1
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
2
|
Starlard-Davenport A, Fitzgerald A, Pace BS. Exploring epigenetic and microRNA approaches for γ-globin gene regulation. Exp Biol Med (Maywood) 2021; 246:2347-2357. [PMID: 34292080 DOI: 10.1177/15353702211028195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic interventions aimed at inducing fetal hemoglobin and reducing the concentration of sickle hemoglobin is an effective approach to ameliorating acute and chronic complications of sickle cell disease, exemplified by the long-term use of hydroxyurea. However, there remains an unmet need for the development of additional safe and effective drugs for single agent or combination therapy for individuals with β-hemoglobinopathies. Regulation of the γ-globin to β-globin switch is achieved by chromatin remodeling at the HBB locus on chromosome 11 and interactions of major DNA binding proteins, such as KLF1 and BCL11A in the proximal promoters of the globin genes. Experimental evidence also supports a role of epigenetic modifications including DNA methylation, histone acetylation/methylation, and microRNA expression in γ-globin gene silencing during development. In this review, we will critically evaluate the role of epigenetic mechanisms in γ-globin gene regulation and discuss data generated in tissue culture, pre-clinical animal models, and clinical trials to support drug development to date. The question remains whether modulation of epigenetic pathways will produce sufficient efficacy and specificity for fetal hemoglobin induction and to what extent targeting these pathways form the basis of prospects for clinical therapy.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley Fitzgerald
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Razin SV, Ioudinkova ES, Kantidze OL, Iarovaia OV. Co-Regulated Genes and Gene Clusters. Genes (Basel) 2021; 12:907. [PMID: 34208174 PMCID: PMC8230824 DOI: 10.3390/genes12060907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
There are many co-regulated genes in eukaryotic cells. The coordinated activation or repression of such genes occurs at specific stages of differentiation, or under the influence of external stimuli. As a rule, co-regulated genes are dispersed in the genome. However, there are also gene clusters, which contain paralogous genes that encode proteins with similar functions. In this aspect, they differ significantly from bacterial operons containing functionally linked genes that are not paralogs. In this review, we discuss the reasons for the existence of gene clusters in vertebrate cells and propose that clustering is necessary to ensure the possibility of selective activation of one of several similar genes.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena S. Ioudinkova
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| | - Omar L. Kantidze
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| | - Olga V. Iarovaia
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| |
Collapse
|
4
|
Martin EW, Krietsch J, Reggiardo RE, Sousae R, Kim DH, Forsberg EC. Chromatin accessibility maps provide evidence of multilineage gene priming in hematopoietic stem cells. Epigenetics Chromatin 2021; 14:2. [PMID: 33407811 PMCID: PMC7789351 DOI: 10.1186/s13072-020-00377-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the capacity to differentiate into vastly different types of mature blood cells. The epigenetic mechanisms regulating the multilineage ability, or multipotency, of HSCs are not well understood. To test the hypothesis that cis-regulatory elements that control fate decisions for all lineages are primed in HSCs, we used ATAC-seq to compare chromatin accessibility of HSCs with five unipotent cell types. We observed the highest similarity in accessibility profiles between megakaryocyte progenitors and HSCs, whereas B cells had the greatest number of regions with de novo gain in accessibility during differentiation. Despite these differences, we identified cis-regulatory elements from all lineages that displayed epigenetic priming in HSCs. These findings provide new insights into the regulation of stem cell multipotency, as well as a resource to identify functional drivers of lineage fate.
Collapse
Affiliation(s)
- Eric W Martin
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Jana Krietsch
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Roman E Reggiardo
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rebekah Sousae
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Daniel H Kim
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
5
|
Cresson C, Péron S, Jamrog L, Rouquié N, Prade N, Dubois M, Hébrard S, Lagarde S, Gerby B, Mancini SJC, Cogné M, Delabesse E, Delpy L, Broccardo C. PAX5A and PAX5B isoforms are both efficient to drive B cell differentiation. Oncotarget 2018; 9:32841-32854. [PMID: 30214688 PMCID: PMC6132355 DOI: 10.18632/oncotarget.26003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/31/2018] [Indexed: 11/25/2022] Open
Abstract
Pax5 is the guardian of the B cell identity since it primes or enhances the expression of B cell specific genes and concomitantly represses the expression of B cell inappropriate genes. The tight regulation of Pax5 is therefore required for an efficient B cell differentiation. A defect in its dosage can translate into immunodeficiency or malignant disorders such as leukemia or lymphoma. Pax5 is expressed from two different promoters encoding two isoforms that only differ in the sequence of their first alternative exon. Very little is known regarding the role of the two isoforms during B cell differentiation and the regulation of their expression. Our work aims to characterize the mechanisms of regulation of the expression balance of these two isoforms and their implication in the B cell differentiation process using murine ex vivo analyses. We show that these two isoforms are differentially regulated but have equivalent function during early B cell differentiation and may have functional differences after B cell activation. The tight control of their expression may thus reflect a way to finely tune Pax5 dosage during B cell differentiation process.
Collapse
Affiliation(s)
- Charlotte Cresson
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Sophie Péron
- Université de Limoges-CNRS UMR 7276, F-87025 Limoges, France
| | - Laura Jamrog
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Nelly Rouquié
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Nais Prade
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse Hospital University, Oncopole, CS 53717, F-31000 Toulouse, France
| | - Marine Dubois
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Sylvie Hébrard
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Stéphanie Lagarde
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse Hospital University, Oncopole, CS 53717, F-31000 Toulouse, France
| | - Bastien Gerby
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| | - Stéphane J C Mancini
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, F-13009 Marseille, France
| | - Michel Cogné
- Université de Limoges-CNRS UMR 7276, Institut Universitaire de France, F-87025 Limoges, France
| | - Eric Delabesse
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse Hospital University, Oncopole, CS 53717, F-31000 Toulouse, France
| | - Laurent Delpy
- Université de Limoges-CNRS UMR 7276, F-87025 Limoges, France
| | - Cyril Broccardo
- Inserm, UMR1037 CRCT, F-31000, Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Oncopole, F-31000 Toulouse, France
| |
Collapse
|
6
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Campbell AE, Shadle SC, Jagannathan S, Lim JW, Resnick R, Tawil R, van der Maarel SM, Tapscott SJ. NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins. eLife 2018; 7:e31023. [PMID: 29533181 PMCID: PMC5849414 DOI: 10.7554/elife.31023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/05/2018] [Indexed: 12/19/2022] Open
Abstract
The DUX4 transcription factor is encoded by a retrogene embedded in each unit of the D4Z4 macrosatellite repeat. DUX4 is normally expressed in the cleavage-stage embryo, whereas chromatin repression prevents DUX4 expression in most somatic tissues. Failure of this repression causes facioscapulohumeral muscular dystrophy (FSHD) due to mis-expression of DUX4 in skeletal muscle. In this study, we used CRISPR/Cas9 engineered chromatin immunoprecipitation (enChIP) locus-specific proteomics to characterize D4Z4-associated proteins. These and other approaches identified the Nucleosome Remodeling Deacetylase (NuRD) and Chromatin Assembly Factor 1 (CAF-1) complexes as necessary for DUX4 repression in human skeletal muscle cells and induced pluripotent stem (iPS) cells. Furthermore, DUX4-induced expression of MBD3L proteins partly relieved this repression in FSHD muscle cells. Together, these findings identify NuRD and CAF-1 as mediators of DUX4 chromatin repression and suggest a mechanism for the amplification of DUX4 expression in FSHD muscle cells.
