1
|
Priyanka, Maiti S. Probing Phoretic Transport of Oxidative Enzyme-Bound Zn(II)-Metallomicelle in Adenosine Triphosphate Gradient via a Spatially Relocated Biocatalytic Zone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18906-18916. [PMID: 39189920 DOI: 10.1021/acs.langmuir.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Although cellular transport machinery is mostly ATP-driven and ATPase-dependent, there has been a recent surge in understanding colloidal transport processes relying on a nonspecific physical interaction with biologically significant small molecules. Herein, we probe the phoretic behavior of a biocolloid [composed of a Zn(II)-coordinated metallomicelle and enzymes horseradish peroxidase (HRP) and glucose oxidase (GOx)] when exposed to a concentration gradient of ATP under microfluidic conditions. Simultaneously, we demonstrate that an ATP-independent oxidative biocatalytic product formation zone can be modulated in the presence of a (glucose + ATP) gradient. We report that both directionality and extent of transport can be tuned by changing the concentration of the ATP gradient. This diffusiophoretic mobility of a submicrometer biocolloidal object for the spatial transposition of a biocatalytic zone signifies the ATP-mediated functional transportation without the involvement of ATPase. Additionally, the ability to analyze colloidal transport in microfluidic channels using an enzymatic fluorescent product-forming reaction could be a new nanobiotechnological tool for understanding transport and spatial catalytic patterning processes. We believe that this result will inspire further studies for the realization of elusive biological transport processes and target-specific delivery vehicles, considering the omnipresence of the ATP-gradient across the cell.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
2
|
Otomo A, Iida T, Okuni Y, Ueno H, Murata T, Iino R. Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V o and V 1 motors. Proc Natl Acad Sci U S A 2022; 119:e2210204119. [PMID: 36215468 PMCID: PMC9586324 DOI: 10.1073/pnas.2210204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Yasuko Okuni
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| |
Collapse
|
3
|
Turina P. Modulation of the H +/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Front Mol Biosci 2022; 9:1023031. [PMID: 36275634 PMCID: PMC9583940 DOI: 10.3389/fmolb.2022.1023031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
F-type ATP synthases are transmembrane enzymes, which play a central role in the metabolism of all aerobic and photosynthetic cells and organisms, being the major source of their ATP synthesis. Catalysis occurs via a rotary mechanism, in which the free energy of a transmembrane electrochemical ion gradient is converted into the free energy of ATP phosphorylation from ADP and Pi, and vice versa. An ADP, tightly bound to one of the three catalytic sites on the stator head, is associated with catalysis inhibition, which is relieved by the transmembrane proton gradient and by ATP. By preventing wasteful ATP hydrolysis in times of low osmotic energy and low ATP/ADP ratio, such inhibition constitutes a classical regulatory feedback effect, likely to be an integral component of in vivo regulation. The present miniview focuses on an additional putative regulatory phenomenon, which has drawn so far little attention, consisting in a substrate-induced tuning of the H+/ATP coupling ratio during catalysis, which might represent an additional key to energy homeostasis in the cell. Experimental pieces of evidence in support of such a phenomenon are reviewed.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Marshansky V. Discovery and Study of Transmembrane Rotary Ion-Translocating Nano-Motors: F-ATPase/Synthase of Mitochondria/Bacteria and V-ATPase of Eukaryotic Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:702-719. [PMID: 36171652 DOI: 10.1134/s000629792208003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
This review discusses the history of discovery and study of the operation of the two rotary ion-translocating ATPase nano-motors: (i) F-ATPase/synthase (holocomplex F1FO) of mitochondria/bacteria and (ii) eukaryotic V-ATPase (holocomplex V1VO). Vacuolar adenosine triphosphatase (V-ATPase) is a transmembrane multisubunit complex found in all eukaryotes from yeast to humans. It is structurally and functionally similar to the F-ATPase/synthase of mitochondria/bacteria and the A-ATPase/synthase of archaebacteria, which indicates a common evolutionary origin of the rotary ion-translocating nano-motors built into cell membranes and invented by Nature billions of years ago. Previously we have published several reviews on this topic with appropriate citations of our original research. This review is focused on the historical analysis of the discovery and study of transmembrane rotary ion-translocating ATPase nano-motors functioning in bacteria, eukaryotic cells and mitochondria of animals.
Collapse
|
5
|
Jia Y, Xuan M, Feng X, Duan L, Li J, Li J. Reconstitution of Motor Proteins through Molecular Assembly. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Mingjun Xuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiyun Feng
- Yunnan Normal University Kunming Yunnan 650500 China
| | - Li Duan
- Northwest Institute of Nuclear Technology Xi'an Shaanxi 710024 China
| | - Jieling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
6
|
Insights into the origin of the high energy-conversion efficiency of F 1-ATPase. Proc Natl Acad Sci U S A 2019; 116:15924-15929. [PMID: 31341091 DOI: 10.1073/pnas.1906816116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our understanding of the rotary-coupling mechanism of F1-ATPase has been greatly enhanced in the last decade by advances in X-ray crystallography, single-molecular imaging, and theoretical models. Recently, Volkán-Kacsó and Marcus [S. Volkán-Kacsó, R. A. Marcus, Proc. Natl. Acad. Sci. U.S.A. 112, 14230 (2015)] presented an insightful thermodynamic model based on the Marcus reaction theory coupled with an elastic structural deformation term to explain the observed γ-rotation angle dependence of the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) exchange rates of F1-ATPase. Although the model is successful in correlating single-molecule data, it is not in agreement with the available theoretical results. We describe a revision of the model, which leads to consistency with the simulation results and other experimental data on the F1-ATPase rotor compliance. Although the free energy liberated on ATP hydrolysis by F1-ATPase is rapidly dissipated as heat and so cannot contribute directly to the rotation, we show how, nevertheless, F1-ATPase functions near the maximum possible efficiency. This surprising result is a consequence of the differential binding of ATP and its hydrolysis products ADP and Pi along a well-defined pathway.
