1
|
Mardanova ES, Vasyagin EA, Kotova KG, Zahmanova GG, Ravin NV. Plant-Produced Chimeric Hepatitis E Virus-like Particles as Carriers for Antigen Presentation. Viruses 2024; 16:1093. [PMID: 39066255 PMCID: PMC11281382 DOI: 10.3390/v16071093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in Nicotiana benthamiana plants using self-replicating vector based on the potato virus X genome. The plant-produced fusion proteins in vivo formed VLPs displaying GFP and 4M2e. Therefore, HEV coat protein can be used as a VLP carrier platform for the presentation of relatively large antigens comprising dozens to hundreds of amino acids. Furthermore, plant-produced HEV particles could be useful research tools for the development of recombinant vaccines against influenza.
Collapse
Affiliation(s)
- Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Egor A. Vasyagin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Kira G. Kotova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Gergana G. Zahmanova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| |
Collapse
|
2
|
Richards BA, Goncalves AG, Sullivan MO, Chen W. Engineering protein nanoparticles for drug delivery. Curr Opin Biotechnol 2024; 86:103070. [PMID: 38354452 DOI: 10.1016/j.copbio.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Protein nanoparticles offer a highly tunable platform for engineering multifunctional drug delivery vehicles that can improve drug efficacy and reduce off-target effects. While many protein nanoparticles have demonstrated the ability to tolerate genetic and posttranslational modifications for drug delivery applications, this review will focus on three protein nanoparticles of increasing size. Each protein nanoparticle possesses distinct properties such as highly tunable stability, capacity for splitting or fusing subunits for modular surface decoration, and well-characterized conformational changes with impressive capacity for large protein cargos. While many of the genetic and posttranslational modifications leverage these protein nanoparticle's properties, the shared techniques highlight engineering approaches that have been generalized across many protein nanoparticle platforms.
Collapse
Affiliation(s)
- Blake A Richards
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Antonio G Goncalves
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
3
|
Sullivan MO, Chen W. Engineering Hepatitis B Virus (HBV) Protein Particles for Therapeutic Delivery. Methods Mol Biol 2024; 2720:115-126. [PMID: 37775661 DOI: 10.1007/978-1-0716-3469-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Nature provides an abundance of proteins whose structures and reactivity have been perfected through evolution to perform specific tasks necessary for biological function. The structural and functional properties of many natural proteins are quite valuable for the construction and customization of drug delivery vehicles. Self-assembling protein nanoparticle platforms are particularly useful scaffolds, as their multi-subunit designs allow the attachment of a high density of modifying molecules such as cell-binding ligands that provide avidity for targeting and facilitate encapsulation of large quantities of therapeutic payload. We explored SpyCatcher/SpyTag conjugation as a system to modify hepatitis B virus (HBV)-like particles (HBV VLPs). Using this simple decoration strategy, we demonstrated efficient and cell-selective killing of inflammatory breast cancer cells via delivery of yeast cytosine deaminase suicide enzymes combined with 5-fluoro-cytosine prodrugs.
Collapse
Affiliation(s)
- Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Luo H, Ma Y, Ren Y, Li Z, Sheng Y, Wang Y, Su Z, Bi J, Zhang S. Study of self-assembling properties of HBc-VLP derivatives aided by molecular dynamic simulations from a thermodynamic perspective. J Biomol Struct Dyn 2023:1-14. [PMID: 37908124 DOI: 10.1080/07391102.2023.2273438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Self-assembling protein nanoparticles showed promise for vaccine design due to efficient antigen presentations and safety. However, the unpredictable formations of epitopes-fused protein assemblies remain challenging in the upstream design. This study suggests employing molecular dynamic (MD) simulations to investigate the assembly properties of Hepatitis B core protein (HBc) from thermodynamic perspectives. Eight HBc derivatives were expressed in E. coli, with their self-assembly properties characterised by high-performance liquid chromatography and transmission electron microscopy. MD simulations on the dimers, based on AlphaFold-predicted 3D structures, analysed the derivative at the atomic level. Results revealed that HBc derivatives can form dissociative polymers or large multi-subunit structures due to assembly failures. The instability of the dimer in aqueous solvents or inappropriate intradimer distances could cause major assembly failures. Polar solvation energies played a vital role too in forming assemble-incompetent dimers. Importantly, our study demonstrated that MD simulations on dimers can provide preliminary predictions on the assembly properties of HBc derivatives, thus aiding vaccine design by lowering the risk of self-assembling failures in engineered proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, Australia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Yingli Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, Australia
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
5
|
Castells-Graells R, Meador K, Arbing MA, Sawaya MR, Gee M, Cascio D, Gleave E, Debreczeni JÉ, Breed J, Leopold K, Patel A, Jahagirdar D, Lyons B, Subramaniam S, Phillips C, Yeates TO. Cryo-EM structure determination of small therapeutic protein targets at 3 Å-resolution using a rigid imaging scaffold. Proc Natl Acad Sci U S A 2023; 120:e2305494120. [PMID: 37669364 PMCID: PMC10500258 DOI: 10.1073/pnas.2305494120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.
Collapse
Affiliation(s)
- Roger Castells-Graells
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Mark A. Arbing
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Michael R. Sawaya
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Morgan Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Emma Gleave
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | | | - Jason Breed
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | - Karoline Leopold
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | - Ankoor Patel
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | | | - Bronwyn Lyons
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | - Sriram Subramaniam
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Chris Phillips
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | - Todd O. Yeates
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| |
Collapse
|
6
|
Romero S, Unchwaniwala N, Evans EL, Eliceiri KW, Loeb DD, Sherer NM. Live Cell Imaging Reveals HBV Capsid Translocation from the Nucleus To the Cytoplasm Enabled by Cell Division. mBio 2023; 14:e0330322. [PMID: 36809075 PMCID: PMC10127671 DOI: 10.1128/mbio.03303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly is traditionally thought to occur predominantly in the cytoplasm, where the virus gains access to the virion egress pathway. To better define sites of HBV capsid assembly, we carried out single cell imaging of HBV Core protein (Cp) subcellular trafficking over time under conditions supporting genome packaging and reverse transcription in Huh7 hepatocellular carcinoma cells. Time-course analyses including live cell imaging of fluorescently tagged Cp derivatives showed Cp to accumulate in the nucleus at early time points (~24 h), followed by a marked re-distribution to the cytoplasm at 48 to 72 h. Nucleus-associated Cp was confirmed to be capsid and/or high-order assemblages using a novel dual label immunofluorescence strategy. Nuclear-to-cytoplasmic re-localization of Cp occurred predominantly during nuclear envelope breakdown in conjunction with cell division, followed by strong cytoplasmic retention of Cp. Blocking cell division resulted in strong nuclear entrapment of high-order assemblages. A Cp mutant, Cp-V124W, predicted to exhibit enhanced assembly kinetics, also first trafficked to the nucleus to accumulate at nucleoli, consistent with the hypothesis that Cp's transit to the nucleus is a strong and constitutive process. Taken together, these results provide support for the nucleus as an early-stage site of HBV capsid assembly, and provide the first dynamic evidence of cytoplasmic retention after cell division as a mechanism underpinning capsid nucleus-to-cytoplasm relocalization. IMPORTANCE Hepatitis B virus (HBV) is an enveloped, reverse-transcribing DNA virus that is a major cause of liver disease and hepatocellular carcinoma. Subcellular trafficking events underpinning HBV capsid assembly and virion egress remain poorly characterized. Here, we developed a combination of fixed and long-term (>24 h) live cell imaging technologies to study the single cell trafficking dynamics of the HBV Core Protein (Cp). We demonstrate that Cp first accumulates in the nucleus, and forms high-order structures consistent with capsids, with the predominant route of nuclear egress being relocalization to the cytoplasm during cell division in conjunction with nuclear membrane breakdown. Single cell video microscopy demonstrated unequivocally that Cp's localization to the nucleus is constitutive. This study represents a pioneering application of live cell imaging to study HBV subcellular transport, and demonstrates links between HBV Cp and the cell cycle.