Collapse
Affiliation(s)
- Amy E Campbell
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sean C Shadle
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleUnited States
| | - Sujatha Jagannathan
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Computational Biology Program, Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Jong-Won Lim
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Rebecca Resnick
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleUnited States
- Medical Scientist Training ProgramUniversity of WashingtonSeattleUnited States
| | - Rabi Tawil
- Department of NeurologyUniversity of Rochester Medical CenterRochesterUnited States
| | | | - Stephen J Tapscott
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of NeurologyUniversity of WashingtonSeattleUnited States
| |
Collapse
|
8
|
Abstract
Fetal haemoglobin (HbF, α2γ2) induction has long been an area of investigation, as it is known to ameliorate the clinical complications of sickle cell disease (SCD). Progress in identifying novel HbF-inducing strategies has been stymied by limited understanding of gamma (γ)-globin regulation. Genome-wide association studies (GWAS) have identified variants in BCL11A and HBS1L-MYB that are associated with HbF levels. Functional studies have established the roles of BCL11A, MYB, and KLF1 in γ-globin regulation, but this information has not yielded new pharmacological agents. Several drugs are under investigation in clinical trials as HbF-inducing agents, but hydroxycarbamide remains the only widely used pharmacologic therapy for SCD. Autologous transplant of edited haematopoietic stem cells holds promise as a cure for SCD, either through HbF induction or correction of the causative mutation, but several technical and safety hurdles must be overcome before this therapy can be offered widely, and pharmacological therapies are still needed.
Collapse
Affiliation(s)
- Alireza Paikari
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
10
|
Abstract
Sickle-cell disease affects millions of individuals worldwide, but the global incidence is concentrated in Africa. The burden of sickle-cell disease is expected to continue to rise over the coming decades, adding to stress on the health infrastructures of many countries. Although the molecular cause of sickle-cell disease has been known for more than half a century, treatment options remain greatly limited. Allogeneic haemopoietic stem-cell transplantation is the only existing cure but is limited to specialised clinical centres and remains inaccessible for most patients. Induction of fetal haemoglobin production is a promising strategy for the treatment of sickle-cell disease. In this Series paper, we review scientific breakthroughs in epidemiology, genetics, and molecular biology that have brought reactivation of fetal haemoglobin to the forefront of sickle-cell disease research. Improved knowledge of the regulation of fetal haemoglobin production in human beings and the development of genome editing technology now support the design of innovative therapies for sickle-cell disease that are based on fetal haemoglobin.
Collapse
Affiliation(s)
- Guillaume Lettre
- Montreal Heart Institute, Montreal, QC, Canada; Université de Montréal, Montreal, QC, Canada.
| | - Daniel E Bauer
- Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
11
|
3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma 2016; 126:59-69. [DOI: 10.1007/s00412-016-0604-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
12
|
Bartman CR, Hsu SC, Hsiung CCS, Raj A, Blobel GA. Enhancer Regulation of Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping. Mol Cell 2016; 62:237-247. [PMID: 27067601 DOI: 10.1016/j.molcel.2016.03.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 01/05/2023]
Abstract
Mammalian genes transcribe RNA not continuously, but in bursts. Transcriptional output can be modulated by altering burst fraction or burst size, but how regulatory elements control bursting parameters remains unclear. Single-molecule RNA FISH experiments revealed that the β-globin enhancer (LCR) predominantly augments transcriptional burst fraction of the β-globin gene with modest stimulation of burst size. To specifically measure the impact of long-range chromatin contacts on transcriptional bursting, we forced an LCR-β-globin promoter chromatin loop. We observed that raising contact frequencies increases burst fraction but not burst size. In cells in which two developmentally distinct LCR-regulated globin genes are cotranscribed in cis, burst sizes of both genes are comparable. However, allelic co-transcription of both genes is statistically disfavored, suggesting mutually exclusive LCR-gene contacts. These results are consistent with competition between the β-type globin genes for LCR contacts and suggest that LCR-promoter loops are formed and released with rapid kinetics.
Collapse
Affiliation(s)
- Caroline R Bartman
- Division of Hematology, Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah C Hsu
- Division of Hematology, Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chris C-S Hsiung
- Division of Hematology, Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
14
|
Munkley J, Oltean S, Vodák D, Wilson BT, Livermore KE, Zhou Y, Star E, Floros VI, Johannessen B, Knight B, McCullagh P, McGrath J, Crundwell M, Skotheim RI, Robson CN, Leung HY, Harries LW, Rajan P, Mills IG, Elliott DJ. The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget 2015; 6:34358-74. [PMID: 26452038 PMCID: PMC4741458 DOI: 10.18632/oncotarget.6024] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/17/2023] Open
Abstract
Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sebastian Oltean
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Daniel Vodák
- Bioinformatics Core Facility, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Brian T. Wilson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Karen E. Livermore
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Yan Zhou
- Beatson Institute for Cancer Research, Glasgow, UK
| | - Eleanor Star
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Vasileios I. Floros
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bridget Knight
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John McGrath
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Malcolm Crundwell
- Department of Urology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Craig N. Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Hing Y. Leung
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lorna W. Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter, Devon, UK
| | - Prabhakar Rajan
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo and Oslo University Hospitals, Oslo, Norway
- Departments of Molecular Oncology, Institute of Cancer Research and Radium Hospital, Oslo, Norway
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University, Belfast, UK
| | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
15
|
Syed J, Chandran A, Pandian GN, Taniguchi J, Sato S, Hashiya K, Kashiwazaki G, Bando T, Sugiyama H. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts. Chembiochem 2015; 16:1497-501. [DOI: 10.1002/cbic.201500140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/30/2023]
|
16
|
Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus. Biosci Rep 2015; 35:BSR20140126. [PMID: 25588787 PMCID: PMC4370096 DOI: 10.1042/bsr20140126] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. Chromatin looping between enhancer and promoter was generated after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of enhancer RNAs was increased in concomitant with the increase of chromatin looping in this locus.
Collapse
|
17
|
Krivega I, Dale RK, Dean A. Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev 2014; 28:1278-90. [PMID: 24874989 PMCID: PMC4066399 DOI: 10.1101/gad.239749.114] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many questions remain about the relationship between chromatin loop formation and transcription. In erythroid cells, LDB1 is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. Dean and colleagues show that the LDB1 dimerization domain (DD) is necessary to restore LCR-promoter looping and transcription in LDB1-depleted cells. Deletion analysis reveals a conserved region of the LDB1 DD dispensable for dimerization and chromatin looping but necessary for transcription activation. The results thus uncouple enhancer–promoter looping from transcription at the β-globin locus. Many questions remain about how close association of genes and distant enhancers occurs and how this is linked to transcription activation. In erythroid cells, lim domain binding 1 (LDB1) protein is recruited to the β-globin locus via LMO2 and is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. We show that the LDB1 dimerization domain (DD) is necessary and, when fused to LMO2, sufficient to completely restore LCR–promoter looping and transcription in LDB1-depleted cells. The looping function of the DD is unique and irreplaceable by heterologous DDs. Dissection of the DD revealed distinct functional properties of conserved subdomains. Notably, a conserved helical region (DD4/5) is dispensable for LDB1 dimerization and chromatin looping but essential for transcriptional activation. DD4/5 is required for the recruitment of the coregulators FOG1 and the nucleosome remodeling and deacetylating (NuRD) complex. Lack of DD4/5 alters histone acetylation and RNA polymerase II recruitment and results in failure of the locus to migrate to the nuclear interior, as normally occurs during erythroid maturation. These results uncouple enhancer–promoter looping from nuclear migration and transcription activation and reveal new roles for LDB1 in these processes.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
DeVilbiss AW, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points. Exp Hematol 2014; 42:618-29. [PMID: 24816274 DOI: 10.1016/j.exphem.2014.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin, remains poorly understood. Transformative technologic advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain; notably, ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while using powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review focuses on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms.
