
The first step toward eukaryotic genome duplication is loading of the replicative helicase onto chromatin. This 'licensing' step initiates with the recruitment of the origin recognition complex (ORC) to chromatin, which is thought to occur via ORC's ATP-dependent DNA binding and encirclement activity. However, we have previously shown that ATP binding is dispensable for the chromatin recruitment of fly ORC, raising the question of how metazoan ORC binds chromosomes. We show here that the intrinsically disordered region (IDR) of fly Orc1 is both necessary and sufficient for recruitment of ORC to chromosomes in vivo and demonstrate that this is regulated by IDR phosphorylation. Consistently, we find that the IDR confers the ORC holocomplex with ATP-independent DNA binding activity in vitro. Using phylogenetic analysis, we make the surprising observation that metazoan Orc1 IDRs have diverged so markedly that they are unrecognizable as orthologs and yet we find that these compositionally homologous sequences are functionally conserved. Altogether, these data suggest that chromatin is recalcitrant to ORC's ATP-dependent DNA binding activity, necessitating IDR-dependent chromatin tethering, which we propose poises ORC to opportunistically encircle nucleosome-free regions as they become available.
Collapse
Affiliation(s)
- Olubu A Adiji
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Brendan S McConnell
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
2
|
The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nat Commun 2021; 12:3883. [PMID: 34162887 PMCID: PMC8222357 DOI: 10.1038/s41467-021-24199-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/07/2021] [Indexed: 01/31/2023] Open
Abstract
The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins. Eukaryotic DNA replication is mediated by many proteins which are tightly regulated for an efficient firing of replication at each cell cycle. Here the authors report a cryo-EM structure of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA revealing additional insights into how Cdc6 contributes to origin DNA recognition.
Collapse
|
3
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
4
|
Singh J. Role of DNA replication in establishment and propagation of epigenetic states of chromatin. Semin Cell Dev Biol 2014; 30:131-43. [PMID: 24794003 DOI: 10.1016/j.semcdb.2014.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
DNA replication is the fundamental process of duplication of the genetic information that is vital for survival of all living cells. The basic mechanistic steps of replication initiation, elongation and termination are conserved among bacteria, lower eukaryotes, like yeast and metazoans. However, the details of the mechanisms are different. Furthermore, there is a close coordination between chromatin assembly pathways and various components of replication machinery whereby DNA replication is coupled to "chromatin replication" during cell cycle. Thereby, various epigenetic modifications associated with different states of gene expression in differentiated cells and the related chromatin structures are faithfully propagated during the cell division through tight coupling with the DNA replication machinery. Several examples are found in lower eukaryotes like budding yeast and fission yeast with close parallels in metazoans.
Collapse
Affiliation(s)
- Jagmohan Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
| |
Collapse
|
5
|
Bleichert F, Balasov M, Chesnokov I, Nogales E, Botchan MR, Berger JM. A Meier-Gorlin syndrome mutation in a conserved C-terminal helix of Orc6 impedes origin recognition complex formation. eLife 2013; 2:e00882. [PMID: 24137536 PMCID: PMC3791464 DOI: 10.7554/elife.00882] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
In eukaryotes, DNA replication requires the origin recognition complex (ORC), a six-subunit assembly that promotes replisome formation on chromosomal origins. Despite extant homology between certain subunits, the degree of structural and organizational overlap between budding yeast and metazoan ORC has been unclear. Using 3D electron microscopy, we determined the subunit organization of metazoan ORC, revealing that it adopts a global architecture very similar to the budding yeast complex. Bioinformatic analysis extends this conservation to Orc6, a subunit of somewhat enigmatic function. Unexpectedly, a mutation in the Orc6 C-terminus linked to Meier-Gorlin syndrome, a dwarfism disorder, impedes proper recruitment of Orc6 into ORC; biochemical studies reveal that this region of Orc6 associates with a previously uncharacterized domain of Orc3 and is required for ORC function and MCM2-7 loading in vivo. Together, our results suggest that Meier-Gorlin syndrome mutations in Orc6 impair the formation of ORC hexamers, interfering with appropriate ORC functions. DOI:http://dx.doi.org/10.7554/eLife.00882.001.
Collapse
Affiliation(s)
- Franziska Bleichert
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, United States
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, United States
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
6
|
Tiengwe C, Marcello L, Farr H, Gadelha C, Burchmore R, Barry JD, Bell SD, McCulloch R. Identification of ORC1/CDC6-interacting factors in Trypanosoma brucei reveals critical features of origin recognition complex architecture. PLoS One 2012; 7:e32674. [PMID: 22412905 PMCID: PMC3297607 DOI: 10.1371/journal.pone.0032674] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/02/2012] [Indexed: 12/13/2022] Open
Abstract
DNA Replication initiates by formation of a pre-replication complex on sequences termed origins. In eukaryotes, the pre-replication complex is composed of the Origin Recognition Complex (ORC), Cdc6 and the MCM replicative helicase in conjunction with Cdt1. Eukaryotic ORC is considered to be composed of six subunits, named Orc1–6, and monomeric Cdc6 is closely related in sequence to Orc1. However, ORC has been little explored in protists, and only a single ORC protein, related to both Orc1 and Cdc6, has been shown to act in DNA replication in Trypanosoma brucei. Here we identify three highly diverged putative T. brucei ORC components that interact with ORC1/CDC6 and contribute to cell division. Two of these factors are so diverged that we cannot determine if they are eukaryotic ORC subunit orthologues, or are parasite-specific replication factors. The other we show to be a highly diverged Orc4 orthologue, demonstrating that this is one of the most widely conserved ORC subunits in protists and revealing it to be a key element of eukaryotic ORC architecture. Additionally, we have examined interactions amongst the T. brucei MCM subunits and show that this has the conventional eukaryotic heterohexameric structure, suggesting that divergence in the T. brucei replication machinery is limited to the earliest steps in origin licensing.
