1
|
Baryakova TH, Hsu CC, Segatori L, McHugh KJ. Novel Approaches to Label the Surface of S. aureus with DBCO for Click Chemistry-Mediated Deposition of Sensitive Cargo. Bioconjug Chem 2025. [PMID: 40398634 DOI: 10.1021/acs.bioconjchem.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The strain-promoted alkyne-azide cycloaddition (SPAAC) reaction can be used to modify the surface of bacteria for a variety of applications including drug delivery, biosensing, and imaging. This is usually accomplished by first installing a small azide group within the peptidoglycan and then delivering exogenous cargo (e.g., a protein or nanoparticle) modified with a cyclooctyne group, such as dibenzocyclooctyne (DBCO), for in situ conjugation. However, DBCO is comparatively bulky and hydrophobic, increasing the propensity of some payloads to aggregate. In this study, we sought to invert this paradigm by exploring two novel strategies for incorporating DBCO into the peptidoglycan of Staphylococcus aureus and compared them to an established approach using DBCO-vancomycin. We demonstrate that DBCO-modified small molecules belonging to all three classes─a sortase peptide substrate (LPETG), two d-alanine derivatives, and vancomycin─can selectively label the S. aureus surface to varying degrees. In contrast to DBCO-vancomycin, the DBCO-d-alanine variants do not adversely affect the growth of S. aureus or lead to off-target labeling or toxicity in HEK293T or RAW 264.7 cells. Finally, we show that, unlike IgG3-Fc labeled with DBCO groups, IgG3-Fc labeled with azide groups is stable (i.e., remains water-soluble) under normal storage conditions, retains its ability to bind the immune receptor CD64, and can be successfully attached to the surface of DBCO-modified S. aureus. We believe that the labeling strategies explored herein will expand the paradigm of specific, nontoxic SPAAC-mediated labeling of the surface of S. aureus and other Gram-positive bacteria, opening the door for new applications using azide-modified cargo.
Collapse
Affiliation(s)
| | - Chia-Chien Hsu
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Laura Segatori
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department of BioSciences, Rice University, Houston, Texas 77030, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Fahoum J, Billan M, Varga JK, Padawer D, Britan-Rosich Y, Elgrably-Weiss M, Basu P, Stolovich-Rain M, Baraz L, Cohen-Kfir E, Kumari S, Oiknine-Djian E, Kumar M, Zelig O, Mayer G, Isupov MN, Wolf DG, Altuvia S, Wiener R, Schueler-Furman O, Rouvinski A. Transfer of SARS-CoV-2 nucleocapsid protein to uninfected epithelial cells induces antibody-mediated complement deposition. Cell Rep 2025; 44:115512. [PMID: 40343796 DOI: 10.1016/j.celrep.2025.115512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/28/2024] [Accepted: 03/12/2025] [Indexed: 05/11/2025] Open
Abstract
SARS-CoV-2 infection triggers a strong antibody response toward nucleocapsid protein (NP), suggesting its extracellular presence beyond intravirion RNA binding. Our co-culture experiments show NP decorates infected and proximal uninfected cell surfaces. We propose a mechanism whereby extracellular NP on uninfected cells contributes to COVID-19 pathogenicity. We show that NP binds to cell-surface sulfated glycosaminoglycans using its RNA-binding sites, facilitated by the flexible, positively charged linker. Coating uninfected lung-derived cells with NP attracted anti-NP IgG from lung fluids and sera of COVID-19 patients. Immune recognition was significantly higher in moderate versus mild COVID-19. Binding of anti-NP IgG in sera generated clusters, triggering C3b deposition via the classical complement pathway on SARS-CoV-2 non-susceptible cells co-cultured with infected cells. The heparin analog enoxaparin outcompeted NP binding, rescuing cells from anti-NP IgG-mediated complement deposition. Our findings reveal how extracellular NP may exacerbate COVID-19 damage and suggest preventative therapy avenues.
Collapse
Affiliation(s)
- Jamal Fahoum
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Billan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan Padawer
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Institute of Pulmonary Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yelena Britan-Rosich
- Barry Skolnick Biosafety Level 3 (BSL3) Unit, Core Research Facility, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pallabi Basu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Dove Laboratory, Boston Children's Hospital, Boston, MA 02115, USA
| | - Miri Stolovich-Rain
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leah Baraz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Medical Laboratory Sciences, Jerusalem Multidisciplinary College, Jerusalem, Israel
| | - Einav Cohen-Kfir
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sujata Kumari
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Manoj Kumar
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Zelig
- Blood Bank, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel; Lautenberg Centre for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Azam MS, Ibrahim AM, Leddy O, Oh SY, Schneewind O, Missiakas D. A SecA-associated protease modulates the extent of surface display of staphylococcal protein A. J Bacteriol 2025; 207:e0052224. [PMID: 40135891 PMCID: PMC12004944 DOI: 10.1128/jb.00522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
In bacteria, signal peptides direct pre-proteins to the SecYEG secretion channel and are typically cleaved by signal peptidases during translocation across the membrane. In gram-positive bacteria, such as Staphylococcus aureus, some signal peptides have a pre-translocation function. Staphylococcal protein A (SpA) carries such an atypical signal sequence, with a YSIRK/GXXS motif that directs its precursor into the cross-wall of dividing cells for subsequent anchoring by sortase A. Here, we report that PepV-a member of the M20 peptidase family which has been described as a manganese-dependent dipeptidase in vitro-may influence the surface display of precursors with a YSIRK/GXXS motif. SpA deposition into cross-walls was increased in ΔpepV bacteria. Yet, in the absence of pepV, neither the kinetics of signal sequence processing nor the final product of the sorting reaction was altered. In pull-down experiments, PepV was identified as a ligand of SecA. When purified PepV was incubated with SpA precursors, this interaction triggered self-cleavage of the enzyme, an unexpected activity exacerbated by the presence of a chelating agent. In agreement with this finding, a pulse-chase experiment revealed that the half-life of PepV is extended in bacteria lacking spa. Collectively, these data reveal a mutually inhibitory relationship between SpA precursors and PepV, the net result suggesting that while PepV may reduce the surface display of SpA, SpA precursors destabilize PepV possibly to overcome such inhibition. IMPORTANCE The "signal hypothesis" proposed that N-terminal sequences of secretory proteins contain targeting cues directing nascent polypeptides to the endoplasmic reticulum. This concept was later confirmed as broadly applicable, even to prokaryotes with a single membrane. In gram-positive bacteria, signal sequences bearing the YSIRK/GXXS motif are necessary and sufficient to direct precursors to septal membranes. However, trans-acting factors involved in this spatially restricted targeting remain largely unknown. Here, we identify a member of the M20 metalloprotease family as a potential contributor to the septal surface display of proteins containing YSIRK/GXXS signal peptides.