Collapse
Affiliation(s)
- Andrew W DeVilbiss
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Rajendran Sanalkumar
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Kirby D Johnson
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA
| | - Sunduz Keles
- University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H Bresnick
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; University of Wisconsin-Madison Blood Research Program, Madison, Wisconsin, USA.
| |
Collapse
|
19
|
Cadiz-Rivera B, Fromm G, de Vries C, Fields J, McGrath KE, Fiering S, Bulger M. The chromatin "landscape" of a murine adult β-globin gene is unaffected by deletion of either the gene promoter or a downstream enhancer. PLoS One 2014; 9:e92947. [PMID: 24817273 PMCID: PMC4015891 DOI: 10.1371/journal.pone.0092947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/27/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the complex tissue- and developmental-specific expression of genes within the β-globin cluster is known to be subject to control by the gene promoters, by a locus control region (LCR) located upstream of the cluster, and by sequence elements located across the intergenic regions. Despite extensive investigation, however, the complement of sequences that is required for normal regulation of chromatin structure and gene expression within the cluster is not fully defined. To further elucidate regulation of the adult β-globin genes, we investigate the effects of two deletions engineered within the endogenous murine β-globin locus. First, we find that deletion of the β2-globin gene promoter, while eliminating β2-globin gene expression, results in no additional effects on chromatin structure or gene expression within the cluster. Notably, our observations are not consistent with competition among the β-globin genes for LCR activity. Second, we characterize a novel enhancer located 3′ of the β2-globin gene, but find that deletion of this sequence has no effect whatsoever on gene expression or chromatin structure. This observation highlights the difficulty in assigning function to enhancer sequences identified by the chromatin “landscape” or even by functional assays.
Collapse
Affiliation(s)
- Brenda Cadiz-Rivera
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - George Fromm
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
- National Institute for Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Christina de Vries
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - Jennifer Fields
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Kathleen E. McGrath
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - Steven Fiering
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Michael Bulger
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Li A, Morton JP, Ma Y, Karim SA, Zhou Y, Faller WJ, Woodham EF, Morris HT, Stevenson RP, Juin A, Jamieson NB, MacKay CJ, Carter CR, Leung HY, Yamashiro S, Blyth K, Sansom OJ, Machesky LM. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology 2014; 146:1386-96.e1-17. [PMID: 24462734 PMCID: PMC4000441 DOI: 10.1053/j.gastro.2014.01.046] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is often lethal because it is highly invasive and metastasizes rapidly. The actin-bundling protein fascin has been identified as a biomarker of invasive and advanced PDAC and regulates cell migration and invasion in vitro. We investigated fascin expression and its role in PDAC progression in mice. METHODS We used KRas(G12D) p53(R172H) Pdx1-Cre (KPC) mice to investigate the effects of fascin deficiency on development of pancreatic intraepithelial neoplasia (PanIn), PDAC, and metastasis. We measured levels of fascin in PDAC cell lines and 122 human resected PDAC samples, along with normal ductal and acinar tissues; we associated levels with patient outcomes. RESULTS Pancreatic ducts and acini from control mice and early-stage PanINs from KPC mice were negative for fascin, but approximately 6% of PanIN3 and 100% of PDAC expressed fascin. Fascin-deficient KRas(G12D) p53(R172H) Pdx1-Cre mice had longer survival times, delayed onset of PDAC, and a lower PDAC tumor burdens than KPC mice; loss of fascin did not affect invasion of PDAC into bowel or peritoneum in mice. Levels of slug and fascin correlated in PDAC cells; slug was found to regulate transcription of Fascin along with the epithelial-mesenchymal transition. In PDAC cell lines and cells from mice, fascin concentrated in filopodia and was required for their assembly and turnover. Fascin promoted intercalation of filopodia into mesothelial cell layers and cell invasion. Nearly all human PDAC samples expressed fascin, and higher fascin histoscores correlated with poor outcomes, vascular invasion, and time to recurrence. CONCLUSIONS The actin-bundling protein fascin is regulated by slug and involved in late-stage PanIN and PDAC formation in mice. Fascin appears to promote formation of filopodia and invasive activities of PDAC cells. Its levels in human PDAC correlate with outcomes and time to recurrence, indicating it might be a marker or therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ang Li
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P Morton
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - YaFeng Ma
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Saadia A Karim
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Yan Zhou
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William J Faller
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma F Woodham
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hayley T Morris
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard P Stevenson
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Amelie Juin
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nigel B Jamieson
- Department of Surgery, West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Colin J MacKay
- Department of Surgery, West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - C Ross Carter
- Department of Surgery, West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Hing Y Leung
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shigeko Yamashiro
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey
| | - Karen Blyth
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Owen J Sansom
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
21
|
Bonhoure N, Bounova G, Bernasconi D, Praz V, Lammers F, Canella D, Willis IM, Herr W, Hernandez N, Delorenzi M. Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 2014; 24:1157-68. [PMID: 24709819 PMCID: PMC4079971 DOI: 10.1101/gr.168260.113] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.
Collapse
Affiliation(s)
- Nicolas Bonhoure
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gergana Bounova
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David Bernasconi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Fabienne Lammers
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Winship Herr
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Oncology and the Ludwig Center for Cancer Research, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | | |
Collapse
|
22
|
Pope NJ, Bresnick EH. Establishment of a cell-type-specific genetic network by the mediator complex component Med1. Mol Cell Biol 2013; 33:1938-55. [PMID: 23459945 PMCID: PMC3647965 DOI: 10.1128/mcb.00141-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/23/2013] [Indexed: 01/11/2023] Open
Abstract
The intense physiologic demand to generate vast numbers of red blood cells requires the establishment of a complex genetic network by the master regulatory transcription factor GATA-1 and its coregulators. This network dictates the genesis of enucleated erythrocytes by orchestrating the survival, proliferation, and differentiation of progenitor cells. In addition to the crucial GATA-1 coregulator Friend of GATA-1 (FOG-1), a component of the Mediator complex, Med1, facilitates GATA-1-dependent transcription at select target genes and controls erythropoiesis. It is not known to what extent Med1 contributes to GATA-1 function or whether Med1 controls a large or restricted cohort of genes that are not regulated by GATA-1. Using a genetic complementation assay in GATA-1-null erythroid cells, we demonstrate that Med1 and another Mediator component, Med25, regulate a restricted cohort of genes that are predominantly not controlled by GATA-1. Most of these genes were not regulated by Med1 in fibroblasts. Loss-of-function analyses with GATA-1-independent Med1 target genes indicate that Rrad, which encodes a small GTPase induced during human erythropoiesis, conferred erythroid cell survival. Thus, while Med1 is a context-dependent GATA-1 coregulator, it also exerts specialized functions in erythroid cells to control GATA-1-independent, cell-type-specific genes, which include candidate regulators of erythroid cell development and function.