Collapse
Affiliation(s)
- Calvin Tiengwe
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lucio Marcello
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Helen Farr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Catarina Gadelha
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Richard Burchmore
- Sir Henry Wellcome Functional Genomics Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - J. David Barry
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Stephen D. Bell
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Abstract
The origin recognition complex (ORC) was first discovered in the baker's yeast in 1992. Identification of ORC opened up a path for subsequent molecular level investigations on how eukaryotic cells initiate and control genome duplication each cell cycle. Twenty years after the first biochemical isolation, ORC is now taking on a three-dimensional shape, although a very blurry shape at the moment, thanks to the recent electron microscopy and image reconstruction efforts. In this chapter, we outline the current biochemical knowledge about ORC from several eukaryotic systems, with emphasis on the most recent structural and biochemical studies. Despite many species-specific properties, an emerging consensus is that ORC is an ATP-dependent machine that recruits other key proteins to form pre-replicative complexes (pre-RCs) at many origins of DNA replication, enabling the subsequent initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA, And, Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA, , Tel: 631-344-2931, Fax: 631-344-3407
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, , Tel: 516-367-8383
| |
Collapse
|
8
|
Álamo MMD, Sánchez-Gorostiaga A, Serrano AM, Prieto A, Cuéllar J, Martín-Benito J, Valpuesta JM, Giraldo R. Structural analysis of the interactions between hsp70 chaperones and the yeast DNA replication protein Orc4p. J Mol Biol 2010; 403:24-39. [PMID: 20732327 DOI: 10.1016/j.jmb.2010.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/29/2010] [Accepted: 08/11/2010] [Indexed: 12/11/2022]
Abstract
Hsp70 chaperones, besides their role in assisting protein folding, are key modulators of protein disaggregation, being consistently found as components of most macromolecular assemblies isolated in proteome-wide affinity purifications. A wealth of structural information has been recently acquired on Hsp70s complexed with Hsp40 and NEF co-factors and with small hydrophobic target peptides. However, knowledge of how Hsp70s recognize large protein substrates is still limited. Earlier, we reported that homologue Hsp70 chaperones (DnaK in Escherichia coli and Ssa1-4p/Ssb1-2p in Saccharomyces cerevisiae) bind strongly, both in vitro and in vivo, to the AAA+ domain in the Orc4p subunit of yeast origin recognition complex (ORC). ScORC is the paradigm for eukaryotic DNA replication initiators and consists of six distinct protein subunits (ScOrc1p-ScOrc 6p). Here, we report that a hydrophobic sequence (IL(4)) in the initiator specific motif (ISM) in Orc4p is the main target for DnaK/Hsp70. The three-dimensional electron microscopy reconstruction of a stable Orc4p(2)-DnaK complex suggests that the C-terminal substrate-binding domain in the chaperone clamps the AAA+ IL(4) motif in one Orc4p molecule, with the substrate-binding domain lid subdomain wedging apart the other Orc4p subunit. Pairwise co-expression in E. coli shows that Orc4p interacts with Orc1/2/5p. Mutation of IL(4) selectively disrupts Orc4p interaction with Orc2p. Allelic substitution of ORC4 by mutants in each residue of IL(4) results in lethal (I184A) or thermosensitive (L185A and L186A) initiation-defective phenotypes in vivo. The interplay between Hsp70 chaperones and the Orc4p-IL(4) motif might have an adaptor role in the sequential, stoichiometric assembly of ScORC subunits.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Ana M Serrano
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Alicia Prieto
- Department of Environmental Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Jorge Cuéllar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - Jaime Martín-Benito
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - José M Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - Rafael Giraldo
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| |
Collapse
|
9
|
Abstract
DNA replication is fundamental to cellular life on earth, and replication initiation provides the primary point of control over this process. Replication initiation in all organisms involves the interaction of initiator proteins with one or more origins of replication in the DNA, with subsequent regulated assembly of two replisome complexes at each origin, melting of the DNA, and primed initiation of DNA synthesis on leading and lagging strands. Archaea and Eukarya share homologous systems for DNA replication initiation, but differ in the complexity of these; Bacteria appear to have analogous, rather than homologous, mechanisms for replication initiation. This chapter provides an overview of current knowledge of initiation of chromosomal DNA replication in the three domains of life.
Collapse
|
10
|
Abstract
The origin recognition complex (ORC) is a 6-subunit complex required for the initiation of DNA replication in eukaryotic organisms. ORC is also involved in other cell functions. The smallest Drosophila ORC subunit, Orc6, is important for both DNA replication and cytokinesis. To study the role of Orc6 in vivo, the orc6 gene was deleted by imprecise excision of P element. Lethal alleles of orc6 are defective in DNA replication and also show abnormal chromosome condensation and segregation. The analysis of cells containing the orc6 deletion revealed that they arrest in both the G(1) and mitotic stages of the cell cycle. Orc6 deletion can be rescued to viability by a full-length Orc6 transgene. The expression of mutant transgenes of Orc6 with deleted or mutated C-terminal domain results in a release of mutant cells from G(1) arrest and restoration of DNA replication, indicating that the DNA replication function of Orc6 is associated with its N-terminal domain. However, these mutant cells accumulate at mitosis, suggesting that the C-terminal domain of Orc6 is important for the passage through the M phase. In a cross-species complementation experiment, the expression of human Orc6 in Drosophila Orc6 mutant cells rescued DNA replication, suggesting that this function of the protein is conserved among metazoans.
Collapse
|
11
|
Houchens CR, Lu W, Chuang RY, Frattini MG, Fuller A, Simancek P, Kelly TJ. Multiple mechanisms contribute to Schizosaccharomyces pombe origin recognition complex-DNA interactions. J Biol Chem 2008; 283:30216-24. [PMID: 18723846 DOI: 10.1074/jbc.m802649200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA replication requires the assembly of multiprotein pre-replication complexes (pre-RCs) at chromosomal origins of DNA replication. Here we describe the interactions of highly purified Schizosaccharomyces pombe pre-RC components, SpORC, SpCdc18, and SpCdt1, with each other and with ars1 origin DNA. We show that SpORC binds DNA in at least two steps. The first step likely involves electrostatic interactions between the AT-hook motifs of SpOrc4 and AT tracts in ars1 DNA and results in the formation of a salt-sensitive complex. In the second step, the salt-sensitive complex is slowly converted to a salt-stable complex that involves additional interactions between SpORC and DNA. Binding of SpORC to ars1 DNA is facilitated by negative supercoiling and is accompanied by changes in DNA topology, suggesting that SpORC-DNA complexes contain underwound or negatively writhed DNA. Purified human origin recognition complex (ORC) induces similar topological changes in origin DNA, indicating that this property of ORC is conserved in eukaryotic evolution and plays an important role in ORC function. We also show that SpCdc18 and SpCdt1 form a binary complex that has greater affinity for DNA than either protein alone. In addition, both proteins contribute significantly to the stability of the initial SpORC-DNA complex and enhance the SpORC-dependent topology changes in origin DNA. Thus, the formation of stable protein-DNA complexes at S. pombe origins of replication involves binary interactions among all three proteins, as well as interactions of both SpORC and SpCdt1-SpCdc18 with origin DNA. These findings demonstrate that SpORC is not the sole determinant of origin recognition.
Collapse
Affiliation(s)
- Christopher R Houchens
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cdc18 enforces long-term maintenance of the S phase checkpoint by anchoring the Rad3-Rad26 complex to chromatin. Mol Cell 2007; 26:553-63. [PMID: 17531813 DOI: 10.1016/j.molcel.2007.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/26/2007] [Accepted: 04/20/2007] [Indexed: 01/11/2023]
Abstract
DNA replication is initiated by recruitment of Cdc18 to origins. During S phase, CDK-dependent destruction of Cdc18 occurs. We show that when DNA replication stalls, Cdc18 persists in a chromatin-bound complex including the checkpoint kinases Rad3 and Rad26. Rad26 directly binds Cdc18 and is required for Rad3 recruitment to chromatin. Depletion of Cdc18 when DNA replication is stalled leads to release of Rad3 and Rad26 from chromatin and entry into an aberrant mitosis even though replication intermediates can still be detected. These findings indicate that Cdc18 plays a pivotal role in checkpoint maintenance by anchoring the Rad3-Rad26 complex to chromatin. Cdc18 persistence during DNA-replication arrest requires the S phase checkpoint that inhibits the S phase CDK. We propose that S phase arrest activates the S phase checkpoint blocking mitosis onset and inhibiting Cdc18 degradation, and that the stabilized Cdc18, in turn, anchors Rad3 to chromatin to ensure long-term checkpoint maintenance.
