1
|
Scarpa A, Pianezza R, Gellert HR, Haider A, Kim BY, Lai EC, Kofler R, Signor S. Double trouble: two retrotransposons triggered a cascade of invasions in Drosophila species within the last 50 years. Nat Commun 2025; 16:516. [PMID: 39788974 PMCID: PMC11718211 DOI: 10.1038/s41467-024-55779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Horizontal transfer of genetic material in eukaryotes has rarely been documented over short evolutionary timescales. Here, we show that two retrotransposons, Shellder and Spoink, invaded the genomes of multiple species of the melanogaster subgroup within the last 50 years. Through horizontal transfer, Spoink spread in D. melanogaster during the 1980s, while both Shellder and Spoink invaded D. simulans in the 1990s. Possibly following hybridization, D. simulans infected the island endemic species D. mauritiana (Mauritius) and D. sechellia (Seychelles) with both TEs after 1995. In the same approximate time-frame, Shellder also invaded D. teissieri, a species confined to sub-Saharan Africa. We find that the donors of Shellder and Spoink are likely American Drosophila species from the willistoni, cardini, and repleta groups. Thus, the described cascade of TE invasions could only become feasible after D. melanogaster and D. simulans extended their distributions into the Americas 200 years ago, likely aided by human activity. Our work reveals that cascades of TE invasions, likely initiated by human-mediated range expansions, could have an impact on the genomic and phenotypic evolution of geographically dispersed species. Within a few decades, TEs could invade many species, including island endemics, with distributions very distant from the donor of the TE.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Hannah R Gellert
- Department of Biology, Stanford University, Stanford, California, USA
| | - Anna Haider
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, California, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, USA.
| |
Collapse
|
2
|
Drezen JM, Gauthier J, Josse T, Bézier A, Herniou E, Huguet E. Foreign DNA acquisition by invertebrate genomes. J Invertebr Pathol 2017; 147:157-168. [DOI: 10.1016/j.jip.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
|
3
|
Bargues N, Lerat E. Evolutionary history of LTR-retrotransposons among 20 Drosophila species. Mob DNA 2017; 8:7. [PMID: 28465726 PMCID: PMC5408442 DOI: 10.1186/s13100-017-0090-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022] Open
Abstract
Background The presence of transposable elements (TEs) in genomes is known to explain in part the variations of genome sizes among eukaryotes. Even among closely related species, the variation of TE amount may be striking, as for example between the two sibling species, Drosophila melanogaster and D. simulans. However, not much is known concerning the TE content and dynamics among other Drosophila species. The sequencing of several Drosophila genomes, covering the two subgenus Sophophora and Drosophila, revealed a large variation of the repeat content among these species but no much information is known concerning their precise TE content. The identification of some consensus sequences of TEs from the various sequenced Drosophila species allowed to get an idea concerning their variety in term of diversity of superfamilies but the used classification remains very elusive and ambiguous. Results We choose to focus on LTR-retrotransposons because they represent the most widely represented class of TEs in the Drosophila genomes. In this work, we describe for the first time the phylogenetic relationship of each LTR-retrotransposon family described in 20 Drosophila species, compute their proportion in their respective genomes and identify several new cases of horizontal transfers. Conclusion All these results allow us to have a clearer view on the evolutionary history of LTR retrotransposons among Drosophila that seems to be mainly driven by vertical transmissions although the implications of horizontal transfers, losses and intra-specific diversification are clearly also at play. Electronic supplementary material The online version of this article (doi:10.1186/s13100-017-0090-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas Bargues
- CNRS, UMR 5558, Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Emmanuelle Lerat
- CNRS, UMR 5558, Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| |
Collapse
|
4
|
Levine MT, Vander Wende HM, Hsieh E, Baker EP, Malik HS. Recurrent Gene Duplication Diversifies Genome Defense Repertoire in Drosophila. Mol Biol Evol 2016; 33:1641-53. [PMID: 26979388 DOI: 10.1093/molbev/msw053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) comprise large fractions of many eukaryotic genomes and imperil host genome integrity. The host genome combats these challenges by encoding proteins that silence TE activity. Both the introduction of new TEs via horizontal transfer and TE sequence evolution requires constant innovation of host-encoded TE silencing machinery to keep pace with TEs. One form of host innovation is the adaptation of existing, single-copy host genes. Indeed, host suppressors of TE replication often harbor signatures of positive selection. Such signatures are especially evident in genes encoding the piwi-interacting-RNA pathway of gene silencing, for example, the female germline-restricted TE silencer, HP1D/Rhino Host genomes can also innovate via gene duplication and divergence. However, the importance of gene family expansions, contractions, and gene turnover to host genome defense has been largely unexplored. Here, we functionally characterize Oxpecker, a young, tandem duplicate gene of HP1D/rhino We demonstrate that Oxpecker supports female fertility in Drosophila melanogaster and silences several TE families that are incompletely silenced by HP1D/Rhino in the female germline. We further show that, like Oxpecker, at least ten additional, structurally diverse, HP1D/rhino-derived daughter and "granddaughter" genes emerged during a short 15-million year period of Drosophila evolution. These young paralogs are transcribed primarily in germline tissues, where the genetic conflict between host genomes and TEs plays out. Our findings suggest that gene family expansion is an underappreciated yet potent evolutionary mechanism of genome defense diversification.
Collapse
Affiliation(s)
- Mia T Levine
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Emily Hsieh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - EmilyClare P Baker
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle,
| |
Collapse
|
5
|
Grau JH, Poustka AJ, Meixner M, Plötner J. LTR retroelements are intrinsic components of transcriptional networks in frogs. BMC Genomics 2014; 15:626. [PMID: 25056159 PMCID: PMC4131045 DOI: 10.1186/1471-2164-15-626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/15/2014] [Indexed: 12/16/2022] Open
Abstract
Background LTR retroelements (LTR REs) constitute a major group of transposable elements widely distributed in eukaryotic genomes. Through their own mechanism of retrotranscription LTR REs enrich the genomic landscape by providing genetic variability, thus contributing to genome structure and organization. Nonetheless, transcriptomic activity of LTR REs still remains an obscure domain within cell, developmental, and organism biology. Results Here we present a first comparative analysis of LTR REs for anuran amphibians based on a full depth coverage transcriptome of the European pool frog, Pelophylax lessonae, the genome of the African clawed frog, Silurana tropicalis (release v7.1), and additional transcriptomes of S. tropicalis and Cyclorana alboguttata. We identified over 1000 copies of LTR REs from all four families (Bel/Pao, Ty1/Copia, Ty3/Gypsy, Retroviridae) in the genome of S. tropicalis and discovered transcripts of several of these elements in all RNA-seq datasets analyzed. Elements of the Ty3/Gypsy family were most active, especially Amn-san elements, which accounted for approximately 0.27% of the genome in Silurana. Some elements exhibited tissue specific expression patterns, for example Hydra1.1 and MuERV-like elements in Pelophylax. In S. tropicalis considerable transcription of LTR REs was observed during embryogenesis as soon as the embryonic genome became activated, i.e. at midblastula transition. In the course of embryonic development the spectrum of transcribed LTR REs changed; during gastrulation and neurulation MuERV-like and SnRV like retroviruses were abundantly transcribed while during organogenesis transcripts of the XEN1 retroviruses became much more active. Conclusions The differential expression of LTR REs during embryogenesis in concert with their tissue-specificity and the protein domains they encode are evidence for the functional roles these elements play as integrative parts of complex regulatory networks. Our results support the meanwhile widely accepted concept that retroelements are not simple “junk DNA” or “harmful genomic parasites” but essential components of the transcriptomic machinery in vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-626) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Horacio Grau
- Dahlem Center for Genome Research and Medical Systems Biology, Fabeckstraße 60-62, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
6
|
Abstract
Centromeric retrotransposons (CRs) constitute a family of plant retroelements, some of which have the ability to target their insertion almost exclusively to the functional centromeres. Our exhaustive analysis of CR family members in four grass genomes revealed not only horizontal transfer (HT) of CR elements between the oryzoid and panicoid grass lineages but also their subsequent recombination with endogenous elements that in some cases created prolific recombinants in foxtail millet and sorghum. HT events are easily identifiable only in cases where host genome divergence significantly predates HT, thus documented HT events likely represent only a fraction of the total. If the more difficult to detect ancient HT events occurred at frequencies similar to those observable in present day grasses, the extant long terminal repeat retrotransposons represent the mosaic products of HT and recombination that are optimized for retrotransposition in their host genomes. This complicates not only phylogenetic analysis but also the establishment of a meaningful retrotransposon nomenclature, which we have nevertheless attempted to implement here. In contrast to the plant-centric naming convention used currently for CR elements, we classify elements primarily based on their phylogenetic relationships regardless of host plant, using the exhaustively studied maize elements assigned to six different subfamilies as a standard. The CR2 subfamily is the most widely distributed of the six CR subfamilies discovered in grass genomes to date and thus the most likely to play a functional role at grass centromeres.
