1
|
Park J, Youn HS, An JY, Lee Y, Eom SH, Wang J. Structure of New Binary and Ternary DNA Polymerase Complexes From Bacteriophage RB69. Front Mol Biosci 2021; 8:704813. [PMID: 34869578 PMCID: PMC8639217 DOI: 10.3389/fmolb.2021.704813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA polymerase plays a critical role in passing the genetic information of any living organism to its offspring. DNA polymerase from enterobacteria phage RB69 (RB69pol) has both polymerization and exonuclease activities and has been extensively studied as a model system for B-family DNA polymerases. Many binary and ternary complex structures of RB69pol are known, and they all contain a single polymerase-primer/template (P/T) DNA complex. Here, we report a crystal structure of the exonuclease-deficient RB69pol with the P/T duplex in a dimeric form at a resolution of 2.2 Å. The structure includes one new closed ternary complex with a single divalent metal ion bound and one new open binary complex in the pre-insertion state with a vacant dNTP-binding pocket. These complexes suggest that initial binding of the correct dNTP in the open state is much weaker than expected and that initial binding of the second divalent metal ion in the closed state is also much weaker than measured. Additional conformational changes are required to convert these complexes to high-affinity states. Thus, the measured affinities for the correct incoming dNTP and divalent metal ions are average values from many conformationally distinctive states. Our structure provides new insights into the order of the complex assembly involving two divalent metal ions. The biological relevance of specific interactions observed between one RB69pol and the P/T duplex bound to the second RB69pol observed within this dimeric complex is discussed.
Collapse
Affiliation(s)
- Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea
| | - Hyung-Seop Youn
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,BIO R&D Center, Ingredient Business Unit, Daesang Corporation, Gyeonggi-do, Korea
| | - Jun Yop An
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Virocure Inc., Seoul, Korea
| | - Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Metabolic Regulation Research Center, Korea Research Institute of BIoscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Department of Chemistry, GIST, Gwangju, Korea
| | - Jimin Wang
- Steitz Center for Structural Biology, GIST, Gwangju, South Korea.,Department of Molecular Biophysics and Biochemistry, New Haven, CT, United States
| |
Collapse
|
2
|
Ciesielski GL, Kim S, de Bovi Pontes C, Kaguni LS. Physical and Functional Interaction of Mitochondrial Single-Stranded DNA-Binding Protein and the Catalytic Subunit of DNA Polymerase Gamma. Front Genet 2021; 12:721864. [PMID: 34539752 PMCID: PMC8440931 DOI: 10.3389/fgene.2021.721864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
The maintenance of the mitochondrial genome depends on a suite of nucleus-encoded proteins, among which the catalytic subunit of the mitochondrial replicative DNA polymerase, Pol γα, plays a pivotal role. Mutations in the Pol γα-encoding gene, POLG, are a major cause of human mitochondrial disorders. Here we present a study of direct and functional interactions of Pol γα with the mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB coordinates the activity of the enzymes at the DNA replication fork. However, the mechanism of this functional relationship is elusive, and no direct interactions between the replicative factors have been identified to date. This contrasts strikingly with the extensive interactomes of SSB proteins identified in other homologous replication systems. Here we show for the first time that mtSSB binds Pol γα directly, in a DNA-independent manner. This interaction is strengthened in the absence of the loop 2.3 structure in mtSSB, and is abolished upon preincubation with Pol γβ. Together, our findings suggest that the interaction between mtSSB and polymerase gamma holoenzyme (Pol γ) involves a balance between attractive and repulsive affinities, which have distinct effects on DNA synthesis and exonucleolysis.
Collapse
Affiliation(s)
- Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.,Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | - Shalom Kim
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | | | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
3
|
Abstract
In all cell types, a multi-protein machinery is required to accurately duplicate the large duplex DNA genome. This central life process requires five core replisome factors in all cellular life forms studied thus far. Unexpectedly, three of the five core replisome factors have no common ancestor between bacteria and eukaryotes. Accordingly, the replisome machines of bacteria and eukaryotes have important distinctions in the way that they are organized and function. This chapter outlines the major replication proteins that perform DNA duplication at replication forks, with particular attention to differences and similarities in the strategies used by eukaryotes and bacteria.
Collapse
Affiliation(s)
- Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, USA, 10065
| | - Michael E O'Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, USA, 10065. .,Howard Hughes Medical Institute, The Rockefeller University, New York, USA, 10065.
| |
Collapse
|
4
|
Wallen JR, Zhang H, Weis C, Cui W, Foster BM, Ho CMW, Hammel M, Tainer JA, Gross ML, Ellenberger T. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome. Structure 2017; 25:157-166. [PMID: 28052235 DOI: 10.1016/j.str.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. Two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerase binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. Our collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.
Collapse
Affiliation(s)
- Jamie R Wallen
- Department of Chemistry & Physics, Western Carolina University, Cullowhee, NC 28723, USA.
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Caroline Weis
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brittni M Foster
- Department of Chemistry & Physics, Western Carolina University, Cullowhee, NC 28723, USA
| | - Chris M W Ho
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Benkovic SJ, Spiering MM. Understanding DNA replication by the bacteriophage T4 replisome. J Biol Chem 2017; 292:18434-18442. [PMID: 28972188 DOI: 10.1074/jbc.r117.811208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The T4 replisome has provided a unique opportunity to investigate the intricacies of DNA replication. We present a comprehensive review of this system focusing on the following: its 8-protein composition, their individual and synergistic activities, and assembly in vitro and in vivo into a replisome capable of coordinated leading/lagging strand DNA synthesis. We conclude with a brief comparison with other replisomes with emphasis on how coordinated DNA replication is achieved.
Collapse
Affiliation(s)
- Stephen J Benkovic
- From the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michelle M Spiering
- From the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
6
|
Cryo-EM structure of the replisome reveals multiple interactions coordinating DNA synthesis. Proc Natl Acad Sci U S A 2017; 114:E1848-E1856. [PMID: 28223502 DOI: 10.1073/pnas.1701252114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We present a structure of the ∼650-kDa functional replisome of bacteriophage T7 assembled on DNA resembling a replication fork. A structure of the complex consisting of six domains of DNA helicase, five domains of RNA primase, two DNA polymerases, and two thioredoxin (processivity factor) molecules was determined by single-particle cryo-electron microscopy. The two molecules of DNA polymerase adopt a different spatial arrangement at the replication fork, reflecting their roles in leading- and lagging-strand synthesis. The structure, in combination with biochemical data, reveals molecular mechanisms for coordination of leading- and lagging-strand synthesis. Because mechanisms of DNA replication are highly conserved, the observations are relevant to other replication systems.
Collapse
|
7
|
Coordinated DNA Replication by the Bacteriophage T4 Replisome. Viruses 2015; 7:3186-200. [PMID: 26102578 PMCID: PMC4488733 DOI: 10.3390/v7062766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022] Open
Abstract
The T4 bacteriophage encodes eight proteins, which are sufficient to carry out coordinated leading and lagging strand DNA synthesis. These purified proteins have been used to reconstitute DNA synthesis in vitro and are a well-characterized model system. Recent work on the T4 replisome has yielded more detailed insight into the dynamics and coordination of proteins at the replication fork. Since the leading and lagging strands are synthesized in opposite directions, coordination of DNA synthesis as well as priming and unwinding is accomplished by several protein complexes. These protein complexes serve to link catalytic activities and physically tether proteins to the replication fork. Essential to both leading and lagging strand synthesis is the formation of a holoenzyme complex composed of the polymerase and a processivity clamp. The two holoenzymes form a dimer allowing the lagging strand polymerase to be retained within the replisome after completion of each Okazaki fragment. The helicase and primase also form a complex known as the primosome, which unwinds the duplex DNA while also synthesizing primers on the lagging strand. Future studies will likely focus on defining the orientations and architecture of protein complexes at the replication fork.