Collapse
|
13
|
Balasov M, Huijbregts RPH, Chesnokov I. Role of the Orc6 protein in origin recognition complex-dependent DNA binding and replication in Drosophila melanogaster. Mol Cell Biol 2007; 27:3143-53. [PMID: 17283052 PMCID: PMC1899928 DOI: 10.1128/mcb.02382-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The six-subunit origin recognition complex (ORC) is a DNA replication initiator protein in eukaryotes that defines the localization of the origins of replication. We report here that the smallest Drosophila ORC subunit, Orc6, is a DNA binding protein that is necessary for the DNA binding and DNA replication functions of ORC. Orc6 binds DNA fragments containing Drosophila origins of DNA replication and prefers poly(dA) sequences. We have defined the core replication domain of the Orc6 protein which does not include the C-terminal domain. Further analysis of the core replication domain identified amino acids that are important for DNA binding by Orc6. Alterations of these amino acids render reconstituted Drosophila ORC inactive in DNA binding and DNA replication. We show that mutant Orc6 proteins do not associate with chromosomes in vivo and have dominant negative effects in Drosophila tissue culture cells. Our studies provide a molecular analysis for the functional requirement of Orc6 in replicative functions of ORC in Drosophila and suggest that Orc6 may contribute to the sequence preferences of ORC in targeting to the origins.
Collapse
Affiliation(s)
- Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, 720 20th Street South, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
14
|
Abstract
The origin recognition complex (ORC), a heteromeric six-subunit protein, is a central component for eukaryotic DNA replication. The ORC binds to DNA at replication origin sites in an ATP-dependent manner and serves as a scaffold for the assembly of other key initiation factors. Sequence rules for ORC-DNA binding appear to vary widely. In budding yeast the ORC recognizes specific ori elements, however, in higher eukaryotes origin site selection does not appear to depend on the specific DNA sequence. In metazoans, during cell cycle progression, one or more of the ORC subunits can be modified in such a way that ORC activity is inhibited until mitosis is complete and a nuclear membrane is assembled. In addition to its well-documented role in the initiation of DNA replication, the ORC is also involved in other cell functions. Some of these activities directly link cell cycle progression with DNA replication, while other functions seem distinct from replication. The function of ORCs in the establishment of transcriptionally repressed regions is described for many species and may be a conserved feature common for both unicellular eukaryotes and metazoans. ORC subunits were found at centrosomes, at the cell membranes, at the cytokinesis furrows of dividing cells, as well as at the kinetochore. The exact mechanism of these localizations remains to be determined, however, latest results support the idea that ORC proteins participate in multiple aspects of the chromosome inheritance cycle. In this review, we discuss the participation of ORC proteins in various cell functions, in addition to the canonical role of ORC in initiating DNA replication.
Collapse
Affiliation(s)
- Igor N Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Wang X, Carstens EB, Feng Q. Characterization of Choristoneura fumiferana Genes of the Sixth Subunit of the Origin Recognition Complex: CfORC6. BMB Rep 2006; 39:782-7. [PMID: 17129416 DOI: 10.5483/bmbrep.2006.39.6.782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new protein was cloned and identified as the sixth subunit of Choristoneura fumiferana origin recognition complex (CfORC6). The newly identified 43 kDa protein CfORC6 is much bigger than DmORC6 (25.7 kDa) and HsORC6 (28.1 kDa), though itos 23.85% identical to DmORC6 and 23.81% identical to HsORC6. Although the molecular weight of CfORC6 is close to ScORc6 (50 kDa), CfORC6 is only 14.03% identical to ScORC6. By alignment, it was found that the N-terminal of CfORC6 has about 30% identities with other ORC6s, but about 100aa of C-terminal of CfORC6 has no identity with other ORC6s. Like ScORC6, CfORC6 has many potential phosphorylation sites, (S/T)PXK. Like DmORC6, CfORC6 has leucine-rich region in the relevant site. Northern Blot showed that CfORC6 mRNA is about 2,000nt. Southern Blot confirmed that there is one copy of CfORC6 gene in spruce budworm genome. Western blot showed that infection of Cf124T cells with CfMNPV didnot affect the expression levels of CfORC6, at least up to 26 hr post infection.
Collapse
Affiliation(s)
- Xaiochun Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China, 45002.
| | | | | |
Collapse
|
16
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
Sibani S, Price GB, Zannis-Hadjopoulos M. Decreased origin usage and initiation of DNA replication in haploinsufficient HCT116 Ku80+/- cells. J Cell Sci 2005; 118:3247-61. [PMID: 16014376 DOI: 10.1242/jcs.02427] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the functions of the abundant heterodimeric nuclear protein, Ku (Ku70/Ku80), is its involvement in the initiation of DNA replication through its ability to bind to chromosomal replication origins in a sequence-specific and cell cycle dependent manner. Here, using HCT116 Ku80+/- cells, the effect of Ku80 deficiency on cell cycle progression and origin activation was examined. Western blot analyses revealed a 75% and 36% decrease in the nuclear expression of Ku80 and Ku70, respectively. This was concomitant with a 33% and 40% decrease in chromatin binding of both proteins, respectively. Cell cycle analysis of asynchronous and late G1 synchronized Ku80+/- cells revealed a prolonged G1 phase. Furthermore, these Ku-deficient cells had a 4.5-, 3.4- and 4.3-fold decrease in nascent strand DNA abundance at the lamin B2, beta-globin and c-myc replication origins, respectively. Chromatin immunoprecipitation (ChIP) assays showed that the association of Ku80 with the lamin B2, beta-globin and c-myc origins was decreased by 1.5-, 2.3- and 2.5-fold, respectively, whereas that of Ku70 was similarly decreased (by 2.1-, 1.5- and 1.7-fold, respectively) in Ku80+/- cells. The results indicate that a deficiency of Ku80 resulted in a prolonged G1 phase, as well as decreased Ku binding to and activation of origins of DNA replication.
