1
|
Das T, Khatun S, Jha T, Gayen S. HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors. Mini Rev Med Chem 2024; 24:767-784. [PMID: 37818566 DOI: 10.2174/0113895575267301230919165827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
HDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis. This review discusses the role of HDAC9 in different diseases and structure-activity relationships (SARs) of various hydroxamate and non-hydroxamate-based inhibitors. SAR of compounds containing several scaffolds have been discussed in detail. Moreover, structural requirements regarding the various components of HDAC9 inhibitor (cap group, linker and zinc-binding group) has been highlighted in this review. Though, HDAC9 is a promising target for the treatment of a number of diseases including cancer, a very few research are available. Thus, this review may provide useful information for designing novel HDAC9 inhibitors to fight against different diseases in the future.
Collapse
Affiliation(s)
- Totan Das
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Samima Khatun
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Rajaraman S, Balakrishnan R, Deshmukh D, Ganorkar A, Biswas S, Pulya S, Ghosh B. HDAC8 as an emerging target in drug discovery with special emphasis on medicinal chemistry. Future Med Chem 2023; 15:885-908. [PMID: 37227732 DOI: 10.4155/fmc-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
HDAC8 catalyzes the deacetylation of both histones and nonhistone proteins. The abnormal expression of HDAC8 is associated with various pathological conditions causing cancer and other diseases like myopathies, Cornelia de Lange syndrome, renal fibrosis, and viral and parasitic infections. The substrates of HDAC8 are involved in diverse molecular mechanisms of cancer such as cell proliferation, invasion, metastasis and drug resistance. Based on the crystal structures and the key residues at the active site, HDAC8 inhibitors have been designed along the canonical pharmacophore. This article details the importance, recent advancements, and the structural and functional aspects of HDAC8 with special emphasis on the medicinal chemistry aspect of HDAC8 inhibitors that will help in developing novel epigenetic therapeutics.
Collapse
Affiliation(s)
- Srinidhi Rajaraman
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Ranjani Balakrishnan
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Dhruv Deshmukh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Abhiram Ganorkar
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| |
Collapse
|
4
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
5
|
Yang C, Croteau S, Hardy P. Histone deacetylase (HDAC) 9: versatile biological functions and emerging roles in human cancer. Cell Oncol (Dordr) 2021; 44:997-1017. [PMID: 34318404 PMCID: PMC8516780 DOI: 10.1007/s13402-021-00626-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HDAC9 (histone deacetylase 9) belongs to the class IIa family of histone deacetylases. This enzyme can shuttle freely between the nucleus and cytoplasm and promotes tissue-specific transcriptional regulation by interacting with histone and non-histone substrates. HDAC9 plays an essential role in diverse physiological processes including cardiac muscle development, bone formation, adipocyte differentiation and innate immunity. HDAC9 inhibition or activation is therefore a promising avenue for therapeutic intervention in several diseases. HDAC9 overexpression is also common in cancer cells, where HDAC9 alters the expression and activity of numerous relevant proteins involved in carcinogenesis. CONCLUSIONS This review summarizes the most recent discoveries regarding HDAC9 as a crucial regulator of specific physiological systems and, more importantly, highlights the diverse spectrum of HDAC9-mediated posttranslational modifications and their contributions to cancer pathogenesis. HDAC9 is a potential novel therapeutic target, and the restoration of aberrant expression patterns observed among HDAC9 target genes and their related signaling pathways may provide opportunities to the design of novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec H3T 1C5 Canada
| | - Stéphane Croteau
- Departments of Medicine, Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, QC Canada
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec H3T 1C5 Canada
- Departments of Medicine, Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, QC Canada
| |
Collapse
|
6
|
Histone deacetylase 10, a potential epigenetic target for therapy. Biosci Rep 2021; 41:228655. [PMID: 33997894 PMCID: PMC8182986 DOI: 10.1042/bsr20210462] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase (HDAC) 10, a class II family, has been implicated in various tumors and non-tumor diseases, which makes the discovery of biological functions and novel inhibitors a fundamental endeavor. In cancers, HDAC10 plays crucial roles in regulating various cellular processes through its epigenetic functions or targeting some decisive molecular or signaling pathways. It also has potential clinical utility for targeting tumors and non-tumor diseases, such as renal cell carcinoma, prostate cancer, immunoglobulin A nephropathy (IgAN), intracerebral hemorrhage, human immunodeficiency virus (HIV) infection and schizophrenia. To date, relatively few studies have investigated HDAC10-specific inhibitors. Therefore, it is important to study the biological functions of HDAC10 for the future development of specific HDAC10 inhibitors. In this review, we analyzed the biological functions, mechanisms and inhibitors of HDAC10, which makes HDAC10 an appealing therapeutic target.