Collapse
Affiliation(s)
- Sofia Romero
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nuruddin Unchwaniwala
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Edward L. Evans
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Ghasemian K, Broer I, Schön J, Killisch R, Kolp N, Springer A, Huckauf J. Oral and Subcutaneous Immunization with a Plant-Produced Mouse-Specific Zona Pellucida 3 Peptide Presented on Hepatitis B Core Antigen Virus-like Particles. Vaccines (Basel) 2023; 11:vaccines11020462. [PMID: 36851339 PMCID: PMC9963689 DOI: 10.3390/vaccines11020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
A short mouse-specific peptide from zona pellucida 3 (mZP3, amino acids 328-342) has been shown to be associated with antibody-mediated contraception. In this study, we investigated the production of mZP3 in the plant, as an orally applicable host, and examined the immunogenicity of this small peptide in the BALB/c mouse model. The mZP3 peptide was inserted into the major immunodominant region of the hepatitis B core antigen and was produced in Nicotiana benthamiana plants via Agrobacterium-mediated transient expression. Soluble HBcAg-mZP3 accumulated at levels up to 2.63 mg/g leaf dry weight (LDW) containing ~172 µg/mg LDW mZP3 peptide. Sucrose gradient analysis and electron microscopy indicated the assembly of the HBcAg-mZP3 virus-like particles (VLPs) in the soluble protein fraction. Subcutaneously administered mZP3 peptide displayed on HBcAg VLPs was immunogenic in BALB/c mice at a relatively low dosage (5.5 µg mZP3 per dose) and led to the generation of mZP3-specific antibodies that bound to the native zona pellucida of wild mice. Oral delivery of dried leaves expressing HBcAg-mZP3 also elicited mZP3-specific serum IgG and mucosal IgA that cross-reacted with the zona pellucida of wild mice. According to these results, it is worthwhile to investigate the efficiency of plants producing HBcAg-mZP3 VLPs as immunogenic edible baits in reducing the fertility of wild mice through inducing antibodies that cross-react to the zona pellucida.
Collapse
Affiliation(s)
- Khadijeh Ghasemian
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Inge Broer
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Jennifer Schön
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany
| | - Richard Killisch
- BIOSERV, Analytik und Medizinprodukte GmbH, 18059 Rostock, Germany
| | - Nadine Kolp
- BIOSERV, Analytik und Medizinprodukte GmbH, 18059 Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jana Huckauf
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
- Correspondence:
| |
Collapse
|
8
|
Zhang L, Tang L, Jiang Y, Wang C, Huang L, Ding T, Zhang T, Li H, Xie L. GE11-antigen-loaded hepatitis B virus core antigen virus-like particles efficiently bind to TNBC tumor. Front Oncol 2023; 13:1110751. [PMID: 37020877 PMCID: PMC10067716 DOI: 10.3389/fonc.2023.1110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Purpose This study aimed to explore the possibility of utilizing hepatitis B core protein (HBc) virus-like particles (VLPs) encapsulate doxorubicin (Dox) to reduce the adverse effect caused by its off-target and toxic side effect. Methods Here, a triple-negative breast cancer (TNBC) tumor-targeting GE11-HBc VLP was constructed through genetic engineering. The GE11 peptide, a 12-amino-acid peptide targeting epidermal growth factor receptor (EGFR), was inserted into the surface protein loops of VLPs. The Dox was loaded into HBc VLPs by a thermal-triggered encapsulation strategy. The in vitro release, cytotoxicity, and cellular uptake of TNBC tumor-targeting GE11-HBc VLPs was then evaluated. Results These VLPs possessed excellent stability, DOX loading efficiency, and preferentially released drug payload at high GSH levels. The insertion of GE11 targeting peptide caused improved cellular uptake and enhanced cell viability inhibitory in EGFR high-expressed TNBC cells. Conclusion Together, these results highlight DOX-loaded, EGFR-targeted VLPs as a potentially useful therapeutic choice for EGFR-overexpressing TNBC.
Collapse
Affiliation(s)
- Long Zhang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Lin Tang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongsheng Jiang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Chenou Wang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Ting Ding
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Tinghong Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| | - Longteng Xie
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| |
Collapse
|
9
|
Pei Y, Xiao Z, Wei S, Peng M, Luo C, Wang D. Studies on HBcAg-rBlo t 5-21 Fusion Protein Vaccine That Alleviates Blomia tropicalis Airway Inflammation. J Inflamm Res 2022; 15:6343-6355. [DOI: 10.2147/jir.s380526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
|
10
|
Wang F, Hu M, Li N, Sun X, Xing G, Zheng G, Jin Q, Liu Y, Cui C, Zhang G. Precise Assembly of Multiple Antigens on Nanoparticles with Specially Designed Affinity Peptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39843-39857. [PMID: 35998372 DOI: 10.1021/acsami.2c10684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antigen proteins, assembled on nanoparticles, can be recognized by antigen-presenting cells effectively to enhance antigen immunogenicity. The ability to simultaneously display multiantigens on the same nanoparticle could have numerous applications but remained technical challenges. Here, we described a method for precise assembly of multiple antigens on nanoparticles with specially designed affinity peptides. First, we designed and screened affinity peptides with high affinity and specificity, which could respectively target the key amino acid residues of classical swine fever virus (CSFV) E2 protein or porcine circovirus type 2 capsid protein (PCV2 Cap) accurately. Then, we conjugated the antigen proteins to poly(lactic acid-glycolic acid) copolymer (PLGA) and Gram-positive enhancer matrix (GEM) nanoparticles through the peptides and perfectly assembled two kinds of multiantigen display nanoparticles with different particle sizes. Subsequently, the immunological properties of the assembled nanoparticles were tested. The results showed that the antigen display nanoparticles could promote the maturation, phagocytosis, and proinflammatory effects of antigen-presenting cells (APCs). Besides, compared with the antigen proteins, multiantigen display nanoparticles could induce much higher levels of antibodies and neutralizing antibodies in mice. This strategy may provide a technical support for the study of protein structure and the research and development of polyvalent vaccines.
Collapse
Affiliation(s)
- Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Man Hu
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450000, China
| | - Xuefeng Sun
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Guanmin Zheng
- Public Health and Preventive Medicine Teaching and Research Center, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Qianyue Jin
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Yunchao Liu
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Chenxu Cui
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450000, China
| | - Gaiping Zhang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
11
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
12
|
Zhao Y, Li Z, Voyer J, Li Y, Chen X. Flagellin/Virus-like Particle Hybrid Platform with High Immunogenicity, Safety, and Versatility for Vaccine Development. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21872-21885. [PMID: 35467839 PMCID: PMC9121874 DOI: 10.1021/acsami.2c01028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 05/07/2023]
Abstract
Hepatitis B core (HBc) virus-like particles (VLPs) and flagellin are highly immunogenic and widely explored vaccine delivery platforms. Yet, HBc VLPs mainly allow the insertion of relatively short antigenic epitopes into the immunodominant c/e1 loop without affecting VLP assembly, and flagellin-based vaccines carry the risk of inducing systemic adverse reactions. This study explored a hybrid flagellin/HBc VLP (FH VLP) platform to present heterologous antigens by replacing the surface-exposed D3 domain of flagellin. FH VLPs were prepared by the insertion of flagellin gene into the c/e1 loop of HBc, followed by E. coli expression, purification, and self-assembly into VLPs. Using the ectodomain of influenza matrix protein 2 (M2e) and ovalbumin (OVA) as models, we found that the D3 domain of flagellin could be replaced with four tandem copies of M2e or the cytotoxic T lymphocyte (CTL) epitope of OVA without interfering with the FH VLP assembly, while the insertion of four tandem copies of M2e into the c/e1 loop of HBc disrupted the VLP assembly. FH VLP-based M2e vaccine elicited potent anti-M2e antibody responses and conferred significant protection against multiple influenza A viral strains, while FljB- or HBc-based M2e vaccine failed to elicit significant protection. FH VLP-based OVA peptide vaccine elicited more potent CTL responses and protection against OVA-expressing lymphoma or melanoma challenges than FljB- or HBc-based OVA peptide vaccine. FH VLP-based vaccines showed a good systemic safety, while flagellin-based vaccines significantly increased serum interleukin 6 and tumor necrosis factor α levels and also rectal temperature at increased doses. We further found that the incorporation of a clinical CpG 1018 adjuvant could enhance the efficacy of FH VLP-based vaccines. Our data support FH VLPs to be a highly immunogenic, safe, and versatile platform for vaccine development to elicit potent humoral and cellular immune responses.