Collapse
|
8
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Geertsema HJ, van Oijen AM. A single-molecule view of DNA replication: the dynamic nature of multi-protein complexes revealed. Curr Opin Struct Biol 2013; 23:788-93. [PMID: 23890728 DOI: 10.1016/j.sbi.2013.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 01/31/2023]
Abstract
Recent advances in the development of single-molecule approaches have made it possible to study the dynamics of biomolecular systems in great detail. More recently, such tools have been applied to study the dynamic nature of large multi-protein complexes that support multiple enzymatic activities. In this review, we will discuss single-molecule studies of the replisome, the protein complex responsible for the coordinated replication of double-stranded DNA. In particular, we will focus on new insights obtained into the dynamic nature of the composition of the DNA-replication machinery and how the dynamic replacement of components plays a role in the regulation of the DNA-replication process.
Collapse
Affiliation(s)
- Hylkje J Geertsema
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
10
|
Perumal SK, Nelson SW, Benkovic SJ. Interaction of T4 UvsW helicase and single-stranded DNA binding protein gp32 through its carboxy-terminal acidic tail. J Mol Biol 2013; 425:2823-39. [PMID: 23732982 DOI: 10.1016/j.jmb.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage T4 UvsW helicase contains both unwinding and annealing activities and displays some functional similarities to bacterial RecG and RecQ helicases. UvsW is involved in several DNA repair pathways, playing important roles in recombination-dependent DNA repair and the reorganization of stalled replication forks. The T4 single-stranded DNA (ssDNA) binding protein gp32 is a central player in nearly all DNA replication and repair processes and is thought to facilitate their coordination by recruiting and regulating the various proteins involved. Here, we show that the activities of the UvsW protein are modulated by gp32. UvsW-catalyzed unwinding of recombination intermediates such as D-loops and static X-DNA (Holliday junction mimic) to ssDNA products is enhanced by the gp32 protein. The enhancement requires the presence of the protein interaction domain of gp32 (the acidic carboxy-terminus), suggesting that a specific interaction between UvsW and gp32 is required. In the absence of this interaction, the ssDNA annealing and ATP-dependent translocation activities of UvsW are severely inhibited when gp32 coats the ssDNA lattice. However, when UvsW and gp32 do interact, UvsW is able to efficiently displace the gp32 protein from the ssDNA. This ability of UvsW to remove gp32 from ssDNA may explain its ability to enhance the strand invasion activity of the T4 recombinase (UvsX) and suggests a possible new role for UvsW in gp32-mediated DNA transactions.
Collapse
Affiliation(s)
- Senthil K Perumal
- 414 Wartik Laboratories, Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
11
|
Chen D, Yue H, Spiering MM, Benkovic SJ. Insights into Okazaki fragment synthesis by the T4 replisome: the fate of lagging-strand holoenzyme components and their influence on Okazaki fragment size. J Biol Chem 2013; 288:20807-20816. [PMID: 23729670 DOI: 10.1074/jbc.m113.485961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we employed a circular replication substrate with a low priming site frequency (1 site/1.1 kb) to quantitatively examine the size distribution and formation pattern of Okazaki fragments. Replication reactions by the T4 replisome on this substrate yielded a patterned series of Okazaki fragments whose size distribution shifted through collision and signaling mechanisms as the gp44/62 clamp loader levels changed but was insensitive to changes in the gp43 polymerase concentration, as expected for a processive, recycled lagging-strand polymerase. In addition, we showed that only one gp45 clamp is continuously associated with the replisome and that no additional clamps accumulate on the DNA, providing further evidence that the clamp departs, whereas the polymerase is recycled upon completion of an Okazaki fragment synthesis cycle. We found no support for the participation of a third polymerase in Okazaki fragment synthesis.
Collapse
Affiliation(s)
- Danqi Chen
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hongjun Yue
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michelle M Spiering
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Stephen J Benkovic
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802.
| |
Collapse
|
12
|
Indiani C, O'Donnell M. A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 2013; 18:312-23. [PMID: 23276924 DOI: 10.2741/4102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome replication is performed by numerous proteins that function together as a "replisome". The replisome machinery duplicates both strands of the parental DNA simultaneously. Upon DNA damage to the cell, replisome action produces single-strand DNA to which RecA binds, enabling its activity in cleaving the LexA repressor and thus inducing the SOS response. How single-strand DNA is produced by a replisome acting on damaged DNA is not clear. For many years it has been assumed the single-strand DNA is generated by the replicative helicase, which continues unwinding DNA even after DNA polymerase stalls at a template lesion. Recent studies indicate another source of the single-strand DNA, resulting from an inherently dynamic replisome that may hop over template lesions on both leading and lagging strands, thereby leaving single-strand gaps in the wake of the replication fork. These single-strand gaps are proposed to be the origin of the single-strand DNA that triggers the SOS response after DNA damage.
Collapse
Affiliation(s)
- Chiara Indiani
- Manhattan College 4513 Manhattan College Pkwy, Riverdale, NY 10471, USA.
| | | |
Collapse
|
13
|
Boyle KA, Stanitsa ES, Greseth MD, Lindgren JK, Traktman P. Evaluation of the role of the vaccinia virus uracil DNA glycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme. J Biol Chem 2011; 286:24702-13. [PMID: 21572084 PMCID: PMC3137046 DOI: 10.1074/jbc.m111.222216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/09/2011] [Indexed: 01/04/2023] Open
Abstract
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ∼1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.
Collapse
Affiliation(s)
- Kathleen A. Boyle
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Eleni S. Stanitsa
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Matthew D. Greseth
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jill K. Lindgren
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Paula Traktman
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
14
|
Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 2010; 7:359. [PMID: 21129204 PMCID: PMC3012046 DOI: 10.1186/1743-422x-7-359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/03/2010] [Indexed: 12/13/2022] Open
Abstract
The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and crystallization of complexes is a significant challenge. We discuss alternate approaches, such as small angle X-ray and neutron scattering to generate molecular envelopes for modeling macromolecular assemblies.