Collapse
Affiliation(s)
- Anupma Sharma
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Mānoa
| | - Gernot G Presting
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Mānoa
| |
Collapse
|
7
|
Jung YD, Lee JR, Kim YJ, Ha HS, Oh KB, Im GS, Choi BH, Kim HS. Promoter activity analysis and methylation characterization of LTR elements of PERVs in NIH miniature pig. Genes Genet Syst 2014; 88:135-42. [PMID: 23832305 DOI: 10.1266/ggs.88.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential risk of porcine endogenous retrovirus (PERV) transmission is an important issue in xenotransplantation (pig-to-human transplantation). Long terminal repeats (LTRs) in PERV elements show promoter activity that could affect neighboring functional genes. The methylation status and promoter activities of 3 LTR structures (PERV-LTR1, LTR2, and LTR3 elements) belonging to the PERV-A family were examined using luciferase reporter genes in human liver cell lines (HepG2 and Hep3B). The PERV LTR3 element exhibited hypomethylation and stronger promoter activity than the other LTR elements in human liver cells. We also performed comparative sequences analysis of the PERV LTR elements by using bioinformatics tools. Our findings showed that several transcription factors such as Nkx2-2 and Elk-1 positively influenced the high transcriptional activity of the PERV LTR3 element.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Horizontal transfer and the evolution of host-pathogen interactions. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:679045. [PMID: 23227424 PMCID: PMC3513734 DOI: 10.1155/2012/679045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/26/2012] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer has been long known in viruses and prokaryotes, but its importance in eukaryotes has been only acknowledged recently. Close contact between organisms, as it occurs between pathogens and their hosts, facilitates the occurrence of DNA transfer events. Once inserted in a foreign genome, DNA sequences have sometimes been coopted by pathogens to improve their survival or infectivity, or by hosts to protect themselves against the harm of pathogens. Hence, horizontal transfer constitutes a source of novel sequences that can be adopted to change the host-pathogen interactions. Therefore, horizontal transfer can have an important impact on the coevolution of pathogens and their hosts.
Collapse
|
9
|
Dias ES, Carareto CMA. Ancestral polymorphism and recent invasion of transposable elements in Drosophila species. BMC Evol Biol 2012; 12:119. [PMID: 22823479 PMCID: PMC3499218 DOI: 10.1186/1471-2148-12-119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 07/10/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND During the evolution of transposable elements, some processes, such as ancestral polymorphisms and horizontal transfer of sequences between species, can produce incongruences in phylogenies. We investigated the evolutionary history of the transposable elements Bari and 412 in the sequenced genomes of the Drosophila melanogaster group and in the sibling species D. melanogaster and D. simulans using traditional phylogenetic and network approaches. RESULTS Maximum likelihood (ML) phylogenetic analyses revealed incongruences and unresolved relationships for both the Bari and 412 elements. The DNA transposon Bari within the D. ananassae genome is more closely related to the element of the melanogaster complex than to the sequence in D. erecta, which is inconsistent with the species phylogeny. Divergence analysis and the comparison of the rate of synonymous substitutions per synonymous site of the Bari and host gene sequences explain the incongruence as an ancestral polymorphism that was inherited stochastically by the derived species. Unresolved relationships were observed in the ML phylogeny of both elements involving D. melanogaster, D. simulans and D. sechellia. A network approach was used to attempt to resolve these relationships. The resulting tree suggests recent transfers of both elements between D. melanogaster and D. simulans. The divergence values of the elements between these species support this conclusion. CONCLUSIONS We showed that ancestral polymorphism and recent invasion of genomes due to introgression or horizontal transfer between species occurred during the evolutionary history of the Bari and 412 elements in the melanogaster group. These invasions likely occurred in Africa during the Pleistocene, before the worldwide expansion of D. melanogaster and D. simulans.
Collapse
Affiliation(s)
- Elaine Silva Dias
- Department of Biology, São José do Rio Preto, UNESP-São Paulo State University, São Paulo, Brazil
| | | |
Collapse
|
10
|
Ramulu HG, Raoult D, Pontarotti P. The rhizome of life: what about metazoa? Front Cell Infect Microbiol 2012; 2:50. [PMID: 22919641 PMCID: PMC3417402 DOI: 10.3389/fcimb.2012.00050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/23/2012] [Indexed: 02/03/2023] Open
Abstract
The increase in huge number of genomic sequences in recent years has contributed to various genetic events such as horizontal gene transfer (HGT), gene duplication and hybridization of species. Among them HGT has played an important role in the genome evolution and was believed to occur only in Bacterial and Archaeal genomes. As a result, genomes were found to be chimeric and the evolution of life was represented in different forms such as forests, networks and species evolution was described more like a rhizome, rather than a tree. However, in the last few years, HGT has also been evidenced in other group such as metazoa (for example in root-knot nematodes, bdelloid rotifers and mammals). In addition to HGT, other genetic events such as transfer by retrotransposons and hybridization between more closely related lineages are also well established. Therefore, in the light of such genetic events, whether the evolution of metazoa exists in the form of a tree, network or rhizome is highly questionable and needs to be determined. In the current review, we will focus on the role of HGT, retrotransposons and hybridization in the metazoan evolution.
Collapse
Affiliation(s)
- Hemalatha G. Ramulu
- LATP UMR-CNRS 7353, Evolution Biologique et Modélisation, Aix-Marseille UniversitéeMarseille, France
- URMITE CNRS-IRD UMR6236-198Marseille, France
| | | | - Pierre Pontarotti
- LATP UMR-CNRS 7353, Evolution Biologique et Modélisation, Aix-Marseille UniversitéeMarseille, France
| |
Collapse
|
11
|
Host RNAs, including transposons, are encapsidated by a eukaryotic single-stranded RNA virus. Proc Natl Acad Sci U S A 2012; 109:1907-12. [PMID: 22308402 DOI: 10.1073/pnas.1116168109] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Next-generation sequencing is a valuable tool in our growing understanding of the genetic diversity of viral populations. Using this technology, we have investigated the RNA content of a purified nonenveloped single-stranded RNA virus, flock house virus (FHV). We have also investigated the RNA content of virus-like particles (VLPs) of FHV and the related Nudaurelia capensis omega virus. VLPs predominantly package ribosomal RNA and transcripts of their baculoviral expression vectors. In addition, we find that 5.3% of the packaged RNAs are transposable elements derived from the Sf21 genome. This observation may be important when considering the therapeutic use of VLPs. We find that authentic FHV virions also package a variety of host RNAs, accounting for 1% of the packaged nucleic acid. Significant quantities of host messenger RNAs, ribosomal RNA, noncoding RNAs, and transposable elements are readily detected. The packaging of these host RNAs elicits the possibility of horizontal gene transfer between eukaryotic hosts that share a viral pathogen. We conclude that the genetic content of nonenveloped RNA viruses is variable, not just by genome mutation, but also in the diversity of RNA transcripts that are packaged.
Collapse
|
12
|
Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet 2011; 7:e1002301. [PMID: 21980304 PMCID: PMC3183085 DOI: 10.1371/journal.pgen.1002301] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022] Open
Abstract
The "arms race" relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE-induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness.