Collapse
Affiliation(s)
- Yiwen Zhao
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Zhuofan Li
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Jewel Voyer
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Yibo Li
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Xinyuan Chen
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| |
Collapse
|
13
|
Yang K, Wang C, White KI, Pfuetzner RA, Esquivies L, Brunger AT. Structural conservation among variants of the SARS-CoV-2 spike postfusion bundle. Proc Natl Acad Sci U S A 2022; 119:e2119467119. [PMID: 35363556 PMCID: PMC9169775 DOI: 10.1073/pnas.2119467119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies due to structural and dynamic changes of the viral spike glycoprotein (S). The heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains of S drive virus–host membrane fusion by assembly into a six-helix bundle, resulting in delivery of viral RNA into the host cell. We surveyed mutations of currently reported SARS-CoV-2 variants and selected eight mutations, including Q954H, N969K, and L981F from the Omicron variant, in the postfusion HR1HR2 bundle for functional and structural studies. We designed a molecular scaffold to determine cryogenic electron microscopy (cryo-EM) structures of HR1HR2 at 2.2–3.8 Å resolution by linking the trimeric N termini of four HR1 fragments to four trimeric C termini of the Dps4 dodecamer from Nostoc punctiforme. This molecular scaffold enables efficient sample preparation and structure determination of the HR1HR2 bundle and its mutants by single-particle cryo-EM. Our structure of the wild-type HR1HR2 bundle resolves uncertainties in previously determined structures. The mutant structures reveal side-chain positions of the mutations and their primarily local effects on the interactions between HR1 and HR2. These mutations do not alter the global architecture of the postfusion HR1HR2 bundle, suggesting that the interfaces between HR1 and HR2 are good targets for developing antiviral inhibitors that should be efficacious against all known variants of SARS-CoV-2 to date. We also note that this work paves the way for similar studies in more distantly related viruses.
Collapse
Affiliation(s)
- Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - K. Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
14
|
Li Z, Maity B, Hishikawa Y, Ueno T, Lu D. Importance of the Subunit-Subunit Interface in Ferritin Disassembly: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1106-1113. [PMID: 35015545 DOI: 10.1021/acs.langmuir.1c02753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferritin is a spherical cage-like protein that is useful for loading large functional particles for various applications. To our knowledge, how pH affects the interfaces inside ferritin and the mechanism of ferritin disassembly is far from complete. For this article, we conducted a series of molecular dynamics simulations (MD) at different pH values to study how interfaces affect ferritins' stability. It is shown that dimers are stable even at extremely low pH (pH 2.0), indicating that the dimer is the essential subunit for disassembly, and the slight swelling of the dimer resulting from monomer rotation inside a dimer is what triggers disassembly. During ferritin disassembly, there are two types of interfaces involved, and the interface between dimers is crucial. We also found that the driving forces for maintaining dimer stability are different when a dimer is inside ferritin and in an acidic solution. At low pH, the protonation of residues can lead to the loss of the salt bridge and the hydrogen bond between dimers, resulting in the disassembly of ferritin in an acidic environment. The above simulations reveal the possible mechanism of ferritin disassembly in an acidic solution, which can help us to design innovative and functional ferritin cages for different applications.
Collapse
Affiliation(s)
- Zhipeng Li
- Ministry of Education Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Basudev Maity
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yuki Hishikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Diannan Lu
- Ministry of Education Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Roman-Sosa G, Leske A, Ficht X, Dau TH, Holzerland J, Hoenen T, Beer M, Kammerer R, Schirmbeck R, Rey FA, Cordo SM, Groseth A. Immunization with GP1 but Not Core-like Particles Displaying Isolated Receptor-Binding Epitopes Elicits Virus-Neutralizing Antibodies against Junín Virus. Vaccines (Basel) 2022; 10:vaccines10020173. [PMID: 35214632 PMCID: PMC8874384 DOI: 10.3390/vaccines10020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
New World arenaviruses are rodent-transmitted viruses and include a number of pathogens that are responsible for causing severe human disease. This includes Junín virus (JUNV), which is the causative agent of Argentine hemorrhagic fever. The wild nature and mobility of the rodent reservoir host makes it difficult to control the disease, and currently passive immunization with high-titer neutralizing antibody-containing plasma from convalescent patients is the only specific therapy. However, dwindling supplies of naturally available convalescent plasma, and challenges in developing similar resources for other closely related viruses, have made the development of alternative antibody-based therapeutic approaches of critical importance. In this study, we sought to induce a neutralizing antibody response in rabbits against the receptor-binding subunit of the viral glycoprotein, GP1, and the specific peptide sequences in GP1 involved in cellular receptor contacts. While these specific receptor-interacting peptides did not efficiently induce the production of neutralizing antibodies when delivered as a particulate antigen (as part of hepatitis B virus core-like particles), we showed that recombinant JUNV GP1 purified from transfected mammalian cells induced virus-neutralizing antibodies at high titers in rabbits. Further, neutralization was observed across a range of unrelated JUNV strains, a feature that is critical for effectiveness in the field. These results underscore the potential of GP1 alone to induce a potent neutralizing antibody response and highlight the importance of epitope presentation. In addition, effective virus neutralization by rabbit antibodies supports the potential applicability of this species for the future development of immunotherapeutics (e.g., based on humanized monoclonal antibodies). Such information can be applied in the design of vaccines and immunogens for both prevention and specific therapies against this and likely also other closely related pathogenic New World arenaviruses.
Collapse
Affiliation(s)
- Gleyder Roman-Sosa
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (X.F.); (R.S.)
- Correspondence: (G.R.-S.); (A.G.)
| | - Anne Leske
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (A.L.); (J.H.)
| | - Xenia Ficht
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (X.F.); (R.S.)
| | - Tung Huy Dau
- Laboratory for Immunogenetics, Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (T.H.D.); (R.K.)
| | - Julia Holzerland
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (A.L.); (J.H.)
| | - Thomas Hoenen
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany;
| | - Martin Beer
- National and OIE Reference Laboratory for BHV-1, Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany;
| | - Robert Kammerer
- Laboratory for Immunogenetics, Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (T.H.D.); (R.K.)
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (X.F.); (R.S.)
| | - Felix A. Rey
- Structural Virology Unit, CNRS UMR3569, Institut Pasteur, Université de Paris, 75015 Paris, France;
| | - Sandra M. Cordo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), University of Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 4, Buenos Aires 1428, Argentina;
| | - Allison Groseth
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (A.L.); (J.H.)
