1
|
Shi G, Synowiec J, Singh J, Heller R. Modification of the tumor microenvironment enhances immunity with plasmid gene therapy. Cancer Gene Ther 2024; 31:641-648. [PMID: 38337037 DOI: 10.1038/s41417-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Local intratumor delivery with electroporation of low levels of plasmids encoding molecules, induces an antitumor effect without causing systemic toxicity. However, previous studies have predominately focused on the function of the delivered molecule encoded within the plasmid, and ignored the plasmid vector. In this study, we found vectors pUMVC3 and pVax1 induced upregulation of MHC class I (MHC-I) and PD-L1 on tumor cell surface. These molecules participate in a considerable number of immunoregulatory functions through their interactions with and activating inhibitory immune cell receptors. MHC molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells and tumor cells. Increased PD-L1 expression on tumor cells is an important monitor of tumor growth and the effectiveness of immune inhibitor therapy. Results from flow cytometry confirmed increased expression of MHC-I and PDL-1 on B16F10, 4T1, and KPC tumor cell lines. Preliminary animal data from tumor-bearing models, B16F10 melanoma, 4T1 breast cancer and KPC pancreatic cancer mouse models showed that tumor growth was attenuated after pUMVC3 intratumoral electroporation. Our data also documented that pSTAT1 signaling pathway might not be associated with plasmid vectors' function of upregulating MHC-I, PD-L1 on tumor cells.
Collapse
Affiliation(s)
- Guilan Shi
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Jody Synowiec
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Julie Singh
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Gunay G, Maier KN, Hamsici S, Carvalho F, Timog TA, Acar H. Peptide aggregation-induced immunogenic cell death in a breast cancer spheroid model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565012. [PMID: 37961293 PMCID: PMC10635027 DOI: 10.1101/2023.10.31.565012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Utilizing multicellular aggregates (spheroids) for in vitro cancer research offers a physiologically relevant model that closely mirrors the intricate tumor microenvironment, capturing properties of solid tumors such as cell interactions and drug resistance. In this research, we investigated the Peptide-Aggregation Induced Immunogenic Response (PAIIR), an innovative method employing engineered peptides we designed specifically to induce immunogenic cell death (ICD). We contrasted PAIIR-induced ICD with standard ICD and non-ICD inducer chemotherapeutics within the context of three-dimensional breast cancer tumor spheroids. Our findings reveal that PAIIR outperforms traditional chemotherapeutics in its efficacy to stimulate ICD. This is marked by the release of key damage-associated molecular patterns (DAMPs), which bolster the phagocytic clearance of dying cancer cells by dendritic cells (DCs) and, in turn, activate powerful anti-tumor immune responses. Additionally, we observed that PAIIR results in elevated dendritic cell activation and increased antitumor cytokine presence. This study not only showcases the utility of tumor spheroids for efficient high-throughput screening but also emphasizes PAIIR's potential as a formidable immunotherapeutic strategy against breast cancer, setting the stage for deeper exploration and potential clinical implementation.
Collapse
|
3
|
Zhou X, Renauer PA, Zhou L, Fang SY, Chen S. Applications of CRISPR technology in cellular immunotherapy. Immunol Rev 2023; 320:199-216. [PMID: 37449673 PMCID: PMC10787818 DOI: 10.1111/imr.13241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Abstract
CRISPR technology has transformed multiple fields, including cancer and immunology. CRISPR-based gene editing and screening empowers direct genomic manipulation of immune cells, opening doors to unbiased functional genetic screens. These screens aid in the discovery of novel factors that regulate and reprogram immune responses, offering novel drug targets. The engineering of immune cells using CRISPR has sparked a transformation in the cellular immunotherapy field, resulting in a multitude of ongoing clinical trials. In this review, we discuss the development and applications of CRISPR and related gene editing technologies in immune cells, focusing on functional genomics screening, gene editing-based cell therapies, as well as future directions in this rapidly advancing field.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A. Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Shao-Yu Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Giuliani C, Shimura H, Chung JH, Napolitano G. Editorial: The Legacy of Dr. Leonard D. Kohn to Thyroid Pathophysiology. Front Endocrinol (Lausanne) 2022; 13:906340. [PMID: 35757398 PMCID: PMC9215103 DOI: 10.3389/fendo.2022.906340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- *Correspondence: Cesidio Giuliani,
| | - Hiroki Shimura
- Department of Laboratory Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Jae Hoon Chung
- Division of Endocrinology and Metabolism, Department of Medicine and Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Giorgio Napolitano
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
The HLA-G Immune Checkpoint Plays a Pivotal Role in the Regulation of Immune Response in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413348. [PMID: 34948145 PMCID: PMC8706866 DOI: 10.3390/ijms222413348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The human G-leukocyte antigen (HLA-G) molecule is a non-classical major histocompatibility complex (MHC) class I molecule. The pertinence of HLA-G has been investigated in numerous studies which have sought to elucidate the relevance of HLA-G in pathologic conditions, such as autoimmune diseases, cancers, and hematologic malignancies. One of the main goals of the current research on HLA-G is to use this molecule in clinical practice, either in diagnostics or as a therapeutic target. Since HLA-G antigens are currently considered as immunomodulatory molecules that are involved in reducing inflammatory and immune responses, in this review, we decided to focus on this group of antigens as potential determinants of progression in autoimmune diseases. This article highlights what we consider as recent pivotal findings on the immunomodulatory function of HLA-G, not only to establish the role of HLA-G in the human body, but also to explain how these proteins mediate the immune response.
Collapse
|
6
|
Associations between NLRC4 Gene Polymorphisms and Autoimmune Thyroid Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1378427. [PMID: 32802832 PMCID: PMC7424365 DOI: 10.1155/2020/1378427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022]
Abstract
Background Many studies have shown that NLRC4 inflammasome polymorphisms are associated with a variety of autoimmune diseases, but the associations between NLRC4 polymorphisms and autoimmune thyroid diseases (AITDs) are unclear. Our research was aimed at identifying the correlations between NLRC4 polymorphisms and AITDs. Methods Hi-SNP high-throughput genotyping technology was used for detecting four single-nucleotide polymorphisms (SNPs) of NLRC4 in 1005 AITDs patients (including 629 Graves' disease and 376 Hashimoto's thyroiditis) and 781 healthy controls. Results Compared with healthy controls, the allele frequencies and genotype distribution of rs385076 were statistically related to AITDs (P = 0.016 and P = 0.048, respectively) and Hashimoto's thyroiditis (P = 0.022 and P = 0.046, respectively). Before adjusting for age and gender, rs385076 and AITDs had a significant association in three models of allele model, dominant model, and homozygous model. After adjusting for age and gender, in the above three models, there is still a clear relationship between them. Before adjusting for age and gender, there were prominent discrepancy between rs385076 and Hashimoto's thyroiditis in the allele model (OR = 0.81, 95% CI 0.67-0.97; P = 0.021) and the dominant model (OR = 0.73, 95% CI 0.57-0.94; P = 0.014), after adjusting for age and gender, rs385076 and Hashimoto's thyroiditis were significantly related to allele model, dominant model, and homozygous model. However, rs455060, rs212704, and rs675712 were not related to AITDs in our study. Conclusion NLRC4 rs385076 was found to have a significant association with Hashimoto's thyroiditis for the first time. It laid a foundation for the disclosure of the pathogenesis of AITDs, and provided a possible treatment prospect for HT.
Collapse
|
7
|
Luo Y, Hara T, Kawashima A, Ishido Y, Suzuki S, Ishii N, Kambara T, Suzuki K. Pathological role of excessive DNA as a trigger of keratinocyte proliferation in psoriasis. Clin Exp Immunol 2020; 202:1-10. [PMID: 32415989 DOI: 10.1111/cei.13455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is characterized by excessive growth and aberrant differentiation of epidermal keratinocytes due to persistent inflammation. However, the underlying mechanism that triggers immune activation in psoriasis is not clear. In this study, we explored excessive DNA as a potential trigger of psoriasis using cultured human keratinocytes and psoriatic skin tissues. We demonstrated that human genomic DNA fragments induced tumour necrosis factor (TNF)-α expression, hyperproliferation and over-expression of heparin-binding epidermal-like growth factor (HB-EGF) and transforming growth factor (TGF)-α, accompanied by defective expression of keratins 1 and 10 in cultured normal human epidermal keratinocytes, which have a similar phenotype to that of keratinocytes in psoriatic skin lesions. In psoriatic lesions, we found high levels of double-stranded (ds)DNA fragments, accompanying keratinocytes expressing Ki-67, HB-EGF and TNF-α. In addition, we showed that 1,25-dihydroxyvitamin D3 inhibited genomic DNA fragment-induced TNFA and interleukin-1β (IFNB) expression in human keratinocytes, and an intact function of cathelicidin anti-microbial peptide (CAMP) was required for this effect. These results suggest that excessive dsDNA fragments probably act as a risk factor for immune activation in psoriasis, and the active form of vitamin D can prevent genomic DNA-mediated skin inflammation via CAMP.