Collapse
Affiliation(s)
| | - Jennifer M Hinerman
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juliette M Devos
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | | | - Kandace J Williams
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo OH, USA
| |
Collapse
|
15
|
Coordinated leading and lagging strand DNA synthesis by using the herpes simplex virus 1 replication complex and minicircle DNA templates. J Virol 2010; 85:957-67. [PMID: 21068232 DOI: 10.1128/jvi.01688-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The origin-specific replication of the herpes simplex virus 1 genome requires seven proteins: the helicase-primase (UL5-UL8-UL52), the DNA polymerase (UL30-UL42), the single-strand DNA binding protein (ICP8), and the origin-binding protein (UL9). We reconstituted these proteins, excluding UL9, on synthetic minicircular DNA templates and monitored leading and lagging strand DNA synthesis using the strand-specific incorporation of dTMP and dAMP. Critical features of the assays that led to efficient leading and lagging stand synthesis included high helicase-primase concentrations and a lagging strand template whose sequence resembled that of the viral DNA. Depending on the nature of the minicircle template, the replication complex synthesized leading and lagging strand products at molar ratios varying between 1:1 and 3:1. Lagging strand products (∼0.2 to 0.6 kb) were significantly shorter than leading strand products (∼2 to 10 kb), and conditions that stimulated primer synthesis led to shorter lagging strand products. ICP8 was not essential; however, its presence stimulated DNA synthesis and increased the length of both leading and lagging strand products. Curiously, human DNA polymerase α (p70-p180 or p49-p58-p70-p180), which improves the utilization of RNA primers synthesized by herpesvirus primase on linear DNA templates, had no effect on the replication of the minicircles. The lack of stimulation by polymerase α suggests the existence of a macromolecular assembly that enhances the utilization of RNA primers and may functionally couple leading and lagging strand synthesis. Evidence for functional coupling is further provided by our observations that (i) leading and lagging strand synthesis produce equal amounts of DNA, (ii) leading strand synthesis proceeds faster under conditions that disable primer synthesis on the lagging strand, and (iii) conditions that accelerate helicase-catalyzed DNA unwinding stimulate decoupled leading strand synthesis but not coordinated leading and lagging strand synthesis.
Collapse
|
16
|
Herpes simplex virus type 1 helicase-primase: DNA binding and consequent protein oligomerization and primase activation. J Virol 2010; 85:968-78. [PMID: 21068246 DOI: 10.1128/jvi.01690-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heterotrimeric helicase-primase complex of herpes simplex virus type I (HSV-1), consisting of UL5, UL8, and UL52, possesses 5' to 3' helicase, single-stranded DNA (ssDNA)-dependent ATPase, primase, and DNA binding activities. In this study we confirm that the UL5-UL8-UL52 complex has higher affinity for forked DNA than for ssDNA and fails to bind to fully annealed double-stranded DNA substrates. In addition, we show that a single-stranded overhang of greater than 6 nucleotides is required for efficient enzyme loading and unwinding. Electrophoretic mobility shift assays and surface plasmon resonance analysis provide additional quantitative information about how the UL5-UL8-UL52 complex associates with the replication fork. Although it has previously been reported that in the absence of DNA and nucleoside triphosphates the UL5-UL8-UL52 complex exists as a monomer in solution, we now present evidence that in the presence of forked DNA and AMP-PNP, higher-order complexes can form. Electrophoretic mobility shift assays reveal two discrete complexes with different mobilities only when helicase-primase is bound to DNA containing a single-stranded region, and surface plasmon resonance analysis confirms larger amounts of the complex bound to forked substrates than to single-overhang substrates. Furthermore, we show that primase activity exhibits a cooperative dependence on protein concentration while ATPase and helicase activities do not. Taken together, these data suggest that the primase activity of the helicase-primase requires formation of a dimer or higher-order structure while ATPase activity does not. Importantly, this provides a simple mechanism for generating a two-polymerase replisome at the replication fork.
Collapse
|
17
|
Abstract
Replication of DNA is carried out by the replisome, a multiprotein complex responsible for the unwinding of parental DNA and the synthesis of DNA on each of the two DNA strands. The impressive speed and processivity with which the replisome duplicates DNA are a result of a set of tightly regulated interactions between the replication proteins. The transient nature of these protein interactions makes it challenging to study the dynamics of the replisome by ensemble-averaging techniques. This review describes single-molecule methods that allow the study of individual replication proteins and their functioning within the replisome. The ability to mechanically manipulate individual DNA molecules and record the dynamic behavior of the replisome while it duplicates DNA has led to an improved understanding of the molecular mechanisms underlying DNA replication.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
18
|
Abstract
In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field.
Collapse
Affiliation(s)
- Samir M. Hamdan
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Antoine M. van Oijen
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
19
|
Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature 2009; 462:940-3. [PMID: 19924126 DOI: 10.1038/nature08611] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/26/2009] [Indexed: 11/08/2022]
Abstract
Genomic DNA is replicated by two DNA polymerase molecules, one of which works in close association with the helicase to copy the leading-strand template in a continuous manner while the second copies the already unwound lagging-strand template in a discontinuous manner through the synthesis of Okazaki fragments. Considering that the lagging-strand polymerase has to recycle after the completion of every Okazaki fragment through the slow steps of primer synthesis and hand-off to the polymerase, it is not understood how the two strands are synthesized with the same net rate. Here we show, using the T7 replication proteins, that RNA primers are made 'on the fly' during ongoing DNA synthesis and that the leading-strand T7 replisome does not pause during primer synthesis, contrary to previous reports. Instead, the leading-strand polymerase remains limited by the speed of the helicase; it therefore synthesizes DNA more slowly than the lagging-strand polymerase. We show that the primase-helicase T7 gp4 maintains contact with the priming sequence during ongoing DNA synthesis; the nascent lagging-strand template therefore organizes into a priming loop that keeps the primer in physical proximity to the replication complex. Our findings provide three synergistic mechanisms of coordination: first, primers are made concomitantly with DNA synthesis; second, the priming loop ensures efficient primer use and hand-off to the polymerase; and third, the lagging-strand polymerase copies DNA faster, which allows it to keep up with leading-strand DNA synthesis overall.
Collapse
|
20
|
Abstract
Replisomes are the protein assemblies that replicate DNA. They function as molecular motors to catalyze template-mediated polymerization of nucleotides, unwinding of DNA, the synthesis of RNA primers, and the assembly of proteins on DNA. The replisome of bacteriophage T7 contains a minimum of proteins, thus facilitating its study. This review describes the molecular motors and coordination of their activities, with emphasis on the T7 replisome. Nucleotide selection, movement of the polymerase, binding of the processivity factor, unwinding of DNA, and RNA primer synthesis all require conformational changes and protein contacts. Lagging-strand synthesis is mediated via a replication loop whose formation and resolution is dictated by switches to yield Okazaki fragments of discrete size. Both strands are synthesized at identical rates, controlled by a molecular brake that halts leading-strand synthesis during primer synthesis. The helicase serves as a reservoir for polymerases that can initiate DNA synthesis at the replication fork. We comment on the differences in other systems where applicable.
Collapse
Affiliation(s)
- Samir M Hamdan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
21
|
Yao NY, O'Donnell M. Replisome dynamics and use of DNA trombone loops to bypass replication blocks. MOLECULAR BIOSYSTEMS 2008; 4:1075-84. [PMID: 18931783 DOI: 10.1039/b811097b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replisomes are dynamic multiprotein machines capable of simultaneously replicating both strands of the DNA duplex. This review focuses on the structure and function of the E. coli replisome, many features of which generalize to other bacteria and eukaryotic cells. For example, the bacterial replisome utilizes clamps and clamp loaders to coordinate the actions required of the trombone model of lagging strand synthesis made famous by Bruce Alberts. All cells contain clamps and clamp loaders and this review summarizes their structure and function. Clamp loaders are pentameric spirals that bind DNA in a structure specific fashion and thread it through the ring shaped clamp. The recent structure of the E. coli beta clamp in complex with primed DNA has implications for how multiple polymerases function on sliding clamps and how the primed DNA template is exchanged between them. Recent studies reveal a remarkable fluidity in replisome function that enables it to bypass template lesions on either DNA strand. During these processes the polymerases within the replisome functionally uncouple from one another. Mechanistic processes that underlie these actions may involve DNA looping, similar to the trombone loops that mediate the lagging strand Okazaki fragment synthesis cycle.