Collapse
|
7
|
Virgile C, Hauk P, Wu HC, Bentley WE. Plasmid-encoded protein attenuates Escherichia coli swimming velocity and cell growth, not reprogrammed regulatory functions. Biotechnol Prog 2019; 35:e2778. [PMID: 30666816 PMCID: PMC10711804 DOI: 10.1002/btpr.2778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2023]
Abstract
In addition to engineering new pathways for synthesis, synthetic biologists rewire cells to carry out "programmable" functions, an example being the creation of wound-healing probiotics. Engineering regulatory circuits and synthetic machinery, however, can be deleterious to cell function, particularly if the "metabolic burden" is significant. Here, a synthetic regulatory circuit previously constructed to direct Escherichia coli to swim toward hydrogen peroxide, a signal of wound generation, was shown to work even with coexpression of antibiotic resistance genes and genes associated with lactose utilization. We found, however, that cotransformation with a second vector constitutively expressing GFP (as a marker) and additionally conferring resistance to kanamycin and tetracycline resulted in slower velocity (Δ~6 μm/s) and dramatically reduced growth rate (Δ > 50%). The additional vector did not, however, alter the run-and-tumble ratio or directional characteristics of H2 O2 -dependent motility. The main impact of this additional burden was limited to slowing cell velocity and growth, suggesting that reprogrammed cell motility by minimally altering native regulatory circuits can be maintained even when extraneous burden is placed on the host cell. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2778, 2019.
Collapse
Affiliation(s)
- Chelsea Virgile
- Institute for Bioscience and Biotechnology Research, College Park, MD 20742
- Fischell Department of Bioengineering, Room 3122, Jeong H. Kim Engineering Building (Bldg. #225), University of Maryland, College Park, MD 20742
| | - Pricila Hauk
- Institute for Bioscience and Biotechnology Research, College Park, MD 20742
- Fischell Department of Bioengineering, Room 3122, Jeong H. Kim Engineering Building (Bldg. #225), University of Maryland, College Park, MD 20742
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, College Park, MD 20742
- Fischell Department of Bioengineering, Room 3122, Jeong H. Kim Engineering Building (Bldg. #225), University of Maryland, College Park, MD 20742
| |
Collapse
|
8
|
Diallo K, Oppong AK, Lim GE. Can 14-3-3 proteins serve as therapeutic targets for the treatment of metabolic diseases? Pharmacol Res 2019; 139:199-206. [DOI: 10.1016/j.phrs.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
|
9
|
Pikin SA, Pikina ES. On DNA Motions under Action of Enzymes of Different Types. II. CRYSTALLOGR REP+ 2019. [DOI: 10.1134/s106377451901019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
|
11
|
Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieff N, Rubinstein JL. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 2015; 4:e10180. [PMID: 26439008 PMCID: PMC4718723 DOI: 10.7554/elife.10180] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/05/2015] [Indexed: 02/02/2023] Open
Abstract
Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.
Collapse
Affiliation(s)
- Anna Zhou
- The Hospital for Sick Children Research Institute, Toronto, Canada,Department of Medical Biophysics, The University of Toronto, Ontario, Canada
| | - Alexis Rohou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daniel G Schep
- The Hospital for Sick Children Research Institute, Toronto, Canada,Department of Medical Biophysics, The University of Toronto, Ontario, Canada
| | - John V Bason
- MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
| | | | - John E Walker
- MRC Mitochondrial Biology Unit, Cambridge, United Kingdom, (JEW)
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States, (NG)
| | - John L Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Canada,Department of Medical Biophysics, The University of Toronto, Ontario, Canada,Department of Biochemistry, The University of Toronto, Ontario, Canada, (JLR)
| |
Collapse
|
12
|
Hooper SL, Burstein HJ. Minimization of extracellular space as a driving force in prokaryote association and the origin of eukaryotes. Biol Direct 2014; 9:24. [PMID: 25406691 PMCID: PMC4289276 DOI: 10.1186/1745-6150-9-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/03/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Internalization-based hypotheses of eukaryotic origin require close physical association of host and symbiont. Prior hypotheses of how these associations arose include chance, specific metabolic couplings between partners, and prey-predator/parasite interactions. Since these hypotheses were proposed, it has become apparent that mixed-species, close-association assemblages (biofilms) are widespread and predominant components of prokaryotic ecology. Which forces drove prokaryotes to evolve the ability to form these assemblages are uncertain. Bacteria and archaea have also been found to form membrane-lined interconnections (nanotubes) through which proteins and RNA pass. These observations, combined with the structure of the nuclear envelope and an energetic benefit of close association (see below), lead us to propose a novel hypothesis of the driving force underlying prokaryotic close association and the origin of eukaryotes. RESULTS Respiratory proton transport does not alter external pH when external volume is effectively infinite. Close physical association decreases external volume. For small external volumes, proton transport decreases external pH, resulting in each transported proton increasing proton motor force to a greater extent. We calculate here that in biofilms this effect could substantially decrease how many protons need to be transported to achieve a given proton motor force. Based as it is solely on geometry, this energetic benefit would occur for all prokaryotes using proton-based respiration. CONCLUSIONS This benefit may be a driving force in biofilm formation. Under this hypothesis a very wide range of prokaryotic species combinations could serve as eukaryotic progenitors. We use this observation and the discovery of prokaryotic nanotubes to propose that eukaryotes arose from physically distinct, functionally specialized (energy factory, protein factory, DNA repository/RNA factory), obligatorily symbiotic prokaryotes in which the protein factory and DNA repository/RNA factory cells were coupled by nanotubes and the protein factory ultimately internalized the other two. This hypothesis naturally explains many aspects of eukaryotic physiology, including the nuclear envelope being a folded single membrane repeatedly pierced by membrane-bound tubules (the nuclear pores), suggests that species analogous or homologous to eukaryotic progenitors are likely unculturable as monocultures, and makes a large number of testable predictions. REVIEWERS This article was reviewed by Purificación López-García and Toni Gabaldón.