Collapse
|
13
|
Retroviruses and retroelements in diseases and in gene therapy: 15 years later. Infect Agent Cancer 2011; 6:14. [PMID: 21943326 PMCID: PMC3205012 DOI: 10.1186/1750-9378-6-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 09/24/2011] [Indexed: 12/30/2022] Open
Abstract
The past 15 years opened new avenues for retrovirus and retroelement research. Not surprisingly, they stemmed from essential knowledge collected in the past, which remains the ground of the present and therefore should be remembered. However, a short supplement of new break-through discoveries and ideas should be recollected. Using selected examples of recent works, I tried to extend and supplement my original article published in Folia Biologica (1996).
Collapse
|
14
|
Fortune PM, Roulin A, Panaud O. Horizontal transfer of transposable elements in plants. Commun Integr Biol 2011; 1:74-7. [PMID: 19513203 DOI: 10.4161/cib.1.1.6328] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/22/2008] [Indexed: 02/04/2023] Open
Abstract
The analysis of genomes suggests that horizontal transfers are frequent phenomena. In eukaryotes these transfers often involve transposable elements and can be detected by sequence analysis or phylogenetic reconstruction. Nevertheless, the dynamics of transposable elements and reticulation in species history, especially in plants, can sometimes be misleading. While the horizontal transfer of transposable elements is well documented in animals, only two cases have been described in plants despite the abundance of these elements in plant genomes. The study of horizontal transfers of transposable elements in plants represents a new challenge to understand their impact on genomic diversity and consequently on the process of adaptation to their environment.
Collapse
Affiliation(s)
- Philippe M Fortune
- Université de Perpignan Via Domitia; Laboratoire Génome et Développement des Plantes; Perpignan, France
| | | | | |
Collapse
|
15
|
Abstract
The copia element is a retrotransposon that is hypothesized to have been horizontally transferred from Drosophila melanogaster to some populations of Drosophila willistoni in Florida. Here we have used PCR and Southern blots to screen for sequences similar to copia element in South American populations of D. willistoni, as well as in strains previously shown to be carriers of the element. We have not found the canonical copia element in any of these populations. Unlike the P element, which invaded the D. melanogaster genome from D. willistoni and quickly spread worldwide, the canonical copia element appears to have transferred in the opposite direction and has not spread. This may be explained by differences in the requirements for transposition and in the host control of transposition.
Collapse
|
16
|
de Setta N, Van Sluys MA, Capy P, Carareto CMA. Copia retrotransposon in the Zaprionus genus: another case of transposable element sharing with the Drosophila melanogaster subgroup. J Mol Evol 2011; 72:326-38. [PMID: 21347850 DOI: 10.1007/s00239-011-9435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 02/07/2011] [Indexed: 11/24/2022]
Abstract
Copia is a retrotransposon that appears to be distributed widely among the Drosophilidae subfamily. Evolutionary analyses of regulatory regions have indicated that the Copia retrotransposon evolved through both positive and purifying selection, and that horizontal transfer (HT) could also explain its patchy distribution of the among the subfamilies of the melanogaster subgroup. Additionally, Copia elements could also have transferred between melanogaster subgroup and other species of Drosophilidae-D. willistoni and Z. tuberculatus. In this study, we surveyed seven species of the Zaprionus genus by sequencing the LTR-ULR and reverse transcriptase regions, and by using RT-PCR in order to understand the distribution and evolutionary history of Copia in the Zaprionus genus. The Copia element was detected, and was transcriptionally active, in all species investigated. Structural and selection analysis revealed Zaprionus elements to be closely related to the most ancient subfamily of the melanogaster subgroup, and they seem to be evolving mainly under relaxed purifying selection. Taken together, these results allowed us to classify the Zaprionus sequences as a new subfamily-ZapCopia, a member of the Copia retrotransposon family of the melanogaster subgroup. These findings indicate that the Copia retrotransposon is an ancient component of the genomes of the Zaprionus species and broaden our understanding of the diversity of retrotransposons in the Zaprionus genus.
Collapse
Affiliation(s)
- Nathalia de Setta
- Laboratory of Molecular Evolution, Department of Biology, UNESP, São Paulo State University, 15054-000 São José do Rio Preto, SP, Brazil
| | | | | | | |
Collapse
|
17
|
Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 2011; 39:D70-4. [PMID: 21036865 PMCID: PMC3013669 DOI: 10.1093/nar/gkq1061] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.
Collapse
Affiliation(s)
- Carlos Llorens
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gladyshev EA, Arkhipova IR. Genome structure of bdelloid rotifers: shaped by asexuality or desiccation? J Hered 2010; 101 Suppl 1:S85-93. [PMID: 20421328 DOI: 10.1093/jhered/esq008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bdelloid rotifers are microscopic invertebrate animals best known for their ancient asexuality and the ability to survive desiccation at any life stage. Both factors are expected to have a profound influence on their genome structure. Recent molecular studies demonstrated that, although the gene-rich regions of bdelloid genomes are organized as colinear pairs of closely related sequences and depleted in repetitive DNA, subtelomeric regions harbor diverse transposable elements and horizontally acquired genes of foreign origin. Although asexuality is expected to result in depletion of deleterious transposons, only desiccation appears to have the power to produce all the uncovered genomic peculiarities. Repair of desiccation-induced DNA damage would require the presence of a homologous template, maintaining colinear pairs in gene-rich regions and selecting against insertion of repetitive DNA that might cause chromosomal rearrangements. Desiccation may also induce a transient state of competence in recovering animals, allowing them to acquire environmental DNA. Even if bdelloids engage in rare or obscure forms of sexual reproduction, all these features could still be present. The relative contribution of asexuality and desiccation to genome organization may be clarified by analyzing whole-genome sequences and comparing foreign gene and transposon content in species which lost the ability to survive desiccation.
Collapse
Affiliation(s)
- Eugene A Gladyshev
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | |
Collapse
|
19
|
Scolari F, Siciliano P, Gabrieli P, Gomulski LM, Bonomi A, Gasperi G, Malacrida AR. Safe and fit genetically modified insects for pest control: from lab to field applications. Genetica 2010; 139:41-52. [PMID: 20725766 DOI: 10.1007/s10709-010-9483-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 08/07/2010] [Indexed: 01/10/2023]
Abstract
Insect transgenesis is continuously being improved to increase the efficacy of population suppression and replacement strategies directed to the control of insect species of economic and sanitary interest. An essential prerequisite for the success of both pest control applications is that the fitness of the transformant individuals is not impaired, so that, once released in the field, they can efficiently compete with or even out-compete their wild-type counterparts for matings in order to reduce the population size, or to spread desirable genes into the target population. Recent research has shown that the production of fit and competitive transformants can now be achieved and that transgenes may not necessarily confer a fitness cost. In this article we review the most recent published results of the fitness assessment of different transgenic insect lines and underline the necessity to fulfill key requirements of ecological safety. Fitness evaluation studies performed in field cages and medium/large-scale rearing will validate the present encouraging laboratory results, giving an indication of the performance of the transgenic insect genotype after release in pest control programmes.
Collapse
Affiliation(s)
- F Scolari
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Novikova O, Smyshlyaev G, Blinov A. Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants. BMC Genomics 2010; 11:231. [PMID: 20377908 PMCID: PMC2864245 DOI: 10.1186/1471-2164-11-231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Chromodomain-containing Gypsy LTR retrotransposons or chromoviruses are widely distributed among eukaryotes and have been found in plants, fungi and vertebrates. The previous comprehensive survey of chromoviruses from mosses (Bryophyta) suggested that genomes of non-seed plants contain the clade which is closely related to the retrotransposons from fungi. The origin, distribution and evolutionary history of this clade remained unclear mainly due to the absence of information concerning the diversity and distribution of LTR retrotransposons in other groups of non-seed plants as well as in fungal genomes. Results In present study we preformed in silico analysis of chromodomain-containing LTR retrotransposons in 25 diverse fungi and a number of plant species including spikemoss Selaginella moellendorffii (Lycopodiophyta) coupled with an experimental survey of chromodomain-containing Gypsy LTR retrotransposons from diverse non-seed vascular plants (lycophytes, ferns, and horsetails). Our mining of Gypsy LTR retrotransposons in genomic sequences allowed identification of numerous families which have not been described previously in fungi. Two new well-supported clades, Galahad and Mordred, as well as several other previously unknown lineages of chromodomain-containing Gypsy LTR retrotransposons were described based on the results of PCR-mediated survey of LTR retrotransposon fragments from ferns, horsetails and lycophytes. It appeared that one of the clades, namely Tcn1 clade, was present in basidiomycetes and non-seed plants including mosses (Bryophyta) and lycophytes (genus Selaginella). Conclusions The interkingdom distribution is not typical for chromodomain-containing LTR retrotransposons clades which are usually very specific for a particular taxonomic group. Tcn1-like LTR retrotransposons from fungi and non-seed plants demonstrated high similarity to each other which can be explained by strong selective constraints and the 'retained' genes theory or by horizontal transmission.