- Correspondence: (G.R.-S.); (A.G.)
| |
Collapse
|
16
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
17
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
18
|
Szyszka TN, Jenner EN, Tasneem N, Lau YH. Molecular Display on Protein Nanocompartments: Design Strategies and Systems Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Taylor N. Szyszka
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2006 Australia
| | - Eric N. Jenner
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
| | - Nuren Tasneem
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
| | - Yu Heng Lau
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2006 Australia
| |
Collapse
|
19
|
Berckman EA, Chen W. Self-assembling protein nanocages for modular enzyme assembly by orthogonal bioconjugation. Biotechnol Prog 2021; 37:e3190. [PMID: 34173352 DOI: 10.1002/btpr.3190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/06/2022]
Abstract
The wide variety of enzymatic pathways that can benefit from enzyme scaffolding is astronomical. While enzyme co-localization based on protein, DNA, and RNA scaffolds has been reported, we still lack scaffolds that offer well-defined and uniform three-dimensional structures for enzyme organization. Here we reported a new approach for protein co-localization using naturally occurring protein nanocages as a scaffold. Two different nanocages, the 25 nm E2 and the 34 nm heptatitis B virus, were used to demonstrate the successfully co-localization of the endoglucanase CelA and cellulose binding domain using the robust SpyTag/SpyCatcher bioconjugation chemistry. Because of the simplicity of the assembly, this strategy is useful not only for in vivo enzyme cascading but also the potential for in vivo applications as well.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
20
|
Generation of ordered protein assemblies using rigid three-body fusion. Proc Natl Acad Sci U S A 2021; 118:2015037118. [PMID: 34074752 DOI: 10.1073/pnas.2015037118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.
Collapse
|
21
|
Swanson J, Fragkoudis R, Hawes PC, Newman J, Burman A, Panjwani A, Stonehouse NJ, Tuthill TJ. Generation of Antibodies against Foot-and-Mouth-Disease Virus Capsid Protein VP4 Using Hepatitis B Core VLPs as a Scaffold. Life (Basel) 2021; 11:338. [PMID: 33920339 PMCID: PMC8069431 DOI: 10.3390/life11040338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The picornavirus foot-and-mouth disease virus (FMDV) is the causative agent of the economically important disease of livestock, foot-and-mouth disease (FMD). VP4 is a highly conserved capsid protein, which is important during virus entry. Previous published work has shown that antibodies targeting the N-terminus of VP4 of the picornavirus human rhinovirus are broadly neutralising. In addition, previous studies showed that immunisation with the N-terminal 20 amino acids of enterovirus A71 VP4 displayed on the hepatitis B core (HBc) virus-like particles (VLP) can induce cross-genotype neutralisation. To investigate if a similar neutralising response against FMDV VP4 could be generated, HBc VLPs displaying the N-terminus of FMDV VP4 were designed. The N-terminal 15 amino acids of FMDV VP4 was inserted into the major immunodominant region. HBc VLPs were also decorated with peptides of the N-terminus of FMDV VP4 attached using a HBc-spike binding tag. Both types of VLPs were used to immunise mice and the resulting serum was investigated for VP4-specific antibodies. The VLP with VP4 inserted into the spike, induced VP4-specific antibodies, however the VLPs with peptides attached to the spikes did not. The VP4-specific antibodies could recognise native FMDV, but virus neutralisation was not demonstrated. This work shows that the HBc VLP presents a useful tool for the presentation of FMDV capsid epitopes.
Collapse
Affiliation(s)
- Jessica Swanson
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Rennos Fragkoudis
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | - Philippa C. Hawes
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | - Joseph Newman
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | - Alison Burman
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | - Anusha Panjwani
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | | | - Tobias J. Tuthill
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| |
Collapse
|
22
|
Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Nat Commun 2021; 12:589. [PMID: 33500404 PMCID: PMC7838286 DOI: 10.1038/s41467-020-20862-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Symmetrical protein complexes are ubiquitous in biology. Many have been re-engineered for chemical and medical applications. Viral capsids and their assembly are frequent platforms for these investigations. A means to create asymmetric capsids may expand applications. Here, starting with homodimeric Hepatitis B Virus capsid protein, we develop a heterodimer, design a hierarchical assembly pathway, and produce asymmetric capsids. In the heterodimer, the two halves have different growth potentials and assemble into hexamers. These preformed hexamers can nucleate co-assembly with other dimers, leading to Janus-like capsids with a small discrete hexamer patch. We can remove the patch specifically and observe asymmetric holey capsids by cryo-EM reconstruction. The resulting hole in the surface can be refilled with fluorescently labeled dimers to regenerate an intact capsid. In this study, we show how an asymmetric subunit can be used to generate an asymmetric particle, creating the potential for a capsid with different surface chemistries.
Collapse
|
23
|
Wang Z, Tang S, Yue N, Qian Z, Zhou S. Development of HBc virus-like particles as modular nanocarrier by intein-mediated trans-splicing. Biochem Biophys Res Commun 2021; 534:891-895. [PMID: 33213839 DOI: 10.1016/j.bbrc.2020.10.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022]
Abstract
Hepatitis B virus core protein (HBc) spontaneously assembles as Virus-like particles (VLPs) in Escherichia coli (E. coli) which is extensively used as a nanocarrier to boost antigen immunogenicity. Genetic fusion of cargo protein with HBc occasionally forms inclusion bodies instead of properly assembled VLPs. To this end, we devised HBc VLPs as a modular nanocarrier for antigen delivery by intein-mediated trans-splicing (TS). We introduced split inteinC (intC) to the C-terminus of split HBc N-core to employ intein-mediated TS technology to HBc VLPs. Split HBc with the insertion of intC at N-core C-terminus (designated as HBc N-intC-C) existed in inclusion bodies. Interestingly, introduction of a soluble tag, gb1, to intC C-terminus remarkably improved the solubility of recombinant protein (named HBc N-intC-gb1-C). Moreover, newly designed recombinant spontaneously assembled as VLPs and endowed efficiently coupling two different model antigens onto HBc N-intC-gb1-C VLPs. Furthermore, model antigens delivered by HBc VLPs induced a dramatically enhanced antigen-specific immune responses. Antigen proteins mainly elicited Th2 IgG responses while antigens delivered by HBc VLPs steered Th1/Th2 balanced IgG responses. Taken together, intein-mediated TS was amenable to decorate HBc VLPs with antigens and showed good potential for antigen delivery.
Collapse
Affiliation(s)
- Zewei Wang
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shubing Tang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201058, China.
| | - Nan Yue
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Shumin Zhou
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
24
|
Hartzell EJ, Lieser RM, Sullivan MO, Chen W. Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery. ACS NANO 2020; 14:12642-12651. [PMID: 32924431 DOI: 10.1021/acsnano.9b08756] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hepatitis B virus-like particle (HBV VLP) is an attractive protein nanoparticle platform due to the availability of 240 modification sites for engineering purposes. Although direct protein insertion into the surface loop has been demonstrated, this decoration strategy is restricted by the size of the inserted protein moieties. Meanwhile, larger proteins can be decorated using chemical conjugations; yet these approaches perturb the integrity of more delicate proteins and can unfavorably orient the proteins, impairing active surface display. Herein, we aim to create a robust and highly modular method to produce smart HBV-based nanodevices by using the SpyCatcher/SpyTag system, which allows a wide range of peptides and proteins to be conjugated directly and simply onto the modified HBV capsids in a controlled and biocompatible manner. Our technology allows the modular surface modification of HBV VLPs with multiple components, which provides signal amplification, increased targeting avidity, and high therapeutic payload incorporation. We have achieved a yield of over 200 mg/L for these engineered HBV VLPs and demonstrated the flexibility of this platform in both biosensing and drug delivery applications. The ability to decorate over 200 nanoluciferases per VLP improved detection signal by over 1500-fold, such that low nanomolar levels of thrombin could be detected by the naked eye. Meanwhile, a dimeric prodrug-activating enzyme was loaded without cross-linking particles by coexpressing orthogonally labeled monomers. This along with a epidermal growth factor receptor-binding peptide enabled tunable uptake of HBV VLPs into inflammatory breast cancer cells, leading to efficient suicide enzyme delivery and cell killing.