Collapse
Affiliation(s)
- Scott L Hooper
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| | - Helaine J Burstein
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
13
|
Chaudhari K, Pradeep T. Spatiotemporal mapping of three dimensional rotational dynamics of single ultrasmall gold nanorods. Sci Rep 2014; 4:5948. [PMID: 25091698 PMCID: PMC4121602 DOI: 10.1038/srep05948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/10/2014] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal mapping of the position and orientation of nano-machinery inside complex and dynamic cellular environments is essential for the detailed understanding of many bio-physical processes. For the genuine observation of such biomolecular dynamics with high signal to noise ratio and reduced disturbance from the labeling probes, reduction in the size of nano-bio labels and simplification of techniques for their observation are important. Here we achieve this using polarized dark field scattering micro-spectroscopy (PDFSMS), in its simplest form so that it is deployable in several experiments. We not only locate tiny gold nanorods (GNRs) of size 30 (length) × 10 nm (diameter) inside HEK293 cells but also demonstrate mapping of their in-situ polarization patterns using a novel method. Real time observations of rotating GNR with DFSMS and PDFSMS are used to resolve in-plane and out-of-plane rotational modes of GNR. We have shown that PDFSMS itself can provide complete information about the state of GNR. A step ahead, we demonstrate the application of PDFSMS to track three dimensional rotational dynamics of transferrin-conjugated GNRs inside live HEK293 cells. These first-time observations of the three dimensional intracellular rotational dynamics of tiny GNRs using PDFSMS present a new landmark in single particle scattering spectroscopy.
Collapse
Affiliation(s)
- Kamalesh Chaudhari
- 1] Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India [2] DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
14
|
Abstract
The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.
Collapse
|
15
|
Gonzalez J, Gavara R, Gadea O, Blasco S, García-España E, Pina F. Kinetics of Zn2+ complexation by a ditopic phenanthroline-azamacrocyclic scorpiand-like receptor. Chem Commun (Camb) 2012; 48:1994-6. [DOI: 10.1039/c2cc16831f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Abstract
Some of the rate theories that are most useful for modeling biological processes are reviewed. By delving into some of the details and subtleties in the development of the theories, the review will hopefully help the reader gain a more than superficial perspective. Examples are presented to illustrate how rate theories can be used to generate insight at the microscopic level into biomolecular behaviors. An attempt is made to clear up a number of misconceptions in the literature regarding popular rate theories, including the appearance of Planck's constant in the transition-state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA association rate constants. Future work in combining the implementation of rate theories through computer simulations with experimental probes of rate processes, and in modeling effects of intracellular environments so that theories can be used for generating rate constants for systems biology studies is particularly exciting.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
17
|
Castillo CE, Máñez MA, González J, Llinares JM, Jiménez HR, Basallote MG, García-España E. Structural reorganisation in polytopic receptors revealed by kinetic studies. Chem Commun (Camb) 2010; 46:6081-3. [DOI: 10.1039/c0cc01393e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Abstract
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F(1), a water-soluble catalytic sector, and F(o), a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that epsilon is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of epsilon is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of epsilon in the ATP synthase from E. coli is discussed.
Collapse
Affiliation(s)
- S B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA.
| |
Collapse
|
19
|
Rubin A, Riznichenko G. Modeling of the Primary Processes in a Photosynthetic Membrane. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol 2008; 6:805-14. [PMID: 18820700 DOI: 10.1038/nrmicro1991] [Citation(s) in RCA: 654] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Submarine hydrothermal vents are geochemically reactive habitats that harbour rich microbial communities. There are striking parallels between the chemistry of the H(2)-CO(2) redox couple that is present in hydrothermal systems and the core energy metabolic reactions of some modern prokaryotic autotrophs. The biochemistry of these autotrophs might, in turn, harbour clues about the kinds of reactions that initiated the chemistry of life. Hydrothermal vents thus unite microbiology and geology to breathe new life into research into one of biology's most important questions - what is the origin of life?
Collapse
Affiliation(s)
- William Martin
- Institut für Botanik III, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
21
|
Smirnov AY, Savel'ev S, Mourokh LG, Nori F. Proton transport and torque generation in rotary biomotors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:031921. [PMID: 18851079 DOI: 10.1103/physreve.78.031921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/29/2008] [Indexed: 05/26/2023]
Abstract
We analyze the dynamics of rotary biomotors within a simple nanoelectromechanical model, consisting of a stator part and a ring-shaped rotor having 12 proton-binding sites. This model is closely related to the membrane-embedded F0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0 motor, even though our analysis is applicable to the bacterial flagellar motor.