Collapse
Affiliation(s)
- Y Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - T Hara
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - A Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Y Ishido
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - S Suzuki
- Emergency and Critical Care Medicine, Keio University of School of Medicine, Tokyo, Japan
| | - N Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,National Sanatorium Tamazenshoen, Tokyo, Japan
| | - T Kambara
- Department of Dermatology, Yokohama City University Medical Center, Yokohama, Japan
| | - K Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Abstract
Despite an increase in the rates of survival in patients suffering myocardial infarction, as yet there is no therapy specifically targeting ischaemia and reperfusion injury of the myocardium. With a greater understanding of immune activation during infarction, more potential treatment targets are now being identified. The innate immune system is believed to play an important role in the myocardium after ischaemia-driven cardiomyocyte death. The release of intracellular contents including DNA into the extracellular space during necrosis and cell rupture is now believed to create a pro-inflammatory milieu which propagates the inflammatory process. DNA and DNA fragments have been shown to activate the innate immune system by acting as Danger-Associated Molecular Patterns (DAMPs), which act as ligands on toll-like receptors (TLRs). Stimulation of TLRs, in turn, can activate intracellular cell death pathways such as pyroptosis. Here, we review the role of DNA fragments during ischaemia and reperfusion, and assess their potential as a target in the quest to preserve cardiomyocyte viability following myocardial infarction.
Collapse
Affiliation(s)
- Mohammed Shah
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
9
|
Chen F, Kawashima A, Luo Y, Kiriya M, Suzuki K. Innate Immune-Modulatory Activity of Prunella vulgaris in Thyrocytes Functions as a Potential Mechanism for Treating Hashimoto's Thyroiditis. Front Endocrinol (Lausanne) 2020; 11:579648. [PMID: 33304319 PMCID: PMC7701117 DOI: 10.3389/fendo.2020.579648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022] Open
Abstract
Prunella vulgaris (PV), a perennial herb, has been used to treat thyroid diseases in China for over 2,000 years. In particular, its therapeutic effect has been described for Hashimoto's thyroiditis, including reducing titers autoantibodies against thyroid peroxidase and thyroglobulin of and T helper 17 (Th17) cells. However, the underlying mechanism for how PV exerts such effects has not been investigated. We examined the effects of PV on innate immune activation, which is thought to be one of the triggers for the development of autoimmune diseases, including Hashimoto's thyroiditis. In cultured thyrocytes, PV reduced mRNA levels of inflammatory cytokines that were originally induced as a result of innate immune activation initiated by transfection of double-stranded DNA (dsDNA) or dsRNA. PV suppressed activation of nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF3), and suppressed corresponding promoter activation, which were initially activated by dsDNA or dsRNA. PV also suppressed the mRNA levels of molecules responsible for antigen processing and presentation, and PV protected thyrocytes from apoptosis induced by dsDNA and dsRNA. Additionally, PV suppressed the expression of genes involved in iodide uptake and oxidation. Taken together, these results suggest that PV exerts its protective effect on thyrocytes by suppressing both innate and adaptive immune responses and cell death. PV may also protect cells from iodide-associated oxidative injury. This report is among the first to identify the mechanisms to explain PV's beneficial effects in Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- *Correspondence: Koichi Suzuki,
| |
Collapse
|
10
|
Ashton JJ, Latham K, Beattie RM, Ennis S. Review article: the genetics of the human leucocyte antigen region in inflammatory bowel disease. Aliment Pharmacol Ther 2019; 50:885-900. [PMID: 31518029 DOI: 10.1111/apt.15485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human leucocyte antigen (HLA) complex, located at chromosome 6p21.3 is a highly polymorphic region containing the classical class I and II HLA genes. The region is highly associated with inflammatory bowel disease (IBD), largely through genome-wide association studies (GWAS). AIMS To review the role of HLA in immune function, summarise data on risk/protective HLA genotypes for IBD, discuss the role of HLA in IBD pathogenesis, treatment and examine limitations that might be addressed by future research. METHODS An organised search strategy was used to collate articles describing HLA genes in IBD, including Crohn's disease and ulcerative colitis. RESULTS All classical HLA genes with variation (including HLA-A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1) harbour IBD-associated genotypes. The most implicated gene is HLA-DRB1, with HLA-DRB1*03:01 the most associated risk allele in both Crohn's disease and ulcerative colitis. Elucidating precise disease associations is challenging due to high linkage disequilibrium between HLA genotypes. The mechanisms by which risk alleles cause disease are multifactorial, with the best evidence indicating structural and electrostatic alteration impacting antigen binding and downstream signalling. Adverse medication events have been associated with HLA genotypes including with thiopurines (pancreatitis) and anti-TNF agents (antibody formation). CONCLUSIONS The HLA complex is associated with multiple risk/protective alleles for IBD. Future research utilising long-read technology, ascertainment of zygosity and integration in disease modelling will improve the functional understanding and clinical translation of genetic findings.
Collapse
Affiliation(s)
- James J Ashton
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Katy Latham
- Anthony Nolan Research Institute, University College London, London, UK
| | - Robert Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
11
|
Graceffa V, Vinatier C, Guicheux J, Evans CH, Stoddart M, Alini M, Zeugolis DI. State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnol Adv 2018; 36:1855-1869. [DOI: 10.1016/j.biotechadv.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
|
12
|
He X, Xiong C, Liu A, Zhao W, Xia X, Peng S, Li C, Zhou M, Li Y, Shi X, Shan Z, Teng W. Phagocytosis Deficiency of Macrophages in NOD.H-2 h4 Mice Accelerates the Severity of Iodine-Induced Autoimmune Thyroiditis. Biol Trace Elem Res 2018; 184:196-205. [PMID: 29052174 DOI: 10.1007/s12011-017-1183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/02/2017] [Indexed: 01/15/2023]
Abstract
Apoptosis occurs in many autoimmune diseases. Excess iodine induces thyrocyte apoptosis and increases the incidence and prevalence of autoimmune thyroiditis (AIT). However, the sequence of events between the appearance of thyrocyte apoptosis and the occurrence of thyroiditis remains uncharacterized. Furthermore, few studies have investigated the role of macrophage phagocytosis in the development of AIT. Therefore, we evaluated the relationship between apoptosis and inflammatory infiltration in NOD.H-2h4 mouse thyroids by comparing the sequence of events in tissue samples. We also investigated the role of macrophages by comparing macrophage phagocytosis function in BALB/c, C57BL/6, and NOD.H-2h4 mice treated with different levels of iodine. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays and thyroid inflammatory scores revealed that apoptosis (2 weeks) occurred before inflammatory infiltration (4 weeks). Phosphatidylserine (PS) expression on the extracellular surface of the cell membrane and double-stranded DNA fragments associated with apoptosis appeared at 2 and 8 weeks, respectively. Additionally, although apoptosis was enhanced in the thyroids of mice supplemented with excess iodine (0.05 ± 0.12 vs 1.63 ± 0.82% for BALB/c, 0.09 ± 0.14 vs 1.51 ± 0.34% for C57BL/6, and 0.07 ± 1.11 vs 4.72 ± 0.62% for NOD.H-2h4 mice), only NOD.H-2h4 mouse thyroids presented with inflammation. Furthermore, macrophages from NOD.H-2h4 mice (44.46 ± 1.79%) exhibited decreased phagocytotic activity relative to that in BALB/c (54.21 ± 4.58%) and C57BL/6 (58.96 ± 4.04%) mice. There were no differences in phagocytosis function between NOD.H-2h4 mice supplemented with excess iodine or left untreated (24.50 ± 2.66 vs 21.71 ± 1.79%, p = 0.06). In conclusion, deficiencies in the apoptosis clearance of macrophages in NOD.H-2h4 mice may constitute an early pathogenic mechanism in AIT that is not influenced by iodine intake.