Collapse
Affiliation(s)
- Muhammad S. Azam
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Amany M. Ibrahim
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Owen Leddy
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - So-Young Oh
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Guo T, Haft DH, Wall D. Myxosortase: an intramembrane protease that sorts MYXO-CTERM proteins to the cell surface. mBio 2025; 16:e0406724. [PMID: 40071993 PMCID: PMC11980579 DOI: 10.1128/mbio.04067-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/04/2025] [Indexed: 04/10/2025] Open
Abstract
Cell surface proteins determine how cells interact with their biotic and abiotic environments. In social myxobacteria, a C-terminal protein sorting tag called MYXO-CTERM is universally found within the Myxococcota phylum, where their genomes typically contain dozens of proteins with this motif. MYXO-CTERM harbors a tripartite architecture: a short signature motif containing an invariant cysteine, followed by a transmembrane helix and a short arginine-rich C-terminal region localized in the cytoplasm. In Myxococcus xanthus, MYXO-CTERM is predicted to be posttranslationally lipidated and cleaved for subsequent cell surface localization by the type II secretion system. Here, following our bioinformatic discovery, we experimentally show that myxosortase (MrtX, MXAN_2755) is responsible for the C-terminal cleavage and cell surface anchoring of TraA, a prototypic cell surface receptor. The cleavage by MrtX depends on conserved cysteines within the MYXO-CTERM motif of TraA. M. xanthus mutants lacking myxosortase are defective in TraA-mediated outer membrane exchange and exhibit cell envelope defects. In a heterologous Escherichia coli expression system, the MYXO-CTERM motif is cleaved when MrtX is co-expressed. Therefore, MrtX represents a new family of sorting enzyme that enables cell surface localization of MYXO-CTERM proteins.IMPORTANCEThe CPBP (CaaX protease and bacteriocin processing) protease family is widespread across the three domains of life. Despite considerable research on eukaryotic homologs, prokaryotic CPBP family members remain largely unexplored. In this study, we experimentally reveal the function of a novel CPBP protease called myxosortase. Our findings show that myxosortase is responsible for the C-terminal cleavage and cell surface anchoring of substrate proteins containing MYXO-CTERM motifs in Myxococcus xanthus. MYXO-CTERM cleavage also occurred in a heterologous Escherichia coli host when myxosortase is co-expressed. This is the first report that a CPBP protease is involved in protein sorting in prokaryotes. This work provides important insights into the biogenesis and anchoring of cell surface proteins in gram-negative bacteria.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Daniel H. Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
5
|
Jiang T, Zhu X, Yin Z, Gao R, Li Y, Li C, Meng Q, Zhu X, Song W, Su X. Dual role of Baimao-Longdan-Congrong-Fang in inhibiting Staphylococcus aureus virulence factors and regulating TNF-α/TNFR1/NF-κB/MMP9 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156477. [PMID: 39938176 DOI: 10.1016/j.phymed.2025.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Baimao-Longdan-Congrong-Fang (BLCF), a traditional Chinese herbal formula described in the Taiping Shenghui Fang (998 AD), consists of medicinal plants with heat-clearing and tonifying properties. BLCF has a promise as a treatment for Staphylococcus aureus (S. aureus) pneumonia, according to its historical use and current pharmacological research. PURPOSE In this study, the inhibitory effects of BLCF on S. aureus virulence factors were evaluated in vitro, and its mechanisms of action were investigated in a methicillin-resistant S. aureus (MRSA) pneumonia mouse model. METHODS The inhibitory effect of BLCF on S. aureus virulence factors, including sortase A (SrtA) and α-hemolysin (Hla), was investigated by fluorescence resonance energy transfer (FRET) and hemolysis assays. A C57BL/6J mouse model of MRSA pneumonia was employed to evaluate its therapeutic efficacy. Accordingly, an integrated strategy of medicinal chemistry, network pharmacology analysis, GEO database analysis, bioinformatics, molecular docking, molecular dynamics simulation, GeneMANIA-based functional association (GMFA), and GSEA was used to identify and illustrate potential therapeutic targets and mechanisms. Subsequently, the mechanistic results were confirmed by Western blot analysis and RT-qPCR. RESULTS While BLCF exhibited weak inhibitory activity against S. aureus USA300, Newman, and SA37 strains, it significantly suppressed SrtA-related virulence functions without affecting bacterial growth. FRET and hemolysis assays confirmed that BLCF inhibited SrtA activity (IC50 = 1.25 mg/mL) while decreasing hemolytic activity. Furthermore, BLCF protected mice from MRSA infection, increasing their survival rates. Bioinformatics analysis identified 26 active compounds and 2 hub genes (Tnf and Mmp9) that were associated with 5 types of immune cell, including activated CD4 T cells, myeloid-derived suppressor cells, activated dendritic cells, macrophages, and mast cells. Molecular docking revealed 3 active compounds (isoacteoside, verbascoside, and echinacoside) that exhibited strong binding affinities to TNF, MMP9, and SrtA. Molecular dynamics simulations validated the stable interactions between isoacteoside and the target proteins, yielding binding energies of -136.76 ± 8.83 kJ/mol, -174.98 ± 14.89 kJ/mol, and -186.34 ± 9.06 kJ/mol, respectively. The therapeutic effect of BLCF was closely linked to the NF-κB signaling pathway, as revealed by GMFA and GSEA analyses. In vivo, BLCF reduced lung bacterial load, improved the wet/dry ratio, and decreased inflammatory cytokines, thereby enhancing lung histopathology through modulation of the TNF-α/TNFR1/NF-κB/MMP9 axis. CONCLUSIONS BLCF can effectively treat MRSA pneumonia in mice by inhibiting SrtA activity, decreasing hemolytic activity, and regulating the TNF-α/TNFR1/NF-κB/MMP9 axis. These findings suggest BLCF, a traditional herbal formula, as a promising novel therapeutic approach to treat pneumonia.
Collapse
Affiliation(s)
- Tao Jiang
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xiujing Zhu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zixin Yin
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Rui Gao
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yufen Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Chenhao Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Qianting Meng
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xiaojuan Zhu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
6
|
Jackson SN, Lee DE, Blount JM, Croney KA, Ibershof JW, Ceravolo CM, Brown KM, Goodwin-Rice NJ, Whitham KM, McCarty J, Antos JM, Amacher JF. Substrate recognition in Bacillus anthracis sortase B beyond its canonical pentapeptide binding motif and use in sortase-mediated ligation. J Biol Chem 2025; 301:108382. [PMID: 40049417 PMCID: PMC11987632 DOI: 10.1016/j.jbc.2025.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025] Open
Abstract
Sortases are critical cysteine transpeptidases that facilitate the attachment of proteins to the cell wall in Gram-positive bacteria. These enzymes are potential targets for novel antibiotic development, and versatile tools in protein engineering applications. There are six classes of sortases recognized, yet class A sortases (SrtA) are the most widely studied and utilized. SrtA enzymes endogenously recognize the amino acid sequence LPXTG, where X = any amino acid, with additional promiscuity now recognized in multiple positions for certain SrtA enzymes. Much less is known about Class B sortases (SrtB), which target a distinct sequence, typically with an N-terminal Asn, e.g., variations of NPXTG or NPQTN. Although understudied overall, two SrtB enzymes were previously shown to be specific for heme transporter proteins, and in vitro experiments with the catalytic domains of these enzymes reveal activities significantly worse than SrtA from the same organisms. Here, we use protein biochemistry, structural analyses, and computational simulations to better understand and characterize these enzymes, specifically investigating Bacillus anthracis SrtB (baSrtB) as a model SrtB protein. Structural modeling predicts a plausible enzyme-substrate complex, which is verified by mutagenesis of binding cleft residues. Furthermore, residues N- and C-terminal to the pentapeptide recognition motif are critical for observed activity. Finally, we use chimeric proteins to identify mutations that improve baSrtB activity by ∼4-fold, and demonstrate the feasibility of sortase-mediated ligation using a baSrtB enzyme variant. These studies provide insight into SrtB-target binding as well as evidence that SrtB enzymes can be modified to be of potential use in protein engineering.
Collapse
Affiliation(s)
- Sophie N Jackson
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Darren E Lee
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Jadon M Blount
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Kayla A Croney
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Justin W Ibershof
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Caroline M Ceravolo
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Kate M Brown
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Noah J Goodwin-Rice
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Kyle M Whitham
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - James McCarty
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - John M Antos
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA.
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA.
| |
Collapse
|
7
|
Pi J, Joseph S. Sortase-Mediated Fluorescent Labeling of eIF4E for Investigating Translation Initiation Mechanisms. Biochemistry 2025; 64:1099-1108. [PMID: 39968718 PMCID: PMC11887568 DOI: 10.1021/acs.biochem.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Translation initiation represents a critical regulatory step in gene expression, orchestrated by the interaction of eukaryotic initiation factor 4E (eIF4E) with the 7-methylguanosine (m7G) cap structure at the 5' end of mRNA. This interaction enables eIF4F, composed of eIF4E, eIF4G, and eIF4A, to recruit the 43S preinitiation complex to the mRNA 5' end. The activity of eIF4E is tightly regulated and often dysregulated in cancer, neurological disorders, and viral infections. To investigate the interactions of human eIF4E with m7G-RNA and eIF4G, we engineered single-cysteine mutants of eIF4E to enable fluorescent dye attachment. However, these mutants presented challenges in purification and exhibited diminished activity. To overcome these issues, we developed a method to fluorescently label eIF4E via sortase-mediated transpeptidation. Our results demonstrate that sortase-labeled eIF4E retains activity comparable to wild-type eIF4E. This approach provides a valuable tool for studying the dynamic mechanisms of translation initiation and its regulation.
Collapse
Affiliation(s)
- Justin Pi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| |
Collapse
|
8
|
John P, Sriram S, Palanichamy C, Subash PT, Sudandiradoss C. A multifarious bacterial surface display: potential platform for biotechnological applications. Crit Rev Microbiol 2025:1-26. [PMID: 39955766 DOI: 10.1080/1040841x.2025.2461054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Bacterial-cell surface display represents a novel field of protein engineering, which is grounds for presenting recombinant proteins or peptides on the surface of host cells. This technique is primarily used for endowing cellular activity on the host cells and enables several biotechnological applications. In this review, we comprehensively summarize the speciality of bacterial surface display, specifically in gram-positive and gram-negative organisms and then we depict the practical cases to show the importance of bacterial cell surface display in biomedicine and bioremediation domains. We manifest that among other display systems such as phages and ribosomes, the cell surface display using bacterial cells can be used to avoid the loss of combinatorial protein libraries and also open the possibility of isolating target-binding variants using high-throughput selection platforms. Thus, it is becoming a robust tool for functionalizing microbes to serve as a potential implement for various bioengineering purposes.
Collapse
Affiliation(s)
- Pearl John
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Srineevas Sriram
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandresh Palanichamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P T Subash
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Al-Seragi M, Chen Y, Duong van Hoa F. Advances in nanobody multimerization and multispecificity: from in vivo assembly to in vitro production. Biochem Soc Trans 2025; 53:BST20241419. [PMID: 39927832 DOI: 10.1042/bst20241419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/11/2025]
Abstract
NANOBODIES® (Nbs) have emerged as valuable tools across therapeutic, diagnostic, and industrial applications owing to their small size and consequent ability to bind unique epitopes inaccessible to conventional antibodies. While Nbs retrieved from immune libraries normally possess sufficient affinity and specificity for their cognate antigens in the practical use case, their multimerization will often increase functional affinity via avidity effects. Therefore, to rescue binding affinity and broaden targeting specificities, recent efforts have focused on conjugating multiple Nb clones - of identical or unique antigen cognates - together. In vivo and in vitro approaches, including flexible linkers, antibody domains, self-assembling coiled coils, chemical conjugation, and self-clustering hydrophobic sequences, have been employed to produce multivalent and multispecific Nb constructs. Examples of successful Nb multimerization are diverse, ranging from immunoassaying reagents to virus-neutralizing moieties. This review aims to recapitulate the in vivo and in vitro modalities to produce multivalent and multispecific Nbs while highlighting the applications, advantages, and drawbacks tied to each method.