Collapse
Affiliation(s)
- A Yu Smirnov
- Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
22
|
Structure of the cytosolic part of the subunit b-dimer of Escherichia coli F0F1-ATP synthase. Biophys J 2008; 94:5053-64. [PMID: 18326647 DOI: 10.1529/biophysj.107.121038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the external stalk and its function in the catalytic mechanism of the F(0)F(1)-ATP synthase remains one of the important questions in bioenergetics. The external stalk has been proposed to be either a rigid stator that binds F(1) or an elastic structural element that transmits energy from the small rotational steps of subunits c to the F(1) sector during catalysis. We employed proteomics, sequence-based structure prediction, molecular modeling, and electron spin resonance spectroscopy using site-directed spin labeling to understand the structure and interfacial packing of the Escherichia coli b-subunit homodimer external stalk. Comparisons of bacterial, cyanobacterial, and plant b-subunits demonstrated little sequence similarity. Supersecondary structure predictions, however, show that all compared b-sequences have extensive heptad repeats, suggesting that the proteins all are capable of packing as left-handed coiled-coils. Molecular modeling subsequently indicated that b(2) from the E. coli ATP synthase could pack into stable left-handed coiled-coils. Thirty-eight substitutions to cysteine in soluble b-constructs allowed the introduction of spin labels and the determination of intersubunit distances by ESR. These distances correlated well with molecular modeling results and strongly suggest that the E. coli subunit b-dimer can stably exist as a left-handed coiled-coil.
Collapse
|
23
|
Sadus RJ. Molecular simulation and theory for nanosystems: Insights for molecular motors. MOLECULAR SIMULATION 2008. [DOI: 10.1080/08927020701784770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Lyska D, Paradies S, Meierhoff K, Westhoff P. HCF208, a Homolog of Chlamydomonas CCB2, is Required for Accumulation of Native Cytochrome b6 in Arabidopsis thaliana. ACTA ACUST UNITED AC 2007; 48:1737-46. [DOI: 10.1093/pcp/pcm146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Baker NR, Harbinson J, Kramer DM. Determining the limitations and regulation of photosynthetic energy transduction in leaves. PLANT, CELL & ENVIRONMENT 2007; 30:1107-25. [PMID: 17661750 DOI: 10.1111/j.1365-3040.2007.01680.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The light-dependent production of ATP and reductants by the photosynthetic apparatus in vivo involves a series of electron and proton transfers. Consideration is given as to how electron fluxes through photosystem I (PSI), using absorption spectroscopy, and through photosystem II (PSII), using chlorophyll fluorescence analyses, can be estimated in vivo. Measurements of light-induced electrochromic shifts using absorption spectroscopy provide a means of analyzing the proton fluxes across the thylakoid membranes in vivo. Regulation of these electron and proton fluxes is required for the thylakoids to meet the fluctuating metabolic demands of the cell. Chloroplasts exhibit a wide and flexible range of mechanisms to regulate electron and proton fluxes that enable chloroplasts to match light use for ATP and reductant production with the prevailing metabolic requirements. Non-invasive probing of electron fluxes through PSI and PSII, and proton fluxes across the thylakoid membranes can provide insights into the operation of such regulatory processes in vivo.
Collapse
Affiliation(s)
- Neil R Baker
- Department of Biological Sciences, University of Essex, Colchester, CO4 3SQ, Essex, UK.
| | | | | |
Collapse
|
26
|
Langemeyer L, Engelbrecht S. Essential arginine in subunit a and aspartate in subunit c of FoF1 ATP synthase: effect of repositioning within helix 4 of subunit a and helix 2 of subunit c. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:998-1005. [PMID: 17583672 DOI: 10.1016/j.bbabio.2007.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/10/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
FoF1 ATP synthase couples proton flow through the integral membrane portion Fo (ab2c10) to ATP-synthesis in the extrinsic F1-part ((alphabeta)3gammadeltaepsilon) (Escherichia coli nomenclature and stoichiometry). Coupling occurs by mechanical rotation of subunits c10gammaepsilon relative to (alphabeta)3deltaab2. Two residues were found to be essential for proton flow through ab2c10, namely Arg210 in subunit a (aR210) and Asp61 in subunits c (cD61). Their deletion abolishes proton flow, but "horizontal" repositioning, by anchoring them in adjacent transmembrane helices, restores function. Here, we investigated the effects of "vertical" repositioning aR210, cD61, or both by one helical turn towards the N- or C-termini of their original helices. Other than in the horizontal the vertical displacement changes the positions of the side chains within the depth of the membrane. Mutant aR210A/aN214R appeared to be short-circuited in that it supported proton conduction only through EF1-depleted EFo, but not in EFoEF1, nor ATP-driven proton pumping. Mutant cD61N/cM65D grew on succinate, retained the ability to synthesize ATP and supported passive proton conduction but apparently not ATP hydrolysis-driven proton pumping.