Collapse
Affiliation(s)
- Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
25
|
Špakova A, Dalgėdienė I, Insodaitė R, Sasnauskienė A, Žvirblienė A, Petraitytė-Burneikienė R. vB_EcoS_NBD2 bacteriophage-originated polytubes as a carrier for the presentation of foreign sequences. Virus Res 2020; 290:198194. [PMID: 33058966 DOI: 10.1016/j.virusres.2020.198194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/15/2023]
Abstract
Virus-based nanoparticles constitute a promising platform for the creation of efficient vaccines and nanomaterials. Previously we demonstrated, that the recombinant tail tube protein gp39 of vB_EcoS_NBD2 bacteriophage self-assembles into extremely long (from 0.1 to >3.95 μm), flexible, and stable polytubes when produced in Saccharomyces cerevisiae. To develop a tubular platform for multivalent display of foreign antigens, yeast-derived recombinant tail tube protein gp39 was chosen as a scaffold. The carboxy-terminal fusions of gp39 with various antigens up to 238 amino acids in length resulted in different synthesis efficiency and self-assembly capacity. Recombinant gp39 fused with green fluorescent protein (eGFP) comprising 238 amino acid residues was capable to self-assemble into short fluorescent polytubes with retained eGFP functional activity. By demonstrating the display of active foreign antigens on the exterior surface of polytubes, these structures may provide a promising tool for diverse applications in nanotechnology.
Collapse
Affiliation(s)
- Aliona Špakova
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Indrė Dalgėdienė
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Rasa Insodaitė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Aušra Sasnauskienė
- Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelija Žvirblienė
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Rasa Petraitytė-Burneikienė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
26
|
Peyret H, Ponndorf D, Meshcheriakova Y, Richardson J, Lomonossoff GP. Covalent protein display on Hepatitis B core-like particles in plants through the in vivo use of the SpyTag/SpyCatcher system. Sci Rep 2020; 10:17095. [PMID: 33051543 PMCID: PMC7555512 DOI: 10.1038/s41598-020-74105-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/21/2020] [Indexed: 01/07/2023] Open
Abstract
Virus-like particles (VLPs) can be used as nano-carriers and antigen-display systems in vaccine development and therapeutic applications. Conjugation of peptides or whole proteins to VLPs can be achieved using different methods such as the SpyTag/SpyCatcher system. Here we investigate the conjugation of tandem Hepatitis B core (tHBcAg) VLPs and the model antigen GFP in vivo in Nicotiana benthamiana. We show that tHBcAg VLPs could be successfully conjugated with GFP in the cytosol and ER without altering VLP formation or GFP fluorescence. Conjugation in the cytosol was more efficient when SpyCatcher was displayed on tHBcAg VLPs instead of being fused to GFP. This effect was even more obvious in the ER, showing that it is optimal to display SpyCatcher on the tHBcAg VLPs and SpyTag on the binding partner. To test transferability of the GFP results to other antigens, we successfully conjugated tHBcAg VLPs to the HIV capsid protein P24 in the cytosol. This work presents an efficient strategy which can lead to time and cost saving post-translational, covalent conjugation of recombinant proteins in plants.
Collapse
Affiliation(s)
- Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK.
| | - Daniel Ponndorf
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - Jake Richardson
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | | |
Collapse
|
27
|
Wei J, Li Z, Yang Y, Ma X, An W, Ma G, Su Z, Zhang S. A biomimetic VLP influenza vaccine with interior NP/exterior M2e antigens constructed through a temperature shift-based encapsulation strategy. Vaccine 2020; 38:5987-5996. [DOI: 10.1016/j.vaccine.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023]
|
28
|
Thompson MC, Yeates TO, Rodriguez JA. Advances in methods for atomic resolution macromolecular structure determination. F1000Res 2020; 9:F1000 Faculty Rev-667. [PMID: 32676184 PMCID: PMC7333361 DOI: 10.12688/f1000research.25097.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances have dramatically increased the power and scope of structural biology. New developments in high-resolution cryo-electron microscopy, serial X-ray crystallography, and electron diffraction have been especially transformative. Here we highlight some of the latest advances and current challenges at the frontiers of atomic resolution methods for elucidating the structures and dynamical properties of macromolecules and their complexes.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| |
Collapse
|
29
|
Hepatitis B Virus Core Protein Domains Essential for Viral Capsid Assembly in a Cellular Context. J Mol Biol 2020; 432:3802-3819. [PMID: 32371046 DOI: 10.1016/j.jmb.2020.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein (HBc) is essential to the formation of the HBV capsid. HBc contains two domains: the N-terminal domain corresponding to residues 1-140 essential to form the icosahedral shell and the C-terminal domain corresponding to a basic and phosphorylated peptide, and required for DNA replication. The role of these two domains for HBV capsid assembly was essentially studied in vitro with HBc purified from mammalian or non-mammalian cell lysates, but their respective role in living cells remains to be clarified. We therefore investigated the assembly of the HBV capsid in Huh7 cells by combining fluorescence lifetime imaging microscopy/Förster's resonance energy transfer, fluorescence correlation spectroscopy and transmission electron microscopy approaches. We found that wild-type HBc forms oligomers early after transfection and at a sub-micromolar concentration. These oligomers are homogeneously diffused throughout the cell. We quantified a stoichiometry ranging from ~170 to ~230 HBc proteins per oligomer, consistent with the visualization of eGFP-containingHBV capsid shaped as native capsid particles by transmission electron microscopy. In contrast, no assembly was observed when HBc-N-terminal domain was expressed. This highlights the essential role of the C-terminal domain to form capsid in mammalian cells. Deletion of either the third helix or of the 124-135 residues of HBc had a dramatic impact on the assembly of the HBV capsid, inducing the formation of mis-assembled oligomers and monomers, respectively. This study shows that our approach using fluorescent derivatives of HBc is an innovative method to investigate HBV capsid formation.
Collapse
|
30
|
Zhao Y, Li Z, Zhu X, Cao Y, Chen X. Improving immunogenicity and safety of flagellin as vaccine carrier by high-density display on virus-like particle surface. Biomaterials 2020; 249:120030. [PMID: 32315864 DOI: 10.1016/j.biomaterials.2020.120030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
Flagellin is a protein-based adjuvant that activates toll-like receptor (TLR) 5. Flagellin has been actively explored as vaccine adjuvants and carriers. Preclinical and clinical studies find flagellin-based vaccines have a risk to induce systemic adverse reactions potentially due to its overt activation of TLR5. To improve safety and immunogenicity of flagellin as vaccine carriers, FljB was displayed at high densities on hepatitis b core (HBc) virus-like particle (VLP) surface upon c/e1 loop insertion. FljB-HBc (FH) VLPs showed significantly reduced ability to activate TLR5 or induce systemic interleukin-6 release as compared to FljB. FH VLPs also failed to significantly increase rectal temperature of mice, while FljB could significantly increase rectal temperature of mice. These data indicated systemic safety of FljB could be significantly improved by high-density display on HBc VLP surface. Besides improved safety, FH VLPs and FljB similarly boosted co-administered ovalbumin immunization and FH VLPs were found to induce two-fold higher anti-FljB antibody titer than FljB. These data indicated preserved adjuvant potency and improved immunogenicity after high-density display of FljB on HBc VLP surface. Consistent with the high immunogenicity, FH VLPs were found to be more efficiently taken up by bone marrow-derived dendritic cells and stimulate more potent dendritic cell maturation than FljB. Lastly, FH VLPs were found to be a more immunogenic carrier than FljB, HBc VLPs, or the widely used keyhole limpet hemocyanin for nicotine vaccine development with a good local and systemic safety. Our data support FH VLPs to be a potentially safer and more immunogenic carrier than FljB for vaccine development.