Collapse
Affiliation(s)
- Mohammed Al-Seragi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yilun Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Ho TN, Tran TH, Le HS, Lewis RJ. Advances in the synthesis and engineering of conotoxins. Eur J Med Chem 2025; 282:117038. [PMID: 39561493 DOI: 10.1016/j.ejmech.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Conotoxins, isolated from the venom of carnivorous marine snails of the Conus genus, are disulfide-rich peptides and proteins with well-defined three-dimensional structures. Conotoxins' ability to target a wide range of ion channels and receptors, including voltage- and ligand-gated ion channels, G protein-coupled receptors, monoamine transporters, and enzyme, at exquisite potency and selectivity make them valuable research and therapeutic tools. Despite their potentials, Conus venom peptides are present in limited quantities in nature and possess structural complexity that raises significant synthetic challenges for both chemical synthesis and recombinant expression. Here, we document recent advances in the expression and synthesis of conotoxins, particularly focusing on directed formation of disulfide bonds, chemical ligation techniques, and the integration of non-native functional groups. These advances can provide access to even the most complex conotoxins, accelerating conotoxin-based drug discovery and functional analysis, as well as opening new avenues for the development of drug candidates.
Collapse
Affiliation(s)
- Thao Nt Ho
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam.
| | - Thanh Hoa Tran
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam
| | - Hoang Sinh Le
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
11
|
Kodama HM, Lindblom KM, Walkenhauer EG, Antos JM, Amacher JF. Amino acid variability at W194 of Staphylococcus aureus sortase A alters nucleophile specificity. Protein Sci 2024; 33:e5212. [PMID: 39548757 PMCID: PMC11568364 DOI: 10.1002/pro.5212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
Bacterial sortases are a family of cysteine transpeptidases in Gram-positive bacteria of which sortase A (SrtA) enzymes are responsible for ligating proteins to the peptidoglycan layer of the cell surface. Engineered versions of sortases are also used in sortase-mediated ligation (SML) strategies for a variety of protein engineering applications. Although a versatile tool, substrate recognition by Staphylococcus aureus SrtA (saSrtA), the most commonly utilized enzyme in SML, is stringent and relies on an LPXTG pentapeptide motif. Previous structural studies revealed that the requirement of a glycine in the binding motif may be due to potential steric hindrance of amino acids possessing a β-carbon by W194, a tryptophan located in the β7-β8 loop of the enzyme. Here, we measured the effect of seven single point mutants of W194 (A, D, F, G, N, S, Y) saSrtA using a FRET-based activity assay. We found that while the LPXTG motif remains a requirement for initial proteolytic cleavage, the nucleophile specificity of our variants is altered. In particular, W194A and W194S saSrtA recognize a D-Ala nucleophile and are able to perform ligation reactions. Notably, an LPXT(D-Ala) peptide was not cleaved by either mutant enzyme. We hypothesize that these variants may potentially be utilized to develop an irreversible sortase-mediated reaction. Taken together, this experiment reveals new insight into sortase specificity and possible future SML strategies.
Collapse
Affiliation(s)
- Hanna M. Kodama
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Katy M. Lindblom
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | | | - John M. Antos
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Jeanine F. Amacher
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| |
Collapse
|
12
|
Wang X, Hu D, Wang PG, Yang S. Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis. Bioconjug Chem 2024; 35:1699-1710. [PMID: 39470173 DOI: 10.1021/acs.bioconjchem.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Perry G Wang
- Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
13
|
Wang AZ, Brink HJ, Bouma RG, Affandi AJ, Nijen Twilhaar MK, Heijnen DAM, van Elk J, Maaskant JJ, Konijn VAL, Stolwijk JGC, Kalay H, Olesek K, van Kooyk Y, van der Schoot JMS, Bentlage AEH, Scheeren FA, Verdoes M, Vidarsson G, Kuijl CP, den Haan JMM. Development of a Versatile Cancer Vaccine Format Targeting Antigen-Presenting Cells Using Proximity-Based Sortase A-Mediated Ligation of T-Cell Epitopes. Bioconjug Chem 2024; 35:1805-1814. [PMID: 39511711 PMCID: PMC11583207 DOI: 10.1021/acs.bioconjchem.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Cancer vaccines are a promising strategy to increase tumor-specific immune responses in patients who do not adequately respond to checkpoint inhibitors. Cancer vaccines that contain patient-specific tumor antigens are most effective but also necessitate the production of patient-specific vaccines. This study aims to develop a versatile cancer vaccine format in which patient-specific tumor antigens can be site-specifically conjugated by a proximity-based Sortase A (SrtA)-mediated ligation (PBSL) approach to antibodies that specifically bind to antigen-presenting cells to stimulate immune responses. DEC205 and CD169 are both receptors expressed on antigen-presenting cells that can be targeted to deliver antigens and stimulate T-cell responses. We used the CRISPR/HDR platform to produce mouse heavy chain IgG2a antibodies with DEC205 or CD169 specificity containing an SrtA recognition motif followed by a SpyTag at the C-terminus. Using a recombinant protein of SrtA linked to SpyCatcher, we applied proximity-based SrtA-mediated ligation to ligate fluorescein isothiocyanate (FITC)-labeled or antigenic peptides to the antibodies. Ligated antibodies bound to DEC205-expressing dendritic cells or CD169-expressing macrophages both in vitro and in vivo. More importantly, immunization with DEC205- or CD169-specific Abs linked to T-cell epitopes efficiently stimulated T-cell responses in vivo. To conclude, we have developed a cancer vaccine format using PBSL that enables the rapid incorporation of tumor antigens and could potentially be implemented for the synthesis of personalized cancer vaccines.
Collapse
Affiliation(s)
- Aru Z. Wang
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Hendrik J. Brink
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Rianne G. Bouma
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Alsya J. Affandi
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Maarten K. Nijen Twilhaar
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Dijmphna A. M. Heijnen
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Joelle van Elk
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Janneke J. Maaskant
- Department
of Medical Microbiology and Infection Control, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Veronique A. L. Konijn
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Joeke G. C. Stolwijk
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Hakan Kalay
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Katarina Olesek
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| | - Johan M. S. van der Schoot
- Department
of Medical Biosciences, Institute for Chemical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | - Ferenc A. Scheeren
- Department
of Dermatology, Leiden University Medical
Center, 2333 ZA Leiden, The Netherlands
| | - Martijn Verdoes
- Department
of Medical Biosciences, Institute for Chemical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Gestur Vidarsson
- Sanquin
Research, 1066 CX Amsterdam, The Netherlands
- Department
of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute
for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Coenraad P. Kuijl
- Department
of Medical Microbiology and Infection Control, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Joke M. M. den Haan
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer
Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Amsterdam
Institute for Immunology and Infectious Diseases, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Alexander LM, Khalid S, Gallego-Lopez GM, Astmann TJ, Oh JH, Heggen M, Huss P, Fisher R, Mukherjee A, Raman S, Choi IY, Smith MN, Rogers CJ, Epperly MW, Knoll LJ, Greenberger JS, van Pijkeren JP. Development of a Limosilactobacillus reuteri therapeutic delivery platform with reduced colonization potential. Appl Environ Microbiol 2024; 90:e0031224. [PMID: 39480094 DOI: 10.1128/aem.00312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
Bacterial biotherapeutic delivery vehicles have the potential to treat a variety of diseases. This approach obviates the need to purify the recombinant effector molecule, allows delivery of therapeutics in situ via oral or intranasal administration, and protects the effector molecule during gastrointestinal transit. Lactic acid bacteria have been broadly developed as therapeutic delivery vehicles though risks associated with the colonization of a genetically modified microorganism have so-far not been addressed. Here, we present an engineered Limosilactobacillus reuteri strain with reduced colonization potential. We applied a dual-recombineering scheme for efficient barcoding and generated mutants in genes encoding five previously characterized and four uncharacterized putative adhesins. Compared with the wild type, none of the mutants were reduced in their ability to survive gastrointestinal transit in mice. CmbA was identified as a key protein in L. reuteri adhesion to HT-29 and enteroid cells. The nonuple mutant, a single strain with all nine genes encoding adhesins inactivated, had reduced capacity to adhere to enteroid monolayers. The nonuple mutant producing murine IFN-β was equally effective as its wild-type counterpart in mitigating radiation toxicity in mice. Thus, this work established a novel therapeutic delivery platform that lays a foundation for its application in other microbial therapeutic delivery candidates and furthers the progress of the L. reuteri delivery system towards human use.IMPORTANCEOne major advantage to leverage gut microbes that have co-evolved with the vertebrate host is that evolution already has taken care of the difficult task to optimize survival within a complex ecosystem. The availability of the ecological niche will support colonization. However, long-term colonization of a recombinant microbe may not be desirable. Therefore, strategies need to be developed to overcome this potential safety concern. In this work, we developed a single strain in which we inactivated the encoding sortase, and eight genes encoding characterized/putative adhesins. Each individual mutant was characterized for growth and adhesion to epithelial cells. On enteroid cells, the nonuple mutant has a reduced adhesion potential compared with the wild-type strain. In a model of total-body irradiation, the nonuple strain engineered to release murine interferon-β performed comparable to a derivative of the wild-type strain that releases interferon-β. This work is an important step toward the application of recombinant L. reuteri in humans.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saima Khalid
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gina M Gallego-Lopez
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Theresa J Astmann
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Heggen
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - In Young Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Morgan N Smith
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
15
|