Collapse
Affiliation(s)
- Nathaniel J Pope
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | |
Collapse
|
23
|
Abstract
An understanding of the human fetal to adult hemoglobin switch offers the potential to ameliorate β-type globin gene disorders such as sickle cell anemia and β-thalassemia through activation of the fetal γ-globin gene. Chromatin modifying complexes, including MBD2-NuRD and GATA-1/FOG-1/NuRD, play a role in γ-globin gene silencing, and Mi2β (CHD4) is a critical component of NuRD complexes. We observed that knockdown of Mi2β relieves γ-globin gene silencing in β-YAC transgenic murine chemical inducer of dimerization hematopoietic cells and in CD34(+) progenitor-derived human primary adult erythroid cells. We show that independent of MBD2-NuRD and GATA-1/FOG-1/NuRD, Mi2β binds directly to and positively regulates both the KLF1 and BCL11A genes, which encode transcription factors critical for γ-globin gene silencing during β-type globin gene switching. Remarkably, <50% knockdown of Mi2β is sufficient to significantly induce γ-globin gene expression without disrupting erythroid differentiation of primary human CD34(+) progenitors. These results indicate that Mi2β is a potential target for therapeutic induction of fetal hemoglobin.
Collapse
|
24
|
The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Mol Cell Biol 2013; 33:1383-93. [PMID: 23358417 DOI: 10.1128/mcb.01721-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
KMT2B (MLL2/WBP7) is a member of the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal embryonic development in the mouse. To gain insight into the molecular mechanism underlying KMT2B function, we focused on MagohB, which is controlled by a CpG island promoter. We show that in cells lacking Mll2-the gene encoding KMT2B-the MagohB promoter resides in inaccessible chromatin and is methylated. To dissect the molecular events leading to the establishment of silencing, we performed kinetic studies in Mll2-conditional-knockout embryonic stem cells. KMT2B depletion was followed by the loss of the active chromatin marks and progressive loss of RNA polymerase II binding with a concomitant downregulation of MagohB expression. Once the active chromatin marks were lost, the MagohB promoter was rapidly methylated. We demonstrate that in the presence of KMT2B, neither transcription elongation nor RNA polymerase II binding is required to maintain H3K4 trimethylation at the MagohB promoter and protect it from DNA methylation. Reexpression of KMT2B was sufficient to reinstate an active MagohB promoter. Our study provides a paradigm for the idea that KMT2 proteins are crucial components for establishing and maintaining the transcriptionally active and unmethylated state of CpG island promoters.
Collapse
|
25
|
Okam MM, Ebert BL. Novel approaches to the treatment of sickle cell disease: the potential of histone deacetylase inhibitors. Expert Rev Hematol 2012; 5:303-11. [PMID: 22780210 DOI: 10.1586/ehm.12.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sickle cell disease (SCD) is a severe genetic disorder of hemoglobin causing vaso-occlusion. Patients suffer severe anemia, strokes, renal failure, pulmonary compromise and shortened life expectancy. Over 90,000 people in the USA have SCD, and the options for therapy are limited and only partially effective. With the available therapies - hydroxyurea, blood transfusion, hydration and pain medicines - patients continue to suffer the long-term complications of the disease. This review focuses on the pathogenesis of SCD and the role of fetal hemoglobin in disrupting the polymerization of sickle hemoglobin. The authors review the compounds that induce fetal hemoglobin: hydroxyurea, which is currently US FDA approved, and the histone deacetylase inhibitors and discuss their role in the treatment of SCD and other β-hemoglobinopathies.
Collapse
Affiliation(s)
- Maureen M Okam
- Division of Hematology, Brigham and Women's Hospital, 75 Francis Street, Mid-campus 3, Boston, MA 02115, USA.
| | | |
Collapse
|
26
|
Marçal H, Ahmed T, Badylak SF, Tottey S, Foster LJR. A comprehensive protein expression profile of extracellular matrix biomaterial derived from porcine urinary bladder. Regen Med 2012; 7:159-66. [PMID: 22397606 DOI: 10.2217/rme.12.6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS To generate a comprehensive profile of the protein composition of xenogeneic biomaterial, derived from porcine urinary bladder matrix (UBM). MATERIALS & METHODS Tunica layers and muscularis mucosa were removed from bladders using mechanical delamination. UBM was prepared using a solution of peracetic acid in ethanol, lyophilized then milled into powder. UBM biomaterial was subjected to tryptic digests and components separated using high-performance liquid chromatography with an ion trap mass spectrometer and identified through databases. RESULTS A repertoire of 129 proteins with neurotrophic, antiangiogenic and tumor-suppressive activities and those associated with tissue remodeling and wound repair were identified. CONCLUSION This study provides the first insight into the complex nature of the UBM and how its application may be tailored for specific applications in regenerative medicine. We propose that the UBM be further investigated for reconstructive and regenerative remodeling of cardiac and dermal tissues, as well as peripheral nerves.
Collapse
Affiliation(s)
- Helder Marçal
- Bio/Polymer Research Group, Centre for Advanced Macromolecular Design, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
27
|
Abstract
The level of fetal hemoglobin (HbF) modifies the severity of the common β-globin disorders. Knowledge of the normal mechanisms that repress HbF in the adult stage has remained limited until recently despite nearly 3 decades of molecular investigation, in part because of imperfect model systems. Recent studies have provided new insights into the developmental regulation of globin genes and identified specific transcription factors and epigenetic regulators responsible for physiologic silencing of HbF. Most prominent among these regulators is BCL11A, a transcriptional repressor that inhibits adult-stage HbF expression. KLF1 and c-Myb are additional critical HbF-regulating erythroid transcription factors more broadly involved in erythroid gene expression programs. Chromatin modifiers, including histone deacetylases and DNA methyltransferases, also play key roles in orchestrating appropriate globin gene expression. Taken together, these discoveries present novel therapeutic targets for further consideration. Although substantial hurdles remain, opportunities are now rich for the rational design of HbF inducers.
Collapse
|
28
|
Steilmann C, Paradowska A, Bartkuhn M, Vieweg M, Schuppe HC, Bergmann M, Kliesch S, Weidner W, Steger K. Presence of histone H3 acetylated at lysine 9 in male germ cells and its distribution pattern in the genome of human spermatozoa. Reprod Fertil Dev 2012; 23:997-1011. [PMID: 22127005 DOI: 10.1071/rd10197] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 05/04/2011] [Indexed: 12/28/2022] Open
Abstract
During spermatogenesis, approximately 85% of histones are replaced by protamines. The remaining histones have been proposed to carry essential marks for the establishment of epigenetic information in the offspring. The aim of the present study was to analyse the expression pattern of histone H3 acetylated at lysine 9 (H3K9ac) during normal and impaired spermatogenesis and the binding pattern of H3K9ac to selected genes within ejaculates. Testicular biopsies, as well as semen samples, were used for immunohistochemistry. Chromatin immunoprecipitation was performed with ejaculated sperm chromatin. HeLa cells and prostate tissue served as controls. Binding of selected genes was evaluated by semiquantitative and real-time polymerase chain reaction. Immunohistochemistry of H3K9ac demonstrated positive signals in spermatogonia, spermatocytes, elongating spermatids and ejaculated spermatozoa of fertile and infertile men. H3K9ac was associated with gene promoters (CRAT, G6PD, MCF2L), exons (SOX2, GAPDH, STK11IP, FLNA, PLXNA3, SH3GLB2, CTSD) and intergenic regions (TH) in fertile men and revealed shifts of the distribution pattern in ejaculated spermatozoa of infertile men. In conclusion, H3K9ac is present in male germ cells and may play a role during the development of human spermatozoa. In addition, H3K9ac is associated with specific regions of the sperm genome defining an epigenetic code that may influence gene expression directly after fertilisation.