Collapse
Affiliation(s)
- Nina Y Yao
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065-6399, USA
| | | |
Collapse
|
22
|
Tang KH, Tsai MD. Structure and function of 2:1 DNA polymerase.DNA complexes. J Cell Physiol 2008; 216:315-20. [PMID: 18393274 DOI: 10.1002/jcp.21458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA polymerases are required for DNA replication and DNA repair in all of the living organisms. Different DNA polymerases are responsible different stages of DNA metabolism, and many of them are multifunctional enzymes. It was generally assumed that the different reactions are catalyzed by the same enzyme molecule. In addition to 1:1 DNA polymerase.DNA complex reported by crystallization studies, 2:1 and higher order DNA polymerase.DNA complexes have been identified in solution studies by various biochemical and biophysical approaches. Further, abundant evidences for the DNA polymerase-DNA interactions in several DNA polymerases suggested that the 2:1 complex represents the more active form. This review describes the current status of this emerging subject and explores their potential in vitro and in vivo functional significance, particularly for the 2:1 complexes of mammalian DNA polymerase beta (Pol beta), the Klenow fragment of E. coli DNA polymerase I (KF), and T4 DNA polymerase.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Chemistry, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
23
|
Nelson SW, Kumar R, Benkovic SJ. RNA primer handoff in bacteriophage T4 DNA replication: the role of single-stranded DNA-binding protein and polymerase accessory proteins. J Biol Chem 2008; 283:22838-46. [PMID: 18511422 DOI: 10.1074/jbc.m802762200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In T4 phage, coordinated leading and lagging strand DNA synthesis is carried out by an eight-protein complex termed the replisome. The control of lagging strand DNA synthesis depends on a highly dynamic replisome with several proteins entering and leaving during DNA replication. Here we examine the role of single-stranded binding protein (gp32) in the repetitive cycles of lagging strand synthesis. Removal of the protein-interacting domain of gp32 results in a reduction in the number of primers synthesized and in the efficiency of primer transfer to the polymerase. We find that the primase protein is moderately processive, and this processivity depends on the presence of full-length gp32 at the replication fork. Surprisingly, we find that an increase in the efficiency of primer transfer to the clamp protein correlates with a decrease in the dissociation rate of the primase from the replisome. These findings result in a revised model of lagging strand DNA synthesis where the primase remains as part of the replisome after each successful cycle of Okazaki fragment synthesis. A delay in primer transfer results in an increased probability of the primase dissociating from the replication fork. The interplay between gp32, primase, clamp, and clamp loader dictates the rate and efficiency of primer synthesis, polymerase recycling, and primer transfer to the polymerase.
Collapse
Affiliation(s)
- Scott W Nelson
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
24
|
van Oijen AM. Honey, I shrunk the DNA: DNA length as a probe for nucleic-acid enzyme activity. Biopolymers 2007; 85:144-53. [PMID: 17083118 DOI: 10.1002/bip.20624] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The replication, recombination, and repair of DNA are processes essential for the maintenance of genomic information and require the activity of numerous enzymes that catalyze the polymerization or digestion of DNA. This review will discuss how differences in elastic properties between single- and double-stranded DNA can be used as a probe to study the dynamics of these enzymes at the single-molecule level.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
25
|
van Oijen AM. Single-molecule studies of complex systems: the replisome. MOLECULAR BIOSYSTEMS 2006; 3:117-25. [PMID: 17245491 DOI: 10.1039/b612545j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A complete, system-level understanding of biological processes requires comprehensive information on the kinetics and thermodynamics of the underlying biochemical reactions. A wide variety of structural, biochemical, and molecular biological techniques have led to a quantitative understanding of the molecular properties and mechanisms essential to the processes of life. Yet, the ensemble averaging inherent to these techniques limits us in understanding the dynamic behavior of the molecular participants. Recent advances in imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and record "molecular movies" that provide insight into their dynamics and reaction mechanisms. An important future goal is extending the applicability of single-molecule techniques to the study of larger, more complex multi-protein systems. In this review, the DNA replication machinery will be used as an example to illustrate recent progress in the development of various single-molecule techniques and its contribution to our understanding of the orchestration of multiple enzymatic processes in large biomolecular systems.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Harvard Medical School, Dept. of Biological Chemistry and Molecular Pharmacology, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Sun S, Geng L, Shamoo Y. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity. Proteins 2006; 65:231-8. [PMID: 16881051 DOI: 10.1002/prot.21088] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In vivo, replicative DNA polymerases are made more processive by their interactions with accessory proteins at the replication fork. Single-stranded DNA binding protein (SSB) is an essential protein that binds tightly and cooperatively to single-stranded DNA during replication to remove adventitious secondary structures and protect the exposed DNA from endogenous nucleases. Using information from high resolution structures and biochemical data, we have engineered a functional chimeric enzyme of the bacteriophage RB69 DNA polymerase and SSB with substantially increased processivity. Fusion of RB69 DNA polymerase with its cognate SSB via a short six amino acid linker increases affinity for primer-template DNA by sixfold and subsequently increases processivity by sevenfold while maintaining fidelity. The crystal structure of this fusion protein was solved by a combination of multiwavelength anomalous diffraction and molecular replacement to 3.2 A resolution and shows that RB69 SSB is positioned proximal to the N-terminal domain of RB69 DNA polymerase near the template strand channel. The structural and biochemical data suggest that SSB interactions with DNA polymerase are transient and flexible, consistent with models of a dynamic replisome during elongation.
Collapse
Affiliation(s)
- Siyang Sun
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
27
|
Langston LD, O'Donnell M. DNA replication: keep moving and don't mind the gap. Mol Cell 2006; 23:155-60. [PMID: 16857582 DOI: 10.1016/j.molcel.2006.05.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/10/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
As the replication fork progresses, synthesis of the discontinuous lagging strand requires frequent priming and cycling of the lagging strand polymerase to the new primers. It appears that this mechanism also permits bypass of template lesions on both strands, leaving the damage behind in a single-strand gap and precluding fork stalling or collapse.
Collapse
Affiliation(s)
- Lance D Langston
- Howard Hughes Medical Institute, The Rockefeller University, New York City, New York 10021, USA
| | | |
Collapse
|
28
|
Abstract
Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online).
Collapse
|
29
|
Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM. DNA primase acts as a molecular brake in DNA replication. Nature 2006; 439:621-4. [PMID: 16452983 DOI: 10.1038/nature04317] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 10/13/2005] [Indexed: 11/09/2022]
Abstract
A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.