Collapse
Affiliation(s)
- Xue He
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Chuhui Xiong
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Aihua Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Wei Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xinghai Xia
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Chenyan Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Mi Zhou
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xiaoguang Shi
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
13
|
Durante M, Formenti SC. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway. Front Oncol 2018; 8:192. [PMID: 29911071 PMCID: PMC5992419 DOI: 10.3389/fonc.2018.00192] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Radiation-induced chromosomal aberrations represent an early marker of late effects, including cell killing and transformation. The measurement of cytogenetic damage in tissues, generally in blood lymphocytes, from patients treated with radiotherapy has been studied for many years to predict individual sensitivity and late morbidity. Acentric fragments are lost during mitosis and create micronuclei (MN), which are well correlated to cell killing. Immunotherapy is rapidly becoming a most promising new strategy for metastatic tumors, and combination with radiotherapy is explored in several pre-clinical studies and clinical trials. Recent evidence has shown that the presence of cytosolic DNA activates immune response via the cyclic GMP-AMP synthase/stimulator of interferon genes pathway, which induces type I interferon transcription. Cytosolic DNA can be found after exposure to ionizing radiation either as MN or as small fragments leaking through nuclear envelope ruptures. The study of the dependence of cytosolic DNA and MN on dose and radiation quality can guide the optimal combination of radiotherapy and immunotherapy. The role of densely ionizing charged particles is under active investigation to define their impact on the activation of the interferon pathway.
Collapse
Affiliation(s)
- Marco Durante
- Trento Institute for Fundamental and Applied Physics (TIFPA), National Institute for Nuclear Physics (INFN), University of Trento, Trento, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
14
|
Hafner AM, Corthésy B, Textor M, Merkle HP. Surface-assembled poly(I:C) on PEGylated PLGA microspheres as vaccine adjuvant: APC activation and bystander cell stimulation. Int J Pharm 2017; 514:176-188. [PMID: 27863662 DOI: 10.1016/j.ijpharm.2016.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022]
Abstract
Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres are potential vehicles to deliver antigens for vaccination. Because they lack the full capacity to activate professional antigen presenting cells (APCs), combination with an immunostimulatory adjuvant may be considered. A candidate is the synthetic TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), which drives cell-mediated immunity. However, poly(I:C) has also been linked to the pathogenesis of autoimmunity, as affected by widespread stimulation of non-hematopoietic bystander cells. To address this aspect, we propose to minimize the poly(I:C) dose as well as to control the stimulation of non-immune bystander cells by poly(I:C). To facilitate the maturation of APCs with minimal poly(I:C) doses, we surface-assembled poly(I:C) onto PLGA microspheres. The microspheres' surface was further modified by poly(ethylene glycol) (PEG) coronas with varying PEG-densities. PLGA microspheres loaded with tetanus toxoid (tt) as model antigen were manufactured by microextrusion-based solvent extraction. The negatively charged PLGA(tt) microspheres were coated with polycationic poly(l-lysine) (PLL) polymers, either PLL itself or PEG-grafted PLL (PLL-g-PEG) with varying grafting ratios (g=2.2 and g=10.1). Stable surface assembly of poly(I:C) was achieved by subsequent incubation of polymer-coated PLGA microspheres with aqueous poly(I:C) solutions. We evaluated the immunostimulatory potential of such PLGA(tt) microsphere formulations on monocyte-derived dendritic cells (MoDCs) as well as human foreskin fibroblasts (HFFs) as model for non-hematopoietic bystander cells. Formulations with surface-assembled poly(I:C) readily activated MoDCs with respect to the expression of maturation-related surface markers, proinflammatory cytokine secretion and directed migration. When surface-assembled, poly(I:C) enhanced its immunostimulatory activity by more than one order of magnitude as compared to free poly(I:C). On fibroblasts, surface-assembled poly(I:C) upregulated class I MHC but not class II MHC. Phagocytosis of PLGA(tt) microsphere formulations by MoDCs and HFFs remained mostly unaffected by PEG-grafted PLL coatings. In contrast, high concentrations of free poly(I:C) led to a marked drop of microsphere phagocytosis by HFFs. Overall, surface assembly on PEGylated PLGA microspheres holds promise to improve both efficacy and safety of poly(I:C) as vaccine adjuvant.
Collapse
Affiliation(s)
- Annina M Hafner
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Blaise Corthésy
- Division of Immunology and Allergy, CHUV, Lausanne 1005, Switzerland
| | - Marcus Textor
- Laboratory for Surface Science and Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Hans P Merkle
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
15
|
Bosnjak M, Kamensek U, Sersa G, Stolfa D, Lavrencak J, Cemazar M. Inhibition of the Innate Immune Receptors for Foreign DNA Sensing Improves Transfection Efficiency of Gene Electrotransfer in Melanoma B16F10 Cells. J Membr Biol 2017; 251:179-185. [PMID: 28204840 DOI: 10.1007/s00232-017-9948-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/28/2017] [Indexed: 11/26/2022]
Abstract
Gene electrotransfer upregulate DNA pattern recognition receptors or DNA sensors, which are part of the innate immune system. In this study, we tested if addition of the cocktail of innate immune system inhibitors to the cells during gene electrotransfer (GET) can increase transfection efficiency and cell survival. The results indicate that this cocktail can decrease cytosolic DNA sensors expression after GET, and consequently increase cell survival and transfection efficiency in B16 cells, but only in highly metastatic B16F10 subtype. We demonstrated that DNA sensors expression during the transfection methods needs to be downregulated if higher transfection efficiency and better cells' survival is needed. The inhibition of the receptors of the innate immune system can improve the transfection efficiency also for GET of malignant melanoma B16 cells, but only of highly metastatic subtype.
Collapse
Affiliation(s)
- Masa Bosnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Danijela Stolfa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Jaka Lavrencak
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
| |
Collapse
|
16
|
Noges LE, White J, Cambier JC, Kappler JW, Marrack P. Contamination of DNase Preparations Confounds Analysis of the Role of DNA in Alum-Adjuvanted Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1221-30. [PMID: 27357147 PMCID: PMC4974487 DOI: 10.4049/jimmunol.1501565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/02/2016] [Indexed: 11/19/2022]
Abstract
Aluminum salt (alum) adjuvants have been used for many years as adjuvants for human vaccines because they are safe and effective. Despite its widespread use, the means by which alum acts as an adjuvant remains poorly understood. Recently, it was shown that injected alum is rapidly coated with host chromatin within mice. Experiments suggested that the host DNA in the coating chromatin contributed to alum's adjuvant activity. Some of the experiments used commercially purchased DNase and showed that coinjection of these DNase preparations with alum and Ag reduced the host's immune response to the vaccine. In this study, we report that some commercial DNase preparations are contaminated with proteases. These proteases are responsible for most of the ability of DNase preparations to inhibit alum's adjuvant activity. Nevertheless, DNase somewhat reduces responses to some Ags with alum. The effect of DNase is independent of its ability to cleave DNA, suggesting that alum improves CD4 responses to Ag via a pathway other than host DNA sensing.
Collapse
Affiliation(s)
- Laura E Noges
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - John C Cambier
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206
| |
Collapse
|
17
|
Luo Y, Yoshihara A, Oda K, Ishido Y, Hiroi N, Suzuki K. Naked DNA in cells: An inducer of major histocompatibility complex molecules to evoke autoimmune responses? World J Transl Med 2016; 5:46-52. [DOI: 10.5528/wjtm.v5.i1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
The major histocompatibility complex (MHC) is the exclusive chaperone that presents intracellular antigens, either self or foreign to T cells. Interestingly, aberrant expression of MHC molecules has been reported in various autoimmune target tissues such as thyroid follicular cells in Grave’s disease. Herein, we review the discovery of an unexpected effect of cytosolic double-stranded DNA (dsDNA), despite its origins, to induce antigen processing and presenting genes, including MHC molecules, in non-immune cells. Moreover, we highlight several recent studies that suggest cell injury endows thyroid epithelial cells with a phenotype of mature antigen presenting cells by inducing multiple antigen processing and presenting genes via releasing genomic DNA fragments into the cytosol. We discuss the possibility that such cytosolic dsDNA, in naked form without binding to histone proteins, might be involved in the development of cell damage-triggered autoimmune responses. We also discuss the possible molecular mechanism by which cytosolic dsDNA can induce MHC molecules. It is reasonable to speculate that cytosolic dsDNA-induced MHC class I is partially due to an autocrine/paracrine effect of type I interferon (IFN). While the mechanism of cytosolic dsDNA-induced MHC class II expression appears, at least partially, distinct from that mediated by IFN-γ. Further in-depth are required to clarify this picture.