Collapse
Affiliation(s)
- C Steilmann
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Rudolf Buchheim Str. 7, 35385 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters. Blood 2012; 119:4142-51. [PMID: 22408259 DOI: 10.1182/blood-2011-09-381970] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are down-regulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxidative stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense.
Collapse
|
30
|
Barrachina M, Moreno J, Villar-Menéndez I, Juvés S, Ferrer I. Histone tail acetylation in brain occurs in an unpredictable fashion after death. Cell Tissue Bank 2011; 13:597-606. [PMID: 21922206 DOI: 10.1007/s10561-011-9278-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Histone acetylation plays a role in the regulation of gene transcription. Yet it is not known whether post-mortem brain tissue is suitable for the analysis of histone acetylation. To examine this question, nucleosomes were isolated from frontal cortex of nine subjects which were obtained at short times after death and immediately frozen at -80°C or maintained at room temperature from 3 h up to 50 h after death and then frozen at -80°C to mimic variable post-mortem delay in tissue processing as currently occurs in normal practice. Chromatin immunoprecipitation assays were performed for two lysine residues, H3K9ac and H3K27ac. Four gene loci were amplified by SyBrGreen PCR: Adenosine A(2A) receptor, UCHL1, α-synuclein and β-globin. Results showed variability in the histone acetylation level along the post-mortem times and an increase in the acetylation level at an unpredictable time from one case to another and from one gene to another within the first 24 h of post-mortem delay. Similar results were found with three rat brains used to exclude the effects of agonal state and to normalize the start-point as real time zero. Therefore, the present observations show that human post-mortem brain is probably not suitable for comparative studies of histone acetylation.
Collapse
Affiliation(s)
- Marta Barrachina
- Institute of Neuropathology, [Bellvitge Biomedical Research Institute-] IDIBELL, Bellvitge University Hospital-ICS, c/Feixa Llarga s/n, 08908 L'Hospitalet de Llobregat, Spain.
| | | | | | | | | |
Collapse
|
31
|
Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol 2011; 31:3298-311. [PMID: 21670149 DOI: 10.1128/mcb.05310-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors TR2 and TR4 (TR2/TR4) were previously shown to bind in vitro to direct repeat elements in the mouse and human embryonic and fetal β-type globin gene promoters and to play critical roles in the silencing of these genes. By chromatin immunoprecipitation (ChIP) we show that, in adult erythroid cells, TR2/TR4 bind to the embryonic β-type globin promoters but not to the adult β-globin promoter. We purified protein complexes containing biotin-tagged TR2/TR4 from adult erythroid cells and identified DNMT1, NuRD, and LSD1/CoREST repressor complexes, as well as HDAC3 and TIF1β, all known to confer epigenetic gene silencing, as potential corepressors of TR2/TR4. Coimmunoprecipitation assays of endogenous abundance proteins indicated that TR2/TR4 complexes consist of at least four distinct molecular species. In ChIP assays we found that, in undifferentiated murine adult erythroid cells, many of these corepressors associate with both the embryonic and the adult β-type globin promoters but, upon terminal differentiation, they specifically dissociate only from the adult β-globin promoter concomitant with its activation but remain bound to the silenced embryonic globin gene promoters. These data suggest that TR2/TR4 recruit an array of transcriptional corepressors to elicit adult stage-specific silencing of the embryonic β-type globin genes through coordinated epigenetic chromatin modifications.
Collapse
|
32
|
Lyu J, Jho EH, Lu W. Smek promotes histone deacetylation to suppress transcription of Wnt target gene brachyury in pluripotent embryonic stem cells. Cell Res 2011; 21:911-21. [PMID: 21423269 PMCID: PMC3203701 DOI: 10.1038/cr.2011.47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/22/2010] [Accepted: 11/25/2010] [Indexed: 01/03/2023] Open
Abstract
In embryonic stem cells (ESCs), Wnt-responsive development-related genes are silenced to maintain pluripotency and their expression is activated during differentiation. Acetylation of histones by histone acetyltransferases stimulates transcription, whereas deacetylation of histones by HDACs is correlated with transcriptional repression. Although Wnt-mediated gene transcription has been intimately linked to the acetylation or deacetylation of histones, how Wnt signaling regulates this type of histone modification is poorly understood. Here, we report that Smek, a regulatory subunit of protein phosphatase 4 (PP4) complex, plays an important role in histone deacetylation and silencing of the Wnt-responsive gene, brachyury, in ESCs. Smek mediates recruitment of PP4c and HDAC1 to the Tcf/Lef binding site of the brachyury promoter and inhibits brachyury expression in ESCs. Activation of Wnt signaling during differentiation causes disruption of the Smek/PP4c/HDAC1 complex, resulting in an increase in histones H3 and H4 acetylation at the brachyury gene locus. These results suggest that the Smek-containing PP4 complex represses transcription of Wnt-responsive development-related genes through histone deacetylation, and that this complex is essential for ESC pluripotency maintenance.
Collapse
Affiliation(s)
- Jungmook Lyu
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Eek-hoon Jho
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Wange Lu
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
33
|
Gambone JE, Dusaban SS, Loperena R, Nakata Y, Shetzline SE. The c-Myb target gene neuromedin U functions as a novel cofactor during the early stages of erythropoiesis. Blood 2011; 117:5733-43. [PMID: 21378276 PMCID: PMC3110030 DOI: 10.1182/blood-2009-09-242131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/02/2011] [Indexed: 11/20/2022] Open
Abstract
The requirement of c-Myb during erythropoiesis spurred an interest in identifying c-Myb target genes that are important for erythroid development. Here, we determined that the neuropeptide neuromedin U (NmU) is a c-Myb target gene. Silencing NmU, c-myb, or NmU's cognate receptor NMUR1 expression in human CD34(+) cells impaired burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) formation compared with control. Exogenous addition of NmU peptide to NmU or c-myb siRNA-treated CD34(+) cells rescued BFU-E and yielded a greater number of CFU-E than observed with control. No rescue of BFU-E and CFU-E growth was observed when NmU peptide was exogenously added to NMUR1 siRNA-treated cells compared with NMUR1 siRNA-treated cells cultured without NmU peptide. In K562 and CD34(+) cells, NmU activated protein kinase C-βII, a factor associated with hematopoietic differentiation-proliferation. CD34(+) cells cultured under erythroid-inducing conditions, with NmU peptide and erythropoietin added at day 6, revealed an increase in endogenous NmU and c-myb gene expression at day 8 and a 16% expansion of early erythroblasts at day 10 compared to cultures without NmU peptide. Combined, these data strongly support that the c-Myb target gene NmU functions as a novel cofactor for erythropoiesis and expands early erythroblasts.