Chang C, Ramirez NA, Bhat AH, Nguyen MT, Kumari P, Ton-That H, Das A, Ton-That H. Biogenesis and Functionality of Sortase-Assembled Pili in Gram-Positive Bacteria. Annu Rev Microbiol 2024; 78:403-423. [PMID: 39141696 DOI: 10.1146/annurev-micro-112123-100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A unique class of multimeric proteins made of covalently linked subunits known as pili, or fimbriae, are assembled and displayed on the gram-positive bacterial cell surface by a conserved transpeptidase enzyme named pilus-specific sortase. Sortase-assembled pili are produced by a wide range of gram-positive commensal and pathogenic bacteria inhabiting diverse niches such as the human oral cavity, gut, urogenital tract, and skin. These surface appendages serve many functions, including as molecular adhesins, immuno-modulators, and virulence determinants, that significantly contribute to both the commensal and pathogenic attributes of producer microbes. Intensive genetic, biochemical, physiological, and structural studies have been devoted to unveiling the assembly mechanism and functions, as well as the utility of these proteins in vaccine development and other biotechnological applications. We provide a comprehensive review of these topics and discuss the current status and future prospects of the field.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Aadil H Bhat
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Minh T Nguyen
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Poonam Kumari
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - HyLam Ton-That
- Department of Chemistry, University of California, Irvine, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hung Ton-That
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| |
Collapse
|
16
|
Dong W, Wang W, Cao C. The Evolution of Antibody-Drug Conjugates: Toward Accurate DAR and Multi-specificity. ChemMedChem 2024; 19:e202400109. [PMID: 38758596 DOI: 10.1002/cmdc.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Antibody-drug conjugates (ADCs) consist of antibodies, linkers and payloads. They offer targeted delivery of potent cytotoxic drugs to tumor cells, minimizing off-target effects. However, the therapeutic efficacy of ADCs is compromised by heterogeneity in the drug-to-antibody ratio (DAR), which impacts both cytotoxicity and pharmacokinetics (PK). Additionally, the emergence of drug resistance poses significant challenges to the clinical advancement of ADCs. To overcome these limitations, a variety of strategies have been developed, including the design of multi-specific drugs with accurate DAR. This review critically summarizes the current challenges faced by ADCs, categorizing key issues and evaluating various innovative solutions. We provide an in-depth analysis of the latest methodologies for achieving homogeneous DAR and explore design strategies for multi-specific drugs aimed at combating drug resistance. Our discussion offers a current perspective on the advancements made in refining ADC technologies, with an emphasis on enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Wenge Dong
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wanqi Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Amacher JF, Antos JM. Sortases: structure, mechanism, and implications for protein engineering. Trends Biochem Sci 2024; 49:596-610. [PMID: 38692993 DOI: 10.1016/j.tibs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Sortase enzymes are critical cysteine transpeptidases on the surface of bacteria that attach proteins to the cell wall and are involved in the construction of bacterial pili. Due to their ability to recognize specific substrates and covalently ligate a range of reaction partners, sortases are widely used in protein engineering applications via sortase-mediated ligation (SML) strategies. In this review, we discuss recent structural studies elucidating key aspects of sortase specificity and the catalytic mechanism. We also highlight select recent applications of SML, including examples where fundamental studies of sortase structure and function have informed the continued development of these enzymes as tools for protein engineering.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| | - John M Antos
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| |
Collapse
|
18
|
Sivaramalingam SS, Jothivel D, Govindarajan DK, Kadirvelu L, Sivaramakrishnan M, Chithiraiselvan DD, Kandaswamy K. Structural and functional insights of sortases and their interactions with antivirulence compounds. Curr Res Struct Biol 2024; 8:100152. [PMID: 38989133 PMCID: PMC11231552 DOI: 10.1016/j.crstbi.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Sortase proteins play a crucial role as integral membrane proteins in anchoring bacterial surface proteins by recognizing them through a Cell-Wall Sorting (CWS) motif and cleaving them at specific sites before initiating pilus assembly. Both sortases and their substrate proteins are major virulence factors in numerous Gram-positive pathogens, making them attractive targets for antimicrobial intervention. Recognizing the significance of virulence proteins, a comprehensive exploration of their structural and functional characteristics is essential to enhance our understanding of pilus assembly in diverse Gram-positive bacteria. Therefore, this review article discusses the structural features of different classes of sortases and pilin proteins, primarily serving as substrates for sortase-assembled pili. Moreover, it thoroughly examines the molecular-level interactions between sortases and their inhibitors, providing insights from both structural and functional perspectives. In essence, this review article will provide a contemporary and complete understanding of both sortase pathways and various strategies to target them effectively to counteract the virulence.
Collapse
Affiliation(s)
- Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deenadayalan Karaiyagowder Govindarajan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Muthusaravanan Sivaramakrishnan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
- Department of Biotechnology, Mepco Schlenk Engineering College, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
19
|
Tatar Yilmaz G, Yayli N, Tüzüner T, Bozdal G, Salmanli M, Renda G, Korkmaz B, Bozdeveci A, Alpay Karaoğlu Ş. Synthesis, Antimicrobial Activities, and Molecular Modeling Studies of Agents for the Sortase A Enzyme. Chem Biodivers 2024; 21:e202301659. [PMID: 38407541 DOI: 10.1002/cbdv.202301659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 μg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 μg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.
Collapse
Affiliation(s)
- Gizem Tatar Yilmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Nurettin Yayli
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Tamer Tüzüner
- Department of Pediatric Dentistry, Faculty of Dentistry, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Gözde Bozdal
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Merve Salmanli
- Department of Pediatric Dentistry, Faculty of Dentistry, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Büşra Korkmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Arif Bozdeveci
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkiye
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkiye
| |
Collapse
|
20
|
Machin DC, Williamson DJ, Fisher P, Miller VJ, Arnott ZLP, Stevenson CME, Wildsmith GC, Ross JF, Wasson CW, Macdonald A, Andrews BI, Ungar D, Turnbull WB, Webb ME. Sortase-Modified Cholera Toxoids Show Specific Golgi Localization. Toxins (Basel) 2024; 16:194. [PMID: 38668619 PMCID: PMC11054894 DOI: 10.3390/toxins16040194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.
Collapse
Affiliation(s)
- Darren C. Machin
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Daniel J. Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Peter Fisher
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Zoe L. P. Arnott
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Charlotte M. E. Stevenson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Gemma C. Wildsmith
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - James F. Ross
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Christopher W. Wasson
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK (A.M.)
| | - Andrew Macdonald
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK (A.M.)
| | - Benjamin I. Andrews
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Daniel Ungar
- Department of Biology, University of York, York YO10 5DD, UK
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Michael E. Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| |
Collapse
|
21
|
Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, Daood U. Newly discovered clouting interplay between matrix metalloproteinases structures and novel quaternary Ammonium K21: computational and in-vivo testing. BMC Oral Health 2024; 24:382. [PMID: 38528501 DOI: 10.1186/s12903-024-04069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
AIMS AND OBJECTIVES To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation. MATERIALS AND METHODS In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)). RESULTS Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test. CONCLUSION K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jia Chern Pang
- School of Postgraduate Studies, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Seow Liang Lin
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Division of Clinical Oral Health, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Ibrahim AM, Azam MS, Schneewind O, Missiakas D. Processing of LtaS restricts LTA assembly and YSIRK preprotein trafficking into Staphylococcus aureus cross-walls. mBio 2024; 15:e0285223. [PMID: 38174934 PMCID: PMC10865820 DOI: 10.1128/mbio.02852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 01/05/2024] Open
Abstract
Septal membranes of Staphylococcus aureus serve as the site of secretion for precursors endowed with the YSIRK motif. Depletion of ltaS, a gene required for lipoteichoic acid (LTA) synthesis, results in the loss of restricted trafficking of YSIRK precursors to septal membranes. Here, we seek to understand the mechanism that ties LTA assembly and trafficking of YSIRK precursors. We confirm that catalytically inactive lipoteichoic acid synthase (LtaS)T300A does not support YSIRK precursor trafficking to septa. We hypothesize that the enzyme's reactants [gentiobiosyldiacylglycerol (Glc2-DAG) and phosphatidylglycerol (PG)] or products [LTA and diacylglycerol (DAG)], not LtaS, must drive this process. Indeed, we observe that septal secretion of the staphylococcal protein A YSIRK precursor is lost in ypfP and ltaA mutants that produce glycerophosphate polymers [poly(Gro-P)] without the Glc2-DAG lipid anchor. These mutants display longer poly(Gro-P) chains, implying enhanced PG consumption and DAG production. Our experiments also reveal that in the absence of Glc2-DAG, the processing of LtaS to the extracellular catalytic domain, eLtaS, is impaired. Conversely, LTA polymerization is delayed in a strain producing LtaSS218P, a variant processed more slowly than LtaS. We conclude that Glc2-DAG binding to the enzyme couples catalysis by LtaS and the physical release of eLtaS. We propose a model for the temporal and localized assembly of LTA into cross-walls. When LtaS is not processed in a timely manner, eLtaS no longer diffuses upon daughter cell splitting, LTA assembly continues, and the unique septal-lipid pool, PG over DAG ratio, is not established. This results in profound physiological changes in S. aureus cells, including the inability to restrict the secretion of YSIRK precursors at septal membranes.IMPORTANCEIn Staphylococcus aureus, peptidoglycan is assembled at the septum. Dedicated cell division proteins coordinate septal formation and the fission of daughter cells. Lipoteichoic acid (LTA) assembly and trafficking of preproteins with a YSIRK motif also occur at the septum. This begs the question as to whether cell division components also recruit these two pathways. This study shows that the processing of lipoteichoic acid synthase (LtaS) to extracellular LtaS by signal peptidase is regulated by gentiobiosyldiacylglycerol (Glc2-DAG), the priming substrate for LTA assembly. A model is proposed whereby a key substrate controls the temporal and spatial activity of an enzyme. In turn, this mechanism enables the establishment of a unique and transient lipid pool that defines septal membranes as a targeting site for the secretion of YSIRK preproteins.