Collapse
|
18
|
Luo Y, Yoshihara A, Oda K, Ishido Y, Suzuki K. Excessive Cytosolic DNA Fragments as a Potential Trigger of Graves' Disease: An Encrypted Message Sent by Animal Models. Front Endocrinol (Lausanne) 2016; 7:144. [PMID: 27895620 PMCID: PMC5107990 DOI: 10.3389/fendo.2016.00144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023] Open
Abstract
Graves' hyperthyroidism is caused by autoantibodies directed against the thyroid-stimulating hormone receptor (TSHR) that mimic the action of TSH. The establishment of Graves' hyperthyroidism in experimental animals has proven to be an important approach to dissect the mechanisms of self-tolerance breakdown that lead to the production of thyroid-stimulating TSHR autoantibodies (TSAbs). "Shimojo's model" was the first successful Graves' animal model, wherein immunization with fibroblasts cells expressing TSHR and a major histocompatibility complex (MHC) class II molecule, but not either alone, induced TSAb production in AKR/N (H-2k) mice. This model highlights the importance of coincident MHC class II expression on TSHR-expressing cells in the development of Graves' hyperthyroidism. These data are also in agreement with the observation that Graves' thyrocytes often aberrantly express MHC class II antigens via mechanisms that remain unclear. Our group demonstrated that cytosolic self-genomic DNA fragments derived from sterile injured cells can induce aberrant MHC class II expression and production of multiple inflammatory cytokines and chemokines in thyrocytes in vitro, suggesting that severe cell injury may initiate immune responses in a way that is relevant to thyroid autoimmunity mediated by cytosolic DNA signaling. Furthermore, more recent successful Graves' animal models were primarily established by immunizing mice with TSHR-expressing plasmids or adenovirus. In these models, double-stranded DNA vaccine contents presumably exert similar immune-activating effect in cells at inoculation sites and thus might pave the way toward successful Graves' animal models. This review focuses on evidence suggesting that cell injury-derived self-DNA fragments could act as Graves' disease triggers.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Aya Yoshihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Education Planning and Development, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kenzaburo Oda
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Internal Medicine, Division of Diabetes, Metabolism and Endocrinology, Toho University, Tokyo, Japan
| | - Yuko Ishido
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- *Correspondence: Koichi Suzuki,
| |
Collapse
|
19
|
Herzner AM, Hagmann CA, Goldeck M, Wolter S, Kübler K, Wittmann S, Gramberg T, Andreeva L, Hopfner KP, Mertens C, Zillinger T, Jin T, Xiao TS, Bartok E, Coch C, Ackermann D, Hornung V, Ludwig J, Barchet W, Hartmann G, Schlee M. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol 2015; 16:1025-33. [PMID: 26343537 DOI: 10.1038/ni.3267] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.
Collapse
Affiliation(s)
- Anna-Maria Herzner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Cristina Amparo Hagmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Marion Goldeck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Steven Wolter
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Kirsten Kübler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Bonn, Germany
| | - Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Liudmila Andreeva
- Department Biochemistry, Gene Center, Ludwig-Maximilians University, Munich, Germany
| | - Karl-Peter Hopfner
- Department Biochemistry, Gene Center, Ludwig-Maximilians University, Munich, Germany
| | - Christina Mertens
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center of Infectious Disease, Cologne-Bonn, Germany
| | - Tengchuan Jin
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Damian Ackermann
- LIMES Institute, Chemical Biology, University of Bonn, Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, Bonn, Germany
| | - Janos Ludwig
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center of Infectious Disease, Cologne-Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
20
|
Mahdi BM. Role of HLA typing on Crohn's disease pathogenesis. Ann Med Surg (Lond) 2015; 4:248-53. [PMID: 26288728 PMCID: PMC4537883 DOI: 10.1016/j.amsu.2015.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease (CD) is the main type of chronic inflammatory bowel disease of unknown etiology. Evidence from family and twin studies suggests that genetics plays a significant role in predisposing an individual to develop Crohn's disease. A susceptibility locus for Crohn's disease has been mapped 3 to chromosome 16: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators which is expressed in hematopoietic compartment cells and intestinal epithelial cells as well as in paneth cells, where NOD2 may play an important role in the pathogenesis of Crohn disease in the gastrointestinal system. This leads to alteration the structure of either the leucine-rich repeat domain of the protein or the adjacent region. NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has two functions, first an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens. Thus, NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in intestinal epithelial cells as well as in paneth cells. Further confirmation of a genetic predisposition comes from studies of the association between the human leukocyte antigen (HLA) system and CD. The immunogenetic predisposition may be considered an important requirement for the development of CD, as several alleles of human major histocompatibility complex had an association with CD. Although it is difficult to estimate the importance of this region in determining overall genetic susceptibility in a population, studies of HLA allele sharing within families suggest that this region contributes between 10% and 33% of the total genetic risk of Crohn's disease.
Collapse
|
21
|
Luo Y, Hara T, Ishido Y, Yoshihara A, Oda K, Makino M, Ishii N, Hiroi N, Suzuki K. Rapid preparation of high-purity nuclear proteins from a small number of cultured cells for use in electrophoretic mobility shift assays. BMC Immunol 2014; 15:586. [PMID: 25527077 PMCID: PMC4339431 DOI: 10.1186/s12865-014-0062-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/12/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Highly purified nuclear protein is required when using an electrophoretic mobility shift assay (EMSA) to study transcription factors, e.g. nuclear factor-κB (NF-κB), a major transcription factor that regulates both innate and adaptive immune responses following infection. Although many protocols have been developed for nuclear protein extraction, they are not necessarily optimized for use in EMSA, often require a large number of cells and long processing times, and do not always result in complete separation of the nuclear and cytoplasmic fractions. RESULTS We have developed a simple, rapid and cost-effective method to prepare highly purified nuclear proteins from a small number of both suspended and adherent cultured cells that yields nuclear proteins comparable to those prepared by a standard large-scale method. The efficiency of the method was demonstrated by using EMSA to show the successful detection, in multilple concurrent samples, of NF-κB activation upon tetradecanoyl phorbol acetate (TPA) stimulation. CONCLUSIONS This method requires only a small number of cells and no specialized equipment. The steps have been simplified, resulting in a short processing time, which allows researchers to process multiple samples simultaneously and quickly. This method is especially optimized for use in EMSA, and may be useful for other applications that include proteomic analysis.
Collapse
Affiliation(s)
- Yuqian Luo
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Takeshi Hara
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Yuko Ishido
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Aya Yoshihara
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Kenzaburo Oda
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Masahiko Makino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Naoki Hiroi
- Department of Education Planning and Development, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.
| | - Koichi Suzuki
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| |
Collapse
|
22
|
Powering the immune system: mitochondria in immune function and deficiency. J Immunol Res 2014; 2014:164309. [PMID: 25309931 PMCID: PMC4189529 DOI: 10.1155/2014/164309] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are critical subcellular organelles that are required for several metabolic processes, including oxidative phosphorylation, as well as signaling and tissue-specific processes. Current understanding of the role of mitochondria in both the innate and adaptive immune systems is expanding. Concurrently, immunodeficiencies arising from perturbation of mitochondrial elements are increasingly recognized. Recent observations of immune dysfunction and increased incidence of infection in patients with primary mitochondrial disorders further support an important role for mitochondria in the proper function of the immune system. Here we review current findings.
Collapse
|
23
|
Ilyinskii PO, Roy CJ, O'Neil CP, Browning EA, Pittet LA, Altreuter DH, Alexis F, Tonti E, Shi J, Basto PA, Iannacone M, Radovic-Moreno AF, Langer RS, Farokhzad OC, von Andrian UH, Johnston LPM, Kishimoto TK. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine 2014; 32:2882-95. [PMID: 24593999 PMCID: PMC4059049 DOI: 10.1016/j.vaccine.2014.02.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-α and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Alexis
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Tonti
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pamela A Basto
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Matteo Iannacone
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar F Radovic-Moreno
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Robert S Langer
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Koyama S, Coban C, Aoshi T, Horii T, Akira S, Ishii KJ. Innate immune control of nucleic acid-based vaccine immunogenicity. Expert Rev Vaccines 2014; 8:1099-107. [DOI: 10.1586/erv.09.57] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Abstract
The innate immune system faces the difficult task of keeping a fine balance between sensitive detection of microbial presence and avoidance of autoimmunity. To this aim, key mechanisms of innate responses rely on isolation of pathogens in specialized subcellular compartments, or sensing of specific microbial patterns absent from the host. Efficient detection of foreign RNA in the cytosol requires an additional layer of complexity from the immune system. In this particular case, innate sensors should be able to distinguish self and non-self molecules that share several similar properties. In this review, we discuss this interplay between cytosolic pattern recognition receptors and the microbial RNA they detect. We describe how microbial RNAs gain access to the cytosol, which receptors they activate and counter-strategies developed by microorganisms to avoid this response.