Collapse
|
7
|
Brancolini C, Di Giorgio E, Formisano L, Gagliano T. Quis Custodiet Ipsos Custodes (Who Controls the Controllers)? Two Decades of Studies on HDAC9. Life (Basel) 2021; 11:life11020090. [PMID: 33513699 PMCID: PMC7912504 DOI: 10.3390/life11020090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding how an epigenetic regulator drives different cellular responses can be a tricky task. Very often, their activities are modulated by large multiprotein complexes, the composition of which is context- and time-dependent. As a consequence, experiments aimed to unveil the functions of an epigenetic regulator can provide different outcomes and conclusions, depending on the circumstances. HDAC9 (histone deacetylase), an epigenetic regulator that influences different differentiating and adaptive responses, makes no exception. Since its discovery, different phenotypes and/or dysfunctions have been observed after the artificial manipulation of its expression. The cells and the microenvironment use multiple strategies to control and monitor HDAC9 activities. To date, some of the genes under HDAC9 control have been identified. However, the exact mechanisms through which HDAC9 can achieve all the different tasks so far described, remain mysterious. Whether it can assemble into different multiprotein complexes and how the cells modulate these complexes is not clearly defined. In summary, despite several cellular responses are known to be affected by HDAC9, many aspects of its network of interactions still remain to be defined.
Collapse
Affiliation(s)
- Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
- Correspondence:
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
| | - Luigi Formisano
- Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples, Italy;
| | - Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
| |
Collapse
|
8
|
Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol Res 2020; 163:105274. [PMID: 33171304 DOI: 10.1016/j.phrs.2020.105274] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022]
Abstract
HDAC6, a class IIB HDAC isoenzyme, stands unique in its structural and physiological functions. Besides histone modification, largely due to its cytoplasmic localization, HDAC6 also targets several non-histone proteins including Hsp90, α-tubulin, cortactin, HSF1, etc. Thus, it is one of the key regulators of different physiological and pathological disease conditions. HDAC6 is involved in different signaling pathways associated with several neurological disorders, various cancers at early and advanced stage, rare diseases and immunological conditions. Therefore, targeting HDAC6 has been found to be effective for various therapeutic purposes in recent years. Though several HDAC6 inhibitors (HDAC6is) have been developed till date, only two ACY-1215 (ricolinostat) and ACY-241 (citarinostat) are in the clinical trials. A lot of work is still needed to pinpoint strictly selective as well as potent HDAC6i. Considering the recent crystal structure of HDAC6, novel HDAC6is of significant therapeutic value can be designed. Notably, the canonical pharmacophore features of HDAC6is consist of a zinc binding group (ZBG), a linker function and a cap group. Significant modifications of cap function may lead to achieve better selectivity of the inhibitors. This review details the study about the structural biology of HDAC6, the physiological and pathological role of HDAC6 in several disease states and the detailed structure-activity relationships (SARs) of the known HDAC6is. This detailed review will provide key insights to design novel and highly effective HDAC6i in the future.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
9
|
From 1957 to Nowadays: A Brief History of Epigenetics. Int J Mol Sci 2020; 21:ijms21207571. [PMID: 33066397 PMCID: PMC7588895 DOI: 10.3390/ijms21207571] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the spectacular number of studies focusing on epigenetics in the last few decades, and particularly for the last few years, the availability of a chronology of epigenetics appears essential. Indeed, our review places epigenetic events and the identification of the main epigenetic writers, readers and erasers on a historic scale. This review helps to understand the increasing knowledge in molecular and cellular biology, the development of new biochemical techniques and advances in epigenetics and, more importantly, the roles played by epigenetics in many physiological and pathological situations.