Collapse
Affiliation(s)
- Julia E Gambone
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
34
|
Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc Natl Acad Sci U S A 2011; 108:E159-68. [PMID: 21536911 DOI: 10.1073/pnas.1102140108] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acetylation of histones triggers association with bromodomain-containing proteins that regulate diverse chromatin-related processes. Although acetylation of transcription factors has been appreciated for some time, the mechanistic consequences are less well understood. The hematopoietic transcription factor GATA1 is acetylated at conserved lysines that are required for its stable association with chromatin. We show that the BET family protein Brd3 binds via its first bromodomain (BD1) to GATA1 in an acetylation-dependent manner in vitro and in vivo. Mutation of a single residue in BD1 that is involved in acetyl-lysine binding abrogated recruitment of Brd3 by GATA1, demonstrating that acetylation of GATA1 is essential for Brd3 association with chromatin. Notably, Brd3 is recruited by GATA1 to both active and repressed target genes in a fashion seemingly independent of histone acetylation. Anti-Brd3 ChIP followed by massively parallel sequencing in GATA1-deficient erythroid precursor cells and those that are GATA1 replete revealed that GATA1 is a major determinant of Brd3 recruitment to genomic targets within chromatin. A pharmacologic compound that occupies the acetyl-lysine binding pockets of Brd3 bromodomains disrupts the Brd3-GATA1 interaction, diminishes the chromatin occupancy of both proteins, and inhibits erythroid maturation. Together these findings provide a mechanism for GATA1 acetylation and suggest that Brd3 "reads" acetyl marks on nuclear factors to promote their stable association with chromatin.
Collapse
|
35
|
Boglev Y, Wilanowski T, Caddy J, Parekh V, Auden A, Darido C, Hislop NR, Cangkrama M, Ting SB, Jane SM. The unique and cooperative roles of the Grainy head-like transcription factors in epidermal development reflect unexpected target gene specificity. Dev Biol 2010; 349:512-22. [PMID: 21081122 DOI: 10.1016/j.ydbio.2010.11.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
Abstract
The Grainy head-like 3 (Grhl3) gene encodes a transcription factor that plays essential roles in epidermal morphogenesis during embryonic development, with deficient mice exhibiting failed skin barrier formation, defective wound repair, and loss of eyelid fusion. Despite sharing significant sequence homology, overlapping expression patterns, and an identical core consensus DNA binding site, the other members of the Grhl family (Grhl1 and -2) fail to compensate for the loss of Grhl3 in these processes. Here, we have employed diverse genetic models, coupled with biochemical studies, to define the inter-relationships of the Grhl factors in epidermal development. We show that Grhl1 and Grhl3 have evolved complete functional independence, as evidenced by a lack of genetic interactions in embryos carrying combinations of targeted alleles of these genes. In contrast, compound heterozygous Grhl2/Grhl3 embryos displayed failed wound repair, and loss of a single Grhl2 allele in Grhl3-null embryos results in fully penetrant eyes open at birth. Expression of Grhl2 from the Grhl3 locus in homozygous knock-in mice corrects the wound repair defect, but these embryos still display a complete failure of skin barrier formation. This functional dissociation is due to unexpected differences in target gene specificity, as both GRHL2 and GRHL3 bind to and regulate expression of the wound repair gene Rho GEF 19, but regulation of the barrier forming gene, Transglutaminase 1 (TGase1), is unique to GRHL3. Our findings define the mechanisms underpinning the unique and cooperative roles of the Grhl genes in epidermal development.
Collapse
Affiliation(s)
- Yeliz Boglev
- Bone Marrow Research Laboratories, Melbourne Health Research Directorate, c/o Royal Melbourne Hospital Post Office, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE, Akan P, Stupka E, Down TA, Prokopenko I, Morison IM, Mill J, Pidsley R, International Type 2 Diabetes 1q Consortium, Deloukas P, Frayling TM, Hattersley AT, McCarthy MI, Beck S, Hitman GA. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One 2010; 5:e14040. [PMID: 21124985 PMCID: PMC2987816 DOI: 10.1371/journal.pone.0014040] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/27/2010] [Indexed: 01/04/2023] Open
Abstract
Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D), focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip) and absolute methylation values were estimated using a Bayesian algorithm (BATMAN). Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10(-4), permutation p = 1.0×10(-3)). Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10(-7)). Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM), encapsulates a Highly Conserved Non-Coding Element (HCNE) that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA) SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases.
Collapse
Affiliation(s)
- Christopher G Bell
- Medical Genomics, UCL Cancer Institute, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dhami P, Saffrey P, Bruce AW, Dillon SC, Chiang K, Bonhoure N, Koch CM, Bye J, James K, Foad NS, Ellis P, Watkins NA, Ouwehand WH, Langford C, Andrews RM, Dunham I, Vetrie D. Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution. PLoS One 2010; 5:e12339. [PMID: 20808788 PMCID: PMC2925886 DOI: 10.1371/journal.pone.0012339] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 07/14/2010] [Indexed: 01/18/2023] Open
Abstract
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.
Collapse
Affiliation(s)
- Pawandeep Dhami
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Peter Saffrey
- Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Alexander W. Bruce
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Shane C. Dillon
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Kelly Chiang
- Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Nicolas Bonhoure
- Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Christoph M. Koch
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Jackie Bye
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Keith James
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicola S. Foad
- Department of Haematology, University of Cambridge and NHS Blood and Transplant Cambridge, Cambridge, United Kingdom
| | - Peter Ellis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicholas A. Watkins
- Department of Haematology, University of Cambridge and NHS Blood and Transplant Cambridge, Cambridge, United Kingdom
| | - Willem H. Ouwehand
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge and NHS Blood and Transplant Cambridge, Cambridge, United Kingdom
| | - Cordelia Langford
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Robert M. Andrews
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Ian Dunham
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - David Vetrie
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Multiple functions of Ldb1 required for beta-globin activation during erythroid differentiation. Blood 2010; 116:2356-64. [PMID: 20570862 DOI: 10.1182/blood-2010-03-272252] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ldb1 and erythroid partners SCL, GATA-1, and LMO2 form a complex that is required to establish spatial proximity between the β-globin locus control region and gene and for transcription activation during erythroid differentiation. Here we show that Ldb1 controls gene expression at multiple levels. Ldb1 stabilizes its erythroid complex partners on β-globin chromatin, even though it is not one of the DNA-binding components. In addition, Ldb1 is necessary for enrichment of key transcriptional components in the locus, including P-TEFb, which phosphorylates Ser2 of the RNA polymerase C-terminal domain for efficient elongation. Furthermore, reduction of Ldb1 results in the inability of the locus to migrate away from the nuclear periphery, which is necessary to achieve robust transcription of β-globin in nuclear transcription factories. Ldb1 contributes these critical functions at both embryonic and adult stages of globin gene expression. These results implicate Ldb1 as a factor that facilitates nuclear relocation for transcription activation.