Collapse
Affiliation(s)
- Nicolas Vabret
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - J Magarian Blander
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
26
|
Oksanen KE, Halfpenny NJ, Sherwood E, Harjula SKE, Hammarén MM, Ahava MJ, Pajula ET, Lahtinen MJ, Parikka M, Rämet M. An adult zebrafish model for preclinical tuberculosis vaccine development. Vaccine 2013; 31:5202-9. [DOI: 10.1016/j.vaccine.2013.08.093] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/16/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
|
27
|
Hafner AM, Corthésy B, Merkle HP. Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 2013; 65:1386-99. [PMID: 23751781 DOI: 10.1016/j.addr.2013.05.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Collapse
|
28
|
Glebova K, Veiko N, Kostyuk S, Izhevskaya V, Baranova A. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett 2013; 356:22-33. [PMID: 24045040 DOI: 10.1016/j.canlet.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/28/2013] [Accepted: 09/08/2013] [Indexed: 12/24/2022]
Abstract
An increase in the levels of oxidation is a universal feature of genomic DNA of irradiated or aged or even malignant cells. In case of apoptotic death of stressed cells, oxidized DNA can be released in circulation (cfDNA). According to the results of the studies performed in vitro by our group and other researchers, the oxidized cfDNA serves as a biomarker for a stress and a stress signal that is transmitted from the "stressed" area i.e. irradiated cells or cells with deficient anti-oxidant defenses to distant (bystander) cells. In recipient cells, oxidized DNA stimulates biosynthesis of ROS that is followed up by an increase in the number of single strand and double strand breaks (SSBs and DSBs), and activation of DNA Damage Response (DDR) pathway. Effects of oxidized DNA are considered similar to that of irradiation. It seems that downstream effects of irradiation, in part, depend on the release of oxidized DNA fragments that mediate the effects in distant cells. The responses of normal and tumor cell to oxidized DNA may differ. It seems that tumor cells are more sensitive to oxidized DNA-dependent DNA damage, while developing pronounced adaptive response. This may suggest that in chemotherapy or irradiation-treated human body, the release of oxidized DNA from dying cancer cells may give a boost to remaining malignant cells by augmenting their survival and stress resistance. Further studies of the effects of oxidized DNA in both in vitro and in vivo systems are warranted.
Collapse
Affiliation(s)
- Kristina Glebova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Natalya Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Svetlana Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vera Izhevskaya
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Ancha Baranova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia; Center for the Study of Chronic Metabolic Diseases, School of System Biology, MSN3E1, George Mason University, Fairfax, VA 22030, USA.
| |
Collapse
|
29
|
Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination. Vaccines (Basel) 2013; 1:278-92. [PMID: 26344113 PMCID: PMC4494227 DOI: 10.3390/vaccines1030278] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.
Collapse
|
30
|
Schulte M, Sorkin M, Al-Benna S, Stupka J, Hirsch T, Daigeler A, Kesting MR, Steinau HU, Jacobsen F, Steinstraesser L. Innate immune response after adenoviral gene delivery into skin is mediated by AIM2, NALP3, DAI and mda5. SPRINGERPLUS 2013; 2:234. [PMID: 23750330 PMCID: PMC3671105 DOI: 10.1186/2193-1801-2-234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/14/2013] [Indexed: 12/02/2022]
Abstract
Methods for human skin gene therapy requires efficient and stable introduction of genes into skin cells. Transient cutaneous gene therapy is an attractive approach in the treatment of skin diseases. The ‘Achilles heel’ of adenoviral gene therapy is its immunogenicity and many aspects of adenovirus induced cutaneous immune reaction still remain unanswered, particularly the role of keratinocytes. Therefore, human keratinocytes were transfected with adenoviral DNA and cytokine expression was analyzed. Moreover, adenoviral transduction of full-skin was performed ex vivo and in vivo. We observed cytokine induction after cytoplasmatic internalization of adenoviral DNA into epidermal cells. Inhibition of AIM2, NALP3, DAI or mda5 downregulated the cytokine response. Transduction of immunocompetent mice led to a detectable transgene expression for 12 days. Re-application of the vector led to a decrease in intensity and duration of transgene expression limited to 4 days and an increased cytokine expression. In contrast, immunodeficient mice showed a reduced expression of cytokines after DNA internalization. AIM2, NALP3, DAI and mda5 are essential in the induction of an innate immune response towards adenoviral DNA. This immune reaction leads to a decrease in transduction efficiency of the vector after re-application and modulation of these receptor systems stabilizes transgene expression.
Collapse
Affiliation(s)
- Matthias Schulte
- Laboratory for Molecular Oncology and Wound Healing, Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kobiyama K, Kawashima A, Jounai N, Takeshita F, Ishii KJ, Ito T, Suzuki K. Role of Extrachromosomal Histone H2B on Recognition of DNA Viruses and Cell Damage. Front Genet 2013; 4:91. [PMID: 23734163 PMCID: PMC3661947 DOI: 10.3389/fgene.2013.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/03/2013] [Indexed: 12/12/2022] Open
Abstract
Histones are essential components of chromatin structure, and histone modification plays an important role in various cellular functions including transcription, gene silencing, and immunity. Histones also play distinct roles in extrachromosomal settings. Extrachromosomal histone H2B acts as a cytosolic sensor to detect double-stranded DNA (dsDNA) fragments derived from infectious agents or damaged cells to activate innate and acquired immune responses in various cell types. It also physically interacts with interferon (IFN)-β promoter stimulator 1 (IPS-1), an essential adaptor molecule that activates innate immunity, through COOH-terminal importin 9-related adaptor organizing histone H2B and IPS-1 (CIAO), resulting in a distinct signaling complex that induces dsDNA-induced type I IFN production. Such a molecular platform acts as a cellular sensor to recognize aberrant dsDNA in cases of viral infection and cell damage. This mechanism may also play roles in autoimmunity, transplantation rejection, gene-mediated vaccines, and other therapeutic applications.
Collapse
Affiliation(s)
- Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation Ibaraki, Osaka, Japan ; Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The ability of the immune system to protect the body from attack by foreign antigens is essential for human survival. The immune system can, however, start to attack the body's own organs. An autoimmune response against components of the thyroid gland affects 2-5% of the general population. Considerable familial clustering is also observed in autoimmune thyroid disease (AITD). Teasing out the genetic contribution to AITD over the past 40 years has helped unravel how immune disruption leads to disease onset. Breakthroughs in genome-wide association studies (GWAS) in the past decade have facilitated screening of a greater proportion of the genome, leading to the identification of a before unimaginable number of AITD susceptibility loci. This Review will focus on the new susceptibility loci identified by GWAS, what insights these loci provide about the pathogenesis of AITD and how genetic susceptibility loci shared between different autoimmune diseases could help explain disease co-clustering within individuals and families. This Review also discusses where future efforts should be focused to translate this step forward in our understanding of the genetic contribution to AITD into a better understanding of disease presentation and progression, and improved therapeutic options.