Collapse
Affiliation(s)
- Lars Langemeyer
- Universität Osnabrück, Fachbereich Biologie, Biochemie, Barbarastr. 13, 49076 Osnabrück, Germany
| | | |
Collapse
|
27
|
Loginov EB, Pikin SA. A simple statistical approach to the boyer model of the molecular motor adenosine triphosphatase. CRYSTALLOGR REP+ 2006. [DOI: 10.1134/s1063774506020192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Abstract
Oxygenic photosynthesis, the principal converter of sunlight into chemical energy on earth, is catalyzed by four multi-subunit membrane-protein complexes: photosystem I (PSI), photosystem II (PSII), the cytochrome b(6)f complex, and F-ATPase. PSI generates the most negative redox potential in nature and largely determines the global amount of enthalpy in living systems. PSII generates an oxidant whose redox potential is high enough to enable it to oxidize H(2)O, a substrate so abundant that it assures a practically unlimited electron source for life on earth. During the last century, the sophisticated techniques of spectroscopy, molecular genetics, and biochemistry were used to reveal the structure and function of the two photosystems. The new structures of PSI and PSII from cyanobacteria, algae, and plants has shed light not only on the architecture and mechanism of action of these intricate membrane complexes, but also on the evolutionary forces that shaped oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
29
|
Yuanbo C, Fan Z, Jiachang Y. Detecting proton flux across chromatophores driven by F0F1-ATPase using N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt. Anal Biochem 2005; 344:102-7. [PMID: 16043113 DOI: 10.1016/j.ab.2005.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 06/14/2005] [Indexed: 11/28/2022]
Abstract
N-(Fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt (F-DHPE) is a lipid fluorescence dye sensitive to pH changes and is used in this study for detecting proton flux through F0F1-ATPase within chromatophores driven by ATP hydrolysis. F-DHPE is easily labeled to the outer surface of chromatophores. In the range of pH 7.0 to 9.0, fluorescence intensity is sensitive to pH changes. The sensitivity is especially great in the range of pH 8.2 to 9.0, so pH 8.6 was chosen as the appropriate experimental condition. It is shown that added ATP not only acts as a fluorescence quencher but also can be hydrolyzed by F0F1-ATPase to pump protons into chromatophores, resulting in fluorescence restoration. A stimulator (NaSO3) and various types of inhibitors (NaN3, 5'-adenylyl imidodiphosphate [AMP-PNP], and N,N'-dicyclohexylcarbodiimide [DCCD]) of F0F1 confirmed that fluorescence restoration is caused by ATP-driven proton flux. When loaded with one antibody (anti-beta antibody) or two antibodies (anti-beta antibody and sheep to rabbit second antibody), F0F1-ATPase exhibits lower proton pumping activities, as indicated by fluorescence restoration. The possible mechanism of the inhibition of antibodies on proton pumping activity is discussed.
Collapse
Affiliation(s)
- Cui Yuanbo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
30
|
Abstract
The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
31
|
Krebstakies T, Zimmermann B, Gräber P, Altendorf K, Börsch M, Greie JC. Both rotor and stator subunits are necessary for efficient binding of F1 to F0 in functionally assembled Escherichia coli ATP synthase. J Biol Chem 2005; 280:33338-45. [PMID: 16085645 DOI: 10.1074/jbc.m506251200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In F1F0-ATP synthase, the subunit b2delta complex comprises the peripheral stator bound to subunit a in F0 and to the alpha3beta3 hexamer of F1. During catalysis, ATP turnover is coupled via an elastic rotary mechanism to proton translocation. Thus, the stator has to withstand the generated rotor torque, which implies tight interactions of the stator and rotor subunits. To quantitatively characterize the contribution of the F0 subunits to the binding of F1 within the assembled holoenzyme, the isolated subunit b dimer, ab2 subcomplex, and fully assembled F0 complex were specifically labeled with tetramethylrhodamine-5-maleimide at bCys64 and functionally reconstituted into liposomes. Proteoliposomes were then titrated with increasing amounts of Cy5-maleimide-labeled F1 (at gammaCys106 and analyzed by single-molecule fluorescence resonance energy transfer. The data revealed F1 dissociation constants of 2.7 nm for the binding of F0 and 9-10 nm for both the ab2 subcomplex and subunit b dimer. This indicates that both rotor and stator components of F0 contribute to F1 binding affinity in the assembled holoenzyme. The subunit c ring plays a crucial role in the binding of F1 to F0, whereas subunit a does not contribute significantly.
Collapse
Affiliation(s)
- Thomas Krebstakies
- Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M. Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H(+)-ATP synthase. EMBO J 2005; 24:2053-63. [PMID: 15920483 PMCID: PMC1150879 DOI: 10.1038/sj.emboj.7600682] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/26/2005] [Indexed: 11/08/2022] Open
Abstract
F0F1-ATP synthases catalyze proton transport-coupled ATP synthesis in bacteria, chloroplasts, and mitochondria. In these complexes, the epsilon-subunit is involved in the catalytic reaction and the activation of the enzyme. Fluorescence-labeled F0F1 from Escherichia coli was incorporated into liposomes. Single-molecule fluorescence resonance energy transfer (FRET) revealed that the epsilon-subunit rotates stepwise showing three distinct distances to the b-subunits in the peripheral stalk. Rotation occurred in opposite directions during ATP synthesis and hydrolysis. Analysis of the dwell times of each FRET state revealed different reactivities of the three catalytic sites that depended on the relative orientation of epsilon during rotation. Proton transport through the enzyme in the absence of nucleotides led to conformational changes of epsilon. When the enzyme was inactive (i.e. in the absence of substrates or without membrane energization), three distances were found again, which differed from those of the active enzyme. The three states of the inactive enzyme were unequally populated. We conclude that the active-inactive transition was associated with a conformational change of epsilon within the central stalk.
Collapse
Affiliation(s)
- Boris Zimmermann
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Manuel Diez
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nawid Zarrabi
- 3. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - Peter Gräber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Börsch
- 3. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
33
|
Giavalisco P, Nordhoff E, Kreitler T, Klöppel KD, Lehrach H, Klose J, Gobom J. Proteome analysis ofArabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics 2005; 5:1902-13. [PMID: 15815986 DOI: 10.1002/pmic.200401062] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study we show results of a large-scale proteome analysis of the recently sequenced plant Arabidopsis thaliana. On the basis of a previously published sequential protein extraction protocol, we prepared protein extracts from eight different A. thaliana tissues (primary leaf, leaf, stem, silique, seedling, seed, root, and inflorescence) and analysed these by two-dimensional gel electrophoresis. A total of 6000 protein spots, from three of these tissues, namely primary leaf, silique and seedling, were excised and the contained proteins were analysed by matrix assisted laser desorption/ionisation time of flight mass spectrometry peptide mass fingerprinting. This resulted in the identification of the proteins contained in 2943 spots, which were found to be products of 663 different genes. In this report we present and discuss the methodological and biological results of our plant proteome analysis.