Collapse
Affiliation(s)
- Yiwen Zhao
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Zhuofan Li
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Xiaoyue Zhu
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Yan Cao
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
31
|
Lei X, Cai X, Yang Y. Genetic engineering strategies for construction of multivalent chimeric VLPs vaccines. Expert Rev Vaccines 2020; 19:235-246. [PMID: 32133886 DOI: 10.1080/14760584.2020.1738227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Over the past two decades, virus-like particles (VLPs) have been developed as a new generation of vaccines against viral infections. Based on VLPs, chimeric VLPs (chi-VLPs) have been generated through genetic modifications or chemical couplings. For construction of multivalent chi-VLPs vaccines, multiple genetic engineering strategies are continuously being developed. Thus, it is important to provide a summary as reference for researchers in this field.Areas covered: The representative studies on the genetic engineered multivalent chi-VLPs are summarized and mainly focused on chimeric capsid VLPs and chimeric enveloped VLPs. The advantages and limitations of each strategy are also discussed at last, as well as opinions on platform choice and future directions of eVLPs vaccines.Expert opinion: The design of multivalent chi-VLPs vaccines needs to meet the following specifications: 1) the incorporated antigens are suggested to display on the exposed surface of chi-VLPs and do not have excessive adverse effects on the stability of chi-VLPs; 2) the chi-VLPs should elicit protective antibodies against the incorporated antigen as well as the source virus of VLPs. However, there is no requirement of retaining the antigenicity of VLPs when using VLPs solely as carriers for antigens display or drug delivery.
Collapse
Affiliation(s)
- Xinnuo Lei
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), Hunan Agricultural University, Changsha, Hunan, China.,Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yi Yang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), Hunan Agricultural University, Changsha, Hunan, China.,Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
32
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
33
|
Yeates TO, Agdanowski MP, Liu Y. Development of imaging scaffolds for cryo-electron microscopy. Curr Opin Struct Biol 2020; 60:142-149. [PMID: 32066085 DOI: 10.1016/j.sbi.2020.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Following recent hardware and software developments, single particle cryo-electron microscopy (cryo-EM) has become one of the most popular structural biology tools. Many targets, such as viruses, large protein complexes and oligomeric membrane proteins, have been resolved to atomic resolution using single-particle cryo-EM, which relies on the accurate assignment of particle location and orientation from intrinsically noisy projection images. The same image processing procedures are more challenging for smaller proteins due to their lower signal-to-noise ratios. Consequently, though most cellular proteins are less than 50kDa, so far it has been possible to solve cryo-EM structures near that size range for only a few favorable cases. Here we highlight some of the challenges and recent efforts to break through this lower size limit by engineering large scaffolds to rigidly display multiple small proteins for imaging. Future design efforts are noted.
Collapse
Affiliation(s)
- Todd O Yeates
- UCLA Department of Chemistry and Biochemistry, United States; UCLA-DOE Institute for Genomics and Proteomics, United States; UCLA Molecular Biology Institute, United States.
| | | | - Yuxi Liu
- UCLA Department of Chemistry and Biochemistry, United States; UCLA Molecular Biology Institute, United States
| |
Collapse
|
34
|
Aves KL, Goksøyr L, Sander AF. Advantages and Prospects of Tag/Catcher Mediated Antigen Display on Capsid-Like Particle-Based Vaccines. Viruses 2020; 12:v12020185. [PMID: 32041299 PMCID: PMC7077247 DOI: 10.3390/v12020185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Capsid-like particles (CLPs) are multimeric, repetitive assemblies of recombinant viral capsid proteins, which are highly immunogenic due to their structural similarity to wild-type viruses. CLPs can be used as molecular scaffolds to enable the presentation of soluble vaccine antigens in a similar structural format, which can significantly increase the immunogenicity of the antigen. CLP-based antigen display can be obtained by various genetic and modular conjugation methods. However, these vary in their versatility as well as efficiency in achieving an immunogenic antigen display. Here, we make a comparative review of the major CLP-based antigen display technologies. The Tag/Catcher-AP205 platform is highlighted as a particularly versatile and efficient technology that offers new qualitative and practical advantages in designing modular CLP vaccines. Finally, we discuss how split-protein Tag/Catcher conjugation systems can help to further propagate and enhance modular CLP vaccine designs.
Collapse
Affiliation(s)
- Kara-Lee Aves
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
| | - Louise Goksøyr
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
- AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark
| | - Adam F. Sander
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
- AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark
- Correspondence:
| |
Collapse
|
35
|
Rat V, Seigneuret F, Burlaud-Gaillard J, Lemoine R, Hourioux C, Zoulim F, Testoni B, Meunier JC, Tauber C, Roingeard P, de Rocquigny H. BAY 41-4109-mediated aggregation of assembled and misassembled HBV capsids in cells revealed by electron microscopy. Antiviral Res 2019; 169:104557. [PMID: 31302151 DOI: 10.1016/j.antiviral.2019.104557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
HBc is a small protein essential for the formation of the icosahedral HBV capsid. Its multiple roles in the replication cycle make this protein a promising target for the development of antiviral molecules. Based on the structure of HBc, a series of HBV assembly inhibitors, also known as capsid assembly modulators, were identified. We investigated the effect of BAY 41-4109, a heteroaryldihydropyrimidine derivative that promotes the assembly of a non-capsid polymer. We showed, by confocal microscopy, that BAY 41-4109 mediated HBc aggregation, mostly in the cytoplasm of Huh7 cells. Image analysis revealed that aggregate size depended on BAY 41-4109 concentration and treatment duration. Large aggregates in the vicinity of the nucleus were enclosed by invaginations of the nuclear envelope. This deformation of the nuclear envelope was confirmed by transmission electron microscopy (TEM) and immuno-TEM. These two techniques also revealed that the HBc aggregates were accumulations of capsid-like shells with an electron-dense material consisting of HBV core fragments. These findings, shedding light on the ultrastructural organization of HBc aggregates, provide insight into the mechanisms of action of BAY 41-4109 against HBV and will serve as a basis for comparison with other HBV capsid assembly inhibitors.
Collapse
Affiliation(s)
- Virgile Rat
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Florian Seigneuret
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Julien Burlaud-Gaillard
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Roxane Lemoine
- B-Cell Resources Platform, EA4245 "Transplantation, Immunologie et Inflammation", Université de Tours, 10 Boulevard Tonnellé, 37032, Tours Cedex 1, France
| | - Christophe Hourioux
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France; Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Fabien Zoulim
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008, Lyon, France; Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, France
| | - Barbara Testoni
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008, Lyon, France; Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, France
| | - Jean-Christophe Meunier
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Clovis Tauber
- UMRS Inserm U1253 - Université de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Philippe Roingeard
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France; Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Hugues de Rocquigny
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France.
| |
Collapse
|
36
|
Yao Q, Weaver SJ, Mock JY, Jensen GJ. Fusion of DARPin to Aldolase Enables Visualization of Small Protein by Cryo-EM. Structure 2019; 27:1148-1155.e3. [PMID: 31080120 PMCID: PMC6610650 DOI: 10.1016/j.str.2019.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Solving protein structures by single-particle cryoelectron microscopy (cryo-EM) has become a crucial tool in structural biology. While exciting progress is being made toward the visualization of small macromolecules, the median protein size in both eukaryotes and bacteria is still beyond the reach of cryo-EM. To overcome this problem, we implemented a platform strategy in which a small protein target was rigidly attached to a large, symmetric base via a selectable adapter. Of our seven designs, the best construct used a designed ankyrin repeat protein (DARPin) rigidly fused to tetrameric rabbit muscle aldolase through a helical linker. The DARPin retained its ability to bind its target: GFP. We solved the structure of this complex to 3.0 Å resolution overall, with 5-8 Å resolution in the GFP region. As flexibility in the DARPin position limited the overall resolution of the target, we describe strategies to rigidify this element.