Collapse
Affiliation(s)
- Matthew J Simmonds
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
33
|
Kawashima A, Yamazaki K, Hara T, Akama T, Yoshihara A, Sue M, Tanigawa K, Wu H, Ishido Y, Takeshita F, Ishii N, Sato K, Suzuki K. Demonstration of innate immune responses in the thyroid gland: potential to sense danger and a possible trigger for autoimmune reactions. Thyroid 2013; 23:477-87. [PMID: 23234343 PMCID: PMC3610444 DOI: 10.1089/thy.2011.0480] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Autoimmune thyroid disease is an archetypal organ-specific autoimmune disorder that is characterized by the production of thyroid autoantibodies and lymphocytic infiltration into the thyroid. However, the underlying mechanisms by which specific thyroid antibodies are produced are largely unknown. Recent studies have shown that innate immune responses affect both the phenotype and the severity of autoimmune reactions. Moreover, it appears that even non-immune cells, including thyroid cells, have an ability to launch such responses. The aim of this study was to conduct a more detailed analysis of innate immune responses of the thyroid upon stimulation with various "non-self" and "self" factors that might contribute to the initiation of autoimmune reactions. METHODS We used rat thyroid FRTL-5 cells, human thyroid cells, and mice to investigate the effects of various pathogen-associated molecular patterns (PAMPs), danger-associated molecular patterns (DAMPs), and iodide on gene expression and function that were related to innate immune responses. RESULTS RT-PCR analysis showed that both rat and human thyroid cells expressed mRNAs for Toll-like receptors (TLRs) that sensed PAMPs. Stimulation of thyrocytes with TLR ligands resulted in activation of the interferon-beta (IFN-β) promoter and the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)-dependent promoter. As a result, pro-inflammatory cytokines, chemokines, and type I interferons were produced. Similar activation was observed when thyroid cells were stimulated with double-stranded DNA, one of the typical DAMPs. In addition to these PAMPs and DAMPs, treatment of thyroid cells with high concentrations of iodide increased mRNA expression of various cytokines. CONCLUSION We show that thyroid cells express functional sensors for exogenous and endogenous dangers, and that they are capable of launching innate immune responses without the assistance of immune cells. Such responses may relate to the development of thyroiditis, which in turn may trigger autoimmune reactions.
Collapse
Affiliation(s)
- Akira Kawashima
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Takeshi Hara
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Akama
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aya Yoshihara
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mariko Sue
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunari Tanigawa
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Huhehasi Wu
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Ishido
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiko Takeshita
- Laboratory of Adjuvant Innovation, Department of Fundamental Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Norihisa Ishii
- Director, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kanji Sato
- Department of Medicine, Institute of Clinical Endocrinology, Tokyo Women's University, Tokyo, Japan
| | - Koichi Suzuki
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
34
|
Sun VZ, Choe UJ, Rodriguez AR, Dai H, Deming TJ, Kamei DT. Transfection of mammalian cells using block copolypeptide vesicles. Macromol Biosci 2013; 13:539-50. [PMID: 23460310 DOI: 10.1002/mabi.201200383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/18/2012] [Indexed: 12/17/2022]
Abstract
An arginine-leucine block copolypeptide (R60 L20 ) is synthesized, which is capable of forming vesicles with controllable sizes, able to transport hydrophilic cargo across the cell membrane, and exhibit relatively low cytotoxicity. The R60 L20 vesicles also possess the ability to deliver DNA into mammalian cells for transfection. Although the transfection efficiency is lower than that of the commercially available transfection agent Lipofectamine 2000, the R60 L20 vesicles are able to achieve transfection with significantly lower cytotoxicity and immunogenicity. This behavior is potentially due to its stronger interaction with DNA which subsequently provides better protection against anionic heparin.
Collapse
Affiliation(s)
- Victor Z Sun
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
35
|
Dhanoya A, Wang T, Keshavarz-Moore E, Fassati A, Chain BM. Importin-7 mediates nuclear trafficking of DNA in mammalian cells. Traffic 2013; 14:165-75. [PMID: 23067392 PMCID: PMC3672689 DOI: 10.1111/tra.12021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 01/06/2023]
Abstract
Eukaryotic cells have the ability to uptake and transport endogenous and exogenous DNA in their nuclei, however little is known about the specific pathways involved. Here we show that the nuclear transport receptor importin 7 (imp7) supports nuclear import of supercoiled plasmid DNA and human mitochondrial DNA in a Ran and energy-dependent way. The imp7-dependent pathway was specifically competed by excess DNA but not by excess of maltose-binding protein fused with the classical nuclear localizing signal (NLS) or the M9 peptides. Transport of DNA molecules complexed with poly-l-lysine was impaired in intact cells depleted of imp7, and DNA complexes remained localized in the cytoplasm. Poor DNA nuclear import in cells depleted of imp7 directly correlated with lower gene expression levels in these cells compared to controls. Inefficient nuclear import of transfected DNA induced greater upregulation of the interferon pathway, suggesting that rapid DNA nuclear import may prevent uncontrolled activation of the innate immune response. Our results provide evidence that imp7 is a non-redundant component of an intrinsic pathway in mammalian cells for efficient accumulation of exogenous and endogenous DNA in the nucleus, which may be critical for the exchange of genetic information between mitochondria and nuclear genomes and to control activation of the innate immune response.
Collapse
Affiliation(s)
- Arjun Dhanoya
- The Advanced Centre for Biochemical Engineering, University College LondonTorrington Place, London, WC1E 7JE, UK
| | - Tse Wang
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
- The Wohl Virion Centre, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
| | - Eli Keshavarz-Moore
- The Advanced Centre for Biochemical Engineering, University College LondonTorrington Place, London, WC1E 7JE, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
- The Wohl Virion Centre, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
| | - Benjamin M Chain
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
| |
Collapse
|
36
|
Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013; 5:470-527. [PMID: 23435233 PMCID: PMC3640511 DOI: 10.3390/v5020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022] Open
Abstract
Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.
Collapse
|
37
|
Jounai N, Kobiyama K, Takeshita F, Ishii KJ. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol 2013; 2:168. [PMID: 23316484 PMCID: PMC3539075 DOI: 10.3389/fcimb.2012.00168] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/13/2012] [Indexed: 01/22/2023] Open
Abstract
All mammalian cells are equipped with large numbers of sensors for protection from various sorts of invaders, who, in turn, are equipped with molecules containing pathogen-associated molecular patterns (PAMPs). Once these sensors recognize non-self antigens containing PAMPs, various physiological responses including inflammation are induced to eliminate the pathogens. However, the host sometimes suffers from chronic infection or continuous injuries, resulting in production of self-molecules containing damage-associated molecular patterns (DAMPs). DAMPs are also responsible for the elimination of pathogens, but promiscuous recognition of DAMPs through sensors against PAMPs has been reported. Accumulation of DAMPs leads to massive inflammation and continuous production of DAMPs; that is, a vicious circle leading to the development of autoimmune disease. From a vaccinological point of view, the accurate recognition of both PAMPs and DAMPs is important for vaccine immunogenicity, because vaccine adjuvants are composed of several PAMPs and/or DAMPs, which are also associated with severe adverse events after vaccination. Here, we review as the roles of PAMPs and DAMPs upon infection with pathogens or inflammation, and the sensors responsible for recognizing them, as well as their relationship with the development of autoimmune disease or the immunogenicity of vaccines.
Collapse
Affiliation(s)
- Nao Jounai
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation Osaka, Japan ; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University Osaka, Japan
| | | | | | | |
Collapse
|
38
|
Abstract
It has been estimated that 10(11) -10(12) cells, primarily of haematogenous origin, die in the adult human body daily, and a similar number is regenerated to maintain homeostasis. Despite the presence of an efficient scavenging system for dead cells, considerable amounts of fragmented genetic material enter the circulation in healthy individuals. Elevated blood levels of extracellular nucleic acids have been reported in various disease conditions; such as ageing and age-related degenerative disorders, cancer; acute and chronic inflammatory conditions, severe trauma and autoimmune disorders. In addition to genomic DNA and nucleosomes, mitochondrial DNA is also found in circulation, as are RNA and microRNA. There is extensive literature that suggests that extraneously added nucleic acids have biological actions. They can enter into cells in vitro and in vivo and induce genetic transformation and cellular and chromosomal damage; and experimentally added nucleic acids are capable of activating both innate and adaptive immune systems and inducing a sterile inflammatory response. The possibility as to whether circulating nucleic acids may, likewise, have biological activities has not been explored. In this review we raise the question as to whether circulating nucleic acids may have damaging effects on the host and be implicated in ageing and diverse acute and chronic human pathologies.