Collapse
|
10
|
HDAC9 Is Preferentially Expressed in Dedifferentiated Hepatocellular Carcinoma Cells and Is Involved in an Anchorage-Independent Growth. Cancers (Basel) 2020; 12:cancers12102734. [PMID: 32977608 PMCID: PMC7598174 DOI: 10.3390/cancers12102734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Histone deacetylases (HDACs) are known to play a role in malignant transformation of cancer cells, however, the critical HDAC responsible for the dedifferentiation of hepatocellular carcinoma (HCC) cells remains unclear. The aim of our study was to identify the HDAC related to the dedifferentiation of HCC. We confirmed preferential expression of HDAC9, a class II HDAC, in undifferentiated hepatoma cells and a positive correlation of gene expression between HDAC9 and dedifferentiation markers by database analysis of HCC patients. Genetic and pharmacological inhibition of HDAC9 showed decreased cell proliferation and sphere-forming activity, which indicates an ability of anchorage-independent cell growth and self-renewal. HDAC9 suppression showed significant down-regulation of aldehyde dehydrogenase 1A3 (ALDH1A3), a stemness-related gene reported in several malignancies including HCC. We also confirmed that ALDH activity is required for the anchorage-independent cell growth of undifferentiated HCC cells. Inhibition of HDAC9 may be a therapeutic strategy for targeting dedifferentiated HCC cells with stemness features. Abstract Aberrant activation of histone deacetylases (HDACs) is one of the causes of tumor cell transformation in many types of cancer, however, the critical HDAC responsible for the malignant transformation remain unclear. To identify the HDAC related to the dedifferentiation of hepatocellular carcinoma (HCC) cells, we investigated the expression profile of HDACs in differentiated and undifferentiated hepatoma cells. We found that HDAC9, a member of the class II HDAC, is preferentially expressed in undifferentiated HCC cells. Analysis of 373 HCC patients in The Cancer Genome Atlas (TCGA) database revealed that the expression of HDAC9 mRNA positively correlated with the markers of mesenchymal phenotype and stemness, and conversely, negatively correlated with hepatic differentiation markers. HDAC9 was transcriptionally upregulated in epithelial–mesenchymal transition (EMT)-induced HCC cells treated with TGF-β. Genetic and pharmacological inhibition of HDAC9 in undifferentiated HCC cells showed decreased sphere-forming activity, which indicates an ability of anchorage-independent cell growth and self-renewal. We also showed that aldehyde dehydrogenase 1A3 (ALDH1A3) was downregulated in HDAC9-suppressing cells, and ALDH inhibitor disulfiram significantly decreased the sphere formation of undifferentiated HCC cells. Together, our data provide useful information for the development of HDAC9-specific inhibitors for the treatment of HCC progression.