Collapse
Affiliation(s)
- Olga Novikova
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia.
| | | | | |
Collapse
|
21
|
Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 2009; 4:41. [PMID: 19883502 PMCID: PMC2774666 DOI: 10.1186/1745-6150-4-41] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 11/02/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. RESULTS We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. CONCLUSION The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power-law distributed. This evidences an inflationary mode of evolution where the system diversity; 1) expands continuously alternating vertical and gradual processes of phylogenetic divergence with episodes of modular, saltatory and reticulate evolution; 2) is governed by the intrinsic capability of distinct LTR retroelement host-communities to self-organize their phenotypes according to emergent laws characteristic of complex systems. REVIEWERS This article was reviewed by Eugene V. Koonin, Eric Bapteste, and Enmanuelle Lerat (nominated by King Jordan).
Collapse
Affiliation(s)
- Carlos Llorens
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
| | - Alfonso Muñoz-Pomer
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
- Departamento de Sistemas Informáticos y Computación (DSIC), Universitat Politècnica de València, Valencia, Spain
| | - Lucia Bernad
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
| | - Hector Botella
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Área de Paleontología, Dpto. Geología, Universitat de València, Paterna, Valencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Centro Superior de Investigación en Salud Pública (CSISP), Valencia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
22
|
A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 2009; 181:1183-93. [PMID: 19153256 DOI: 10.1534/genetics.108.099150] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rider is a novel and recently active Ty1-copia-like retrotransposon isolated from the T3238fer mutant of tomato. Structurally, it is delimited by a duplication of target sites and contains two long terminal direct repeats and an internal open reading frame, which encodes a Ty1-copia-type polyprotein with characteristic protein domains required for retrotransposition. The family of Rider elements has an intermediate copy number and is scattered in the chromosomes of tomato. Rider family members in the tomato genome share high sequence similarity, but different structural groups were identified (full-size elements, deletion derivatives, and solo LTRs). Southern blot analysis in Solanaceae species showed that Rider was a Lycopersicon-specific element. Sequence analysis revealed that among other plants, two Arabidopsis elements (named as Rider-like 1 and Rider-like 2) are most similar to Rider in both the coding and noncoding regions. RT-PCR analysis indicates that Rider is constitutively expressed in tomato plants. The phylogeny-based parsimony analysis and the sequence substitution analyses of these data suggest that these Rider-like elements originated from a recent introgression of Rider into the tomato genome by horizontal transfer 1-6 million years ago. Considering its transcriptional activity and the recent insertion of the element into at least two genes, Rider is a recently active retrotransposon in the tomato genome.
Collapse
|
23
|
Novikova O, Mayorov V, Smyshlyaev G, Fursov M, Adkison L, Pisarenko O, Blinov A. Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:562-574. [PMID: 18643967 DOI: 10.1111/j.1365-313x.2008.03621.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Retrotransposons are the major component of plant genomes. Chromodomain-containing Gypsy long terminal repeat (LTR) retrotransposons are widely distributed in eukaryotes. Four distinct clades of chromodomain-containing Gypsy retroelements are known from the vascular plants: Reina, CRM, Galadriel and Tekay. At the same time, almost nothing is known about the repertoire of LTR retrotransposons in bryophyte genomes. We have combined a search of chromodomain-containing Gypsy retroelements in Physcomitrella genomic sequences and an experimental investigation of diverse moss species. The computer-based mining of the chromodomain-containing LTR retrotransposons allowed us to describe four different elements from Physcomitrella. Four novel clades were identified that are evolutionarily distinct from the chromodomain-containing Gypsy LTR retrotransposons of other plants.
Collapse
Affiliation(s)
- Olga Novikova
- Laboratory of Molecular Evolution, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci U S A 2008; 105:17023-8. [PMID: 18936483 DOI: 10.1073/pnas.0806548105] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Horizontal transfer (HT) is central to the evolution of prokaryotic species. Selfish and mobile genetic elements, such as phages, plasmids, and transposons, are the primary vehicles for HT among prokaryotes. In multicellular eukaryotes, the prevalence and evolutionary significance of HT remain unclear. Here, we identified a set of DNA transposon families dubbed SPACE INVADERS (or SPIN) whose consensus sequences are approximately 96% identical over their entire length (2.9 kb) in the genomes of murine rodents (rat/mouse), bushbaby (prosimian primate), little brown bat (laurasiatherian), tenrec (afrotherian), opossum (marsupial), and two non-mammalian tetrapods (anole lizard and African clawed frog). In contrast, SPIN elements were undetectable in other species represented in the sequence databases, including 19 other mammals with draft whole-genome assemblies. This patchy distribution, coupled with the extreme level of SPIN identity in widely divergent tetrapods and the overall lack of selective constraint acting on these elements, is incompatible with vertical inheritance, but strongly indicative of multiple horizontal introductions. We show that these germline infiltrations likely occurred around the same evolutionary time (15-46 mya) and spawned some of the largest bursts of DNA transposon activity ever recorded in any species lineage (nearly 100,000 SPIN copies per haploid genome in tenrec). The process also led to the emergence of a new gene in the murine lineage derived from a SPIN transposase. In summary, HT of DNA transposons has contributed significantly to shaping and diversifying the genomes of multiple mammalian and tetrapod species.
Collapse
|
25
|
Miguel C, Simões M, Oliveira MM, Rocheta M. Envelope-like retrotransposons in the plant kingdom: evidence of their presence in gymnosperms (Pinus pinaster). J Mol Evol 2008; 67:517-25. [PMID: 18925379 DOI: 10.1007/s00239-008-9168-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 06/22/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.
Collapse
Affiliation(s)
- Célia Miguel
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica, Univ. Nova de Lisboa (IBET/ITQB-UNL), Quinta do Marquês, 2784-505, Oeiras, Portugal.
| | | | | | | |
Collapse
|
26
|
[Methods for the identification of horizontal gene transfer (HGT) events and progress in related fields]. YI CHUAN = HEREDITAS 2008; 30:1108-14. [PMID: 18779166 DOI: 10.3724/sp.j.1005.2008.01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Horizontal gene transfer is the gene exchange between different organisms or different organelles, which occurs frequently in prokaryotes. Many newly identified horizontal transfer events in eukaryotes indicates that it is a common phenomenon in all organisms. This paper describes the concept of horizontal gene transfer, the standard for judging a horizontal gene transfer events, the character, the mode, the way of horizontal gene transfer, and its impact on gene and genome evolution. The analyses of phylogenetic tree, base composition, selection pressure, intron sequence comparison, inserted special sequence, and biased nucleotide substitution are the most common methods used in previous researches. Evidence accumulated demonstrated that transposable sequences are most likely undergoing horizontal transferring. Transformation, conjugation, and transduction are the main forms of horizontal gene transfer in prokaryotes, but no clear clue was related with the mechanism of horizontal gene transfer in eukaryotes. Horizontal gene transfer plays a special role in genetic, genomic, and the biological evolution.