Collapse
Affiliation(s)
- Sahar Sibani
- McGill Cancer Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
18
|
Miyake Y, Mizuno T, Yanagi KI, Hanaoka F. Novel Splicing Variant of Mouse Orc1 Is Deficient in Nuclear Translocation and Resistant for Proteasome-mediated Degradation. J Biol Chem 2005; 280:12643-52. [PMID: 15634681 DOI: 10.1074/jbc.m413280200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication is controlled by the stepwise assembly of the pre-replicative complex and the replication apparatus. Loading of the origin recognition complex (ORC) onto the chromatin is a prerequisite for the assembly of the pre-replicative complex. To define the physiological functions of the mammalian ORC, we cloned ORC subunit cDNAs from mouse NIH3T3 cells and found novel variant forms of Orc1, Orc2, and Orc3 each derived from alternative RNA splicing. The variant form of Orc1, Orc1B, lacks 35 amino acid residues in exon 5; the variant of Orc2, Orc2B, lacks 48 amino acid residues in exon 2. In the Orc3 variant, Orc3B, only 1 amino acid residue is deleted in exon 15. Reverse transcription-PCR analysis showed that the full-length Orc1-3 subunits, Orc1A, Orc2A, and Orc3A, as well as Orc2B and Orc3B, were widely expressed in various mouse cell lines and mouse tissues. In contrast, Orc1B was only expressed in the thymus and at an early embryonic stage. Overexpression of these Orc subunits in cultured cells revealed that Orc1A, Orc2A, Orc3A, Orc2B, and Orc3B are localized in the nucleus, whereas Orc1B remains exclusively in the cytoplasm. Moreover, fusion of the 35 amino acids spliced fragment from mOrc1A with beta-galactosidase resulted in its translocation into the nucleus. When Orc1B is expressed transiently, its degradation occurs in a proteasome-independent manner, whereas Orc1A is rapidly degraded by the ubiquitin-proteasome pathway. Taken together, we conclude that mouse Orc1, Orc2, and Orc3 each exist in two alternative-splicing variants and that naturally occurring Orc1B lacks a functional domain that is essential for nuclear translocation and proteasome-dependent degradation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Southern
- Blotting, Western
- COS Cells
- Cell Cycle
- Cell Line
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Exons
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Mice
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Mutation
- NIH 3T3 Cells
- Origin Recognition Complex
- Plasmids/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Protein Structure, Tertiary
- Protein Transport
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Yasuyuki Miyake
- Cellular Physiology Laboratory, RIKEN Discovery Research Institute, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
19
|
Gaczynska M, Osmulski PA, Jiang Y, Lee JK, Bermudez V, Hurwitz J. Atomic force microscopic analysis of the binding of the Schizosaccharomyces pombe origin recognition complex and the spOrc4 protein with origin DNA. Proc Natl Acad Sci U S A 2004; 101:17952-7. [PMID: 15598736 PMCID: PMC539809 DOI: 10.1073/pnas.0408369102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the initiation of DNA replication requires the interaction between origin sequences and the origin recognition complex (ORC), which is highly conserved. In this report, atomic force microscopy (AFM) was used to examine the binding of Schizosaccharomyces pombe (sp) ORC and the spOrc4 protein with the sp autonomously replicating sequence 1 (ars1). AFM imaging revealed that spORC binding to ars1 occurred solely through spOrc4p and depended on the N-terminal AT-hook domains present in spOrc4p. At high molar ratios of spORC (or spOrc4p alone) to DNA (6:1), all of the input ars1 was bound in a one protein complex to one plasmid manner. Restriction digestion and AFM analysis of protein-DNA fragments revealed the presence of two binding sites in ars1. One site mapped to a region centered at nucleotide 838 of ars1 previously detected by DNase I protection that was reported to be essential for the autonomously replicating sequence activity of ars1. The second site mapped to a previously uncharacterized region centered at nucleotide 1148. AFM showed that the length of the DNA fragment complexed with either spORC or spOrc4p was shortened by approximately 140 bp, suggesting the wrapping of two turns of the DNA around the spOrc4p alone as well as the spOrc4p in spORC. We also show that treatment of the spORC (spOrc4p)-ars1 complex with topoisomerase I induced a negative shift in the topoisomer distribution. These findings suggest that the binding of spORC to origin DNA alters the structure of the DNA. Thus, in the case of spORC, due to its unusual spOrc4p, at least two factors are likely to influence ars1 activation. These include the selective binding of the complex to A- and T-rich regions and the alteration of the DNA structure due to its wrapping around spOrc4p.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | | | |
Collapse
|
20
|
Remus D, Beall EL, Botchan MR. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 2004; 23:897-907. [PMID: 14765124 PMCID: PMC380993 DOI: 10.1038/sj.emboj.7600077] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 12/19/2003] [Indexed: 12/16/2022] Open
Abstract
Drosophila origin recognition complex (ORC) localizes to defined positions on chromosomes, and in follicle cells the chorion gene amplification loci are well-studied examples. However, the mechanism of specific localization is not known. We have studied the DNA binding of DmORC to investigate the cis-requirements for DmORC:DNA interaction. DmORC displays at best six-fold differences in the relative affinities to DNA from the third chorion locus and to random fragments in vitro, and chemical probing and DNase1 protection experiments did not identify a discrete binding site for DmORC on any of these fragments. The intrinsic DNA-binding specificity of DmORC is therefore insufficient to target DmORC to origins of replication in vivo. However, the topological state of the DNA significantly influences the affinity of DmORC to DNA. We found that the affinity of DmORC for negatively supercoiled DNA is about 30-fold higher than for either relaxed or linear DNA. These data provide biochemical evidence for the notion that origin specification in metazoa likely involves mechanisms other than simple replicator-initiator interactions and that in vivo other proteins must determine ORC's localization.
Collapse
Affiliation(s)
- Dirk Remus
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA, USA
| | - Eileen L Beall
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA, USA
| | - Michael R Botchan
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, 401 Barker Hall #3204, University of California, Berkeley, CA 94720-3204, USA. Tel.: +1 510 642 7057; Fax: +1 510 643 1729; E-mail:
| |
Collapse
|
21
|
Abstract
Genome sequences of a number of archaea have revealed an apparent paradox in the phylogenies of the bacteria, archaea, and eukarya, as well as an intriguing set of problems to be resolved in the study of DNA replication. The archaea, long thought to be bacteria, are not only different enough to merit their own domain but also appear to be an interesting mosaic of bacterial, eukaryal, and unique features. Most archaeal proteins participating in DNA replication are more similar in sequence to those found in eukarya than to analogous replication proteins in bacteria. However, archaea have only a subset of the eukaryal replication machinery, apparently needing fewer polypeptides and structurally simpler complexes. The archaeal replication apparatus also contains features not found in other organisms owing, in part, to the broad range of environmental conditions, some extreme, in which members of this domain thrive. In this review the current knowledge of the mechanisms governing DNA replication in archaea is summarized and the similarities and differences of those of bacteria and eukarya are highlighted.
Collapse
Affiliation(s)
- Beatrice Grabowski
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
22
|
Chesnokov IN, Chesnokova ON, Botchan M. A cytokinetic function of Drosophila ORC6 protein resides in a domain distinct from its replication activity. Proc Natl Acad Sci U S A 2003; 100:9150-5. [PMID: 12878722 PMCID: PMC170887 DOI: 10.1073/pnas.1633580100] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordination between separate pathways may be facilitated by the requirements for common protein factors, a finding congruent with the link between proteins regulating DNA replication with other important cellular processes. We report that the smallest of Drosophila origin recognition complex subunits, Orc6, was found in embryos and cell culture localized to the cell membrane and cleavage furrow during cell division as well as in the nucleus. A two-hybrid screen revealed that Orc6 interacts with the Drosophila peanut (pnut), a member of the septin family of proteins important for cell division. This interaction, mediated by a distinct C-terminal domain of Orc6, was substantiated in Drosophila cells by coimmunoprecipitation from extracts and cytological methods. Silencing of Orc6 expression with double-stranded RNA resulted in a formation of multinucleated cells and also reduced DNA replication. Deletion of the C-terminal Orc6-peanut interaction domain and subsequent overexpression of the Orc6 mutant protein resulted in the formation of multinucleated cells that had replicated DNA. This mutant protein does not localize to the membrane or cleavage furrows. These results suggest that Orc6 has evolved a domain critical mainly for cytokinesis.
Collapse
Affiliation(s)
- Igor N Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
23
|
Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 2003; 17:1894-908. [PMID: 12897055 PMCID: PMC196240 DOI: 10.1101/gad.1084203] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report that a highly purified human origin recognition complex (HsORC) has intrinsic DNA-binding activity, and that this activity is modestly stimulated by ATP. HsORC binds preferentially to synthetic AT-rich polydeoxynucleotides, but does not effectively discriminate between natural DNA fragments that contain known human origins and control fragments. The complex fully restores DNA replication to ORC-depleted Xenopus egg extracts, providing strong evidence for its initiator function. Strikingly, HsORC stimulates initiation from any DNA sequence, and it does not preferentially replicate DNA containing human origin sequences. These data provide a biochemical explanation for the observation that in metazoans, initiation of DNA replication often occurs in a seemingly random pattern, and they have important implications for the nature of human origins of DNA replication.