Collapse
|
39
|
Kang HC, Chae JH, Jeon J, Kim W, Ha DH, Shin JH, Kim CG, Kim CG. PIAS1 regulates CP2c localization and active promoter complex formation in erythroid cell-specific alpha-globin expression. Nucleic Acids Res 2010; 38:5456-71. [PMID: 20421208 PMCID: PMC2938217 DOI: 10.1093/nar/gkq286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Data presented here extends our previous observations on α-globin transcriptional regulation by the CP2 and PIAS1 proteins. Using RNAi knockdown, we have now shown that CP2b, CP2c and PIAS1 are each necessary for synergistic activation of endogenous α-globin gene expression in differentiating MEL cells. In this system, truncated PIAS1 mutants lacking the ring finger domain recruited CP2c to the nucleus, as did wild-type PIAS1, demonstrating that this is a sumoylation-independent process. In vitro, recombinant CP2c, CP2b and PIAS1 bound DNA as a stable CBP (CP2c/CP2b/PIAS1) complex. Following PIAS1 knockdown in MEL cells, however, the association of endogenous CP2c and CP2b with the α-globin promoter simultaneously decreased. By mapping the CP2b- and CP2c-binding domains on PIAS1, and the PIAS1-binding domains on CP2b and CP2c, we found that two regions of PIAS1 that interact with CP2c/CP2b are required for its co-activator function. We propose that CP2c, CP2b, and PIAS1 form a hexametric complex with two units each of CP2c, CP2b, and PIAS1, in which PIAS1 serves as a clamp between two CP2 proteins, while CP2c binds directly to the target DNA and CP2b mediates strong transactivation.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pope NJ, Bresnick EH. Differential coregulator requirements for function of the hematopoietic transcription factor GATA-1 at endogenous loci. Nucleic Acids Res 2010; 38:2190-200. [PMID: 20047963 PMCID: PMC2853107 DOI: 10.1093/nar/gkp1159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/21/2009] [Accepted: 11/25/2009] [Indexed: 11/13/2022] Open
Abstract
The critical regulator of hematopoiesis GATA-1 recruits diverse coregulators to chromatin, which mediate transcriptional activation and repression. These coregulators include the cell-type-specific multi-zinc finger protein Friend of GATA-1 (FOG-1), the histone acetyltransferase CREB binding protein (CBP), and the key component of the Mediator complex Med1. While FOG-1 is an established GATA-1 coregulator, the importance of interactions between GATA-1 and other coregulators is poorly understood. Furthermore, whether GATA-1 utilizes multiple coregulators at all loci, or if certain coregulators are dedicated to specific loci is unknown. We compared the capacity of GATA-1 to recruit and utilize FOG-1 and Med1 at activated and repressed target genes. Similar to FOG-1, GATA-1 recruited Med1 to activated genes, and the kinetics of FOG-1 and Med1 recruitment were similar. GATA-1 recruited Med1 in Fog1(-/-) cells, indicating that GATA-1-mediated Med1 recruitment is FOG-1-independent. In contrast to FOG-1, GATA-1 evicted Med1 during transcriptional repression. Whereas knocking-down FOG-1 had catastrophic effects on GATA-1-mediated activation and repression, knocking-down Med1 modestly impaired GATA-1 activity only at select loci. These results illustrate both similarities and differences between GATA-1-mediated recruitment of FOG-1 and Med1 to chromatin, with a fundamental difference being the quantitatively greater requirement for FOG-1.
Collapse
Affiliation(s)
| | - Emery H. Bresnick
- University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
41
|
Dhami P, Bruce AW, Jim JH, Dillon SC, Hall A, Cooper JL, Bonhoure N, Chiang K, Ellis PD, Langford C, Andrews RM, Vetrie D. Genomic approaches uncover increasing complexities in the regulatory landscape at the human SCL (TAL1) locus. PLoS One 2010; 5:e9059. [PMID: 20140202 PMCID: PMC2816701 DOI: 10.1371/journal.pone.0009059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/14/2010] [Indexed: 01/25/2023] Open
Abstract
The SCL (TAL1) transcription factor is a critical regulator of haematopoiesis and its expression is tightly controlled by multiple cis-acting regulatory elements. To elaborate further the DNA elements which control its regulation, we used genomic tiling microarrays covering 256 kb of the human SCL locus to perform a concerted analysis of chromatin structure and binding of regulatory proteins in human haematopoietic cell lines. This approach allowed us to characterise further or redefine known human SCL regulatory elements and led to the identification of six novel elements with putative regulatory function both up and downstream of the SCL gene. They bind a number of haematopoietic transcription factors (GATA1, E2A LMO2, SCL, LDB1), CTCF or components of the transcriptional machinery and are associated with relevant histone modifications, accessible chromatin and low nucleosomal density. Functional characterisation shows that these novel elements are able to enhance or repress SCL promoter activity, have endogenous promoter function or enhancer-blocking insulator function. Our analysis opens up several areas for further investigation and adds new layers of complexity to our understanding of the regulation of SCL expression.
Collapse
Affiliation(s)
- Pawandeep Dhami
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Johanna H. Jim
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Shane C. Dillon
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Amanda Hall
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Nicolas Bonhoure
- Section of Pathology and Gene Regulation, Division of Cancer Sciences and Molecular Pathology, University of Glasgow, Glasgow, United Kingdom
| | - Kelly Chiang
- Section of Pathology and Gene Regulation, Division of Cancer Sciences and Molecular Pathology, University of Glasgow, Glasgow, United Kingdom
| | - Peter D. Ellis
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | | | - David Vetrie
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Section of Pathology and Gene Regulation, Division of Cancer Sciences and Molecular Pathology, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 2010; 115:2028-37. [PMID: 20068219 DOI: 10.1182/blood-2009-07-236059] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Histone modifications play an important role in the process of transcription. However, in contrast to lysine methylation, the role of arginine methylation in chromatin structure and transcription has been underexplored. The globin genes are regulated by a highly organized chromatin structure that juxtaposes the locus control region (LCR) with downstream globin genes. We report here that the targeted recruitment of asymmetric dimethyl H4R3 catalyzed by PRMT1 (protein arginine methyltransferase 1) facilitates histone H3 acetylation on Lys9/Lys14. Dimethyl H4R3 provides a binding surface for P300/CBP-associated factor (PCAF) and directly enhances histone H3 acetylation in vitro. We show that these active modifications are essential for efficient interactions between the LCR and the beta(maj)-promoter as well as transcription of the beta-globin gene. Furthermore, knockdown (KD) of PRMT1 by RNA interference in erythroid progenitor cells prevents histone acetylation, enhancer and promoter interaction, and recruitment of transcription complexes to the active beta-globin promoter. Reintroducing rat PRMT1 into the PRMT1 KD MEL cells rescues PRMT1 binding, beta-globin transcription, and erythroid differentiation. Taken together, our data suggest that PRMT1-mediated dimethyl H4R3 facilitates histone acetylation and enhancer/promoter communications, which lead to the efficient recruitment of transcription preinitiation complexes to active promoters.
Collapse
|
43
|
Lee HY, Johnson KD, Fujiwara T, Boyer ME, Kim SI, Bresnick EH. Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor. Mol Cell 2009; 36:984-995. [PMID: 20064464 PMCID: PMC2807411 DOI: 10.1016/j.molcel.2009.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/20/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022]
Abstract
GATA factors establish transcriptional networks that control fundamental developmental processes. Whereas the regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 function at endogenous loci is unknown. We demonstrate that sumoylation of GATA-1 K137 promotes transcriptional activation only at target genes requiring the coregulator Friend of GATA-1 (FOG-1). A mutation of GATA-1 V205G that disrupts FOG-1 binding and K137 mutations yielded similar phenotypes, although sumoylation was FOG-1 independent, and FOG-1 binding did not require sumoylation. Both mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes persisted at the periphery. These results illustrate a mechanism that controls trans-acting factor function in a locus-specific manner, and differentially regulated members of the target gene ensemble reside in distinct subnuclear compartments.