Collapse
Affiliation(s)
- Jong-Bong Lee
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, 250 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Mike O'Donnell
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
31
|
Dudas KC, Kreuzer KN. Bacteriophage T4 helicase loader protein gp59 functions as gatekeeper in origin-dependent replication in vivo. J Biol Chem 2005; 280:21561-9. [PMID: 15781450 PMCID: PMC1361368 DOI: 10.1074/jbc.m502351200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 initiates origin-dependent replication via an R-loop mechanism in vivo. During in vitro reactions, the phage-encoded gp59 stimulates loading of the replicative helicase, gp41, onto branched intermediates, including origin R-loops. However, although gp59 is essential for recombination-dependent replication from D-loops, it does not appear to be required for origin-dependent replication in vivo. In this study, we have analyzed the origin-replicative intermediates formed during infections that are deficient in gp59 and other phage replication proteins. During infections lacking gp59, the initial replication forks from two different T4 origins actively replicated both leading- and lagging-strands. However, the retrograde replication forks from both origins were abnormal in the gp59-deficient infections. The lagging-strand from the initial fork was elongated as a new leading-strand in the retrograde direction without lagging-strand synthesis, whereas in the wild-type, leading- and lagging-strand synthesis appeared to be coupled. These results imply that gp59 inhibits the polymerase holoenzyme in vivo until the helicase-primase (gp41-gp61) complex is loaded, and we thereby refer to gp59 as a gatekeeper. We also found that all origin-replicative intermediates were absent in infections deficient in the helicase gp41 or the single-strand-binding protein gp32, regardless of whether gp59 was present or absent. These results argue that replication from the origin in vivo is dependent on both the helicase and single-strand-binding protein and demonstrate that the strong replication defect of gene 41 and 32 single mutants is not caused by gp59 inhibition of the polymerase.
Collapse
Affiliation(s)
- Kathleen C Dudas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
32
|
Tanguy Le Gac N, Delagoutte E, Germain M, Villani G. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site. J Mol Biol 2004; 336:1023-34. [PMID: 15037066 DOI: 10.1016/j.jmb.2004.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/22/2003] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
Here, we have investigated the consequences of the loss of proof-reading exonuclease function on the ability of the replicative T4 DNA polymerase (gp43) to elongate past a single abasic site located on model DNA substrates. Our results show that wild-type T4 DNA polymerase stopped at the base preceding the lesion on two linear substrates having different sequences, whereas the gp43 D219A exonuclease-deficient mutant was capable of efficient bypass when replicating the same substrates. The structure of the DNA template did not influence the behavior of the exonuclease-proficient or deficient T4 DNA polymerases. In fact, when replicating a damaged "minicircle" DNA substrate constructed by circularizing one of the linear DNA, elongation by wild-type enzyme was still completely blocked by the abasic site, while the D219A mutant was capable of bypass. During DNA replication, the T4 DNA polymerase associates with accessory factors whose combined action increases the polymerase-binding capacity and processivity, and could modulate the behavior of the enzyme towards an abasic site. We thus performed experiments measuring the ability of wild-type and exonuclease-deficient T4 DNA polymerases, in conjunction with these replicative accessory proteins, to perform translesion DNA replication on linear or circular damaged DNA substrates. We found no evidence of either stimulation or inhibition of the bypass activities of the wild-type and exonuclease-deficient forms of T4 DNA polymerase following addition of the accessory factors, indicating that the presence or absence of the proof-reading activity is the major determinant in dictating translesion synthesis of an abasic site by T4 DNA polymerase.
Collapse
Affiliation(s)
- Nicolas Tanguy Le Gac
- Institut de Pharmacologie et Biologie Structurale, CNRS-UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | | | | | | |
Collapse
|
33
|
Mikhailov VS, Okano K, Rohrmann GF. Specificity of the Endonuclease Activity of the Baculovirus Alkaline Nuclease for Single-stranded DNA. J Biol Chem 2004; 279:14734-45. [PMID: 14736888 DOI: 10.1074/jbc.m311658200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) alkaline nuclease (AN) likely participates in the maturation of virus genomes and in DNA recombination. AcMNPV AN was expressed in a recombinant baculovirus as a His -tagged fusion and obtained in pure form (*AN) or as a (6)complex with the baculoviral single-stranded DNA-binding protein LEF-3 (*AN/L3). Both AN preparations possessed potent 5' --> 3'-exonuclease and weak endonuclease activities. Mutant *AN(S146A)/L3 with a change from serine to alanine at position 146 in a conservative motif was impaired in both activities. This proved that the endonuclease is an intrinsic activity of baculovirus AN. The AN endonuclease showed specificity for single-stranded DNA and converted supercoiled plasmid DNA (replicative form I, RFI) into the open circular form (RFII) by a single strand break. Plasmid DNA relaxed with topoisomerase I was resistant to *AN/L3 indicating that the partially single-stranded regions in negatively supercoiled molecules served as targets for the endonuclease. Unwinding the supercoiled DNA with ethidium bromide also made DNA resistant to AN/L3. In reactions with nicked circular DNA (RFII), AN and AN/L3 hydrolyzed exonucleolytically the broken strand or cut endonucleolytically the intact strand at the position opposite the nick (gap). When LEF-3 was added to the assay, the balance between the exonucleolytic and endonucleolytic modes of hydrolysis shifted in favor of the exonuclease. The data suggest that the AN endonuclease may digest the intermediates in replication and recombination at positions of structural irregularities in DNA duplexes, whereas LEF-3 may further regulate processing of the intermediates by AN via the endonuclease and exonuclease pathways.
Collapse
Affiliation(s)
- Victor S Mikhailov
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | | | | |
Collapse
|
34
|
He ZG, Richardson CC. Effect of single-stranded DNA-binding proteins on the helicase and primase activities of the bacteriophage T7 gene 4 protein. J Biol Chem 2004; 279:22190-7. [PMID: 15044449 DOI: 10.1074/jbc.m401100200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene 4 protein (gp4) of bacteriophage T7 provides two essential functions at the T7 replication fork, primase and helicase activities. Previous studies have shown that the single-stranded DNA-binding protein of T7, encoded by gene 2.5, interacts with gp4 and modulates its multiple functions. To further characterize the interactions between gp4 and gene 2.5 protein (gp2.5), we have examined the effect of wild-type and altered gene 2.5 proteins as well as Escherichia coli single-stranded DNA-binding (SSB) protein on the ability of gp4 to synthesize primers, hydrolyze dTTP, and unwind duplex DNA. Wild-type gp2.5 and E. coli SSB protein stimulate primer synthesis and DNA-unwinding activities of gp4 at low concentrations but do not significantly affect single-stranded DNA-dependent hydrolysis of dTTP. Neither protein inhibits the binding of gp4 to single-stranded DNA. The variant gene 2.5 proteins, gp2.5-F232L and gp2.5-Delta26C, inhibit primase, dTTPase, and helicase activities proportional to their increased affinities for DNA. Interestingly, wild-type gp2.5 stimulates the unwinding activity of gp4 except at very high concentrations, whereas E. coli SSB protein is highly inhibitory at relative low concentrations.
Collapse
Affiliation(s)
- Zheng-Guo He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
35
|
McInerney P, O'Donnell M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem 2004; 279:21543-51. [PMID: 15014081 DOI: 10.1074/jbc.m401649200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication forks are constantly subjected to events that lead to fork stalling, stopping, or collapse. Using a synthetic rolling circle DNA substrate, we demonstrate that a block to the lagging-strand polymerase does not compromise helicase or leading-strand polymerase activity. In fact, lagging-strand synthesis also continues. Thus, the blocked lagging-strand enzyme quickly dissociates from the block site and resumes synthesis on new primed sites. Furthermore, studies in which the lagging polymerase is continuously blocked show that the leading polymerase continues unabated even as it remains attached to the lagging-strand enzyme. Hence, upon encounter of a block to the lagging stand, the polymerases functionally uncouple yet remain physically associated. Further study reveals that naked single-stranded DNA results in disruption of a stalled polymerase from its beta-DNA substrate. Thus, as the replisome advances, the single-stranded DNA loop that accumulates on the lagging-strand template releases the stalled lagging-strand polymerase from beta after SSB protein is depleted. The lagging-strand polymerase is then free to continue Okazaki fragment production.