Collapse
Affiliation(s)
- Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Muhammad S. Azam
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| |
Collapse
|
23
|
Haft DH. In silico discovery of the myxosortases that process MYXO-CTERM and three novel prokaryotic C-terminal protein-sorting signals that share invariant Cys residues. J Bacteriol 2024; 206:e0017323. [PMID: 38084967 PMCID: PMC10810001 DOI: 10.1128/jb.00173-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/10/2023] [Indexed: 01/26/2024] Open
Abstract
The LPXTG protein-sorting signal, found in surface proteins of various Gram-positive pathogens, was the founding member of a growing panel of prokaryotic small C-terminal sorting domains. Sortase A cleaves LPXTG, exosortases (XrtA and XrtB) cleave the PEP-CTERM sorting signal, archaeosortase A cleaves PGF-CTERM, and rhombosortase cleaves GlyGly-CTERM domains. Four sorting signal domains without previously known processing proteases are the MYXO-CTERM, JDVT-CTERM, Synerg-CTERM, and CGP-CTERM domains. These exhibit the standard tripartite architecture of a short signature motif, a hydrophobic transmembrane segment, and an Arg-rich cluster. Each has an invariant cysteine in its signature motif. Computational evidence strongly suggests that each of these four Cys-containing sorting signals is processed, at least in part, by a cognate family of glutamic-type intramembrane endopeptidases related to the eukaryotic type II CAAX-processing protease Rce1. For the MYXO-CTERM sorting signals of different lineages, their sorting enzymes, called myxosortases, include MrtX (MXAN_2755 in Myxococcus xanthus), MrtC, and MrtP, all with radically different N-terminal domains but with a conserved core. Related predicted sorting enzymes were also identified for JDVT-CTERM (MrtJ), Synerg-CTERM (MrtS), and CGP-CTERM (MrtA). This work establishes a major new family of protein-sorting housekeeping endopeptidases contributing to the surface attachment of proteins in prokaryotes. IMPORTANCE Homologs of the eukaryotic type II CAAX-box protease Rce1, a membrane-embedded endopeptidase found in yeast and human ER and involved in sorting proteins to their proper cellular locations, are abundant in prokaryotes but not well understood there. This bioinformatics paper identifies several subgroups of the family as cognate endopeptidases for four protein-sorting signals processed by previously unknown machinery. Sorting signals with newly identified processing enzymes include three novel ones, but also MYXO-CTERM, which had been the focus of previous experimental work in the model fruiting and gliding bacterium Myxococcus xanthus. The new findings will substantially improve our understanding of Cys-containing C-terminal protein-sorting signals and of protein trafficking generally in bacteria and archaea.
Collapse
Affiliation(s)
- Daniel H. Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Jiang MC, Hsu WL, Tseng CY, Lin NS, Hsu YH, Hu CC. Development of a tag-free plant-made interferon gamma production system with improved therapeutic efficacy against viruses. Front Bioeng Biotechnol 2024; 11:1341340. [PMID: 38274005 PMCID: PMC10808299 DOI: 10.3389/fbioe.2023.1341340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Plants offer a promising platform for cost-effective production of biologically active therapeutic glycoproteins. In previous studies, we have developed a plant expression system based on Bamboo mosaic virus (BaMV) by incorporating secretory signals and an affinity tag, which resulted in notably enhanced yields of soluble and secreted fusion glycoproteins (FGs) in Nicotiana benthamiana. However, the presence of fusion tags on recombinant glycoproteins is undesirable for biomedical applications. This study aimed to develop a refined expression system that can efficiently produce tag-free glycoproteins in plants, with enhanced efficacy of mature interferon gamma (mIFNγ) against viruses. To accommodate the specific requirement of different target proteins, three enzymatically or chemically cleavable linkers were provided in this renovated BaMV-based expression system. We demonstrated that Tobacco etch virus (TEV) protease could process the specific cleavage site (LTEV) of the fusion protein, designated as SSExtHis(SP)10LTEV-mIFNγ, with optimal efficiency under biocompatible conditions to generate tag-free mIFNγ glycoproteins. The TEV protease and secretory-affinity tag could be effectively removed from the target mIFNγ glycoproteins through Ni2+-NTA chromatography. In addition, the result of an antiviral assay showed that the tag-free mIFNγ glycoproteins exhibited enhanced biological properties against Sindbis virus, with comparable antiviral activity of the commercialized HEK293-expressed hIFNγ. Thus, the improved BaMV-based expression system developed in this study may provide an alternative strategy for producing tag-free therapeutic glycoproteins intended for biomedical applications.
Collapse
Affiliation(s)
- Min-Chao Jiang
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
Vogel BA, Blount JM, Kodama HM, Goodwin-Rice NJ, Andaluz DJ, Jackson SN, Antos JM, Amacher JF. A unique binding mode of P1' Leu-containing target sequences for Streptococcus pyogenes sortase A results in alternative cleavage. RSC Chem Biol 2024; 5:30-40. [PMID: 38179192 PMCID: PMC10763551 DOI: 10.1039/d3cb00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 01/06/2024] Open
Abstract
Sortase enzymes are cysteine transpeptidases that attach environmental sensors, toxins, and other proteins to the cell surface in Gram-positive bacteria. The recognition motif for many sortases is the cell wall sorting signal (CWSS), LPXTG, where X = any amino acid. Recent work from ourselves and others has described recognition of additional amino acids at a number of positions in the CWSS, specifically at the Thr (or P1) and Gly (or P1') positions. In addition, although standard cleavage occurs between these two residues (P1/P1'), we previously observed that the SrtA enzyme from Streptococcus pneumoniae will cleave after the P1' position when its identity is a Leu or Phe. The stereochemical basis of this alternative cleavage is not known, although homologs, e.g., SrtA from Listeria monocytogenes or Staphylococcus aureus do not show alternative cleavage to a significant extent. Here, we use protein biochemistry, structural biology, and computational biochemistry to predict an alternative binding mode that facilitates alternative cleavage. We use Streptococcus pyogenes SrtA (spySrtA) as our model enzyme, first confirming that it shows similar standard/alternative cleavage ratios for LPATL, LPATF, and LPATY sequences. Molecular dynamics simulations suggest that when P1' is Leu, this amino acid binds in the canonical S1 pocket, pushing the P1 Thr towards solvent. The P4 Leu (L̲PATL) binds as it does in standard binding, resulting in a puckered binding conformation. We use P1 Glu-containing peptides to support our hypotheses, and present the complex structure of spySrtA-LPALA to confirm favorable accommodation of Leu in the S1 pocket. Overall, we structurally characterize an alternative binding mode for spySrtA and specific target sequences, expanding the potential protein engineering possibilities in sortase-mediated ligation applications.
Collapse
Affiliation(s)
- Brandon A Vogel
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Jadon M Blount
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Hanna M Kodama
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Noah J Goodwin-Rice
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Devin J Andaluz
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Sophie N Jackson
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - John M Antos
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| |
Collapse
|
26
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
27
|
Scaffidi SJ, Yu W. Tracking Cell Wall-Anchored Proteins in Gram-Positive Bacteria. Methods Mol Biol 2024; 2727:193-204. [PMID: 37815718 DOI: 10.1007/978-1-0716-3491-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cell wall-anchored surface proteins are integral components of Gram-positive bacterial cell envelope and vital for bacterial survival in different environmental niches. To fulfill their functions, surface protein precursors translocate from cytoplasm to bacterial cell surface in three sequential steps: secretion across the cytoplasmic membrane, covalently anchoring to the cell wall precursor lipid II by sortase A, and incorporation of the lipid II-linked precursors into mature cell wall peptidoglycan. Here, we describe a series of immunofluorescence microscopy methods to track the subcellular localization of cell wall-anchored proteins along the sorting pathway. While the protocols are tailored to Staphylococcus aureus, they can be readily adapted to localize cell wall-anchored proteins as well as membrane proteins in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Salvatore J Scaffidi
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Wenqi Yu
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
28
|
Liu K, Tong J, Liu X, Liang D, Ren F, Jiang N, Hao Z, Li S, Wang Q. The Discovery of Novel Agents against Staphylococcus aureus by Targeting Sortase A: A Combination of Virtual Screening and Experimental Validation. Pharmaceuticals (Basel) 2023; 17:58. [PMID: 38256891 PMCID: PMC11100315 DOI: 10.3390/ph17010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus (S. aureus), commonly known as "superbugs", is a highly pathogenic bacterium that poses a serious threat to human health. There is an urgent need to replace traditional antibiotics with novel drugs to combat S. aureus. Sortase A (SrtA) is a crucial transpeptidase involved in the adhesion process of S. aureus. The reduction in virulence and prevention of S. aureus infections have made it a significant target for antimicrobial drugs. In this study, we combined virtual screening with experimental validation to identify potential drug candidates from a drug library. Three hits, referred to as Naldemedine, Telmisartan, and Azilsartan, were identified based on docking binding energy and the ratio of occupied functional sites of SrtA. The stability analysis manifests that Naldemedine and Telmisartan have a higher binding affinity to the hydrophobic pockets. Specifically, Telmisartan forms stable hydrogen bonds with SrtA, resulting in the highest binding energy. Our experiments prove that the efficiency of adhesion and invasion by S. aureus can be decreased without significantly affecting bacterial growth. Our work identifies Telmisartan as the most promising candidate for inhibiting SrtA, which can help combat S. aureus infection.