Collapse
Affiliation(s)
- Qing Yao
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Sara J Weaver
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Jee-Young Mock
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
37
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
38
|
Liu Y, Huynh DT, Yeates TO. A 3.8 Å resolution cryo-EM structure of a small protein bound to an imaging scaffold. Nat Commun 2019; 10:1864. [PMID: 31015551 PMCID: PMC6478846 DOI: 10.1038/s41467-019-09836-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/02/2019] [Indexed: 11/15/2022] Open
Abstract
Proteins smaller than about 50 kDa are currently too small to be imaged at high resolution by cryo-electron microscopy (cryo-EM), leaving most protein molecules in the cell beyond the reach of this powerful structural technique. Here we use a designed protein scaffold to bind and symmetrically display 12 copies of a small 26 kDa protein, green fluorescent protein (GFP). We show that the bound cargo protein is held rigidly enough to visualize it at a resolution of 3.8 Å by cryo-EM, where specific structural features of the protein are visible. The designed scaffold is modular and can be modified through modest changes in its amino acid sequence to bind and display diverse proteins for imaging, thus providing a general method to break through the lower size limitation in cryo-EM.
Collapse
Affiliation(s)
- Yuxi Liu
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| | - Duc T Huynh
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA, 90095, USA
| | - Todd O Yeates
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA, 90095, USA.
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, 90095, USA.
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, Los Angeles, CA, 90095, USA.
| |
Collapse
|
39
|
Pang EL, Peyret H, Ramirez A, Loh HS, Lai KS, Fang CM, Rosenberg WM, Lomonossoff GP. Epitope Presentation of Dengue Viral Envelope Glycoprotein Domain III on Hepatitis B Core Protein Virus-Like Particles Produced in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2019; 10:455. [PMID: 31057572 PMCID: PMC6477658 DOI: 10.3389/fpls.2019.00455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/26/2019] [Indexed: 05/07/2023]
Abstract
Dengue fever is currently ranked as the top emerging tropical disease, driven by increased global travel, urbanization, and poor hygiene conditions as well as global warming effects which facilitate the spread of Aedes mosquitoes beyond their current distribution. Today, more than 100 countries are affected most of which are tropical Asian and Latin American nations with limited access to medical care. Hence, the development of a dengue vaccine that is dually cost-effective and able to confer a comprehensive protection is ultimately needed. In this study, a consensus sequence of the antigenic dengue viral glycoprotein domain III (cEDIII) was used aiming to provide comprehensive coverage against all four circulating dengue viral serotypes and potential clade replacement event. Utilizing hepatitis B tandem core technology, the cEDIII sequence was inserted into the immunodominant c/e1 loop region so that it could be displayed on the spike structures of assembled particles. The tandem core particles displaying cEDIII epitopes (tHBcAg-cEDIII) were successfully produced in Nicotiana benthamiana via Agrobacterium-mediated transient expression strategy to give a protein of ∼54 kDa, detected in both soluble and insoluble fractions of plant extracts. The assembled tHBcAg-cEDIII virus-like particles (VLPs) were also visualized from transmission electron microscopy. These VLPs had diameters that range from 32 to 35 nm, presenting an apparent size increment as compared to tHBcAg control particles without cEDIII display (namely tEL). Mice immunized with tHBcAg-cEDIII VLPs showed a positive seroconversion to cEDIII antigen, thereby signifying that the assembled tHBcAg-cEDIII VLPs have successfully displayed cEDIII antigen to the immune system. If it is proven to be successful, tHBcAg-cEDIII has the potential to be developed as a cost-effective vaccine candidate that confers a simultaneous protection against all four infecting dengue viral serotypes.
Collapse
Affiliation(s)
- Ee Leen Pang
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Hwei-San Loh
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Kok-Song Lai
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | | |
Collapse
|
40
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
41
|
Klijn ME, Vormittag P, Bluthardt N, Hubbuch J. High-throughput computational pipeline for 3-D structure preparation and in silico protein surface property screening: A case study on HBcAg dimer structures. Int J Pharm 2019; 563:337-346. [PMID: 30935914 DOI: 10.1016/j.ijpharm.2019.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Knowledge-based experimental design can aid biopharmaceutical high-throughput screening (HTS) experiments needed to identify critical manufacturability parameters. Prior knowledge can be obtained via computational methods such as protein property extraction from 3-D protein structures. This study presents a high-throughput 3-D structure preparation and refinement pipeline that supports structure screenings with an automated and data-dependent workflow. As a case study, three chimeric virus-like particle (VLP) building blocks, hepatitis B core antigen (HBcAg) dimers, were constructed. Molecular dynamics (MD) refinement quality, speed, stability, and correlation to zeta potential data was evaluated using different MD simulation settings. Settings included 2 force fields (YASARA2 and AMBER03) and 2 pKa computation methods (YASARA and H++). MD simulations contained a data-dependent termination via identification of a 2 ns Window of Stability, which was also used for robust descriptor extraction. MD simulation with YASARA2, independent of pKa computation method, was found to be most stable and computationally efficient. These settings resulted in a fast refinement (6.6-37.5 h), a good structure quality (-1.17--1.13) and a strong linear dependence between dimer surface charge and complete chimeric HBcAg VLP zeta potential. These results indicate the computational pipeline's applicability for early-stage candidate assessment and design optimization of HTS manufacturability or formulability experiments.
Collapse
Affiliation(s)
- Marieke E Klijn
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Baden-Wuerttemberg, Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Baden-Wuerttemberg, Germany
| | - Nicolai Bluthardt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Baden-Wuerttemberg, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Baden-Wuerttemberg, Germany.
| |
Collapse
|
42
|
Anasir MI, Poh CL. Advances in Antigenic Peptide-Based Vaccine and Neutralizing Antibodies against Viruses Causing Hand, Foot, and Mouth Disease. Int J Mol Sci 2019; 20:ijms20061256. [PMID: 30871133 PMCID: PMC6471744 DOI: 10.3390/ijms20061256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) commonly produces herpangina, but fatal neurological complications have been observed in children. Enterovirus 71 (EV-A71) and Coxsackievirus 16 (CV-A16) are the predominant viruses causing HFMD worldwide. With rising concern about HFMD outbreaks, there is a need for an effective vaccine against EV-A71 and CV-A16. Although an inactivated vaccine has been developed against EV-A71 in China, the inability of the inactivated vaccine to confer protection against CV-A16 infection and other HFMD etiological agents, such as CV-A6 and CV-A10, necessitates the exploration of other vaccine platforms. Thus, the antigenic peptide-based vaccines are promising platforms to develop safe and efficacious multivalent vaccines, while the monoclonal antibodies are viable therapeutic and prophylactic agents against HFMD etiological agents. This article reviews the available information related to the antigenic peptides of the etiological agents of HFMD and their neutralizing antibodies that can provide a basis for the design of future therapies against HFMD etiological agents.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
43
|
Abstract
The highly immunogenic icosahedral capsid of hepatitis B virus (HBV) can be exploited as a nanoparticulate display platform for heterologous molecules. Its constituent core protein (HBc) of only ~180 amino acids spontaneously forms capsid-like particles (CLPs) even in E. coli. The immunodominant c/e1 epitope in the center of the HBc primary sequence comprises a solvent-exposed loop that tolerates insertions of flexible peptide sequences yet also of selected whole proteins as long as their 3D structures fit into the two acceptor sites. This constraint is largely overcome in the SplitCore system, where the sequences flanking the loop are expressed as two separate but self-complementing entities, with the foreign sequence fixed to the carrier at one end only. Both the contiguous and the split type of CLP strongly enhance immunogenicity of the displayed sequence but also nonvaccine applications can easily be envisaged. After a brief survey of the basic features of the two HBc carrier forms, we provide conceptual guidelines concerning which foreign proteins are likely to be presentable, or not, on either carrier type. We describe generally applicable protocols for CLP expression in E. coli, cell lysis and CLP enrichment by sucrose gradient velocity sedimentation, plus a simple but meaningful gel electrophoretic assay to assess proper particle formation.