Collapse
Affiliation(s)
- Peter McInerney
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
36
|
Jones CE, Mueser TC, Nossal NG. Bacteriophage T4 32 protein is required for helicase-dependent leading strand synthesis when the helicase is loaded by the T4 59 helicase-loading protein. J Biol Chem 2004; 279:12067-75. [PMID: 14729909 DOI: 10.1074/jbc.m313840200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the bacteriophage T4 DNA replication system, T4 gene 59 protein binds preferentially to fork DNA and accelerates the loading of the T4 41 helicase. 59 protein also binds the T4 32 single-stranded DNA-binding protein that coats the lagging strand template. Here we explore the function of the strong affinity between the 32 and 59 proteins at the replication fork. We show that, in contrast to the 59 helicase loader, 32 protein does not bind forked DNA more tightly than linear DNA. 32 protein displays a strong binding polarity on fork DNA, binding with much higher affinity to the 5' single-stranded lagging strand template arm of a model fork, than to the 3' single-stranded leading strand arm. 59 protein promotes the binding of 32 protein on forks too short for cooperative binding by 32 protein. We show that 32 protein is required for helicase-dependent leading strand DNA synthesis when the helicase is loaded by 59 protein. However, 32 protein is not required for leading strand synthesis when helicase is loaded, less efficiently, without 59 protein. Leading strand synthesis by wild type T4 polymerase is strongly inhibited when 59 protein is present without 32 protein. Because 59 protein can load the helicase on forks without 32 protein, our results are best explained by a model in which 59 helicase loader at the fork prevents the coupling of the leading strand polymerase and the helicase, unless the position of 59 protein is shifted by its association with 32 protein.
Collapse
Affiliation(s)
- Charles E Jones
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Building 8, Room 2A19, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|
37
|
Kaufmann G, Nethanel T. Did an early version of the eukaryal replisome enable the emergence of chromatin? PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:173-209. [PMID: 15196893 DOI: 10.1016/s0079-6603(04)77005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriel Kaufmann
- Biochemistry Department, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
38
|
Trakselis MA, Roccasecca RM, Yang J, Valentine AM, Benkovic SJ. Dissociative Properties of the Proteins within the Bacteriophage T4 Replisome. J Biol Chem 2003; 278:49839-49. [PMID: 14500719 DOI: 10.1074/jbc.m307405200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication is a highly processive and efficient process that involves the coordination of at least eight proteins to form the replisome in bacteriophage T4. Replication of DNA occurs in the 5' to 3' direction resulting in continuous replication on the leading strand and discontinuous replication on the lagging strand. A key question is how a continuous and discontinuous replication process is coordinated. One solution is to avoid having the completion of one Okazaki fragment to signal the start of the next but instead to have a key step such as priming proceed in parallel to lagging strand replication. Such a mechanism requires protein elements of the replisome to readily dissociate during the replication process. Protein trapping experiments were performed to test for dissociation of the clamp loader and primase from an active replisome in vitro whose template was both a small synthetic DNA minicircle and a larger DNA substrate. The primase, clamp, and clamp loader are found to dissociate from the replisome and are continuously recruited from solution. The effect of varying protein concentrations (dilution) on the size of Okazaki fragments supported the protein trapping results. These findings are in accord with previous results for the accessory proteins but, importantly now, identify the primase as dissociating from an active replisome. The recruitment of the primase from solution during DNA synthesis has also been found for Escherichia coli but not bacteriophage T7. The implications of these results for RNA priming and extension during the repetitive synthesis of Okazaki fragments are discussed.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
39
|
Yang J, Trakselis MA, Roccasecca RM, Benkovic SJ. The application of a minicircle substrate in the study of the coordinated T4 DNA replication. J Biol Chem 2003; 278:49828-38. [PMID: 14500718 DOI: 10.1074/jbc.m307406200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A reconstituted in vitro bacteriophage T4 DNA replication system was studied on a synthetic 70-mer minicircle substrate. This substrate was designed so that dGMP and dCMP were exclusively incorporated into the leading and the lagging strand, respectively. This design allows the simultaneous and independent measurement of the leading and lagging strand synthesis. In this paper, we report our results on the characterization of the 70-mer minicircle substrate. We show here that the minicircle substrate supports coordinated leading and lagging strand synthesis under the experimental conditions employed. The rate of the leading strand fork movement was at an average of approximately 150 nucleotides/s. This rate decreased to less than 30 nucleotides/s when the helicase was omitted from the reaction. These results suggest that both the holoenzyme and the primosome can be simultaneously assembled onto the minicircle substrate. The lagging strand synthesized on this substrate is of an average of 1.5 kb, and the length of the Okazaki fragments increased with decreasing [rNTPs]. The proper response of the Okazaki fragment size toward the change of the priming signal further indicates a functional replisome assembled on the minicircle template. The effects of various protein components on the leading and lagging strand synthesis were also studied. The collective results indicate that coordinated strand synthesis only takes place within certain protein concentration ranges. The optimal protein levels of the proteins that constitute the T4 replisome generally bracket the concentrations of the same proteins in vivo. Omission of the primase has little effect on the rate of dNMP incorporation or the rate of the fork movement on the leading strand within the first 30 s of the reaction. This inhibition only becomes significant at later times of the reaction and may be associated with the accumulation of single-stranded DNA leading to the collapse of active replisomes.
Collapse
Affiliation(s)
- Jingsong Yang
- Department of Chemistry, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
40
|
Zhu Y, Trego KS, Song L, Parris DS. 3' to 5' exonuclease activity of herpes simplex virus type 1 DNA polymerase modulates its strand displacement activity. J Virol 2003; 77:10147-53. [PMID: 12941927 PMCID: PMC224577 DOI: 10.1128/jvi.77.18.10147-10153.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a minicircle DNA primer-template, the wild-type catalytic subunit of herpes simplex virus type 1 (HSV-1) DNA polymerase (pol) was shown to lack significant strand displacement activity with or without its processivity factor, UL42. However, an exonuclease-deficient (exo(-)) pol (D368A) was capable of slow strand displacement. Although UL42 increased the rate (2/s) and processivity of strand displacement by exo(-) pol, the rate was slower than that for gap-filling synthesis. High inherent excision rates on matched primer-templates and rapid idling-turnover (successive rounds of excision and polymerization) of exo-proficient polymerases correlated with poor strand displacement activity. The results suggest that the exo activity of HSV-1 pol modulates its ability to engage in strand displacement, a function that may be important to the viability and genome stability of the virus.