Collapse
Affiliation(s)
- Sanjay Vashee
- Institute for Biological Energy Alternatives, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kong D, Coleman TR, DePamphilis ML. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC. EMBO J 2003; 22:3441-50. [PMID: 12840006 PMCID: PMC165644 DOI: 10.1093/emboj/cdg319] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.
Collapse
Affiliation(s)
- Daochun Kong
- National Institute of Child Health and Human Development, Building 6/416, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | |
Collapse
|
25
|
Li JL, Cox LS. Characterisation of a sexual stage-specific gene encoding ORC1 homologue in the human malaria parasite Plasmodium falciparum. Parasitol Int 2003; 52:41-52. [PMID: 12543146 DOI: 10.1016/s1383-5769(02)00079-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The origin recognition complex (ORC) is a multisubunit protein composed of six polypeptides that binds to replication origins and is essential for the initiation of chromosomal DNA replication. Using the Vectorette technique, we have isolated a novel gene encoding an ORC1-like protein from the human malaria parasite Plasmodium falciparum. The gene has no introns and encodes a protein (PfORC1) of 1189 amino acid residues with a predicted molecular mass of 139 kDa. PfORC1 contains all conserved sequences in the ORC1/Cdc6/Cdc18 family and displays the highest homology to the Schizosaccharomyces pombe ORC1. However, PfORC1 possesses an extensive N-terminal segment with several interesting features including multiple potential phosphorylation sites, a large proportion of charged amino acids, four copies of a heptamer repeat, two nuclear localisation signals, and a leucine zipper motif. Southern blot analyses show that the Pforc1 gene is present as a single copy per haploid genome and is located on chromosome 12. A 5600 nucleotide transcript of this gene is expressed predominantly in the sexual erythrocytic stage, indicating that PfORC1 may be involved in gametogenesis during which DNA is quickly replicated.
Collapse
Affiliation(s)
- Ji-Liang Li
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
26
|
Witmer X, Alvarez-Venegas R, San-Miguel P, Danilevskaya O, Avramova Z. Putative subunits of the maize origin of replication recognition complex ZmORC1-ZmORC5. Nucleic Acids Res 2003; 31:619-28. [PMID: 12527770 PMCID: PMC140504 DOI: 10.1093/nar/gkg138] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The finding in animal species of complexes homologous to the products of six Saccharomyces cerevisiae genes, origin of replication recognition complex (ORC), has suggested that ORC-related mechanisms have been conserved in all eukaryotes. In plants, however, the only cloned putative homologs of ORC subunits are the Arabidopsis ORC2 and the rice ORC1. Homologs of other subunits of plant origin have not been cloned and characterized. A striking observation was the absence from the Arabidopsis genome of an obvious candidate gene-homolog of ORC4. This fact raised compelling questions of whether plants, in general, and Arabidopsis, in particular, may have lost the ORC4 gene, whether ORC-homologous subunits function within a complex in plants, whether an ORC complex may form and function without an ORC4 subunit, whether a functional (but not sequence) protein homolog may have taken up the role of ORC4 in Arabidopsis, and whether lack of ORC4 is a plant feature, in general. Here, we report the first cloned and molecularly characterized five genes coding for the maize putative homologs of ORC subunits ZmORC1, ZmORC2, ZmORC3, ZmORC4 and ZmORC5. Their expression profiles in tissues with different cell-dividing activities are compatible with a role in DNA replication. Based on the potential of ORC-homologous maize proteins to bind each other in yeast, we propose a model for their possible assembly within a maize ORC. The isolation and molecular characterization of an ORC4-homologous gene from maize argues that, in its evolution, Arabidopsis may have lost the homologous ORC4 gene.
Collapse
Affiliation(s)
- Xiaohong Witmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
27
|
Giraldo R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 2003; 26:533-54. [PMID: 12586394 DOI: 10.1111/j.1574-6976.2003.tb00629.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although DNA replication is the universal process for the transmission of genetic information in all living organisms, until very recently evidence was lacking for a related structure and function in the proteins (initiators) that trigger replication in the three 'Life Domains' (Bacteria, Archaea and Eukarya). In this article new data concerning the presence of common features in the initiators of chromosomal replication in bacteria, archaea and eukaryotes are reviewed. Initiators are discussed in the light of: (i) The structure and function of their conserved ATPases Associated with various cellular Activities (AAA+) and winged-helix domains. (ii) The nature of the macromolecular assemblies that they constitute at the replication origins. (iii) Their possible phylogenetic relationship, attempting to sketch the essentials of a hypothetical DNA replication initiator in the micro-organism proposed to be the ancestor of all living cells.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), C/Velázquez 144, 28006 Madrid, Spain.
| |
Collapse
|
28
|
Abstract
The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
Collapse
Affiliation(s)
- Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | | |
Collapse
|
29
|
Kong D, DePamphilis ML. Site-specific ORC binding, pre-replication complex assembly and DNA synthesis at Schizosaccharomyces pombe replication origins. EMBO J 2002; 21:5567-76. [PMID: 12374757 PMCID: PMC129078 DOI: 10.1093/emboj/cdf546] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies have shown that the Schizo saccharomyces pombe Orc4 subunit is solely responsible for in vitro binding of origin recognition complex (ORC) to specific AT-rich sites within S.pombe replication origins. Using ARS3001, a S.pombe replication origin consisting of four genetically required sites, we show that, in situ as well as in vitro, Orc4 binds strongly to the Delta3 site, weakly to the Delta6 site and not at all to the remaining sequences. In situ, the footprint over Delta3 is extended during G(1) phase, but only when Cdc18 is present and Mcm proteins are bound to chromatin. Moreover, this footprint extends into the adjacent Delta2 site, where leading strand DNA synthesis begins. Therefore, we conclude that ARS3001 consists of a single primary ORC binding site that assembles a pre-replication complex and initiates DNA synthesis, plus an additional novel origin element (Delta9) that neither binds ORC nor functions as a centromere, but does bind an as yet unidentified protein throughout the cell cycle. Schizosaccharomyces pombe may be an appropriate paradigm for the complex origins found in the metazoa.
Collapse
Affiliation(s)
- Daochun Kong
- National Institute of Child Health and Human Development, Building 6, Room 416, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
30
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
31
|
Thon G, Bjerling P, Bünner CM, Verhein-Hansen J. Expression-state boundaries in the mating-type region of fission yeast. Genetics 2002; 161:611-22. [PMID: 12072458 PMCID: PMC1462127 DOI: 10.1093/genetics/161.2.611] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A transcriptionally silent chromosomal domain is found in the mating-type region of fission yeast. Here we show that this domain is delimited by 2-kb inverted repeats, IR-L and IR-R. IR-L and IR-R prevent the expansion of transcription-permissive chromatin into the silenced region and that of silenced chromatin into the expressed region. Their insulator activity is partially orientation dependent. The silencing defects that follow deletion or inversion of IR-R are suppressed by high dosage of the chromodomain protein Swi6. Combining chromosomal deletions and Swi6 overexpression shows that IR-L and IR-R provide firm borders in a region where competition between silencing and transcriptional competence occurs. IR-R possesses autonomously replicating sequence (ARS) activity, leading to a model where replication factors, or replication itself, participate in boundary formation.