Collapse
|
11
|
Design and synthesis of imidazole based zinc binding groups as novel small molecule inhibitors targeting Histone deacetylase enzymes in lung cancer. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Hu S, Cho EH, Lee JY. Histone Deacetylase 9: Its Role in the Pathogenesis of Diabetes and Other Chronic Diseases. Diabetes Metab J 2020; 44:234-244. [PMID: 32347025 PMCID: PMC7188980 DOI: 10.4093/dmj.2019.0243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
As a member of the class IIa histone deacetylases (HDACs), HDAC9 catalyzes the deacetylation of histones and transcription factors, commonly leading to the suppression of gene transcription. The activity of HDAC9 is regulated transcriptionally and post-translationally. HDAC9 is known to play an essential role in regulating myocyte and adipocyte differentiation and cardiac muscle development. Also, recent studies have suggested that HDAC9 is involved in the pathogenesis of chronic diseases, including cardiovascular diseases, osteoporosis, autoimmune disease, cancer, obesity, insulin resistance, and liver fibrosis. HDAC9 modulates the expression of genes related to the pathogenesis of chronic diseases by altering chromatin structure in their promotor region or reducing the transcriptional activity of their respective transcription factors. This review summarizes the current knowledge of the regulation of HDAC9 expression and activity. Also, the roles of HDAC9 in the pathogenesis of chronic diseases are discussed, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Eun Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Ji Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
13
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
14
|
Zaru R, Magrane M, Orchard S. Challenges in the annotation of pseudoenzymes in databases: the UniProtKB approach. FEBS J 2019; 287:4114-4127. [PMID: 31618524 DOI: 10.1111/febs.15100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
The universal protein knowledgebase (UniProtKB) collects and centralises functional information on proteins across a wide range of species. In addition to the functional information added to all protein entries, for enzymes, which represent 20-40% of most proteomes, UniProtKB provides additional information about Enzyme Commission classification, catalytic activity, cofactors, enzyme regulation, kinetics and pathways, all based on critical assessment of published experimental data. Computer-based analysis and structural data are used to enrich the annotation of the sequence through the identification of active sites and binding sites. While the annotation of enzymes is well-defined, the curation of pseudoenzymes in UniProtKB has highlighted some challenges: how to identify them, how to assess their lack of catalytic activity, how to annotate their lack of catalytic activity in a consistent way and how much can be inferred and propagated from experimental data obtained from other species. Through various examples, we illustrate some of these issues and discuss some of the changes we propose to enhance the annotation and discovery of pseudoenzymes. Ultimately, improving the curation of pseudoenzymes will provide the scientific community with a comprehensive resource for pseudoenzymes, which in turn will lead to a better understanding of the evolution of these molecules, the aetiology of related diseases and the development of drugs.
Collapse
Affiliation(s)
- Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | -
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK.,SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland.,Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA.,Protein Information Resource, University of Delaware, Newark, DE, USA
| |
Collapse
|
15
|
von Knethen A, Brüne B. Histone Deacetylation Inhibitors as Therapy Concept in Sepsis. Int J Mol Sci 2019; 20:ijms20020346. [PMID: 30654448 PMCID: PMC6359123 DOI: 10.3390/ijms20020346] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
Sepsis is characterized by dysregulated gene expression, provoking a hyper-inflammatory response occurring in parallel to a hypo-inflammatory reaction. This is often associated with multi-organ failure, leading to the patient’s death. Therefore, reprogramming of these pro- and anti-inflammatory, as well as immune-response genes which are involved in acute systemic inflammation, is a therapy approach to prevent organ failure and to improve sepsis outcomes. Considering epigenetic, i.e., reversible, modifications of chromatin, not altering the DNA sequence as one tool to adapt the expression profile, inhibition of factors mediating these changes is important. Acetylation of histones by histone acetyltransferases (HATs) and initiating an open-chromatin structure leading to its active transcription is counteracted by histone deacetylases (HDACs). Histone deacetylation triggers a compact nucleosome structure preventing active transcription. Hence, inhibiting the activity of HDACs by specific inhibitors can be used to restore the expression profile of the cells. It can be assumed that HDAC inhibitors will reduce the expression of pro-, as well as anti-inflammatory mediators, which blocks sepsis progression. However, decreased cytokine expression might also be unfavorable, because it can be associated with decreased bacterial clearance.
Collapse
Affiliation(s)
- Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt/Main, 60590 Frankfurt, Germany.
- Fraunhofer⁻IME, Project Group Translational Medicine and Pharmacology (TMP), 60596 Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt/Main, 60590 Frankfurt, Germany.