Collapse
Affiliation(s)
- Yali Zhu
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, 333 West Tenth Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
41
|
Chastain PD, Makhov AM, Nossal NG, Griffith J. Architecture of the replication complex and DNA loops at the fork generated by the bacteriophage t4 proteins. J Biol Chem 2003; 278:21276-85. [PMID: 12649286 DOI: 10.1074/jbc.m301573200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rolling circle replication has previously been reconstituted in vitro using M13 duplex circles containing preformed forks and the 10 purified T4 bacteriophage replication proteins. Leading and lagging strand synthesis in these reactions is coupled and the size of the Okazaki fragments produced is typical of those generated in T4 infections. In this study the structure of the DNAs and DNA-protein complexes engaged in these in vitro reactions has been examined by electron microscopy. Following deproteinization, circular duplex templates with linear tails as great as 100 kb are observed. The tails are fully duplex except for one to three single-stranded DNA segments close to the fork. This pattern reflects Okazaki fragments stopped at different stages in their synthesis. Examination of the DNA-protein complexes in these reactions reveals M13 duplex circles in which 64% contain a single large protein mass (replication complex) and a linear duplex tail. In 56% of the replicating molecules with a tail there is at least one fully duplex loop at the replication complex resulting from the portion of the lagging strand engaged in Okazaki fragment synthesis folding back to the replisome. The single-stranded DNA segments at the fork bound by gene 32 and 59 proteins are not extended but rather appear organized into highly compact structures ("bobbins"). These bobbins constitute a major portion of the mass of the full replication complex.
Collapse
Affiliation(s)
- Paul D Chastain
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
42
|
Sun S, Shamoo Y. Biochemical characterization of interactions between DNA polymerase and single-stranded DNA-binding protein in bacteriophage RB69. J Biol Chem 2003; 278:3876-81. [PMID: 12458197 DOI: 10.1074/jbc.m210497200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The organization and proper assembly of proteins to the primer-template junction during DNA replication is essential for accurate and processive DNA synthesis. DNA replication in RB69 (a T4-like bacteriophage) is similar to those of eukaryotes and archaea and has been a prototype for studies on DNA replication and assembly of the functional replisome. To examine protein-protein interactions at the DNA replication fork, we have established solution conditions for the formation of a discrete and homogeneous complex of RB69 DNA polymerase (gp43), primer-template DNA, and RB69 single-stranded DNA-binding protein (gp32) using equilibrium fluorescence and light scattering. We have characterized the interaction between DNA polymerase and single-stranded DNA-binding protein and measured a 60-fold increase in the overall affinity of RB69 single-stranded DNA-binding protein (SSB) for template strand DNA in the presence of DNA polymerase that is the result of specific protein-protein interactions. Our data further suggest that the cooperative binding of the RB69 DNA polymerase and SSB to the primer-template junction is a simple but functionally important means of regulatory assembly of replication proteins at the site of action. We have also shown that a functional domain of RB69 single-stranded DNA-binding protein suggested previously to be the site of RB69 DNA polymerase-SSB interactions is dispensable. The data from these studies have been used to model the RB69 DNA polymerase-SSB interaction at the primer-template junction.
Collapse
Affiliation(s)
- Siyang Sun
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
43
|
Ishmael FT, Trakselis MA, Benkovic SJ. Protein-protein interactions in the bacteriophage T4 replisome. The leading strand holoenzyme is physically linked to the lagging strand holoenzyme and the primosome. J Biol Chem 2003; 278:3145-52. [PMID: 12427736 DOI: 10.1074/jbc.m209858200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage T4 replication complex is composed of eight proteins that function together to replicate DNA. This replisome can be broken down into four basic units: a primosome composed of gp41, gp61, and gp59; a leading strand holoenzyme composed of gp43, gp44/62, and gp45; a lagging strand holoenzyme; and a single strand binding protein polymer. These units interact further to form the complete replisome. The leading and lagging strand polymerases are physically linked in the presence of DNA or an active replisome. The region of interaction was mapped to an extension of the finger domain, such that Cys-507 of one subunit is in close proximity to Cys-507 of a second subunit. The leading strand polymerase and the primosome also associate, such that gp59 mediates the contact between the two complexes. Binding of gp43 to the primosome complex causes displacement of gp32 from the gp59.gp61.gp41 primosome complex. The resultant species is a complex of proteins that may allow coordinated leading and lagging strand synthesis, helicase DNA unwinding activity, and polymerase nucleotide incorporation.
Collapse
Affiliation(s)
- Faoud T Ishmael
- Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
44
|
Rezende LF, Hollis T, Ellenberger T, Richardson CC. Essential amino acid residues in the single-stranded DNA-binding protein of bacteriophage T7. Identification of the dimer interface. J Biol Chem 2002; 277:50643-53. [PMID: 12379653 DOI: 10.1074/jbc.m207359200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein. T7 phage with gene 2.5 deleted can grow only on Escherichia coli cells that express gene 2.5 from a plasmid. This complementation assay was used to screen for lethal mutations in gene 2.5. By screening a library of randomly mutated plasmids encoding gene 2.5, we identified 20 different single amino acid alterations in gene 2.5 protein that are lethal in vivo. The location of these essential residues within the three-dimensional structure of gene 2.5 protein assists in the identification of motifs in the protein. In this study we show that a subset of these alterations defines the dimer interface of gene 2.5 protein predicted by the crystal structure. Recombinantly expressed and purified gene 2.5 protein-P22L, gene 2.5 protein-F31S, and gene 2.5 protein-G36S do not form dimers at salt concentrations where the wild-type gene 2.5 protein exists as a dimer. The basis of the lethality of these mutations in vivo is not known because altered proteins retain the ability to bind single-stranded DNA, anneal complementary strands of DNA, and interact with T7 DNA polymerase.
Collapse
Affiliation(s)
- Lisa F Rezende
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
45
|
Henneke G, Gueguen Y, Flament D, Azam P, Querellou J, Dietrich J, Hübscher U, Raffin JP. Replication factor C from the hyperthermophilic archaeon Pyrococcus abyssi does not need ATP hydrolysis for clamp-loading and contains a functionally conserved RFC PCNA-binding domain. J Mol Biol 2002; 323:795-810. [PMID: 12417194 DOI: 10.1016/s0022-2836(02)01028-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The molecular organization of the replication complex in archaea is similar to that in eukaryotes. Only two proteins homologous to subunits of eukaryotic replication factor C (RFC) have been detected in Pyrococcus abyssi (Pab). The genes encoding these two proteins are arranged in tandem. We cloned these two genes and co-expressed the corresponding recombinant proteins in Escherichia coli. Two inteins present in the gene encoding the small subunit (PabRFC-small) were removed during cloning. The recombinant protein complex was purified by anion-exchange and hydroxyapatite chromatography. Also, the PabRFC-small subunit could be purified, while the large subunit (PabRFC-large) alone was completely insoluble. The highly purified PabRFC complex possessed an ATPase activity, which was not enhanced by DNA. The Pab proliferating cell nuclear antigen (PCNA) activated the PabRFC complex in a DNA-dependent manner, but the PabRFC-small ATPase activity was neither DNA-dependent nor PCNA-dependent. The PabRFC complex was able to stimulate PabPCNA-dependent DNA synthesis by the Pabfamily D heterodimeric DNA polymerase. Finally, (i) the PabRFC-large fraction cross-reacted with anti-human-RFC PCNA-binding domain antibody, corroborating the conservation of the protein sequence, (ii) the human PCNA stimulated the PabRFC complex ATPase activity in a DNA-dependent way and (iii) the PabRFC complex could load human PCNA onto primed single-stranded circular DNA, suggesting that the PCNA-binding domain of RFC has been functionally conserved during evolution. In addition, ATP hydrolysis was not required either for DNA polymerase stimulation or PCNA-loading in vitro.