Collapse
|
39
|
McNeel DG, Becker JT, Johnson LE, Olson BM. DNA Vaccines for Prostate Cancer. CURRENT CANCER THERAPY REVIEWS 2012; 8:254-263. [PMID: 24587772 DOI: 10.2174/157339412804143113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Delivery of plasmid DNA encoding an antigen of interest has been demonstrated to be an effective means of immunization, capable of eliciting antigen-specific T cells. Plasmid DNA vaccines offer advantages over other anti-tumor vaccine approaches in terms of simplicity, manufacturing, and possibly safety. The primary disadvantage is their poor transfection efficiency and subsequent lower immunogenicity relative to other genetic vaccine approaches. However, multiple preclinical models demonstrate anti-tumor efficacy, and many efforts are underway to improve the immunogenicity and anti-tumor effect of these vaccines. Clinical trials using DNA vaccines as treatments for prostate cancer have begun, and to date have demonstrated safety and immunological effect. This review will focus on DNA vaccines as a specific means of antigen delivery, advantages and disadvantages of this type of immunization, previous experience in preclinical models and human trials specifically conducted for the treatment of prostate cancer, and future directions for the application of DNA vaccines to prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jordan T Becker
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Laura E Johnson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
40
|
Choi HJ, Kim TY, Ruiz-Llorente S, Jeon MJ, Han JM, Kim WG, Shong YK, Kim WB. Alpha-lipoic acid induces sodium iodide symporter expression in TPC-1 thyroid cancer cell line. Nucl Med Biol 2012; 39:1275-80. [DOI: 10.1016/j.nucmedbio.2012.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/31/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
|
41
|
Kaczorowski DJ, Scott MJ, Pibris JP, Afrazi A, Nakao A, Edmonds RD, Kim S, Kwak JH, Liu Y, Fan J, Billiar TR. Mammalian DNA is an endogenous danger signal that stimulates local synthesis and release of complement factor B. Mol Med 2012; 18:851-60. [PMID: 22526919 DOI: 10.2119/molmed.2012.00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/19/2012] [Indexed: 11/06/2022] Open
Abstract
Complement factor B plays a critical role in ischemic tissue injury and autoimmunity. Factor B is dynamically synthesized and released by cells outside of the liver, but the molecules that trigger local factor B synthesis and release during endogenous tissue injury have not been identified. We determined that factor B is upregulated early after cold ischemia-reperfusion in mice, using a heterotopic heart transplant model. These data suggested upregulation of factor B by damage-associated molecular patterns (DAMPs), but multiple common DAMPs did not induce factor B in RAW264.7 mouse macrophages. However, exogenous DNA induced factor B mRNA and protein expression in RAW cells in vitro, as well as in peritoneal and alveolar macrophages in vivo. To determine the cellular mechanisms involved in DNA-induced factor B upregulation we then investigated the role of multiple known DNA receptors or binding partners. We stimulated peritoneal macrophages from wild-type (WT), toll-like receptor 9 (TLR9)-deficient, receptor for advanced glycation end products (RAGE)⁻/⁻ and myeloid differentiation factor 88 (MyD88)⁻/⁻ mice, or mouse macrophages deficient in high-mobility group box proteins (HMGBs), DNA-dependent activator of interferon-regulatory factors (DAI) or absent in melanoma 2 (AIM2), with DNA in the presence or absence of lipofection reagent. Reverse transcription-polymerase chain reaction, Western blotting and immunocytochemical analysis were employed for analysis. Synthesis of factor B was independent of TLR9, RAGE, DAI and AIM2, but was dependent on HMGBs, MyD88, p38 and NF-κB. Our data therefore show that mammalian DNA is an endogenous molecule that stimulates factor B synthesis and release from macrophages via HMGBs, MyD88, p38 and NF-κB signaling. This activation of the immune system likely contributes to damage following sterile injury such as hemorrhagic shock and ischemia-reperfusion.
Collapse
Affiliation(s)
- David J Kaczorowski
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cavlar T, Ablasser A, Hornung V. Induction of type I IFNs by intracellular DNA-sensing pathways. Immunol Cell Biol 2012; 90:474-82. [PMID: 22450802 DOI: 10.1038/icb.2012.11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A successful antimicrobial immune response involves the coordinate action of cells and soluble factors, with the cytokine family of type I interferons (IFNs) having a central role. Type I IFNs are not only crucial in conferring immediate antimicrobial, most importantly antiviral effects, but they also have an essential role in bridging the innate with the adaptive immune response. Therefore, production of these key cytokines must be tightly controlled. To this effect the host has evolved a set of pattern recognition receptors (PRRs) that reliably and specifically detect the presence of microbial pathogens before mounting an IFN response. Most PRR pathways that are known to induce type I IFNs are triggered upon recognition of nucleic acids. This mode of sensing is not straightforward, as large amounts of RNA and DNA are also present within the host. Nevertheless, in some cases distinct molecular features that are present within foreign nucleic acids but absent in endogenous nucleic acids, allow the host to reliably discriminate between 'self' and 'non-self'. At the same time, compartmentalization of PRRs within subcellular organelles that are usually devoid of host nucleic acids, but are sites of pathogen localization, is another principle that enables the host to distinguish self from non-self. The latter mode of sensing applies to the detection of microbial DNA within the cytoplasm, a compartment in which host DNAs are usually not present. Despite the past years' tremendous progress in the field of innate immunity, our understanding of cytoplasmic DNA sensing mechanisms is only beginning to form/take form. In this review, we outline the recent advancements in the elucidation of intracellular DNA-sensing pathways and discuss the future directions of this emerging field.
Collapse
Affiliation(s)
- Taner Cavlar
- Institute for Clinical Chemistry and Clinical Pharmacology, Unit for Clinical Biochemistry, University Hospital, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
43
|
Cytosolic double-stranded DNA as a damage-associated molecular pattern induces the inflammatory response in rat pancreatic stellate cells: a plausible mechanism for tissue injury-associated pancreatitis. Int J Inflam 2012; 2012:504128. [PMID: 22550608 PMCID: PMC3328960 DOI: 10.1155/2012/504128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/14/2012] [Indexed: 12/17/2022] Open
Abstract
Pancreatitis is an inflammatory disease of unknown causes. There are many triggers causing pancreatitis, such as alcohol, common bile duct stone, virus and congenital or acquired stenosis of main pancreatic duct, which often involve tissue injuries. Pancreatitis often occurs in sterile condition, where the dead/dying pancreatic parenchymal cells and the necrotic tissues derived from self-digested-pancreas were observed. However, the causal relationship between tissue injury and pancreatitis and how tissue injury could induce the inflammation of the pancreas were not elucidated fully until now. This study demonstrates that cytosolic double-stranded DNA increases the expression of several inflammatory genes (cytokines, chemokines, type I interferon, and major histocompatibility complex) in rat pancreatic stellate cells. Furthermore, these increase accompanied the multiple signal molecules genes, such as interferon regulatory factors, nuclear factor-kappa B, low-molecular-weight protein 2, and transporter associated with antigen processing 1. We suggest that this phenomenon is a plausible mechanism that might explain how cell damage of the pancreas or tissue injury triggers acute, chronic, and autoimmune pancreatitis; it is potentially relevant to host immune responses induced during alcohol consumption or other causes.
Collapse
|
44
|
Surface assembly of poly(I:C) on PEGylated microspheres to shield from adverse interactions with fibroblasts. J Control Release 2012; 159:204-14. [PMID: 22349184 DOI: 10.1016/j.jconrel.2012.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/01/2012] [Accepted: 02/04/2012] [Indexed: 11/20/2022]
Abstract
By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.
Collapse
|
45
|
Horvath GL, Schrum JE, De Nardo CM, Latz E. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev 2011; 243:119-35. [PMID: 21884172 DOI: 10.1111/j.1600-065x.2011.01050.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cells of the innate immune system mobilize a coordinated immune response towards invading microbes and after disturbances in tissue homeostasis. These immune responses typically lead to infection control and tissue repair. Exaggerated or uncontrolled immune responses, however, can also induce acute of chronic inflammatory pathologies that are characteristic for many common diseases such as sepsis, arthritis, atherosclerosis, or Alzheimer's disease. In recent years, the concerted efforts of many scientists have uncovered numerous mechanisms by which immune cells detect foreign or changed self-substances that appear in infections or during tissue damage. These substances stimulate signaling receptors, which leads to cellular activation and the induction of effector mechanisms. Here, we review the role of inflammasomes, a family of signaling molecules that form multi-molecular signaling platforms and activate inflammatory caspases and interleukin-1β cytokines.