Collapse
|
27
|
Novikova O, Fet V, Blinov A. Non-LTR retrotransposons in fungi. Funct Integr Genomics 2008; 9:27-42. [DOI: 10.1007/s10142-008-0093-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/01/2008] [Accepted: 07/01/2008] [Indexed: 12/31/2022]
|
28
|
Barthélémy RM, Casanova JP, Faure E. Transcriptome Analysis of ESTs from a Chaetognath Reveals a Deep-Branching Clade of Retrovirus-Like Retrotransposons. Open Virol J 2008; 2:44-60. [PMID: 19440464 PMCID: PMC2678813 DOI: 10.2174/1874357900802010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 01/04/2023] Open
Abstract
Chaetognaths constitute a small marine phylum exhibiting several characteristic which are highly unusual in animal genomes, including two classes of both rRNA and protein ribosomal genes. As in this phylum presence of retrovirus-like elements has never been documented, analysis of a published expressed sequence tag (EST) collection of the chaetognath Spadella cephaloptera has been made. Twelve sequences representing transcript sections of reverse transcriptase domain of active retrotransposons were isolated from~11,000 ESTs. Five of them are originated from Gypsy retrovirus-like elements, whereas the other are transcripts from a Bel-Pao LTR-retrotransposon, a Penelope-like element and LINE retrotransposons. Moreover, a part of a putative integrase has also been found. Phylogenetic analyses suggest a deep-branching clade of the retrovirus-like elements, which is in agreement with the probably Cambrian origin of the phylum. Moreover, retrotransposons have not been found in telomeric-like transcripts which are probably constituted by both vertebrate and arthropod canonical repeats.
Collapse
Affiliation(s)
- Roxane M Barthélémy
- LATP, CNRS-UMR 6632, Evolution biologique et modélisation, case 5, Université de Provence, Place Victor Hugo, 13331 Marseille cedex 3, France
| | | | | |
Collapse
|
29
|
Revisiting horizontal transfer of transposable elements in Drosophila. Heredity (Edinb) 2008; 100:545-54. [DOI: 10.1038/sj.hdy.6801094] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Ruas CF, Weiss-Schneeweiss H, Stuessy TF, Samuel MR, Pedrosa-Harand A, Tremetsberger K, Ruas PM, Schlüter PM, Ortiz Herrera MA, König C, Matzenbacher NI. Characterization, genomic organization and chromosomal distribution of Ty1-copia retrotransposons in species of Hypochaeris (Asteraceae). Gene 2008; 412:39-49. [DOI: 10.1016/j.gene.2008.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 01/03/2008] [Accepted: 01/03/2008] [Indexed: 11/29/2022]
|
31
|
Ma Y, Sun H, Zhao G, Dai H, Gao X, Li H, Zhang Z. Isolation and characterization of genomic retrotransposon sequences from octoploid strawberry (Fragaria x ananassa Duch.). PLANT CELL REPORTS 2008; 27:499-507. [PMID: 18026732 DOI: 10.1007/s00299-007-0476-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 10/21/2007] [Accepted: 10/29/2007] [Indexed: 05/25/2023]
Abstract
Strawberry (Fragaria spp.) is a kind of herbaceous perennial plant that propagates vegetatively. The conserved domains of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy groups of LTR retrotransposons were amplified from the cultivated strawberry (Fragaria x ananassa Duch.). Sequence analysis of clones demonstrated that 5 of 19 Ty1-copia group unique sequences and 2 of 10 Ty3-gypsy unique sequences in F. x ananassa genome possessed either stop codon or frameshift. Ty1-copia group sequences are highly heterogeneous (divergence ranged from 1 to 69.8%), but the Ty3-gypsy group sequences are less (divergence ranged from 1 to 10%). Southern dot blot hybridization result suggested that both of the LTR retrotransposons are present in the genome of cultivated strawberry with high copy number (Ty1-copia group 2,875 Ty3-gypsy group 348). RT-PCR amplification from total RNA, which was extracted from leaves of micropropagated strawberry plants, did not yield either of the RT fragments. This is the first report on the presence of RT sequences of Ty1-copia and Ty3-gypsy group retrotransposons in F. x ananassa genome.
Collapse
Affiliation(s)
- Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Roulin A, Piegu B, Wing RA, Panaud O. Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:950-959. [PMID: 18088314 DOI: 10.1111/j.1365-313x.2007.03388.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Horizontal gene transfer, defined as the transmission of genetic material between reproductively isolated species, has been considered for a long time to be a rare phenomenon. Most well-documented cases of horizontal gene transfer have been described in prokaryotes or in animals and they often involve transposable elements. The most abundant class of transposable elements in plant genomes are the long terminal repeat (LTR) retrotransposons. Because of their propensity to increase their copy number while active, LTR retrotransposons can have a significant impact on genomics changes during evolution. In a previous study, we showed that in the wild rice species Oryza australiensis, 60% of the genome is composed of only three families of LTR retrotransposons named RIRE1, Wallabi and Kangourou. In the present study, using both in silico and experimental approaches, we show that one of these three families, RIRE1, has been transferred horizontally between O. australiensis and seven other reproductively isolated Oryza species. This constitutes a new case of horizontal transfer in plants.
Collapse
Affiliation(s)
- Anne Roulin
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS-IRD-Université de Perpignan, 52, avenue Paul Alduy, 66860 Perpignan, France
| | | | | | | |
Collapse
|
33
|
The LTR retrotransposon micropia in the cardini group of Drosophila (Diptera: Drosophilidae): a possible case of horizontal transfer. Genetica 2008; 134:335-44. [PMID: 18259879 DOI: 10.1007/s10709-008-9241-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/19/2008] [Indexed: 10/22/2022]
Abstract
The presence of the micropia retroelement from the Ty1-copia family of LTR retroelements was investigated in three species of the Drosophila cardini group. Southern blot analysis suggested the existence of at least four micropia copies in the genomes of D. cardinoides, D. neocardini and D. polymorpha populations. The high sequence similarity between dhMiF2 and Dm11 clones (micropia retroelements isolated from D. hydei and D. melanogaster, respectively) with micropia sequences amplified from D. cardini group genome supports the hypothesis that this retroelement plays an active role in horizontal transfer events between D. hydei and the D. cardini group.
Collapse
|
34
|
Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007; 8:241-59. [PMID: 17506661 DOI: 10.1146/annurev.genom.8.080706.092416] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes contain vast amounts of repetitive DNA derived from transposable elements (TEs). Large-scale sequencing of these genomes has produced an unprecedented wealth of information about the origin, diversity, and genomic impact of what was once thought to be "junk DNA." This has also led to the identification of two new classes of DNA transposons, Helitrons and Polintons, as well as several new superfamilies and thousands of new families. TEs are evolutionary precursors of many genes, including RAG1, which plays a role in the vertebrate immune system. They are also the driving force in the evolution of epigenetic regulation and have a long-term impact on genomic stability and evolution. Remnants of TEs appear to be overrepresented in transcription regulatory modules and other regions conserved among distantly related species, which may have implications for our understanding of their impact on speciation.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California 94043, USA.
| | | | | | | |
Collapse
|
35
|
Crouch JA, Glasheen BM, Giunta MA, Clarke BB, Hillman BI. The evolution of transposon repeat-induced point mutation in the genome of Colletotrichum cereale: reconciling sex, recombination and homoplasy in an ''asexual" pathogen. Fungal Genet Biol 2007; 45:190-206. [PMID: 17962053 DOI: 10.1016/j.fgb.2007.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 06/29/2007] [Accepted: 08/03/2007] [Indexed: 12/21/2022]
Abstract
Mobile transposable elements are among the primary drivers of the evolution of eukaryotic genomes. For fungi, repeat-induced point mutation (RIP) silencing minimizes deleterious effects of transposons by mutating multicopy DNA during meiosis. In this study we identify five transposon species from the mitosporic fungus Colletotrichum cereale and report the signature pattern of RIP acting in a lineage-specific manner on 21 of 35 unique transposon copies, providing the first evidence for sexual recombination for this species. Sequence analysis of genomic populations of the retrotransposon Ccret2 showed repeated rounds of RIP mutation acting on different copies of the element. In the RIPped Ccret2 population, there were multiple inferences of incongruence primarily attributed to RIP-induced homoplasy. This study supports the view that the sequence variability of transposon populations in filamentous fungi reflects the activities of evolutionary processes that fall outside of typical phylogenetic or population genetic reconstructions.