Collapse
|
44
|
Nanoreactor Design Based on Self-Assembling Protein Nanocages. Int J Mol Sci 2019; 20:ijms20030592. [PMID: 30704048 PMCID: PMC6387247 DOI: 10.3390/ijms20030592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Self-assembling proteins that form diverse architectures are widely used in material science and nanobiotechnology. One class belongs to protein nanocages, which are compartments with nanosized internal spaces. Because of the precise nanoscale structures, proteinaceous compartments are ideal materials for use as general platforms to create distinct microenvironments within confined cellular environments. This spatial organization strategy brings several advantages including the protection of catalyst cargo, faster turnover rates, and avoiding side reactions. Inspired by diverse molecular machines in nature, bioengineers have developed a variety of self-assembling supramolecular protein cages for use as biosynthetic nanoreactors that mimic natural systems. In this mini-review, we summarize current progress and ongoing efforts creating self-assembling protein based nanoreactors and their use in biocatalysis and synthetic biology. We also highlight the prospects for future research on these versatile nanomaterials.
Collapse
|
45
|
Lee B, Jo E, Yoon HY, Yoon CJ, Lee H, Kwon KC, Kim TW, Lee J. Nonimmunogenetic Viral Capsid Carrier with Cancer Targeting Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800494. [PMID: 30128257 PMCID: PMC6097151 DOI: 10.1002/advs.201800494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/03/2018] [Indexed: 05/13/2023]
Abstract
Although protein nanoparticles (PNPs) (e.g., viral capsids) capable of delivering a broad range of drug agents have shown distinctive advantages over synthetic nanomaterials, PNPs have an intrinsic drawback that hampers their clinical application, that is, potential immunogenicity. Here, a novel method for resolving the immunogenicity problem of PNPs, which is based on the genetic presentation of albumin-binding peptides (ABPs) on the surface of PNP, is reported. ABPs are inserted into the surface of a viral capsid (hepatitis B virus capsid/HBVC) while preserving the native self-assembly function of HBVC. The ABPs effectively gather human serum albumins around HBVC and significantly reduce both inflammatory response and immunoglobulin titer in live mice compared to ABP-free HBVC. Furthermore, ABP-conjugated HBVCs remain within tumors for a longer period than HBVCs conjugated to tumor cell receptor-bindingpeptides, indicating that the ABPs are also capable of enhancing tumor-targeting performance. Although applied to HBVC for proof of concept, this novel approach may provide a general platform for resolving immunogenicity and cancer-targeting problems of PNPs, which enables the development of a variety of PNP-based drug delivery carriers with high safety and efficacy.
Collapse
Affiliation(s)
- Bo‐Ram Lee
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Eunji Jo
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Hong Yeol Yoon
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology39‐1 Hawolgok‐dong, Seongbuk‐guSeoul136‐791Republic of Korea
| | - Chul Joo Yoon
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Hyo‐Jung Lee
- Division of Infection and ImmunologyGraduate School of MedicineKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Koo Chul Kwon
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Tae Woo Kim
- Division of Infection and ImmunologyGraduate School of MedicineKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological EngineeringCollege of EngineeringKorea UniversityAnam‐Ro 145Seoul136‐713Republic of Korea
| |
Collapse
|
46
|
Blokhina EA, Ravin NV. CONSTRUCTION OF MOSAIC HBC PARTICLES PRESENTING CONSERVATIVE FRAGMENTS OF M2 PROTEIN AND HEMAGGLUTININ OF INFLUENZA A VIRUS. Vopr Virusol 2018; 63:130-135. [PMID: 36494939 DOI: 10.18821/0507-4088-2018-63-3-130-135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 06/17/2023]
Abstract
Virus-like HBc particles formed as a result of the self-assembly of the nuclear antigen of the hepatitis B virus can be used as a highly immunogenic carrier for the presentation of foreign epitopes when creating recombinant vaccines. We use this vehicle to create influenza vaccines based on the conservative antigens of the influenza virus, the extracellular domain of the transmembrane protein M2 (M2e) and the fragment of the second subunit of hemagglutinin (HA2). Presentation on the surface of HBc particles should improve the immunogenicity of these peptides. Using genetic engineering techniques, we obtained a fusion protein in which the HA2 sequence is attached to the N-terminus of the HBc antigen, and the M2e peptide is included in the immunodominant loop region exposed on the surface of HBc particle. The hybrid protein expressed in Escherichia coli and purified under denaturing conditions formed virus-like HBc particles after refolding in vitro. Refolding of this protein in the presence of a previously denatured HBc antigen carrying no inserts resulted in formation of mosaic virus-like particles. The developed method will allow construction of mosaic HBc particles carrying different target epitopes of the influenza virus by combining the corresponding modified HBc proteins, which opens the possibility of creating vaccines with a wider spectrum of protection.
Collapse
Affiliation(s)
- E A Blokhina
- Federal Research Centre «Fundamentals of Biotechnology»
| | - N V Ravin
- Federal Research Centre «Fundamentals of Biotechnology»
| |
Collapse
|
47
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
48
|
Chen JY, Gan CY, Cai XF, Zhang WL, Long QX, Wei XF, Hu Y, Tang N, Chen J, Guo H, Huang AL, Hu JL. Fluorescent protein tagged hepatitis B virus capsid protein with long glycine-serine linker that supports nucleocapsid formation. J Virol Methods 2018; 255:52-59. [PMID: 29447911 DOI: 10.1016/j.jviromet.2018.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/06/2018] [Accepted: 02/11/2018] [Indexed: 02/05/2023]
Abstract
Fusion core proteins of Hepatitis B virus can be used to study core protein functions or capsid trafficking. A problem in constructing fusion core proteins is functional impairment of the individual domains in these fusion proteins, might due to structural interference. We reported a method to construct fusion proteins of Hepatitis B virus core protein (HBc) in which the functions of fused domains were partially kept. This method follows two principles: (1) fuse heterogeneous proteins at the N terminus of HBc; (2) use long Glycine-serine linkers between the two domains. Using EGFP and RFP as examples, we showed that long flexible G4S linkers can effectively separate the two domains in function. Among these fusion proteins constructed, GFP-G4S186-HBc and RFP-G4S47-HBc showed the best efficiency in rescuing the replication of an HBV replicon deficient in the core protein expression, though both of the two fusion proteins failed to support the formation of the relaxed circular DNA. These fluorescent protein-tagged HBcs might help study related to HBc or capsids tracking in cells.
Collapse
Affiliation(s)
- Jiang-Yan Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Hangzhou, China
| | - Chun-Yang Gan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue-Fei Cai
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quan-Xin Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia-Fei Wei
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, United States
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Hangzhou, China.
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Hangzhou, China.
| |
Collapse
|
49
|
Shan W, Zhang D, Wu Y, Lv X, Hu B, Zhou X, Ye S, Bi S, Ren L, Zhang X. Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:725-734. [DOI: 10.1016/j.nano.2017.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/12/2017] [Accepted: 12/03/2017] [Indexed: 01/08/2023]
|
50
|
Abstract
Virus-like particle (VLP) technologies are based on virus-inspired artificial structures and the intrinsic ability of viral proteins to self-assemble at controlled conditions. Therefore, the basic knowledge about the mechanisms of viral particle formation is highly important for designing of industrial applications. As an alternative to genetic and chemical processes, different physical methods are frequently used for VLP construction, including well characterized protein complexes for introduction of foreign molecules in VLP structures.This chapter shortly discusses the mechanisms how the viruses form their perfectly ordered structures as well as the principles and most interesting application examples, how to exploit the structural and assembly/disassembly properties of viral structures for creation of new nanomaterials.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
| |
Collapse
|