- Fraunhofer⁻IME, Project Group Translational Medicine and Pharmacology (TMP), 60596 Frankfurt, Germany.
| |
Collapse
|
16
|
Thomas EA, D'Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145:96-110. [PMID: 29355955 DOI: 10.1111/jnc.14309] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
By their ability to shatter quality of life for both patients and caregivers, neurodegenerative diseases are the most devastating of human disorders. Unfortunately, there are no effective or long-terms treatments capable of slowing down the relentless loss of neurons in any of these diseases. One impediment is the lack of detailed knowledge of the molecular mechanisms underlying the processes of neurodegeneration. While some neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are mostly sporadic in nature, driven by both environment and genetic susceptibility, many others, including Huntington's disease, spinocerebellar ataxias, and spinal-bulbar muscular atrophy, are genetically inherited disorders. Surprisingly, given their different roots and etiologies, both sporadic and genetic neurodegenerative disorders have been linked to disease mechanisms involving histone deacetylase (HDAC) proteins, which consists of 18 family members with diverse functions. While most studies have implicated certain HDAC subtypes in promoting neurodegeneration, a substantial body of literature suggests that other HDAC proteins can preserve neuronal viability. Of particular interest, however, is the recent realization that a single HDAC subtype can have both neuroprotective and neurotoxic effects. Diverse mechanisms, beyond transcriptional regulation have been linked to these effects, including deacetylation of non-histone proteins, protein-protein interactions, post-translational modifications of the HDAC proteins themselves and direct interactions with disease proteins. The roles of these HDACs in both sporadic and genetic neurodegenerative diseases will be discussed in the current review.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
17
|
Bin Dhuban K, d’Hennezel E, Nagai Y, Xiao Y, Shao S, Istomine R, Alvarez F, Ben-Shoshan M, Ochs H, Mazer B, Li B, Sekine C, Berezov A, Hancock W, Torgerson TR, Greene MI, Piccirillo CA. Suppression by human FOXP3
+
regulatory T cells requires FOXP3-TIP60 interactions. Sci Immunol 2017; 2. [DOI: 10.1126/sciimmunol.aai9297] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Targeting the FOXP3-TIP60 interaction may modulate T
reg
activity in IPEX and other autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Khalid Bin Dhuban
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Eva d’Hennezel
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Yan Xiao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Steven Shao
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Moshe Ben-Shoshan
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, McGill University Health Center, Montréal, Québec H3H 1P3, Canada
| | - Hans Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101–1304, USA
| | - Bruce Mazer
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, McGill University Health Center, Montréal, Québec H3H 1P3, Canada
- FOCiS Centre of Excellence in Translational Immunology (CETI), Montréal, Québec H4A 3J1, Canada
| | - Bin Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | | | - Alan Berezov
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Wayne Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Troy R. Torgerson
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, McGill University Health Center, Montréal, Québec H3H 1P3, Canada
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
- FOCiS Centre of Excellence in Translational Immunology (CETI), Montréal, Québec H4A 3J1, Canada
- Division of Allergy and Clinical Immunology, Department of Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Visualization of HDAC9 Spatiotemporal Subcellular Localization in Primary Neuron Cultures. Methods Mol Biol 2016; 1436:119-27. [PMID: 27246212 DOI: 10.1007/978-1-4939-3667-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Histone deacetylase (HDAC) 9 is one of class IIa HDACs which are expressed in developing cortical neurons. The translocation of HDAC9 from the nucleus to the cytoplasm is induced by neuronal activity during postnatal development, and is involved in regulation of various gene expressions. Visualization of HDAC9 subcellular localization is a powerful tool for studying activity-dependent gene expression. Here, we describe a time-lapse imaging method using fluorescent protein-tagged HDAC9 in dissociated cortical neurons. This method reveals dynamic HDAC9-mediated gene expression in response to various signals.