Collapse
Affiliation(s)
- Kang Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Jiangbo Tong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Xu Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China;
| | - Dan Liang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Fangzhe Ren
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Nan Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Zhenyu Hao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Shixin Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Qiang Wang
- Department of the Heart and Great Vessels, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
29
|
Chen F, Di H, Wang Y, Peng C, Chen R, Pan H, Yang CG, Liang H, Lan L. The enzyme activity of sortase A is regulated by phosphorylation in Staphylococcus aureus. Virulence 2023; 14:2171641. [PMID: 36694285 PMCID: PMC9928477 DOI: 10.1080/21505594.2023.2171641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In many Gram-positive bacteria, the transpeptidase enzyme sortase A (SrtA) anchors surface proteins to cell wall and plays a critical role in the bacterial pathogenesis. Here, we show that in Staphylococcus aureus, an important human pathogen, the SrtA is phosphorylated by serine/threonine protein kinase Stk1. S. aureus SrtA can also be phosphorylated by small-molecule phosphodonor acetyl phosphate (AcP) in vitro. We determined that various amino acid residues of S. aureus SrtA are subject to phosphorylation, primarily on its catalytic site residue cysteine-184 in the context of a bacterial cell lysate. Both Stk1 and AcP-mediated phosphorylation inhibited the enzyme activity of SrtA in vitro. Consequently, deletion of gene (i.e. stp1) encoding serine/threonine phosphatase Stp1, the corresponding phosphatase of Stk1, caused an increase in the phosphorylation level of SrtA. The stp1 deletion mutant mimicked the phenotypic traits of srtA deletion mutant (i.e. attenuated growth where either haemoglobin or haem as a sole iron source and reduced liver infections in a mouse model of systemic infection). Importantly, the phenotypic defects of the stp1 deletion mutant can be alleviated by overexpressing srtA. Taken together, our finding suggests that phosphorylation plays an important role in modulating the activity of SrtA in S. aureus.
Collapse
Affiliation(s)
- Feifei Chen
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongxia Di
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Rongrong Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Pan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi’an, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China,Haihua Liang School of Medicine Southern University of Science and Technology, Shenzhen, China
| | - Lefu Lan
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China,CONTACT Lefu Lan
| |
Collapse
|
30
|
Godse S, Sapar T, Amacher JF. An idea to explore: Engaging high school students in structure-function studies of bacterial sortase enzymes and inhibitors - A comprehensive computational experimental pipeline. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:606-615. [PMID: 37462254 DOI: 10.1002/bmb.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 11/22/2023]
Abstract
High school science fairs provide an exceptional opportunity for students to gain experience with scientific research, and participation has positive outcomes with respect to chosen careers in the sciences. However, it can be challenging to engage high school students in university-level research outside of formal internship programs. Here, we describe an experimental pipeline for a computational structural biology project that engages high school students. Students are involved at every step of the investigation and utilize freely available software to dock inhibitors onto protein homologues, and then analyze the resulting complexes. Bacterial sortases are transpeptidases on the cell surface of Gram-positive bacteria and are a potential target for the development of antibiotics. Students modeled inhibitors bound to sortases from several organisms, asking questions about affinity and selectivity. Their project was ranked in the top 10% at both regional and state science fairs. This project design is easily adaptable to countless other protein systems and provides a pipeline for collaborative high school student/university professor inquiry.
Collapse
Affiliation(s)
| | - Tanvi Sapar
- Tesla STEM High School, Redmond, Washington, USA
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
31
|
Nappi F, Avtaar Singh SS, Jitendra V, Fiore A. Bridging Molecular and Clinical Sciences to Achieve the Best Treatment of Enterococcus faecalis Endocarditis. Microorganisms 2023; 11:2604. [PMID: 37894262 PMCID: PMC10609379 DOI: 10.3390/microorganisms11102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a commensal bacterium that causes various infections in surgical sites, the urinary tract, and blood. The bacterium is becoming a significant concern because it tends to affect the elderly population, which has a high prevalence of undiagnosed degenerative valvular disease and is often subjected to invasive procedures and implanted medical devices. The bacterium's actions are influenced by specific characteristics like pili activity and biofilm formation. This resistance significantly impedes the effectiveness of numerous antibiotic therapies, particularly in cases of endocarditis. While current guidelines recommend antimicrobial therapy, the emergence of resistant strains has introduced complexity in managing these patients, especially with the increasing use of transcatheter therapies for those who are not suitable for surgery. Presentations of the condition are often varied and associated with generalised symptoms, which may pose a diagnostic challenge. We share our encounter with a case study that concerns an octogenarian who had a TAVI valve and developed endocarditis. We also conducted a literature review to identify the essential treatment algorithms for such cases.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Antonio Fiore
- Department of Cardiac Surgery, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94000 Creteil, France;
| |
Collapse
|
32
|
Ranganathan P, Varatharajan A, Mohammed Alarjani K, Farraj DA, Rajendran V. Reconnoitering the sequence and structural analysis of Staphylococcus aureus "A" protein. Saudi J Biol Sci 2023; 30:103812. [PMID: 37766889 PMCID: PMC10519841 DOI: 10.1016/j.sjbs.2023.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Background The Staphylococcus aureus "A" protein plays an essential role in the pathogenicity and virulence of this bacterial species. To gain deeper insights into the protein's characteristics, we conducted an in-depth analysis of its sequence and structure. Objective This study aimed to unravel the underlying genetic and structural components that contribute to the protein's functional properties. Results Utilizing various bioinformatics tools and techniques, we first examined the protein's primary sequence, identifying key amino acid residues and potential functional domains. Additionally, we employed computational modeling and simulation approaches to determine the tertiary structure of the "A" protein. Through this comprehensive analysis, we discovered novel features and interactions within the protein's structure, shedding light on its potential mechanisms of action. Furthermore, we investigated the protein's evolutionary conservation and compared it with related proteins from other bacterial species. Conclusions Overall, our findings provide valuable insights into the sequence and structure of the Staphylococcus aureus "A" protein, which may have implications for understanding its role in pathogenicity and guiding the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Parthasarathy Ranganathan
- Faculty of Physiotherapy, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai – 600078, Tamil Nadu, India
| | - Akila Varatharajan
- Central Research Laboratory, Department of Research, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai – 600078, Tamil Nadu, India
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dunia A Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Viji Rajendran
- Department of Marine Science and Convergence Technology, Hanyang University ERICA Campus, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggido 426-791, South Korea
| |
Collapse
|
33
|
Lou F, Huang H, Li Y, Yang S, Shi Y. Investigation of the inhibitory effect and mechanism of epigallocatechin-3-gallate against Streptococcus suis sortase A. J Appl Microbiol 2023; 134:lxad191. [PMID: 37634082 DOI: 10.1093/jambio/lxad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
AIMS Streptococcus suis seriously harms people and animals, and importantly, causes great economic losses in the pig industry. Similar to most Gram-positive pathogenic bacteria, sortase A (SrtA) of S. suis can mediate the anchoring of a variety of virulence factors that contain specific sorting sequences to the surface of the bacterial cell wall envelope and participate in pathogenicity. The purpose of this study is to clarify the molecular mechanism of epigallocatechin-3-gallate (EGCG) inhibiting S. suis SrtA and provide more evidence for the development of novel anti-S. suis infections drugs. METHODS AND RESULTS Through the SrtA substrate cleavage experiment, we found that the main component of green tea, EGCG, can effectively inhibit the enzyme activity of S. suis SrtA. Further, molecular docking and molecular dynamics simulation were used to clarify the molecular mechanism of its inhibitory effect, demonstrating that EGCG mainly interacts with amino acids at 113 and 115 to exert its inhibitory function. It was previously found that EGCG can inhibit the growth of S. suis and reduce the activity of suilysin and inhibit its expression. Our research reveals a new function of EGCG in S. suis infection. CONCLUSIONS Our research proves that EGCG can effectively inhibit the transpeptidase activity of SrtA. We also clarify the accompanying molecular mechanism, providing more sufficient evidence for the use of EGCG as a potential lead compound against S. suis infection.
Collapse
Affiliation(s)
- Fei Lou
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Hui Huang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yaping Li
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Shuo Yang
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Yangqian Shi
- School of Basic Medical Sciences, Beihua University, Jilin, China
| |
Collapse
|
34
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Wei E, Bou-Nader C, Perry ML, Fattah R, Zhang J, Leppla SH, Bothra A. S9.6 Antibody-Enzyme Conjugates for the Detection of DNA-RNA Hybrids. Bioconjug Chem 2023; 34:834-844. [PMID: 37194248 DOI: 10.1021/acs.bioconjchem.2c00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Diagnosis of infectious agents is increasingly done by the detection of unique nucleic acid sequences, typically using methods such as PCR that specifically amplify these sequences. A largely neglected alternative approach is to use antibodies that recognize nucleic acids. The unique monoclonal antibody S9.6 recognizes DNA-RNA hybrids in a largely sequence-independent manner. S9.6 has been used in several cases for the analysis of nucleic acids. Extending our recent determination of the structure of S9.6 Fab bound to a DNA-RNA hybrid, we have developed reagents and methods for the sensitive detection of specific DNA and RNA sequences. To facilitate the use in diagnostics, we conjugated the S9.6 Fab to the highly active and well-characterized reporter enzyme human-secreted embryonic alkaline phosphatase (SEAP). Two approaches were utilized for conjugation. The first used sortase A (SrtA), which generates a covalent peptide bond between short amino acid sequences added to recombinantly produced S9.6 Fab and SEAP. The second approach was to genetically fuse the S9.6 Fab and SEAP so that the two are produced as a single molecule. Using these two antibody-SEAP proteins, we developed a simplified ELISA format for the identification of synthetic DNA-RNA hybrids, which can be optimized for detecting nucleic acids of pathogens, as well as for other applications. We successfully used this immunosorbent assay, HC-S, to identify DNA-RNA hybrids in solution with high specificity and sensitivity.