Collapse
Affiliation(s)
- Jo Anne Crouch
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | |
Collapse
|
36
|
Kotnova AP, Glukhov IA, Karpova NN, Salenko VB, Lyubomirskaya NV, Ilyin YV. Evidence for recent horizontal transfer of gypsy-homologous LTR-retrotransposon gtwin into Drosophila erecta followed by its amplification with multiple aberrations. Gene 2007; 396:39-45. [PMID: 17459613 DOI: 10.1016/j.gene.2007.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/19/2007] [Accepted: 02/19/2007] [Indexed: 11/26/2022]
Abstract
Long terminal repeat (LTR) retrotransposon gtwin was initially discovered in silico, and then it was isolated as gypsy-homologous sequence from Drosophila melanogaster strain, G32. The presence of ORF3 suggests, that gtwin, like gypsy, may be an endogenous retrovirus, which can leave the cell and infect another one. Therefore, in this study we decided to investigate the distribution of gtwin in different species of the melanogaster subgroup in order to find out whether gtwin can be transferred horizontally as well as vertically. Gtwin was found in all 9 species of this subgroup, hence it seems to have inhabited the host genomes for a long time. In addition, we have shown that in the Drosophila erecta genome two gtwin families are present. The first one has 93% of identity to D. melanogaster element and is likely to be a descendant of gtwin that existed in Drosophila before the divergence of the melanogaster subgroup species. The other one has >99% of identity to D. melanogaster gtwin. The most reasonable explanation is that this element has been recently horizontally transferred between D. melanogaster and D. erecta. The number and variety of gtwin copies from the "infectious" family suggest that after the horizontal transfer into D. erecta genome, gtwin underwent amplification and aberrations, leading to the rise of its diverse variants.
Collapse
Affiliation(s)
- Alina P Kotnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
37
|
Novikova O, Śliwińska E, Fet V, Settele J, Blinov A, Woyciechowski M. CR1 clade of non-LTR retrotransposons from Maculinea butterflies (Lepidoptera: Lycaenidae): evidence for recent horizontal transmission. BMC Evol Biol 2007; 7:93. [PMID: 17588269 PMCID: PMC1925062 DOI: 10.1186/1471-2148-7-93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 06/25/2007] [Indexed: 01/28/2023] Open
Abstract
Background Non-long terminal repeat (non-LTR) retrotransposons are mobile genetic elements that propagate themselves by reverse transcription of an RNA intermediate. Non-LTR retrotransposons are known to evolve mainly via vertical transmission and random loss. Horizontal transmission is believed to be a very rare event in non-LTR retrotransposons. Our knowledge of distribution and diversity of insect non-LTR retrotransposons is limited to a few species – mainly model organisms such as dipteran genera Drosophila, Anopheles, and Aedes. However, diversity of non-LTR retroelements in arthropods seems to be much richer. The present study extends the analysis of non-LTR retroelements to CR1 clade from four butterfly species of genus Maculinea (Lepidoptera: Lycaenidae). The lycaenid genus Maculinea, the object of interest for evolutionary biologists and also a model group for European biodiversity studies, possesses a unique, specialized myrmecophilous lifestyle at larval stage. Their caterpillars, after three weeks of phytophagous life on specific food plants drop to the ground where they are adopted to the ant nest by Myrmica foraging workers. Results We found that the genome of Maculinea butterflies contains multiple CR1 lineages of non-LTR retrotransposons, including those from MacCR1A, MacCR1B and T1Q families. A comparative analysis of RT nucleotide sequences demonstrated an extremely high similarity among elements both in interspecific and intraspecific comparisons. CR1A-like elements were found only in family Lycaenidae. In contrast, MacCR1B lineage clones were extremely similar to CR1B non-LTR retrotransposons from Bombycidae moths: silkworm Bombyx mori and Oberthueria caeca. Conclusion The degree of coding sequence similarity of the studied elements, their discontinuous distribution, and results of divergence-versus-age analysis make it highly unlikely that these sequences diverged at the same time as their host taxa. The only reasonable alternative explanation is horizontal transfer. In addition, phylogenetic markers for population analysis of Maculinea could be developed based on the described non-LTR retrotransposons.
Collapse
Affiliation(s)
- Olga Novikova
- Laboratory of Molecular Evolution, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ewa Śliwińska
- UJAG – Jagiellonian University, Institute of Environmental Sciences, Krakow, Poland
| | - Victor Fet
- Marshall University, Huntington, West Virginia, USA
| | - Josef Settele
- Department of Community Ecology, UFZ – Centre for Environmental Research Leipzig-Halle, Halle (Saale), Germany
| | - Alexander Blinov
- Laboratory of Molecular Evolution, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Michal Woyciechowski
- UJAG – Jagiellonian University, Institute of Environmental Sciences, Krakow, Poland
| |
Collapse
|
38
|
Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD, Jurka J. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 2007; 17:992-1004. [PMID: 17495012 PMCID: PMC1899126 DOI: 10.1101/gr.6070707] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genome of the gray short-tailed opossum Monodelphis domestica is notable for its large size ( approximately 3.6 Gb). We characterized nearly 500 families of interspersed repeats from the Monodelphis. They cover approximately 52% of the genome, higher than in any other amniotic lineage studied to date, and may account for the unusually large genome size. In comparison to other mammals, Monodelphis is significantly rich in non-LTR retrotransposons from the LINE-1, CR1, and RTE families, with >29% of the genome sequence comprised of copies of these elements. Monodelphis has at least four families of RTE, and we report support for horizontal transfer of this non-LTR retrotransposon. In addition to short interspersed elements (SINEs) mobilized by L1, we found several families of SINEs that appear to use RTE elements for mobilization. In contrast to L1-mobilized SINEs, the RTE-mobilized SINEs in Monodelphis appear to shift from G+C-rich to G+C-low regions with time. Endogenous retroviruses have colonized approximately 10% of the opossum genome. We found that their density is enhanced in centromeric and/or telomeric regions of most Monodelphis chromosomes. We identified 83 new families of ancient repeats that are highly conserved across amniotic lineages, including 14 LINE-derived repeats; and a novel SINE element, MER131, that may have been exapted as a highly conserved functional noncoding RNA, and whose emergence dates back to approximately 300 million years ago. Many of these conserved repeats are also present in human, and are highly over-represented in predicted cis-regulatory modules. Seventy-six of the 83 families are present in chicken in addition to mammals.
Collapse
Affiliation(s)
- Andrew J. Gentles
- Department of Radiology, School of Medicine, Stanford University, Stanford, California 94305, USA
- Genetic Information Research Institute, Mountain View, California 94043, USA
- Corresponding authors.E-mail ; fax (650) 723-5795.E-mail ; fax (650) 961-4473
| | - Matthew J. Wakefield
- ARC Centre for Kangaroo Genomics, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Oleksiy Kohany
- Genetic Information Research Institute, Mountain View, California 94043, USA
| | - Wanjun Gu
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora 80045, Colorado, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora 80045, Colorado, USA
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California 94043, USA
- Corresponding authors.E-mail ; fax (650) 723-5795.E-mail ; fax (650) 961-4473
| |
Collapse
|
39
|
O'Brochta DA, Subramanian RA, Orsetti J, Peckham E, Nolan N, Arensburger P, Atkinson PW, Charlwood DJ. hAT element population genetics in Anopheles gambiae s.l. in Mozambique. Genetica 2006; 127:185-98. [PMID: 16850223 DOI: 10.1007/s10709-005-3535-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 09/26/2005] [Indexed: 10/24/2022]
Abstract
Herves is a functional Class II transposable element in Anopheles gambiae belonging to the hAT superfamily of elements. Class II transposable elements are used as gene vectors in this species and are also being considered as genetic drive agents for spreading desirable genes through natural populations as part of an effort to control malaria transmission. In this study, Herves was investigated in populations of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles merus in Mozambique over a period of 2 years. The copy number of Herves within these three species was approximately 5 copies per diploid genome and did not differ among species or between years. Based on the insertion-site occupancy-frequency distribution and existing models of transposable element dynamics, Herves appears to be transpositionally active currently or, at least recently, in all species tested. Ninety-five percent of the individuals within the populations of the three species tested contained intact elements with complete Herves transposase genes and this is consistent with the idea that these elements are currently active.