Collapse
Affiliation(s)
- Geneviève Thon
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, DK-1353 Copenhagen K, Denmark.
| | | | | | | |
Collapse
|
32
|
Chuang RY, Chretien L, Dai J, Kelly TJ. Purification and characterization of the Schizosaccharomyces pombe origin recognition complex: interaction with origin DNA and Cdc18 protein. J Biol Chem 2002; 277:16920-7. [PMID: 11850415 DOI: 10.1074/jbc.m107710200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The origin recognition complex (ORC) plays a central role in the initiation of DNA replication in eukaryotic cells. It interacts with origins of DNA replication in chromosomal DNA and recruits additional replication proteins to form functional initiation complexes. These processes have not been well characterized at the biochemical level except in the case of Saccharomyces cerevisiae ORC. We report here the expression, purification, and initial characterization of Schizosaccharomyces pombe ORC (SpORC) containing six recombinant subunits. Purified SpORC binds efficiently to the ars1 origin of DNA replication via the essential Nterminal domain of the SpOrc4 subunit which contains nine AT-hook motifs. Competition binding experiments demonstrated that SpORC binds preferentially to DNA molecules rich in AT-tracts, but does not otherwise exhibit a high degree of sequence specificity. The complex is capable of binding to multiple sites within the ars1 origin of DNA replication with similar affinities, indicating that the sequence requirements for origin recognition in S. pombe are significantly less stringent than in S. cerevisiae. We have also demonstrated that SpORC interacts directly with Cdc18p, an essential fission yeast initiation protein, and recruits it to the ars1 origin in vitro. Recruitment of Cdc18p to chromosomal origins is a likely early step in the initiation of DNA replication in vivo. These data indicate that the purified recombinant SpORC retains at least two of its primary biological functions and that it will be useful for the eventual reconstitution of the initiation reaction with purified proteins.
Collapse
Affiliation(s)
- Ray-Yuan Chuang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
34
|
Pasion SG, Forsburg SL. Deconstructing a conserved protein family: the role of MCM proteins in eukaryotic DNA replication. GENETIC ENGINEERING 2002; 23:129-55. [PMID: 11570101 DOI: 10.1007/0-306-47572-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- S G Pasion
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Kim K, Lambert PF. E1 protein of bovine papillomavirus 1 is not required for the maintenance of viral plasmid DNA replication. Virology 2002; 293:10-4. [PMID: 11853393 DOI: 10.1006/viro.2001.1305] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Derivatives of bovine papillomavirus 1 (BPV1) with temperature-sensitive and dominant-negative mutation the E1 gene were used to determine the requirement for E1 in the maintenance of viral plasmid DNA replication. The abilities of these mutant BPV1 genomes to replicate as nuclear plasmids were monitored at permissive (32 degrees C) and nonpermissive (37 degrees C) temperatures in mouse C127 cells. We found that the temperature-sensitive E1 mutant BPV1 genomes replicate as nuclear plasmids as efficiently as does wild-type BPV1 in C127 cells after shifting to the nonpermissive temperature. These findings indicate that BPV1 does not require E1 for the maintenance of viral plasmids.
Collapse
Affiliation(s)
- Kitai Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
36
|
Kong D, DePamphilis ML. Site-specific DNA binding of the Schizosaccharomyces pombe origin recognition complex is determined by the Orc4 subunit. Mol Cell Biol 2001; 21:8095-103. [PMID: 11689699 PMCID: PMC99975 DOI: 10.1128/mcb.21.23.8095-8103.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which origin recognition complexes (ORCs) identify replication origins was investigated using purified Orc proteins from Schizosaccharomyces pombe. Orc4p alone bound tightly and specifically to several sites within S. pombe replication origins that are genetically required for origin activity. These sites consisted of clusters of A or T residues on one strand but were devoid of either alternating A and T residues or GC-rich sequences. Addition of a complex consisting of Orc1, -2, -3, -5, and -6 proteins (ORC-5) altered neither Orc4p binding to origin DNA nor Orc4p protection of specific sequences. ORC-5 alone bound weakly and nonspecifically to DNA; strong binding required the presence of Orc4p. Under these conditions, all six subunits remained bound to chromatin isolated from each phase of the cell division cycle. These results reveal that the S. pombe ORC binds to multiple, specific sites within replication origins and that site selection, at least in vitro, is determined solely by the Orc4p subunit.
Collapse
Affiliation(s)
- D Kong
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | |
Collapse
|
37
|
Lee JK, Moon KY, Jiang Y, Hurwitz J. The Schizosaccharomyces pombe origin recognition complex interacts with multiple AT-rich regions of the replication origin DNA by means of the AT-hook domains of the spOrc4 protein. Proc Natl Acad Sci U S A 2001; 98:13589-94. [PMID: 11717425 PMCID: PMC61085 DOI: 10.1073/pnas.251530398] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2001] [Indexed: 11/18/2022] Open
Abstract
The interaction between an origin sequence and the origin recognition complex (ORC), which is highly conserved in eukaryotes, is critical for the initiation of DNA replication. In this report, we have examined the interaction between the Schizosaccharomyces pombe (sp) autonomously replicating sequence 1 (ars1) and the spORC. For this purpose, we have purified the spORC containing all six subunits, a six-subunit complex containing the N-terminal-deleted spOrc4 subunit (spORC(Delta N-Orc4)), and the spOrc4 subunit by using the baculovirus expression system. Wild-type spORC showed sequence-specific binding to ars1, and the spOrc4 protein alone showed the same DNA-binding properties as wild-type spORC. In contrast, the spORC(Delta N-Orc4) and the Delta N-spOrc4p alone did not bind significantly to ars1. These findings indicate that the N-terminal domain of the spOrc4 protein that contains multiple AT-hook motifs is essential for the ars1-binding activity. DNA-binding competition assays with fragments of ars1 and DNase I footprinting studies with full-length ars1 revealed that the spORC interacted with several AT-rich sequence regions of ars1. These DNA-binding properties of spORC correlate with the previously determined sequence requirements of the S. pombe ars1. These studies indicate that because of its unique Orc4 subunit, S. pombe uses a mechanism to recognize its origins different from that used by Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J K Lee
- Program of Molecular Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 97, New York, NY 10021, USA
| | | | | | | |
Collapse
|
38
|
Chesnokov I, Remus D, Botchan M. Functional analysis of mutant and wild-type Drosophila origin recognition complex. Proc Natl Acad Sci U S A 2001; 98:11997-2002. [PMID: 11593009 PMCID: PMC59756 DOI: 10.1073/pnas.211342798] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2001] [Indexed: 11/18/2022] Open
Abstract
The origin recognition complex (ORC) is the DNA replication initiator protein in eukaryotes. We have reconstituted a functional recombinant Drosophila ORC and compared activities of the wild-type and several mutant ORC variants. Drosophila ORC is an ATPase, and our studies show that the ORC1 subunit is essential for ATP hydrolysis and for ATP-dependent DNA binding. Moreover, DNA binding by ORC reduces its ATP hydrolysis activity. In vitro, ORC binds to chromatin in an ATP-dependent manner, and this process depends on the functional AAA(+) nucleotide-binding domain of ORC1. Mutations in the ATP-binding domain of ORC1 are unable to support cell-free DNA replication. However, mutations in the putative ATP-binding domain of either the ORC4 or ORC5 subunits do not affect either of these functions. We also provide evidence that the Drosophila ORC6 subunit is directly required for all of these activities and that a large pool of ORC6 is present in the cytoplasm, cytologically proximal to the cell membrane. Studies reported here provide the first functional dissection of a metazoan initiator and highlight the basic conserved and divergent features among Drosophila and budding yeast ORC complexes.