Collapse
|
34
|
Yinghao Z, Jun W, Yuanbo C, Jiachang Y, Xiaohong F. Rotary torque produced by proton motive force in FoF1 motor. Biochem Biophys Res Commun 2005; 331:370-4. [PMID: 15845402 DOI: 10.1016/j.bbrc.2005.03.172] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Indexed: 10/25/2022]
Abstract
We have attempted direct observation of the light-driven rotation of a FoF(1)-ATP motor. The FoF(1)-ATP motor was co-reconstituted by the deletion-delta subunit of FoF(1)-ATP synthase with bacteriorhodopsins (BRs) into a liposome. The BR converts radiation energy into electrochemical gradient of proton to drive the FoF(1)-ATP motor. Therefore, the light-driven rotation of FoF(1)-ATP motor has been directly observed by a fluorescence microscopy using a fluorescent actin filament connected to beta-subunit as a marker of its orientation. The rotational torque value of the Fo motor was calculated as 27.93+/-1.88pNnm. The ATP motor is expected to be a promising rotary molecular motor in the development of nanodevices.
Collapse
Affiliation(s)
- Zhang Yinghao
- The National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
35
|
Drory O, Frolow F, Nelson N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 2005; 5:1148-52. [PMID: 15540116 PMCID: PMC1299189 DOI: 10.1038/sj.embor.7400294] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/12/2004] [Accepted: 10/13/2004] [Indexed: 11/08/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) has a crucial role in the vacuolar system of eukaryotic cells. It provides most of the energy required for transport systems that utilize the proton-motive force that is generated by ATP hydrolysis. Some, but not all, of the V-ATPase subunits are homologous to those of F-ATPase and the nonhomologous subunits determine the unique features of V-ATPase. We determined the crystal structure of V-ATPase subunit C (Vma5p), which does not show any homology with F-ATPase subunits, at 1.75 A resolution. The structural features suggest that subunit C functions as a flexible stator that holds together the catalytic and membrane sectors of the enzyme. A second crystal form that was solved at 2.9 A resolution supports the flexible nature of subunit C. These structures provide a framework for exploring the unique mechanistic features of V-ATPases.
Collapse
Affiliation(s)
- Omri Drory
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Tel: +972 3 640 6017; Fax: +972 3 640 6018; E-mail:
| |
Collapse
|
36
|
Abstract
Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process - the conversion of sunlight into chemical energy - is driven by four, multisubunit, membrane-protein complexes that are known as photosystem I, photosystem II, cytochrome b(6)f and F-ATPase. Structural insights into these complexes are now providing a framework for the exploration not only of energy and electron transfer, but also of the evolutionary forces that shaped the photosynthetic apparatus.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
37
|
Xing J, Wang H, von Ballmoos C, Dimroth P, Oster G. Torque generation by the Fo motor of the sodium ATPase. Biophys J 2004; 87:2148-63. [PMID: 15454418 PMCID: PMC1304641 DOI: 10.1529/biophysj.104.042093] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/25/2004] [Indexed: 11/18/2022] Open
Abstract
Based on recent structural and functional findings, we have constructed a mathematical model for the sodium-driven Fo motor of the F1Fo-ATPase from the anaerobic bacterium Propionigenium modestum. The model reveals the mechanochemical principles underlying the Fo motor's operation, and explains all of the existing experimental data on wild-type and mutant Fo motors. In particular, the model predicts a nonmonotonic dependence of the ATP hydrolysis activity on the sodium concentration, a prediction confirmed by new experiments. To explain experimental observations, the positively charged stator residue (R227) must assume different positions in the ATP synthesis and hydrolysis directions. This work also illustrates how to extract a motor mechanism from dynamical experimental observations in the absence of complete structural information.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Molecular Biology, Policy and Management, University of California, Berkeley, California 94720-3112, USA
| | | | | | | | | |
Collapse
|
38
|
Greie JC, Heitkamp T, Altendorf K. The transmembrane domain of subunit b of the Escherichia coli F1F(O) ATP synthase is sufficient for H(+)-translocating activity together with subunits a and c. ACTA ACUST UNITED AC 2004; 271:3036-42. [PMID: 15233800 DOI: 10.1111/j.1432-1033.2004.04235.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subunit b is indispensable for the formation of a functional H(+)-translocating F(O) complex both in vivo and in vitro. Whereas the very C-terminus of subunit b interacts with F(1) and plays a crucial role in enzyme assembly, the C-terminal region is also considered to be necessary for proper reconstitution of F(O) into liposomes. Here, we show that a synthetic peptide, residues 1-34 of subunit b (b(1-34)) [Dmitriev, O., Jones, P.C., Jiang, W. & Fillingame, R.H. (1999) J. Biol. Chem.274, 15598-15604], corresponding to the membrane domain of subunit b was sufficient in forming an active F(O) complex when coreconstituted with purified ac subcomplex. H(+) translocation was shown to be sensitive to the specific inhibitor N,N'-dicyclohexylcarbodiimide, and the resulting F(O) complexes were deficient in binding of isolated F(1). This demonstrates that only the membrane part of subunit b is sufficient, as well as necessary, for H(+) translocation across the membrane, whereas the binding of F(1) to F(O) is mainly triggered by C-terminal residues beyond Glu34 in subunit b. Comparison of the data with former reconstitution experiments additionally indicated that parts of the hydrophilic portion of the subunit b dimer are not involved in the process of ion translocation itself, but might organize subunits a and c in F(O) assembly. Furthermore, the data obtained functionally support the monomeric NMR structure of the synthetic b(1-34).