Collapse
Affiliation(s)
- Gabor L Horvath
- Biomedical Center, Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
46
|
Kawashima A, Tanigawa K, Akama T, Yoshihara A, Ishii N, Suzuki K. Innate immune activation and thyroid autoimmunity. J Clin Endocrinol Metab 2011; 96:3661-71. [PMID: 21956420 DOI: 10.1210/jc.2011-1568] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Autoimmune thyroid disease (AITD) is the archetypal organ-specific autoimmune disorder and is characterized by the production of thyroid autoantibodies. However, the underlying mechanisms by which specific antibodies against thyroid proteins are produced are largely unknown. EVIDENCE ACQUISITION Published peer-reviewed basic and clinical literatures on immunology and autoimmune diseases were identified through searches of PubMed for articles published from January 1971 to May 2011. Articles resulting from these searches and relevant references cited in those articles were reviewed. All the relevant articles were written in English. EVIDENCE SYNTHESIS Recent studies have indicated that innate immune responses induced by both exogenous and endogenous factors affect the phenotype and severity of autoimmune reactions. One of the recent topics is the effect of self-genomic DNA fragments on immune activation. Expression of major histocompatibility complex class II on the autoimmune target cells seems to play an important role in the presentation of endogenous antigens. Accumulated evidence from animal models has generated new insights into the pathogenesis of AITD. CONCLUSION AITD develops by a combination of genetic susceptibility and environmental factors. Innate immune responses are associated with thyroid dysfunction, tissue destruction, and the likely development and perpetuation of AITD. In addition to the other factors, cell injury may contribute to the activation of innate immune response and the development of AITD.
Collapse
Affiliation(s)
- Akira Kawashima
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Saxena M, Busca A, Pandey S, Kryworuchko M, Kumar A. CpG protects human monocytic cells against HIV-Vpr-induced apoptosis by cellular inhibitor of apoptosis-2 through the calcium-activated JNK pathway in a TLR9-independent manner. THE JOURNAL OF IMMUNOLOGY 2011; 187:5865-78. [PMID: 22068233 DOI: 10.4049/jimmunol.1100115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Monocytic cells survive HIV replication and consequent cytopathic effects because of their decreased sensitivity to HIV-induced apoptosis. However, the mechanism underlying this resistance to apoptosis remains poorly understood. Lymphocytic cells are exposed to microbial products because of their translocation from the gut in persons with chronic HIV infections or following coinfections. We hypothesized that activation of monocytic cells by such microbial products through interaction with corresponding TLRs may confer antiapoptotic signals. Using HIV-viral protein R (Vpr)(52-96) peptide as a model apoptosis-inducing agent, we demonstrated that unlike monocyte-derived macrophages, undifferentiated primary human monocytes and promonocytic THP-1 cells are highly susceptible to Vpr(52-96)-induced apoptosis. Interestingly, monocytes and THP-1 cells stimulated with TLR9 agonist CpG induced almost complete resistance to Vpr(52-96)-induced apoptosis, albeit through a TLR9-independent signaling pathway. Moreover, CpG selectively induced the antiapoptotic cellular inhibitor of apoptosis (c-IAP)-2 protein and inhibition of the c-IAP-2 gene by either specific small interfering RNA or synthetic second mitochondrial activator of caspases mimetic reversed CpG-induced resistance against Vpr(52-96)-mediated apoptosis. We demonstrated that c-IAP-2 is regulated by the JNK and calcium signaling pathway, in particular calmodulin-dependent protein kinase-II. Furthermore, inhibition of JNK and the calcium signaling including the calmodulin-dependent protein kinase-II by either pharmacological inhibitors or their specific small interfering RNAs reversed CpG-induced protection against Vpr(52-96)-mediated apoptosis. We also show that CpG induced JNK phosphorylation through activation of the calcium signaling pathway. Taken together, our results suggest that CpG-induced protection may be mediated by c-IAP-2 through the calcium-activated JNK pathway via what appeared to be TLR9-independent signaling pathways.
Collapse
Affiliation(s)
- Mansi Saxena
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | | | | | | | | |
Collapse
|
48
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs, with glomerulonephritis representing a frequent and serious manifestation. SLE is characterized by the presence of various autoantibodies, including anti-DNA antibodies that occur in approximately 70% of patients with SLE and which contribute to disease pathogenesis. Consequently, immunosuppressive therapies are applied in the treatment of SLE to reduce autoantibody levels. However, increasing evidence suggests that DNA--especially double--stranded DNA-constitutes an important pathogenic factor that is able to activate inflammatory responses by itself in autoimmune diseases. Therefore, modifying the structure of DNA to reduce its pathogenicity might be a more targeted approach for the treatment of SLE than immunosuppression. This article presents information in support of this strategy, and discusses the potential methods of DNA structure manipulation--in light of data obtained from mouse models of SLE--including topoisomerase I inhibition, administration of DNase I, or modification of histones using heparin or histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Steffen Frese
- Department of Clinical Research, University Hospital Bern, Murtenstrasse 50, P. O. Box 44, CH-3010 Bern, Switzerland . The Feinstein Institute for Medical Research, North Shore LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA
| | - Betty Diamond
- Department of Clinical Research, University Hospital Bern, Murtenstrasse 50, P. O. Box 44, CH-3010 Bern, Switzerland . The Feinstein Institute for Medical Research, North Shore LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
49
|
Bacterial DNA promotes proliferation of rat pancreatic stellate cells thorough toll-like receptor 9: potential mechanisms for bacterially induced fibrosis. Pancreas 2011; 40:823-31. [PMID: 21747311 DOI: 10.1097/mpa.0b013e318224a501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES We hoped to clarify the possible role of CpG DNA as a trigger factor for overt pancreatic inflammation of pancreatic stellate cells (PSCs). METHODS Pancreatic stellate cells were isolated from the male Lewis rat. The expression of Toll-like receptor 9 (TLR9) messenger RNA and protein were evaluated by reverse transcription-polymerase chain reaction and immunofluorescent cytochemistry. Internalization of CpG DNA was analyzed by confocal laser scanning microscopy. Pancreatic stellate cells were incubated with CpG DNA, and then cell proliferation and migration were assessed. RESULTS Constitutive expression of TLR9 occurs at the messenger RNA and protein levels. After several minutes of CpG DNA administration, CpG DNA was observed on the cell membrane surface and in the cytoplasm and found to be translocating into the perinucleus of PSCs. Pancreatic stellate cells migrated and proliferated in dose- and time-dependent manners in response to simulation by CpG DNA. Proliferation of PSCs was observed 3 hours after administration (earlier than platelet-derived growth factor-induced proliferation), suggesting that PSCs respond readily to provide innate immunity. Endosomal acidification inhibitors attenuated CpG DNA-induced signaling, leading to suppression of DNA synthesis by PSCs. CONCLUSIONS Our findings demonstrate that bacterial DNA promotes migration and proliferation of PSCs and suggest that bacterial DNA can initiate and sustain pancreatic inflammation and fibrosis by means of TLR9.
Collapse
|
50
|
Gough SCL, Simmonds MJ. The HLA Region and Autoimmune Disease: Associations and Mechanisms of Action. Curr Genomics 2011; 8:453-65. [PMID: 19412418 PMCID: PMC2647156 DOI: 10.2174/138920207783591690] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/11/2007] [Accepted: 10/19/2007] [Indexed: 01/01/2023] Open
Abstract
The HLA region encodes several molecules that play key roles in the immune system. Strong association between the HLA region and autoimmune disease (AID) has been established for over fifty years. Association of components of the HLA class II encoded HLA-DRB1-DQA1-DQB1 haplotype has been detected with several AIDs, including rheumatoid arthritis, type 1 diabetes and Graves' disease. Molecules encoded by this region play a key role in exogenous antigen presentation to CD4+ Th cells, indicating the importance of this pathway in AID initiation and progression. Although other components of the HLA class I and III regions have also been investigated for association with AID, apart from the association of HLA-B*27 with ankylosing spondylitis, it has been difficult to determine additional susceptibility loci independent of the strong linkage disequilibrium (LD) with the HLA class II genes. Recent advances in the statistical analysis of LD and the recruitment of large AID datasets have allowed investigation of the HLA class I and III regions to be re-visited. Association of the HLA class I region, independent of known HLA class II effects, has now been detected for several AIDs, including strong association of HLA-B with type 1 diabetes and HLA-C with multiple sclerosis and Graves' disease. These results provide further evidence of a possible role for bacterial or viral infection and CD8+ T cells in AID onset. The advances being made in determining the primary associations within the HLA region and AIDs will not only increase our understanding of the mechanisms behind disease pathogenesis but may also aid in the development of novel therapeutic targets in the future.
Collapse
Affiliation(s)
- S C L Gough
- Division of Medical Sciences, University of Birmingham, Institute of Biomedical Research, Birmingham, B15 2TT, UK
| | | |
Collapse
|