Collapse
Affiliation(s)
- Elena Wei
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Megan L Perry
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Rasem Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Ankur Bothra
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| |
Collapse
|
36
|
Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnol Adv 2023; 64:108108. [PMID: 36740026 DOI: 10.1016/j.biotechadv.2023.108108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
37
|
Maimaiti Z, Li Z, Xu C, Fu J, Hao LB, Chen JY, Chai W. Host Immune Regulation in Implant-Associated Infection (IAI): What Does the Current Evidence Provide Us to Prevent or Treat IAI? Bioengineering (Basel) 2023; 10:356. [PMID: 36978747 PMCID: PMC10044746 DOI: 10.3390/bioengineering10030356] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The number of orthopedic implants for bone fixation and joint arthroplasty has been steadily increasing over the past few years. However, implant-associated infection (IAI), a major complication in orthopedic surgery, impacts the quality of life and causes a substantial economic burden on patients and societies. While research and study on IAI have received increasing attention in recent years, the failure rate of IAI has still not decreased significantly. This is related to microbial biofilms and their inherent antibiotic resistance, as well as the various mechanisms by which bacteria evade host immunity, resulting in difficulties in diagnosing and treating IAIs. Hence, a better understanding of the complex interactions between biofilms, implants, and host immunity is necessary to develop new strategies for preventing and controlling these infections. This review first discusses the challenges in diagnosing and treating IAI, followed by an extensive review of the direct effects of orthopedic implants, host immune function, pathogenic bacteria, and biofilms. Finally, several promising preventive or therapeutic alternatives are presented, with the hope of mitigating or eliminating the threat of antibiotic resistance and refractory biofilms in IAI.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhuo Li
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chi Xu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun Fu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Bo Hao
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji-Ying Chen
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Chai
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
38
|
Susmitha A, Arya JS, Sundar L, Maiti KK, Nampoothiri KM. Sortase E-mediated site-specific immobilization of green fluorescent protein and xylose dehydrogenase on gold nanoparticles. J Biotechnol 2023; 367:11-19. [PMID: 36972749 DOI: 10.1016/j.jbiotec.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
Sortase, a bacterial transpeptidase enzyme, is an attractive tool for protein engineering due to its ability to break a peptide bond at a specific site and then reform a new bond with an incoming nucleophile. Here, we present the immobilization of two recombinant proteins, enhanced green fluorescent protein (eGFP) and xylose dehydrogenase (XylB) over triglycine functionalized PEGylated gold nanoparticles (AuNPs) using C. glutamicum sortase E. For the first time, we used a new class of sortase from a non-pathogenic organism for sortagging. The site-specific conjugation of proteins with LAHTG-tagged sequences on AuNPs via covalent cross-linking was successfully detected by surface-enhanced Raman scattering (SERS) and UV-vis spectral analysis. The sortagging was initially validated by an eGFP model protein and later with the xylose dehydrogenase enzyme. The catalytic activity, stability, and reusability of the immobilized XylB were studied with the bioconversion of xylose to xylonic acid. When compared to the free enzyme, the immobilized XylB was able to retain 80% of its initial activity after four sequential cycles and exhibited no significant variations in instability after each cycle for about 72h. These findings suggest that C. glutamicum sortase could be useful for immobilizing site-specific proteins/enzymes in biotransformation applications for value-added chemical production.
Collapse
Affiliation(s)
- Aliyath Susmitha
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayadev S Arya
- Chemical Science and Technology Division, Organic Chemistry Section, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lekshmi Sundar
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaustabh Kumar Maiti
- Chemical Science and Technology Division, Organic Chemistry Section, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| |
Collapse
|
39
|
Choo PY, Wang CY, VanNieuwenhze MS, Kline KA. Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis. Mol Microbiol 2023; 119:1-18. [PMID: 36420961 PMCID: PMC10107303 DOI: 10.1111/mmi.15008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.
Collapse
Affiliation(s)
- Pei Yi Choo
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Charles Y. Wang
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| | | | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and Molecular MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
40
|
Berkeley RF, Debelouchina GT. Chemical tools for study and modulation of biomolecular phase transitions. Chem Sci 2022; 13:14226-14245. [PMID: 36545140 PMCID: PMC9749140 DOI: 10.1039/d2sc04907d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Biomolecular phase transitions play an important role in organizing cellular processes in space and time. Methods and tools for studying these transitions, and the intrinsically disordered proteins (IDPs) that often drive them, are typically less developed than tools for studying their folded protein counterparts. In this perspective, we assess the current landscape of chemical tools for studying IDPs, with a specific focus on protein liquid-liquid phase separation (LLPS). We highlight methodologies that enable imaging and spectroscopic studies of these systems, including site-specific labeling with small molecules and the diverse range of capabilities offered by inteins and protein semisynthesis. We discuss strategies for introducing post-translational modifications that are central to IDP and LLPS function and regulation. We also investigate the nascent field of noncovalent small-molecule modulators of LLPS. We hope that this review of the state-of-the-art in chemical tools for interrogating IDPs and LLPS, along with an associated perspective on areas of unmet need, can serve as a valuable and timely resource for these rapidly expanding fields of study.
Collapse
Affiliation(s)
- Raymond F Berkeley
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA USA
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA USA
| |
Collapse
|
41
|
Tian L, Wu X, Yu H, Yang F, Sun J, Zhou T, Jiang H. Isovitexin Protects Mice from Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia by Targeting Sortase A. J Microbiol Biotechnol 2022; 32:1284-1291. [PMID: 36224754 PMCID: PMC9668100 DOI: 10.4014/jmb.2206.06007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) has resulted in significant morbidity and mortality, and clinical treatment of MRSA infections has become extremely difficult. Sortase A (SrtA), a virulence determinant that anchors numerous virulence-related proteins to the cell wall, is a prime druggable target against S. aureus infection due to its crucial role in the pathogenicity of S. aureus. Here, we demonstrate that isovitexin, an active ingredient derived from a variety of traditional Chinese medicines, can reversibly inhibit SrtA activity in vitro with a low dose (IC50=24.72 μg/ml). Fluorescence quenching and molecular simulations proved the interaction between isovitexin and SrtA. Subsequent point mutation experiments further confirmed that the critical amino acid positions for SrtA binding to isovitexin were Ala-92, Ile-182, and Trp-197. In addition, isovitexin treatment dramatically reduced S. aureus invasion of A549 cells. This study shows that treatment with isovitexin could alleviate pathological injury and prolong the life span of mice in an S. aureus pneumonia model. According to our research, isovitexin represents a promising lead molecule for the creation of anti-S. aureus medicines or adjuncts.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Xinliang Wu
- Department of Pharmacy, Tianjin Baodi Hospital, Baodi Clinical College, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun 130062, P.R. China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Jian Sun
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College Agriculture, Beijing 102442, P.R. China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China,Corresponding authors T. Zhou E-mail:
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China,
H. Jiang E-mail:
| |
Collapse
|
42
|
Apostolos AJ, Kelly JJ, Ongwae GM, Pires MM. Structure Activity Relationship of the Stem Peptide in Sortase A Mediated Ligation from Staphylococcus aureus. Chembiochem 2022; 23:e202200412. [PMID: 36018606 PMCID: PMC9632411 DOI: 10.1002/cbic.202200412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Indexed: 01/11/2023]
Abstract
The surfaces of most Gram-positive bacterial cells, including that of Staphylococcus aureus (S. aureus), are heavily decorated with proteins that coordinate cellular interactions with the extracellular space. In S. aureus, sortase A is the principal enzyme responsible for covalently anchoring proteins, which display the sorting signal LPXTG, onto the peptidoglycan (PG) matrix. Considerable efforts have been made to understand the role of this signal peptide in the sortase-mediated reaction. In contrast, much less is known about how the primary structure of the other substrate involved in the reaction (PG stem peptide) could impact sortase activity. To assess the sortase activity, a library of synthetic analogs of the stem peptide that mimic naturally existing variations found in the S. aureus PG primary sequence were evaluated. Using a combination of two unique assays, we showed that there is broad tolerability of substrate variations that are effectively processed by sortase A. While some of these stem peptide derivatives are naturally found in mature PG, they are not known to be present in the PG precursor, lipid II. These results suggest that sortase A could process both lipid II and mature PG as acyl-acceptor strands that might reside near the membrane, which has not been previously described.