Collapse
Affiliation(s)
- Jörg-Christian Greie
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Osnabrück, Germany.
| | | | | |
Collapse
|
39
|
Motz C, Hornung T, Kersten M, McLachlin DT, Dunn SD, Wise JG, Vogel PD. The subunit b dimer of the FOF1-ATP synthase: interaction with F1-ATPase as deduced by site-specific spin-labeling. J Biol Chem 2004; 279:49074-81. [PMID: 15339903 DOI: 10.1074/jbc.m404543200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used site-specific spin-labeling of single cysteine mutations within a water-soluble mutant of subunit b of the ATP synthase and employed electron spin resonance (ESR) spectroscopy to obtain information about the binding interactions of the b dimer with F1-ATPase. Interaction of b2 with a delta-depleted F1 (F1-delta) was also studied. The cysteine mutations used for spin-labeling were distributed throughout the cytosolic domain of the b subunit. In addition, each position between residues 101 and 114 of b was individually mutated to cysteine. All mutants were modified with a cysteine-reactive spin label. The room temperature ESR spectra of spin-labeled b2 in the presence of F1 or F1-delta when compared with the spectra of free b2 indicate a tight binding interaction between b2 and F1. The data suggest that b2 packs tightly to F1 between residues 80 and the C terminus but that there are segments of b2 within that region where packing interactions are quite loose. Two-dimensional gel electrophoresis confirmed binding of the modified b mutants to F1-ATPase as well as to F1-delta. Subsequent addition of delta to F1-delta.b2 complex resulted in changes in the ESR spectra, indicating different binding interactions of b to F1 in the presence or absence of delta. The data also suggest that the reconstitution of the ATP synthase is not ordered with respect to these subunits. Additional spectral components observed in b preparations that were spin-labeled between amino acid position 101 and 114 are indicative of either two populations of b subunits with different packing interactions or to helical bending within this region.
Collapse
Affiliation(s)
- Christian Motz
- Department of Biological Sciences, Southern Methodist University, Dallas Texas 75275, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu MS, Todd BD, Sadus RJ. Complex cooperativity of ATP hydrolysis in the F(1)-ATPase molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1698:197-202. [PMID: 15134652 DOI: 10.1016/j.bbapap.2003.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 11/24/2003] [Accepted: 11/24/2003] [Indexed: 11/30/2022]
Abstract
F(1)-ATPase catalyses ATP hydrolysis and converts the cellular chemical energy into mechanical rotation. The hydrolysis reaction in F(1)-ATPase does not follow the widely believed Michaelis-Menten mechanism. Instead, the hydrolysis mechanism behaves in an ATP-dependent manner. We develop a model for enzyme kinetics and hydrolysis cooperativity of F(1)-ATPase which involves the binding-state changes to the coupling catalytic reactions. The quantitative analysis and modeling suggest the existence of complex cooperative hydrolysis between three different catalysis sites of F(1)-ATPase. This complexity may be taken into account to resolve the arguments on the binding change mechanism in F(1)-ATPase.
Collapse
Affiliation(s)
- Ming S Liu
- Centre for Molecular Simulation, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria 3122, Australia.
| | | | | |
Collapse
|
41
|
Feniouk BA, Kozlova MA, Knorre DA, Cherepanov DA, Mulkidjanian AY, Junge W. The proton-driven rotor of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating. Biophys J 2004; 86:4094-109. [PMID: 15189903 PMCID: PMC1304308 DOI: 10.1529/biophysj.103.036962] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 02/11/2004] [Indexed: 11/18/2022] Open
Abstract
The membrane portion of F(0)F(1)-ATP synthase, F(0), translocates protons by a rotary mechanism. Proton conduction by F(0) was studied in chromatophores of the photosynthetic bacterium Rhodobacter capsulatus. The discharge of a light-induced voltage jump was monitored by electrochromic absorption transients to yield the unitary conductance of F(0). The current-voltage relationship of F(0) was linear from 7 to 70 mV. The current was extremely proton-specific (>10(7)) and varied only slightly ( approximately threefold) from pH 6 to 10. The maximum conductance was approximately 10 fS at pH 8, equivalent to 6240 H(+) s(-1) at 100-mV driving force, which is an order-of-magnitude greater than of coupled F(0)F(1). There was no voltage-gating of F(0) even at low voltage, and proton translocation could be driven by deltapH alone, without voltage. The reported voltage gating in F(0)F(1) is thus attributable to the interaction of F(0) with F(1) but not to F(0) proper. We simulated proton conduction by a minimal rotary model including the rotating c-ring and two relay groups mediating proton exchange between the ring and the respective membrane surface. The data fit attributed pK values of approximately 6 and approximately 10 to these relays, and placed them close to the membrane/electrolyte interface.
Collapse
Affiliation(s)
- Boris A Feniouk
- Division of Biophysics, Faculty of Biology/Chemistry, University of Osnabruck, Osnabruck, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Allen JF. Cytochrome b6f: structure for signalling and vectorial metabolism. TRENDS IN PLANT SCIENCE 2004; 9:130-137. [PMID: 15003236 DOI: 10.1016/j.tplants.2004.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- John F Allen
- Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden.