Collapse
Affiliation(s)
- Hsiang-Ying Lee
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Kirby D. Johnson
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Tohru Fujiwara
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Meghan E. Boyer
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| |
Collapse
|
44
|
Wong H, Winn PJ, Mozziconacci J. A molecular model of chromatin organisation and transcription:how a multi-RNA polymerase II machine transcribes and remodels the β-globin locus during development. Bioessays 2009; 31:1357-66. [DOI: 10.1002/bies.200900062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Histone hyperacetylation within the beta-globin locus is context-dependent and precedes high-level gene expression. Blood 2009; 114:3479-88. [PMID: 19690338 DOI: 10.1182/blood-2009-03-210690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Active gene promoters are associated with covalent histone modifications, such as hyperacetylation, which can modulate chromatin structure and stabilize binding of transcription factors that recognize these modifications. At the beta-globin locus and several other loci, however, histone hyperacetylation extends beyond the promoter, over tens of kilobases; we term such patterns of histone modifications "hyperacetylated domains." Little is known of either the mechanism by which these domains form or their function. Here, we show that domain formation within the murine beta-globin locus occurs before either high-level gene expression or erythroid commitment. Analysis of beta-globin alleles harboring deletions of promoters or the locus control region demonstrates that these sequences are not required for domain formation, suggesting the existence of additional regulatory sequences within the locus. Deletion of embryonic globin gene promoters, however, resulted in the formation of a hyperacetylated domain over these genes in definitive erythroid cells, where they are otherwise inactive. Finally, sequences within beta-globin domains exhibit hyperacetylation in a context-dependent manner, and domains are maintained when transcriptional elongation is inhibited. These data narrow the range of possible mechanisms by which hyperacetylated domains form.
Collapse
|
46
|
Coupled RNA processing and transcription of intergenic primary microRNAs. Mol Cell Biol 2009; 29:5632-8. [PMID: 19667074 DOI: 10.1128/mcb.00664-09] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The first step in microRNA (miRNA) biogenesis occurs in the nucleus and is mediated by the Microprocessor complex containing the RNase III-like enzyme Drosha and its cofactor DGCR8. Here we show that the 5'-->3' exonuclease Xrn2 associates with independently transcribed miRNAs and, in combination with Drosha processing, attenuates transcription in downstream regions. We suggest that, after Drosha cleavage, a torpedo-like mechanism acts on nascent long precursor miRNAs, whereby Xrn2 exonuclease degrades the RNA polymerase II-associated transcripts inducing its release from the template. While involved in primary transcript termination, this attenuation effect does not restrict clustered miRNA expression, which, in the majority of cases, is separated by short spacers. We also show that transcripts originating from a miRNA promoter are retained on the chromatin template and are more efficiently processed than those produced from mRNA or snRNA Pol II-dependent promoters. These data imply that coupling between transcription and processing promotes efficient expression of independently transcribed miRNAs.
Collapse
|
47
|
Hsu M, Richardson CA, Olivier E, Bouhassira EE, Lowrey CH, Fiering S. Complex developmental patterns of histone modifications associated with the human beta-globin switch in primary cells. Exp Hematol 2009; 37:799-806.e4. [PMID: 19460472 PMCID: PMC2748252 DOI: 10.1016/j.exphem.2009.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/02/2009] [Accepted: 04/20/2009] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The regulation of the beta-globin switch remains undetermined, and understanding this mechanism has important benefits for clinical and basic science. Histone modifications regulate gene expression and this study determines the presence of three important histone modifications across the beta-globin locus in erythroblasts with different beta-like globin-expression profiles. Understanding the chromatin associated with weak gamma gene expression in bone marrow cells is an important objective, with the goal of ultimately inducing postnatal expression of weak gamma-globin to cure beta-hemoglobinopathies. MATERIALS AND METHODS These studies use uncultured primary fetal and bone marrow erythroblasts and human embryonic stem cell-derived primitive-like erythroblasts. Chromatin immunoprecipitation with antibodies against modified histones reveals DNA associated with such histones. Precipitated DNA is quantitated by real-time polymerase chain reaction for 40 sites across the locus. RESULTS Distribution of histone modifications differs at each developmental stage. The most highly expressed genes at each stage are embedded within large domains of modifications associated with expression (acetylated histone H3 [H3ac] and dimethyl lysine 4 of histone H3 [H3K4me2]). Moderately expressed genes have H3ac and H3K4me2 in the immediate area around the gene. Dimethyl lysine 9 of histone H3 (H3K9me2), a mark associated with gene suppression, is present at the epsilon and gamma genes in bone marrow cells, suggesting active suppression of these genes. CONCLUSION This study reveals complex patterns of histone modifications associated with highly expressed, moderately expressed, and unexpressed genes. Activation of gamma postnatally will likely require extensive modification of the histones in a large domain around the gamma genes.
Collapse
Affiliation(s)
- Mei Hsu
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire
| | - Christine A. Richardson
- Department of Medicine, Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire
| | - Emmanuel Olivier
- Einstein Center for Human Embryonic Stem Cell Research, Department of Medicine, Hematology and Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Eric E. Bouhassira
- Einstein Center for Human Embryonic Stem Cell Research, Department of Medicine, Hematology and Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Christopher H. Lowrey
- Department of Medicine, Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire
| | - Steven Fiering
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire
| |
Collapse
|
48
|
Kim SI, Bultman SJ, Kiefer CM, Dean A, Bresnick EH. BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci U S A 2009; 106:2259-2264. [PMID: 19171905 PMCID: PMC2650142 DOI: 10.1073/pnas.0806420106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Indexed: 11/18/2022] Open
Abstract
The dynamic packaging of DNA into chromatin is a fundamental step in the control of diverse nuclear processes. Whereas certain transcription factors and chromosomal components promote the formation of higher-order chromatin loops, the co-regulator machinery mediating loop assembly and disassembly is unknown. Using mice bearing a hypomorphic allele of the BRG1 chromatin remodeler, we demonstrate that the Brg1 mutation abrogated a cell type-specific loop between the beta-globin locus control region and the downstream beta major promoter, despite trans-acting factor occupancy at both sites. By contrast, distinct loops were insensitive to the Brg1 mutation. Molecular analysis with a conditional allele of GATA-1, a key regulator of hematopoiesis, in a novel cell-based system provided additional evidence that BRG1 functions early in chromatin domain activation to mediate looping. Although the paradigm in which chromatin remodelers induce nucleosome structural transitions is well established, our results demonstrating an essential role of BRG1 in the genesis of specific chromatin loops expands the repertoire of their functions.
Collapse
Affiliation(s)
- Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599; and
| | - Christine M. Kiefer
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
49
|
Kadauke S, Blobel GA. Chromatin loops in gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:17-25. [PMID: 18675948 PMCID: PMC2638769 DOI: 10.1016/j.bbagrm.2008.07.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/02/2008] [Accepted: 07/06/2008] [Indexed: 12/26/2022]
Abstract
The control of gene expression involves regulatory elements that can be very far from the genes they control. Several recent technological advances have allowed the direct detection of chromatin loops that juxtapose distant genomic sites in the nucleus. Here we review recent studies from various model organisms that have provided new insights into the functions of chromatin loops and the mechanisms that form them. We discuss the widespread impact of chromatin loops on gene activation, repression, genomic imprinting and the function of enhancers and insulators.
Collapse
Affiliation(s)
- Stephan Kadauke
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
50
|
Dean A, Fiering S. Epigenetic Gene Regulation—Lessons from Globin. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|