Collapse
Affiliation(s)
- I Chesnokov
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
39
|
Takahashi T, Masukata H. Interaction of fission yeast ORC with essential adenine/thymine stretches in replication origins. Genes Cells 2001; 6:837-49. [PMID: 11683912 DOI: 10.1046/j.1365-2443.2001.00468.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Eukaryotic DNA replication is initiated from distinct regions on the chromosome. However, the mechanism for recognition of replication origins is not known for most eukaryotes. In fission yeast, replication origins are isolated as autonomously replicating sequences (ARSs). Multiple adenine/thymine clusters are essential for replication, but no short consensus sequences are found. In this paper, we examined the interaction of adenine/thymine clusters with the replication initiation factor ORC. RESULTS The SpOrc1 or SpOrc2 immunoprecipitates (IPs) containing at least four subunits of SpORC, interacted with the ars2004 fragment, which is derived from a predominant replication origin on the chromosome. SpORC-IPs preferentially interacted with two regions of the ars2004, which consist of consecutive adenines and AAAAT repeats and are essential for ARS activity. The nucleotide sequences required for the interaction with SpORC-IPs correspond closely to those necessary for in vivo ARS activity. CONCLUSION Our results suggest that the SpORC interacts with adenine/thymine stretches, which have been shown to be the most important component in the fission yeast replication origin. The presence of multiple SpORC-binding sites, with certain sequence variations, is characteristic for the fission yeast replication origins.
Collapse
Affiliation(s)
- T Takahashi
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 Japan
| | | |
Collapse
|
40
|
Yanow SK, Lygerou Z, Nurse P. Expression of Cdc18/Cdc6 and Cdt1 during G2 phase induces initiation of DNA replication. EMBO J 2001; 20:4648-56. [PMID: 11532929 PMCID: PMC125588 DOI: 10.1093/emboj/20.17.4648] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cdc18/Cdc6 and Cdt1 are essential initiation factors for DNA replication. In this paper we show that expression of Cdc18 in fission yeast G2 cells is sufficient to override the controls that ensure one S phase per cell cycle. Cdc18 expression in G2 induces DNA synthesis by re-firing replication origins and recruiting the MCM Cdc21 to chromatin in the presence of low levels of Cdt1. However, when Cdt1 is expressed together with Cdc18 in G2, cells undergo very rapid, uncontrolled DNA synthesis, accumulating DNA contents of 64C or more. Our data suggest that Cdt1 may potentiate re-replication by inducing origins to fire more persistently, possibly by stabilizing Cdc18 on chromatin. In addition, low level expression of a mutant form of Cdc18 that cannot be phosphorylated by cyclin-dependent kinases is not sufficient to induce replication in G2, but does so only when co-expressed with Cdt1. Thus, regulation of both Cdc18 and Cdt1 in G2 plays a crucial role in preventing the re-initiation of DNA synthesis until the next cell cycle.
Collapse
Affiliation(s)
- Stephanie K. Yanow
- Imperial Cancer Research Fund, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK and
Laboratory of General Biology, School of Medicine, University of Patras, 26110, Rio, Patras, Greece Corresponding author e-mail:
| | - Zoi Lygerou
- Imperial Cancer Research Fund, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK and
Laboratory of General Biology, School of Medicine, University of Patras, 26110, Rio, Patras, Greece Corresponding author e-mail:
| | | |
Collapse
|
41
|
Abstract
All the human homologs of the six subunits of Saccharomyces cerevisiae origin recognition complex have been reported so far. However, not much has been reported on the nature and the characteristics of the human origin recognition complex. In an attempt to purify recombinant human ORC from insect cells infected with baculoviruses expressing HsORC subunits, we found that human ORC2, -3, -4, and -5 form a core complex. HsORC1 and HsORC6 subunits did not enter into this core complex, suggesting that the interaction of these two subunits with the core ORC2-5 complex is extremely labile. We found that the C-terminal region of ORC2 interacts directly with the N-terminal region of ORC3. The C-terminal region of ORC3 was, however, necessary to bring ORC4 and ORC5 into the core complex. A fragment containing the N-terminal 200 residues of ORC3 (ORC3N) competitively inhibited the ORC2-ORC3 interaction. Overexpression of this fragment in U2OS cells blocked the cells in G(1), providing the first evidence that a mammalian ORC subunit is important for the G(1)-S transition in mammalian cells.
Collapse
Affiliation(s)
- S K Dhar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
42
|
Vashee S, Simancek P, Challberg MD, Kelly TJ. Assembly of the human origin recognition complex. J Biol Chem 2001; 276:26666-73. [PMID: 11323433 DOI: 10.1074/jbc.m102493200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The six-subunit origin recognition complex (ORC) was originally identified in the yeast Saccharomyces cerevisiae. Yeast ORC binds specifically to origins of replication and serves as a platform for the assembly of additional initiation factors, such as Cdc6 and the Mcm proteins. Human homologues of all six ORC subunits have been identified by sequence similarity to their yeast counterparts, but little is known about the biochemical characteristics of human ORC (HsORC). We have extracted HsORC from HeLa cell chromatin and probed its subunit composition using specific antibodies. The endogenous HsORC, identified in these experiments, contained homologues of Orc1-Orc5 but lacked a putative homologue of Orc6. By expressing HsORC subunits in insect cells using the baculovirus system, we were able to identify a complex containing all six subunits. To explore the subunit-subunit interactions that are required for the assembly of HsORC, we carried out extensive co-immunoprecipitation experiments with recombinant ORC subunits expressed in different combinations. These studies revealed the following binary interactions: HsOrc2-HsOrc3, HsOrc2-HsOrc4, HsOrc3-HsOrc4, HsOrc2-HsOrc6, and HsOrc3-HsOrc6. HsOrc5 did not form stable binary complexes with any other HsORC subunit but interacted with sub-complexes containing any two of subunits HsOrc2, HsOrc3, or HsOrc4. Complex formation by HsOrc1 required the presence of HsOrc2, HsOrc3, HsOrc4, and HsOrc5 subunits. These results suggest that the subunits HsOrc2, HsOrc3, and HsOrc4 form a core upon which the ordered assembly of HsOrc5 and HsOrc1 takes place. The characterization of HsORC should facilitate the identification of human origins of DNA replication.
Collapse
Affiliation(s)
- S Vashee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
43
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
44
|
Altman AL, Fanning E. The Chinese hamster dihydrofolate reductase replication origin beta is active at multiple ectopic chromosomal locations and requires specific DNA sequence elements for activity. Mol Cell Biol 2001; 21:1098-110. [PMID: 11158297 PMCID: PMC99564 DOI: 10.1128/mcb.21.4.1098-1110.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify cis-acting genetic elements essential for mammalian chromosomal DNA replication, a 5.8-kb fragment from the Chinese hamster dihydrofolate reductase (DHFR) locus containing the origin beta (ori-beta) initiation region was stably transfected into random ectopic chromosomal locations in a hamster cell line lacking the endogenous DHFR locus. Initiation at ectopic ori-beta in uncloned pools of transfected cells was measured using a competitive PCR-based nascent strand abundance assay and shown to mimic that at the endogenous ori-beta region in Chinese hamster ovary K1 cells. Initiation activity of three ectopic ori-beta deletion mutants was reduced, while the activity of another deletion mutant was enhanced. The results suggest that a 5.8-kb fragment of the DHFR ori-beta region is sufficient to direct initiation and that specific DNA sequences in the ori-beta region are required for efficient initiation activity.