| |
Collapse
|
43
|
Aguilar J, Basallote MG, Gil L, Hernandez JC, Manez MA, Garcia-Espana E, Soriano C, Verdejo B. Stability and kinetics of the acid-promoted decomposition of Cu(ii) complexes with hexaazacyclophanes: kinetic studies as a probe to detect changes in the coordination mode of the macrocycles. Dalton Trans 2004:94-103. [PMID: 15356747 DOI: 10.1039/b311772c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, protonation and Cu(II) coordination features of the novel azacyclophane type receptors 2,6,10,13,17,21-hexaza[22]-(2,6)-pyridinophane (L2), 2,6,9,12,15,19-hexaza[20]-(2,6)-pyridinophane (L5) and 2,6,9,12,15,19-hexaza[20]metacyclophane (L6) are presented. The protonation and Cu(II) constants are analysed and compared with the previously reported open-chain polyamines 4,8,11,15-tetrazaoctadecane-1,18-diamine (L1) and 4,7,10,13-tetraazahexadecane-1,16-diamine (L4) and of the cyclophane 2,6,10,13,17,21-hexaaza[22]paracyclophane (L3). All the systems form mono- and dinuclear complexes whose stability and pH range of existence depend on the type of hydrocarbon chains and molecular topology. The effects of the cyclic or open-chain nature and of the presence of the pyridine rings on the protonation and formation of mono- and dinuclear complexes are discussed. Stopped-flow kinetic measurements on the acid-promoted decomposition of the Cu(II) complexes have been carried out for the different systems. With respect to the decomposition of the dinuclear complexes, because the size of the macrocycles forces both metal ions to be close to each other, the release of the first ion occurs within the mixing time of the stopped-flow except for the dinuclear complexes of L2. However, the most interesting kinetic result is the observation of different kinetics of decomposition for the different mononuclear complexes formed by a given ligand. This effect is especially evident for L3 and L6 and indicates a change in the coordination mode of the ligand for the different mononuclear species. Therefore the Cu(II) ion performs a slippage motion through the macrocyclic cavity driven by pH changes. The stopped-flow experiments are an excellent tool to detect these slippage processes that may be present for the complexes with other macrocycles.
Collapse
Affiliation(s)
- Juan Aguilar
- Departamento de Quimica Inorgánica, Universidad de Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The machinery of life has been disclosed in the second half of the 20th century to a degree not in the least envisioned previously by even the most daring players in this field. It has been extremely rewarding to start out from the fogs and to enjoy the brightness at the end of one's active career. Perhaps the most astounding lesson to learn is how conservative and modular is the construction of key devices. Oxidative and photophosphorylation are carried out by ATP synthase, which is unique in converting electrochemical, mechanical and chemical forms of energy within one nano-machine. This complex protein consists of more than 20 polypeptides of at least eight different kinds. Still, its activity survives in engineered chimerical constructs joining parts from organisms that underwent billions of years of separate evolution. The path of discovery of its structure and function is sketched here from a personal viewpoint. It has been a long way from before-structure-bioenergetics to the post-structural one (which now dominates the biology textbooks), but there is still a long way to go for a rigorous physical understanding. The author has been privileged to enjoy the friendship, cooperation and competition of excellent scientists from widely different backgrounds and expertise.
Collapse
Affiliation(s)
- Wolfgang Junge
- Division of Biophysics, University of Osnabrück, 49069, Osnabrück, Germany,
| |
Collapse
|
45
|
Ben-Shem A, Frolow F, Nelson N. Crystal structure of plant photosystem I. Nature 2003; 426:630-5. [PMID: 14668855 DOI: 10.1038/nature02200] [Citation(s) in RCA: 521] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 10/28/2003] [Indexed: 11/09/2022]
Abstract
Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4 A resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.
Collapse
Affiliation(s)
- Adam Ben-Shem
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
46
|
Stalz WD, Greie JC, Deckers-Hebestreit G, Altendorf K. Direct interaction of subunits a and b of the F0 complex of Escherichia coli ATP synthase by forming an ab2 subcomplex. J Biol Chem 2003; 278:27068-71. [PMID: 12724321 DOI: 10.1074/jbc.m302027200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The addition of a His6 tag to the N terminus of subunit a of the F0 complex of the Escherichia coli ATP synthase allowed the purification of an ab2 subcomplex after solubilization of membranes with n-dodecyl-beta-d-maltoside and subsequent nickel-nitrilotriacetic acid affinity chromatography. After co-reconstitution of the ab2 subcomplex with purified subunit c, passive proton translocation rates as well as coupled ATPase activities after binding of F1 were measured that were comparable with those of wild type F0. The interaction between subunits a and b, which has been shown to be stoichiometric and functional, is not triggered by any cross-linking reagent and therefore reflects subunit interactions occurring within the F0 complex in vivo.
Collapse
Affiliation(s)
- Wolf-Dieter Stalz
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
47
|
Liu MS, Todd BD, Sadus RJ. Kinetics and chemomechanical properties of the F1-ATPase molecular motor. J Chem Phys 2003. [DOI: 10.1063/1.1568083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
49
|
Mendoza A, Aguilar J, Basallote MG, Gil L, Hernández JC, Máñez MA, García-España E, Ruiz-Ramírez L, Soriano C, Verdejo B. Hydrogen-ion driven molecular motions in Cu2+-complexes of a ditopic phenanthrolinophane ligand. Chem Commun (Camb) 2003:3032-3. [PMID: 14703843 DOI: 10.1039/b309721h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the first kinetic evaluations of a metal ion interchange between the two coordination sites of a ditopic macrocycle is presented.
Collapse
Affiliation(s)
- Angel Mendoza
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria, Av. Universidad 3000, México D.F., 04510, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Allen JF. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. TRENDS IN PLANT SCIENCE 2003; 8:15-9. [PMID: 12523995 DOI: 10.1016/s1360-1385(02)00006-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photosynthetic electron transport is coupled to ATP synthesis. This process - photosynthetic phosphorylation - proceeds by several alternative electron-transport pathways in isolated chloroplasts. The question: 'Which of these works in real life?' has long occupied students of photosynthesis. Recent results from structural biology and genomics suggest that the answer is 'All of them'. The interplay between the pathways might explain the flexibility of photosynthesis in meeting different metabolic demands for ATP.
Collapse
Affiliation(s)
- John F Allen
- Department of Plant Biochemistry, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, Sweden.
| |
Collapse
|