Collapse
|
19
|
Harris LG, Wang SH, Mani SK, Kasiganesan H, Chou CJ, Menick DR. Evidence for a non-canonical role of HDAC5 in regulation of the cardiac Ncx1 and Bnp genes. Nucleic Acids Res 2015; 44:3610-7. [PMID: 26704971 PMCID: PMC4856964 DOI: 10.1093/nar/gkv1496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 12/10/2015] [Indexed: 11/12/2022] Open
Abstract
Class IIa histone deacetylases (HDACs) are very important for tissue specific gene regulation in development and pathology. Because class IIa HDAC catalytic activity is low, their exact molecular roles have not been fully elucidated. Studies have suggested that class IIa HDACs may serve as a scaffold to recruit the catalytically active class I HDAC complexes to their substrate. Here we directly address whether the class IIa HDAC, HDAC5 may function as a scaffold to recruit co-repressor complexes to promoters. We examined two well-characterized cardiac promoters, the sodium calcium exchanger (Ncx1) and the brain natriuretic peptide (Bnp) whose hypertrophic upregulation is mediated by both class I and IIa HDACs. Selective inhibition of class IIa HDACs did not prevent adrenergic stimulated Ncx1 upregulation, however HDAC5 knockout prevented pressure overload induced Ncx1 upregulation. Using the HDAC5((-/-)) mouse we show that HDAC5 is required for the interaction of the HDAC1/2/Sin3a co-repressor complexes with the Nkx2.5 and YY1 transcription factors and critical for recruitment of the HDAC1/Sin3a co-repressor complex to either the Ncx1 or Bnp promoter. Our novel findings support a non-canonical role of class IIa HDACs in the scaffolding of transcriptional regulatory complexes, which may be relevant for therapeutic intervention for pathologies.
Collapse
Affiliation(s)
- Lillianne G Harris
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, SC 29425, USA
| | - Sabina H Wang
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, SC 29425, USA
| | - Santhosh K Mani
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, SC 29425, USA
| | - Harinath Kasiganesan
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, SC 29425, USA
| | - C James Chou
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, SC 29425, USA
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, SC 29425, USA Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
20
|
Characterization of HDAC9 isoforms in brain microvessel bEnd.3 cells upon oxygen and glucose deprivation–reperfusion injury. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Weeks KL, Avkiran M. Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms. J Physiol 2014; 593:1785-97. [PMID: 25362149 PMCID: PMC4405742 DOI: 10.1113/jphysiol.2014.282442] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/17/2014] [Indexed: 12/25/2022] Open
Abstract
Cardiomyocyte hypertrophy is an integral component of pathological cardiac remodelling in response to mechanical and chemical stresses in settings such as chronic hypertension or myocardial infarction. For hypertrophy to ensue, the pertinent mechanical and chemical signals need to be transmitted from membrane sensors (such as receptors for neurohormonal mediators) to the cardiomyocyte nucleus, leading to altered transcription of the genes that regulate cell growth. In recent years, nuclear histone deacetylases (HDACs) have attracted considerable attention as signal-responsive, distal regulators of the transcriptional reprogramming that in turn precipitates cardiomyocyte hypertrophy, with particular focus on the role of members of the class IIa family, such as HDAC4 and HDAC5. These histone deacetylase isoforms appear to repress cardiomyocyte hypertrophy through mechanisms that involve protein interactions in the cardiomyocyte nucleus, particularly with pro-hypertrophic transcription factors, rather than via histone deacetylation. In contrast, evidence indicates that class I HDACs promote cardiomyocyte hypertrophy through mechanisms that are dependent on their enzymatic activity and thus sensitive to pharmacological HDAC inhibitors. Although considerable progress has been made in understanding the roles of post-translational modifications (PTMs) such as phosphorylation, oxidation and proteolytic cleavage in regulating class IIa HDAC localisation and function, more work is required to explore the contributions of other PTMs, such as ubiquitination and sumoylation, as well as potential cross-regulatory interactions between distinct PTMs and between class IIa and class I HDAC isoforms.