Collapse
Affiliation(s)
- A L Altman
- Department of Molecular Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232-6838, USA
| | | |
Collapse
|
45
|
Kim SM, Zhang DY, Huberman JA. Multiple redundant sequence elements within the fission yeast ura4 replication origin enhancer. BMC Mol Biol 2001; 2:1. [PMID: 11178109 PMCID: PMC29090 DOI: 10.1186/1471-2199-2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Accepted: 01/18/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some origins in eukaryotic chromosomes fire more frequently than others. In the fission yeast, Schizosaccharomyces pombe, the relative firing frequencies of the three origins clustered 4-8 kbp upstream of the ura4 gene are controlled by a replication enhancer - an element that stimulates nearby origins in a relatively position-and orientation-independent fashion. The important sequence motifs within this enhancer were not previously localized. RESULTS Systematic deletion of consecutive segments of approximately 50, approximately 100 or approximately 150 bp within the enhancer and its adjacent core origin (ars3002) revealed that several of the approximately 50-bp stretches within the enhancer contribute to its function in partially redundant fashion. Other stretches within the enhancer are inhibitory. Some of the stretches within the enhancer proved to be redundant with sequences within core ars3002. Consequently the collection of sequences important for core origin function was found to depend on whether the core origin is assayed in the presence or absence of the enhancer. Some of the important sequences in the core origin and enhancer co-localize with short runs of adenines or thymines, which may serve as binding sites for the fission yeast Origin Recognition Complex (ORC). Others co-localize with matches to consensus sequences commonly found in fission yeast replication origins. CONCLUSIONS The enhancer within the ura4 origin cluster in fission yeast contains multiple sequence motifs. Many of these stimulate origin function in partially redundant fashion. Some of them resemble motifs also found in core origins. The next step is to identify the proteins that bind to these stimulatory sequences.
Collapse
Affiliation(s)
- Soo-Mi Kim
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong-Yi Zhang
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Joel A Huberman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
46
|
Abstract
Cdc2, a cyclin-dependent kinase, controls cell cycle progression in fission yeast. New details of Cdc2 regulation and function have been uncovered in recent studies. These studies involve cyclins that associate with Cdc2 in G1-phase and the proteins that regulate inhibitory phosphorylation of Cdc2 during S-phase and G2-phase. Recent investigations have also provided a better understanding of proteins that regulate DNA replication and that are directly or indirectly controlled by Cdc2.
Collapse
Affiliation(s)
- B A Moser
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
47
|
Abstract
A new protein was cloned and identified as the sixth member of the human origin recognition complex (ORC). The newly identified 30-kDa protein hsORC6 is 28% identical and 49% similar to ORC6p from Drosophila melanogaster, which is consistent with the identities and similarities found among the other ORC members reported in the two species. The human ORC6 gene is located on chromosome 16q12. ORC6 protein level did not change through the cell cycle. Like ORC1, ORC6 did not co-immunoprecipitate with other ORC subunits but was localized in the nucleus along with the other ORC subunits. Several cellular proteins co-immunoprecipitated with ORC6, including a 65-kDa protein that was hyperphosphorylated in G(1) and dephosphorylated in mitosis. Therefore, unlike the tight stoichiometric association of six yeast ORC subunits in one holo-complex, only a small fraction of human ORC1 and ORC6 is likely to be associated with a subcomplex of ORC2, 3, 4, and 5, suggesting differences in the architecture and regulation of human ORC.
Collapse
Affiliation(s)
- S K Dhar
- Division of Molecular Oncology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
48
|
Thome KC, Dhar SK, Quintana DG, Delmolino L, Shahsafaei A, Dutta A. Subsets of human origin recognition complex (ORC) subunits are expressed in non-proliferating cells and associate with non-ORC proteins. J Biol Chem 2000; 275:35233-41. [PMID: 10954718 DOI: 10.1074/jbc.m005765200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The origin recognition complex (ORC) in yeast is a complex of six tightly associated subunits essential for the initiation of DNA replication. Human ORC subunits are nuclear in proliferating cells and in proliferative tissues like the testis, consistent with a role of human ORC in DNA replication. Orc2, Orc3, and Orc5 also are detected in non-proliferating cells like cardiac myocytes, adrenal cortical cells, and neurons, suggesting an additional role of these proteins in non-proliferating cells. Although Orc2-5 co-immunoprecipitate with each other under mild extraction conditions, a holo complex of the subunits is difficult to detect. When extracted under more stringent extraction conditions, several of the subunits co-immunoprecipitate with stoichiometric amounts of other unidentified proteins but not with any of the known ORC subunits. The variation in abundance of individual ORC subunits (relative to each other) in several tissues, expression of some subunits in non-proliferating tissues, and the absence of a stoichiometric complex of all the subunits in cell extracts indicate that subunits of human ORC in somatic cells might have activities independent of their role as a six subunit complex involved in replication initiation. Finally, all ORC subunits remain consistently nuclear, and Orc2 is consistently phosphorylated through all stages of the cell cycle, whereas Orc1 is selectively phosphorylated in mitosis.
Collapse
Affiliation(s)
- K C Thome
- Division of Molecular Oncology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kearsey SE, Montgomery S, Labib K, Lindner K. Chromatin binding of the fission yeast replication factor mcm4 occurs during anaphase and requires ORC and cdc18. EMBO J 2000; 19:1681-90. [PMID: 10747035 PMCID: PMC310236 DOI: 10.1093/emboj/19.7.1681] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Revised: 02/09/2000] [Accepted: 02/09/2000] [Indexed: 11/13/2022] Open
Abstract
We describe an in situ technique for studying the chromatin binding of proteins in the fission yeast Schizosaccharomyces pombe. After tagging the protein of interest with green fluorescent protein (GFP), chromatin-associated protein is detected by GFP fluorescence following cell permeabilization and washing with a non-ionic detergent. Cell morphology and nuclear structure are preserved in this procedure, allowing structures such as the mitotic spindle to be detected by indirect immunofluorescence. Cell cycle changes in the chromatin association of proteins can therefore be determined from individual cells in asynchronous cultures. We have applied this method to the DNA replication factor mcm4/cdc21, and find that chromatin association occurs during anaphase B, significantly earlier than is the case in budding yeast. Binding of mcm4 to chromatin requires orc1 and cdc18 (homologous to Cdc6 in budding yeast). Release of mcm4 from chromatin occurs during S phase and requires DNA replication. Upon overexpressing cdc18, we show that mcm4 is required for re-replication of the genome in the absence of mitosis and is associated with chromatin in cells undergoing re-replication.
Collapse
Affiliation(s)
- S E Kearsey
- Department of Zoology, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
50
|
Pasero P, Schwob E. Think global, act local--how to regulate S phase from individual replication origins. Curr Opin Genet Dev 2000; 10:178-86. [PMID: 10753785 DOI: 10.1016/s0959-437x(00)00067-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All eukaryotes use similar proteins to licence replication origins but, paradoxically, origin DNA is much less conserved. Specific binding sites for these proteins have now been identified on fission yeast and Drosophila chromosomes, suggesting that the DNA-binding activity of the origin recognition complex has diverged to recruit conserved initiation factors on polymorphic replication origins. Once formed, competent origins are activated by cyclin- and Dbf4-dependent kinases. The latter have been shown to control S phase in several organisms but, in contrast to cyclin-dependent kinases, seem regulated at the level of individual origins. Global and local regulations generate specific patterns of DNA replication that help establish epigenetic chromosome states.
Collapse
Affiliation(s)
- P Pasero
- Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique (UMR 5535) & Université Montpellier II, Montpellier, F-34293, France.
| | | |
Collapse
|