Collapse
Affiliation(s)
- Ghislaine Henneke
- Ifremer, Laboratoire de Microbiologie et Biotechnologie des Extrêmophiles, DRV/VP, BP 70, F-29280 Plouzané, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kadyrov FA, Drake JW. Characterization of DNA synthesis catalyzed by bacteriophage T4 replication complexes reconstituted on synthetic circular substrates. Nucleic Acids Res 2002; 30:4387-97. [PMID: 12384585 PMCID: PMC137140 DOI: 10.1093/nar/gkf576] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication complexes were reconstituted using the eight purified bacteriophage T4 replication proteins and synthetic circular 70-, 120- or 240-nt DNA substrates annealed to a leading-strand primer. To differentiate leading strands from lagging strands, the circular parts of the substrates lacked dCMP; thus, no dCTP was required for leading-strand synthesis and no dGTP for lagging-strand synthesis. The size of the substrates was crucial, the longer substrates supporting much more DNA synthesis. Leading and lagging strands were synthesized in a coupled manner. Specifically targeting leading-strand synthesis by decreasing the concentration of dGTP decreased the rate of extension of leading strands. However, blocking lagging-strand synthesis by lowering the dCTP concentration, by omitting dCTP altogether, by adding ddCTP, or with a single abasic site had no immediate effect on the rate of extension of leading strands.
Collapse
Affiliation(s)
- Farid A Kadyrov
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233, USA.
| | | |
Collapse
|
47
|
Abstract
The elaborate process of genomic replication requires a large collection of proteins properly assembled at a DNA replication fork. Several decades of research on the bacterium Escherichia coli and its bacteriophages T4 and T7 have defined the roles of many proteins central to DNA replication. These three different prokaryotic replication systems use the same fundamental components for synthesis at a moving DNA replication fork even though the number and nature of some individual proteins are different and many lack extensive sequence homology. The components of the replication complex can be grouped into functional categories as follows: DNA polymerase, helix destabilizing protein, polymerase accessory factors, and primosome (DNA helicase and DNA primase activities). The replication of DNA derives from a multistep enzymatic pathway that features the assembly of accessory factors and polymerases into a functional holoenzyme; the separation of the double-stranded template DNA by helicase activity and its coupling to the primase synthesis of RNA primers to initiate Okazaki fragment synthesis; and the continuous and discontinuous synthesis of the leading and lagging daughter strands by the polymerases. This review summarizes and compares and contrasts for these three systems the types, timing, and mechanism of reactions and of protein-protein interactions required to initiate, control, and coordinate the synthesis of the leading and lagging strands at a DNA replication fork and comments on their generality.
Collapse
Affiliation(s)
- S J Benkovic
- Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
48
|
Alley SC, Trakselis MA, Mayer MU, Ishmael FT, Jones AD, Benkovic SJ. Building a replisome solution structure by elucidation of protein-protein interactions in the bacteriophage T4 DNA polymerase holoenzyme. J Biol Chem 2001; 276:39340-9. [PMID: 11504721 DOI: 10.1074/jbc.m104956200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of DNA replication systems requires the coordinated actions of many proteins. The multiprotein complexes formed as intermediates on the pathway to the final DNA polymerase holoenzyme have been shown to have distinct structures relative to the ground-state structures of the individual proteins. By using a variety of solution-phase techniques, we have elucidated additional information about the solution structure of the bacteriophage T4 holoenzyme. Photocross-linking and mass spectrometry were used to demonstrate interactions between I107C of the sliding clamp and the DNA polymerase. Fluorescence resonance energy transfer, analytical ultracentrifugation, and isothermal titration calorimetry measurements were used to demonstrate that the C terminus of the DNA polymerase can interact at two distinct locations on the sliding clamp. Both of these binding modes may be used during holoenzyme assembly, but only one of these binding modes is found in the final holoenzyme. Present and previous solution interaction data were used to build a model of the holoenzyme that is consistent with these data.
Collapse
Affiliation(s)
- S C Alley
- Department of Chemistry, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kadyrov FA, Drake JW. Conditional coupling of leading-strand and lagging-strand DNA synthesis at bacteriophage T4 replication forks. J Biol Chem 2001; 276:29559-66. [PMID: 11390383 DOI: 10.1074/jbc.m101310200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eight proteins encoded by bacteriophage T4 are required for the replicative synthesis of the leading and lagging strands of T4 DNA. We show here that active T4 replication forks, which catalyze the coordinated synthesis of leading and lagging strands, remain stable in the face of dilution provided that the gp44/62 clamp loader, the gp45 sliding clamp, and the gp32 ssDNA-binding protein are present at sufficient levels after dilution. If any of these accessory proteins is omitted from the dilution mixture, uncoordinated DNA synthesis occurs, and/or large Okazaki fragments are formed. Thus, the accessory proteins must be recruited from solution for each round of initiation of lagging-strand synthesis. A modified bacteriophage T7 DNA polymerase (Sequenase) can replace the T4 DNA polymerase for leading-strand synthesis but not for well coordinated lagging-strand synthesis. Although T4 DNA polymerase has been reported to self-associate, gel-exclusion chromatography displays it as a monomer in solution in the absence of DNA. It forms no stable holoenzyme complex in solution with the accessory proteins or with the gp41-gp61 helicase-primase. Instead, template DNA is required for the assembly of the T4 replication complex, which then catalyzes coordinated synthesis of leading and lagging strands in a conditionally coupled manner.
Collapse
Affiliation(s)
- F A Kadyrov
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA.
| | | |
Collapse
|
50
|
Trakselis MA, Alley SC, Abel-Santos E, Benkovic SJ. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2001; 98:8368-75. [PMID: 11459977 PMCID: PMC37445 DOI: 10.1073/pnas.111006698] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coordinated assembly of the DNA polymerase (gp43), the sliding clamp (gp45), and the clamp loader (gp44/62) to form the bacteriophage T4 DNA polymerase holoenzyme is a multistep process. A partially opened toroid-shaped gp45 is loaded around DNA by gp44/62 in an ATP-dependent manner. Gp43 binds to this complex to generate the holoenzyme in which gp45 acts to topologically link gp43 to DNA, effectively increasing the processivity of DNA replication. Stopped-flow fluorescence resonance energy transfer was used to investigate the opening and closing of the gp45 ring during holoenzyme assembly. By using two site-specific mutants of gp45 along with a previously characterized gp45 mutant, we tracked changes in distances across the gp45 subunit interface through seven conformational changes associated with holoenzyme assembly. Initially, gp45 is partially open within the plane of the ring at one of the three subunit interfaces. On addition of gp44/62 and ATP, this interface of gp45 opens further in-plane through the hydrolysis of ATP. Addition of DNA and hydrolysis of ATP close gp45 in an out-of-plane conformation. The final holoenzyme is formed by the addition of gp43, which causes gp45 to close further in plane, leaving the subunit interface open slightly. This open interface of gp45 in the final holoenzyme state is proposed to interact with the C-terminal tail of gp43, providing a point of contact between gp45 and gp43. This study further defines the dynamic process of bacteriophage T4 polymerase holoenzyme assembly.
Collapse
Affiliation(s)
- M A Trakselis
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|