Collapse
Affiliation(s)
- David A O'Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Building 036/Room 5115, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
De Almeida LM, Carareto CM. Sequence heterogeneity and phylogenetic relationships between the copiaretrotransposon in Drosophilaspecies of the repletaand melanogastergroups. Genet Sel Evol 2006. [DOI: 10.1051/gse:2006020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Park JM, Schneeweiss GM, Weiss-Schneeweiss H. Diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Gene 2006; 387:75-86. [PMID: 17008031 DOI: 10.1016/j.gene.2006.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/23/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
We present the first study on the diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in a group of non-photosynthetic flowering plants. To this end partial sequences of the reverse transcriptase (rt) gene were obtained from 20 clones for each retroelement type from seven and six accessions of Orobanche and Phelipanche (Orobanchaceae), respectively. Overall sequence similarity is higher in Ty3-gypsy elements than in Ty1-copia elements in agreement with the results from other angiosperm groups. Higher sequence diversity and stronger phylogenetic structure, especially of Ty1-copia sequences, in Orobanche species compared to Phelipanche species support the previously suggested hypothesis (based on karyological and cytological data) that genomes of Orobanche species are more dynamic than those of Phelipanche species. No evidence was found for intraspecific differences of retroelement diversity nor for differences between pest taxa and their putative wild relatives, e.g., O. crenata and O. owerini. The occurrence of a few sequences from Phelipanche species in clades otherwise comprising sequences from Orobanche species might be due to horizontal gene transfer, but the alternative of vertical transmission cannot be rejected unambiguously.
Collapse
Affiliation(s)
- Jeong-Mi Park
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | | |
Collapse
|
42
|
Ludwig A, Loreto ELS. Evolutionary pattern of the gtwin retrotransposon in the Drosophila melanogaster subgroup. Genetica 2006; 130:161-8. [PMID: 16897442 DOI: 10.1007/s10709-006-9003-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 07/08/2006] [Indexed: 02/01/2023]
Abstract
The gtwin retrotransposon was recently discovered in the Drosophila melanogaster genome and it is evolutionarily closer to gypsy endogenous retrovirus. This study has identified gtwin homologous sequences in the genome of D. simulans, D. sechellia, D. erecta and D. yakuba by performing homology searches against the public genome database of Drosophila species. The phylogenetic analyses of the gtwin env gene sequences of these species have shown some incongruities with the host species phylogeny, suggesting some horizontal transfer events for this retroelement. Moreover, we reported the existence of DNA sequences putatively encoding full-length Env proteins in the genomes of Drosophila species other than D. melanogaster. The results suggest that the gtwin element may be an infectious retrovirus able to invade the genome of new species, supporting the gtwin evolutionary picture shown in this work.
Collapse
Affiliation(s)
- A Ludwig
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
43
|
Abstract
Sexual reproduction and recombination are important for maintaining a stable copy number of transposable elements (TEs). In sexual populations, elements can be contained by purifying selection against host carriers with higher element copy numbers; however, in the absence of sex and recombination, asexual populations could be driven to extinction by an unchecked proliferation of TEs. Here we provide a theoretical framework for analyzing TE dynamics under asexual reproduction. Analytic results show that, in an infinite asexual population, an equilibrium in copy number is achieved if no element excision is possible, but that all TEs are eliminated if there is some excision. In a finite population, computer simulations demonstrate that small populations are driven to extinction by a Muller's ratchet-like process of element accumulation, but that large populations can be cured of vertically transmitted TEs, even with excision rates well below transposition rates. These results may have important consequences for newly arisen asexual lineages and may account for the lack of deleterious retrotransposons in the putatively ancient asexual bdelloid rotifers.
Collapse
Affiliation(s)
- Elie S Dolgin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
44
|
Malik HS, Henikoff S. Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster. PLoS Genet 2006; 1:e44. [PMID: 16244705 PMCID: PMC1262188 DOI: 10.1371/journal.pgen.0010044] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 09/01/2005] [Indexed: 01/27/2023] Open
Abstract
Eukaryotic genomes can usurp enzymatic functions encoded by mobile elements for their own use. A particularly interesting kind of acquisition involves the domestication of retroviral envelope genes, which confer infectious membrane-fusion ability to retroviruses. So far, these examples have been limited to vertebrate genomes, including primates where the domesticated envelope is under purifying selection to assist placental function. Here, we show that in Drosophila genomes, a previously unannotated gene (CG4715, renamed Iris) was domesticated from a novel, active Kanga lineage of insect retroviruses at least 25 million years ago, and has since been maintained as a host gene that is expressed in all adult tissues. Iris and the envelope genes from Kanga retroviruses are homologous to those found in insect baculoviruses and gypsy and roo insect retroviruses. Two separate envelope domestications from the Kanga and roo retroviruses have taken place, in fruit fly and mosquito genomes, respectively. Whereas retroviral envelopes are proteolytically cleaved into the ligand-interaction and membrane-fusion domains, Iris appears to lack this cleavage site. In the takahashii/suzukii species groups of Drosophila, we find that Iris has tandemly duplicated to give rise to two genes (Iris-A and Iris-B). Iris-B has significantly diverged from the Iris-A lineage, primarily because of the “invention” of an intron de novo in what was previously exonic sequence. Unlike domesticated retroviral envelope genes in mammals, we find that Iris has been subject to strong positive selection between Drosophila species. The rapid, adaptive evolution of Iris is sufficient to unambiguously distinguish the phylogenies of three closely related sibling species of Drosophila (D. simulans, D. sechellia, and D. mauritiana), a discriminative power previously described only for a putative “speciation gene.” Iris represents the first instance of a retroviral envelope–derived host gene outside vertebrates. It is also the first example of a retroviral envelope gene that has been found to be subject to positive selection following its domestication. The unusual selective pressures acting on Iris suggest that it is an active participant in an ongoing genetic conflict. We propose a model in which Iris has “switched sides,” having been recruited by host genomes to combat baculoviruses and retroviruses, which employ homologous envelope genes to mediate infection. Mobile genetic elements have made homes within eukaryotic (host) genomes for hundreds of millions of years. These include retroviruses that integrate into host genomes as an essential step in their life cycle. While most such integration events are likely to be either deleterious or of little consequence to the host, on rare occasions host genomes can preserve and exploit capabilities of mobile elements for their own function. Especially intriguing are instances where host genomes have chosen to retain the envelope genes of retroviruses; the same envelope genes are responsible for conferring infectious ability to retroviruses. Primates and rodent genomes each have domesticated retroviral envelope genes (called “syncytin” genes) for important roles in placental function. Now, Harmit Malik and colleagues show that a similar, ancient domestication event has taken place within the fruit fly Drosophila melanogaster. They identify a gene, Iris, which was acquired from an envelope gene of insect retroviruses, and has been maintained as a host gene for more than 25 million years. Unexpectedly, the authors find that Iris continues to evolve rapidly whereas previous studies have shown that mammalian syncytin genes do not. They suggest a model in which the Iris gene has “switched sides,” from its original role in causing infections to its current role in preventing them.