Collapse
Affiliation(s)
| | - Joey J. Kelly
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - George M. Ongwae
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - Marcos M. Pires
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| |
Collapse
|
43
|
Structures of Streptococcus pyogenes Class A sortase in complex with substrate and product mimics provide key details of target recognition. J Biol Chem 2022; 298:102446. [PMID: 36055407 PMCID: PMC9520033 DOI: 10.1016/j.jbc.2022.102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
The cell wall is a critical extracellular barrier for bacteria and many other organisms. In bacteria, this structural layer consists of peptidoglycan, which maintains cell shape and structural integrity and provides a scaffold for displaying various protein factors. To attach proteins to the cell wall, Gram-positive bacteria utilize sortase enzymes, which are cysteine transpeptidases that recognize and cleave a specific sorting signal, followed by ligation of the sorting signal–containing protein to the peptidoglycan precursor lipid II (LII). This mechanism is the subject of considerable interest as a target for therapeutic intervention and as a tool for protein engineering, where sortases have enabled sortase-mediated ligation or sortagging strategies. Despite these uses, there remains an incomplete understanding of the stereochemistry of substrate recognition and ligation product formation. Here, we solved the first structures of sortase A from Streptococcus pyogenes bound to two substrate sequences, LPATA and LPATS. In addition, we synthesized a mimetic of the product of sortase-mediated ligation involving LII (LPAT-LII) and solved the complex structure in two ligand conformations. These structures were further used as the basis for molecular dynamics simulations to probe sortase A-ligand dynamics and to construct a model of the acyl–enzyme intermediate, thus providing a structural view of multiple key states in the catalytic mechanism. Overall, this structural information provides new insights into the recognition of the sortase substrate motif and LII ligation partner and will support the continued development of sortases for protein engineering applications.
Collapse
|
44
|
Hansen SD, Lee AA, Duewell BR, Groves JT. Membrane-mediated dimerization potentiates PIP5K lipid kinase activity. eLife 2022; 11:e73747. [PMID: 35976097 PMCID: PMC9470164 DOI: 10.7554/elife.73747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family of lipid-modifying enzymes generate the majority of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipids found at the plasma membrane in eukaryotic cells. PI(4,5)P2 lipids serve a critical role in regulating receptor activation, ion channel gating, endocytosis, and actin nucleation. Here, we describe how PIP5K activity is regulated by cooperative binding to PI(4,5)P2 lipids and membrane-mediated dimerization of the kinase domain. In contrast to constitutively dimeric phosphatidylinositol 5-phosphate 4-kinase (PIP4K, type II PIPK), solution PIP5K exists in a weak monomer-dimer equilibrium. PIP5K monomers can associate with PI(4,5)P2-containing membranes and dimerize in a protein density-dependent manner. Although dispensable for cooperative PI(4,5)P2 binding, dimerization enhances the catalytic efficiency of PIP5K through a mechanism consistent with allosteric regulation. Additionally, dimerization amplifies stochastic variation in the kinase reaction velocity and strengthens effects such as the recently described stochastic geometry sensing. Overall, the mechanism of PIP5K membrane binding creates a broad dynamic range of lipid kinase activities that are coupled to the density of PI(4,5)P2 and membrane-bound kinase.
Collapse
Affiliation(s)
- Scott D Hansen
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Albert A Lee
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Benjamin R Duewell
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Jay T Groves
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
| |
Collapse
|
45
|
Chen Y, Jia L, Zhu G, Wang W, Geng M, Lu H, Zhang Y, Zhou M, Zhang F, Cheng X. Sortase A-mediated cyclization of novel polycyclic RGD peptides for α νβ 3 integrin targeting. Bioorg Med Chem Lett 2022; 73:128888. [PMID: 35839966 DOI: 10.1016/j.bmcl.2022.128888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Cyclic arginine-glycine-aspartic (RGD) peptides that specifically bind to integrin ανβ3 have been developed for drug delivery, tracers, and imaging for tumor diagnosis and treatment. Herein, a series of polycyclic RGD peptides containing dual, tri, and tetra rings were designed and synthesized through sortase A-mediated ligation. An in vitro test on cell adhesion inhibition indicated that the RGD peptide containing tricylic structure exhibited outstanding potency and selectivity for ανβ3 integrin.
Collapse
Affiliation(s)
- Yajun Chen
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Lixuan Jia
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Guilan Zhu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Wei Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Ming Geng
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Hongxia Lu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Yan Zhang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Minghui Zhou
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Fangyan Zhang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Xiaozhong Cheng
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
46
|
Kim YT, Kim CH, Kwon JG, Cho JH, Shin YS, Kim HB, Lee JH. In vivo Trial of Bifidobacterium longum Revealed the Complex Network Correlations Between Gut Microbiota and Health Promotional Effects. Front Microbiol 2022; 13:886934. [PMID: 35783421 PMCID: PMC9247516 DOI: 10.3389/fmicb.2022.886934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Complete genome sequence analysis of Bifidobacterium longum subsp. longum BCBL-583 isolated from a Korean female fecal sample showed no virulence factor or antibiotic resistance gene, suggesting human safety. In addition, this strain has oxygen and heat tolerance genes for food processing, and cholesterol reduction and mucin adhesion-related genes were also found. For in vivo evaluations, a high fat diet (HFD) mouse model was used, showing that BCBL-583 administration to the model (HFD-583) reduced the total cholesterol and LDL-cholesterol in the blood and decreased pro-inflammatory cytokines but increased anti-inflammatory cytokines, substantiating its cholesterol reduction and anti-inflammation activities. Subsequent microbiome analysis of the fecal samples from the HFD mouse model revealed that BCBL-583 administration changed the composition of gut microbiota. After 9 weeks feeding of bifidobacteria, Firmicutes, Actinobacteria, and Bacteroidetes increased, but Proteobacteria maintained in the HFD mouse models. Further comparative species-level compositional analysis revealed the inhibitions of cholesterol reduction-related Eubacterium coprostanoligenes and obesity-related Lactococcus by the supplementation of B. longum BCBL-583, suggesting its possible cholesterol reduction and anti-obesity activities. The correlation analysis of HFD-583 between the gut microbiota compositional change and cholesterol/immune response showed that Verrucomicrobia, Firmicutes, Actinobacteria, and Bacteroidetes may play an important role in cholesterol reduction and anti-inflammation. However, correlation analysis of Proteobacteria showed the reverse correlation in HFD-583. Interestingly, the correlation analysis of B. longum ATCC 15707 administration to HFD model showed similar patterns of cholesterol but different in immune response patterns. Therefore, this correlation analysis suggests that the microbial composition and inflammatory cytokine/total-cholesterol may be closely related in the administration of BCBL-583 in the HFD mice group. Consequently, BCBL-583 could be a good probiotic strain for gut health promotion through gut microbiota modulation.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Chul-Hong Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Food Research Center, Binggrae Co., Ltd., Namyangju, South Korea
| | - Joon-Gi Kwon
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Young-Sup Shin
- Food Research Center, Binggrae Co., Ltd., Namyangju, South Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
- Hyeun Bum Kim,
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Ju-Hoon Lee,
| |
Collapse
|
47
|
Readnour BM, Ayinuola YA, Russo BT, Liang Z, Lee SW, Ploplis VA, Fischetti VA, Castellino FJ. Evolution of Streptococcus pyogenes has maximized the efficiency of the Sortase A cleavage motif for cell wall transpeptidation. J Biol Chem 2022; 298:101940. [PMID: 35430253 PMCID: PMC9123276 DOI: 10.1016/j.jbc.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.
Collapse
Affiliation(s)
- Bradley M Readnour
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
48
|
Negi S, Hamori M, Sato A, Shimizu K, Kawahara-Nakagawa Y, Manabe T, Shibata N, Kitagishi H, Mashimo M, Sugiura Y. Transpeptidation reaction mediated by ligand- and metal cofactor-substituted Sortase A from Staphylococcus aureus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Mami Hamori
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Ayaka Sato
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Kyoko Shimizu
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Yuka Kawahara-Nakagawa
- Graduate School of Faculty of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297
| | - Takayuki Manabe
- Clinical Research Support Center, Asahikawa Medical University Hospital, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510
| | - Nobuhito Shibata
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321
| | - Masato Mashimo
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Yukio Sugiura
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| |
Collapse
|
49
|
Morgan HE, Turnbull WB, Webb ME. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chem Soc Rev 2022; 51:4121-4145. [PMID: 35510539 PMCID: PMC9126251 DOI: 10.1039/d0cs01148g] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases. We highlight chemical and biochemical strategies taken to optimise peptide and protein modification using peptide ligases.![]()
Collapse
Affiliation(s)
- Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
50
|
Hansenová Maňásková S, Nazmi K, Van't Hof W, van Belkum A, Kaman WE, Martin NI, Veerman ECI, Bikker FJ. Natural and Synthetic Sortase A Substrates Are Processed by Staphylococcus aureus via Different Pathways. Bioconjug Chem 2022; 33:555-559. [PMID: 35319881 PMCID: PMC9026250 DOI: 10.1021/acs.bioconjchem.2c00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Endogenous Staphylococcus aureus sortase A (SrtA)
covalently incorporates cell wall anchored proteins equipped with
a SrtA recognition motif (LPXTG) via a lipid II-dependent pathway
into the staphylococcal peptidoglycan layer. Previously, we found
that the endogenous S. aureus SrtA
is able to recognize and process a variety of exogenously added synthetic
SrtA substrates, including K(FITC)LPMTG-amide and K(FITC)-K-vancomycin-LPMTG-amide.
These synthetic substrates are covalently incorporated into the bacterial
peptidoglycan (PG) of S. aureus with
varying efficiencies. In this study, we examined if native and synthetic
substrates are processed by SrtA via the same pathway. Therefore,
the effect of the lipid II inhibiting antibiotic bacitracin on the
incorporation of native and synthetic SrtA substrates was assessed.
Treatment of S. aureus with bacitracin
resulted in a decreased incorporation of protein A in the bacterial
cell wall, whereas incorporation of exogenous synthetic substrates
was increased. These results suggest that natural and exogenous synthetic
substrates are processed by S. aureus via different pathways.
Collapse
Affiliation(s)
- Silvie Hansenová Maňásková
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands.,Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Wim Van't Hof
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | | | - Wendy E Kaman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72, 2302 BH Leiden, The Netherlands
| | - Enno C I Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|