Collapse
Affiliation(s)
- Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | |
Collapse
|
45
|
Dent JA. Evidence for a Diverse Cys-Loop Ligand-Gated Ion Channel Superfamily in Early Bilateria. J Mol Evol 2006; 62:523-35. [PMID: 16586016 DOI: 10.1007/s00239-005-0018-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 11/30/2005] [Indexed: 10/24/2022]
Abstract
The genome sequences of Caenorhabditis elegans and Drosophila melanogaster reveal a diversity of cysteine-loop ligand-gated ion channels (Cys-loop LGICs) not found in vertebrates. To better understand the evolution of this gene superfamily, I compared all Cys-loop LGICs from rat, the primitive chordate Ciona intestinalis, Drosophila, and C. elegans. There are two clades of GABA receptor subunits that include both vertebrate and invertebrate orthologues. In addition, I identified nine clades of anion channel subunits found only in invertebrates, including three that are specific to C. elegans and two found only in Drosophila. One well-defined clade of vertebrate cation channel subunits, the alpha 7 nicotinic acetylcholine receptor subunits (nAChR), includes invertebrate orthologues. There are two clades of invertebrate nAChRs, one of alpha-type subunits and one of non-alpha subunits, that are most similar to the two clades of vertebrate neuronal and muscle alpha and non-alpha subunits. There is a large group of divergent C. elegans nAChR-like subunits partially resolved into clades but no orthologues of 5HT3-type serotonin receptors in the invertebrates. The topology of the trees suggests that most of the invertebrate-specific Cys-loop LGIC clades were present in the common ancestor of chordates and ecdysozoa. Many of these disappeared from the chordates. Subsequently, selected subunit genes expanded to form large subfamilies.
Collapse
Affiliation(s)
- Joseph A Dent
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.
| |
Collapse
|
46
|
Miller WJ, Riegler M. Evolutionary dynamics of wAu-like Wolbachia variants in neotropical Drosophila spp. Appl Environ Microbiol 2006; 72:826-35. [PMID: 16391124 PMCID: PMC1352291 DOI: 10.1128/aem.72.1.826-835.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/25/2005] [Indexed: 11/20/2022] Open
Abstract
Wolbachia bacteria are common intracellular symbionts of arthropods and have been extensively studied in Drosophila. Most research focuses on two Old Word hosts, Drosophila melanogaster and Drosophila simulans, and does not take into account that some of the Wolbachia associations in these species may have evolved only after their fast global expansion and after the exposure to Wolbachia of previously isolated habitats. Here we looked at Wolbachia of Neotropical Drosophila species. Seventy-one lines of 16 Neotropical Drosophila species sampled in different regions and at different time points were analyzed. Wolbachia is absent in lines of Drosophila willistoni collected before the 1970s, but more recent samples are infected with a strain designated wWil. Wolbachia is absent in all other species of the willistoni group. Polymorphic wWil-related strains were detected in some saltans group species, with D. septentriosaltans being coinfected with at least four variants. Based on wsp and ftsZ sequence data, wWil of D. willistoni is identical to wAu, a strain isolated from D. simulans, but can be discriminated when using a polymorphic minisatellite marker. In contrast to wAu, which infects both germ line and somatic tissues of D. simulans, wWil is found exclusively in the primordial germ line cells of D. willistoni embryos. We report on a pool of closely related Wolbachia strains in Neotropical Drosophila species as a potential source for the wAu strain in D. simulans. Possible evolutionary scenarios reconstructing the infection history of wAu-like Wolbachia in Neotropical Drosophila species and the Old World species D. simulans are discussed.
Collapse
Affiliation(s)
- Wolfgang J Miller
- Laboratories of Genome Dynamics, Center of Anatomy and Cell Biology, Medical University of Vienna, Währingerstr. 10, A-1090 Vienna, Austria.
| | | |
Collapse
|
47
|
Arkhipova IR. Mobile genetic elements and sexual reproduction. Cytogenet Genome Res 2005; 110:372-82. [PMID: 16093689 DOI: 10.1159/000084969] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 01/02/2004] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TE) are prominent components of most eukaryotic genomes. In addition to their possible participation in the origin of sexual reproduction in eukaryotes, they may be also involved in its maintenance as important contributors to the deleterious mutation load. Comparative analyses of transposon content in the genomes of sexually reproducing and anciently asexual species may help to understand the contribution of different TE classes to the deleterious load. The apparent absence of deleterious retrotransposons from the genomes of ancient asexuals is in agreement with the hypothesis that they may play a special role in the maintenance of sexual reproduction and in early extinction for which most species are destined upon the abandonment of sex.
Collapse
Affiliation(s)
- I R Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
48
|
Hua-Van A, Le Rouzic A, Maisonhaute C, Capy P. Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res 2005; 110:426-40. [PMID: 16093695 DOI: 10.1159/000084975] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 04/20/2004] [Indexed: 01/09/2023] Open
Abstract
Retrotransposable elements and transposons are generally both found in most eukaryotes. These two classes of elements are usually distinguished on the basis of their differing mechanisms of transposition. However, their respective frequencies, their intragenomic dynamics and distributions, and the frequencies of their horizontal transfer from one species to another can also differ. The main objective of this review is to compare these two types of elements from a new perspective, using data provided by genome sequencing projects and relating this to the theoretical and observed dynamics. It is shown that the traditional division into two classes, based on the transposition mechanisms, becomes less obvious when other factors are taken into consideration. A great diversity in distribution and dynamics within each class is observed. In contrast, the impact on and the interactions with the genome can show striking similarities between families of the two classes.
Collapse
Affiliation(s)
- A Hua-Van
- Laboratoire Populations, Génétique et Evolution, CNRS, Gif/Yvette, France
| | | | | | | |
Collapse
|
49
|
de Almeida LM, Carareto CMA. Multiple events of horizontal transfer of the Minos transposable element between Drosophila species. Mol Phylogenet Evol 2005; 35:583-94. [PMID: 15878127 DOI: 10.1016/j.ympev.2004.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/17/2004] [Accepted: 11/19/2004] [Indexed: 11/15/2022]
Abstract
In this study the Minos element was analyzed in 26 species of the repleta group and seven species of the saltans group of the genus Drosophila. The PCR and Southern blot analysis showed a wide occurrence of the Minos transposable element among species of the repleta and the saltans groups and also a low number of insertions in both genomes. Three different analyses, nucleotide divergence, historical associations, and comparisons between substitution rates (d(N) and d(S)) of Minos and Adh host gene sequences, suggest the occurrence of horizontal transfer between repleta and saltans species. These data reinforce and extend the Arca and Savakis [Genetica 108 (2000) 263] results and suggest five events of horizontal transfer to explain the present Minos distribution: between D. saltans and the ancestor of the mulleri and the mojavensis clusters; between D. hydei and the ancestor of the mulleri and the mojavensis clusters; between D. mojavensis and D. aldrichi; between D. buzzatii and D. serido; and between D. spenceri and D. emarginata. An alternative explanation would be that repeated events of horizontal transfer involving D. hydei, which is a cosmopolitan species that diverged from the others repleta species as long as 14Mya, could have spread Minos within the repleta group and to D. saltans. The data presented in this article support a model in which distribution of Minos transposon among Drosophila species is determined by horizontal transmission balanced by vertical inactivation and extinction.
Collapse
Affiliation(s)
- Luciane M de Almeida
- Departamento de Biologia, UNESP - Universidade Estadual Paulista, 15054-000 São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
50
|
Hood ME, Katawczik M, Giraud T. Repeat-induced point mutation and the population structure of transposable elements in Microbotryum violaceum. Genetics 2005; 170:1081-9. [PMID: 15911572 PMCID: PMC1451165 DOI: 10.1534/genetics.105.042564] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Repeat-induced point mutation (RIP) is a genome defense in fungi that hypermutates repetitive DNA and is suggested to limit the accumulation of transposable elements. The genome of Microbotryum violaceum has a high density of transposable elements compared to other fungi, but there is also evidence of RIP activity. This is the first report of RIP in a basidiomycete and was obtained by sequencing multiple copies of the integrase gene of a copia-type transposable element and the helicase gene of a Helitron-type element. In M. violaceum, the targets for RIP mutations are the cytosine residues of TCG trinucleotide combinations. Although RIP is a linkage-dependent process that tends to increase the variation among repetitive sequences, a chromosome-specific substructuring was observed in the transposable element population. The observed chromosome-specific patterns are not consistent with RIP, but rather suggest an effect of gene conversion, which is also a linkage-dependent process but results in a homogenization of repeated sequences. Particular sequences were found more widely distributed within the genome than expected by chance and may reflect the recently active variants. Therefore, sequence variation of transposable elements in M. violaceum appears to be driven by selection for transposition ability in combination with the context-specific forces of the RIP and gene conversion.
Collapse
Affiliation(s)
- Michael E Hood
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA.
| | | | | |
Collapse
|