Collapse
Affiliation(s)
| | - Metin Avkiran
- Corresponding author M. Avkiran: Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| |
Collapse
|
22
|
Guise AJ, Mathias RA, Rowland EA, Yu F, Cristea IM. Probing phosphorylation-dependent protein interactions within functional domains of histone deacetylase 5 (HDAC5). Proteomics 2014; 14:2156-66. [PMID: 24920159 DOI: 10.1002/pmic.201400092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/14/2014] [Accepted: 06/04/2014] [Indexed: 01/26/2023]
Abstract
Class IIa histone deacetylases (HDACs) are critical transcriptional regulators, shuttling between nuclear and cytoplasmic cellular compartments. Within the nucleus, these HDACs repress transcription as components of multiprotein complexes, such as the nuclear corepressor and beclin-6 corepressor (BCoR) complexes. Cytoplasmic relocalization relieves this transcriptional repressive function. Class IIa HDAC shuttling is controlled, in part, by phosphorylations flanking the nuclear localization signal (NLS). Furthermore, we have reported that phosphorylation within the NLS by the kinase Aurora B modulates the localization and function of the class IIa HDAC5 during mitosis. While we identified numerous additional HDAC5 phosphorylations, their regulatory functions remain unknown. Here, we studied phosphorylation sites within functional HDAC5 domains, including the deacetylation domain (DAC, Ser755), nuclear export signal (NES, Ser1108), and an acidic domain (AD, Ser611). We have generated phosphomutant cell lines to investigate how absence of phosphorylation at these sites impacts HDAC5 localization, enzymatic activity, and protein interactions. Combining molecular biology and quantitative MS, we have defined the interactions and HDAC5-containing complexes mediated by site-specific phosphorylation and quantified selected changes using parallel reaction monitoring. These results expand the current understanding of HDAC regulation, and the functions of this critical family of proteins within human cells.
Collapse
Affiliation(s)
- Amanda J Guise
- Princeton University, Department of Molecular Biology, Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
23
|
Sun Y, Liu PY, Scarlett CJ, Malyukova A, Liu B, Marshall GM, MacKenzie KL, Biankin AV, Liu T. Histone deacetylase 5 blocks neuroblastoma cell differentiation by interacting with N-Myc. Oncogene 2014; 33:2987-94. [PMID: 23812427 DOI: 10.1038/onc.2013.253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/10/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
The N-Myc oncoprotein induces neuroblastoma, which arises from undifferentiated neuroblasts in the sympathetic nervous system, by modulating gene and protein expression and consequently causing cell differentiation block and cell proliferation. The class IIa histone deacetylase 5 (HDAC5) represses gene transcription, and blocks myoblast, osteoblast and leukemia cell differentiation. Here we showed that N-Myc upregulated HDAC5 expression in neuroblastoma cells. Conversely, HDAC5 repressed the ubiquitin-protein ligase NEDD4 gene expression, increased Aurora A gene expression and consequently upregulated N-Myc protein expression. Genome-wide gene expression analysis and protein co-immunoprecipitation assays revealed that HDAC5 and N-Myc repressed the expression of a common subset of genes by forming a protein complex, whereas HDAC5 and the class III HDAC SIRT2 independently repressed the expression of another common subset of genes without forming a protein complex. Moreover, HDAC5 blocked differentiation and induced proliferation in neuroblastoma cells. Taken together, our data identify HDAC5 as a novel co-factor in N-Myc oncogenesis, and provide the evidence for the potential application of HDAC5 inhibitors in the therapy of N-Myc-induced neuroblastoma and potentially other c-Myc-induced malignancies.
Collapse
Affiliation(s)
- Y Sun
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia
| | - P Y Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia
| | - C J Scarlett
- 1] School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia [2] Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - A Malyukova
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia
| | - B Liu
- 1] Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia [2] Kids Cancer Alliance, Randwick, New South Wales, Australia
| | - G M Marshall
- 1] Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia [2] Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - K L MacKenzie
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia
| | - A V Biankin
- 1] Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia [2] Department of Surgery, Bankstown Hospital, Bankstown, New South Wales, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales, Australia
| | - T Liu
- 1] Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia [2] School of Women's and Children's Health, UNSW Medicine, University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
24
|
Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014; 6:a018713. [PMID: 24691964 DOI: 10.1101/cshperspect.a018713] [Citation(s) in RCA: 1269] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD(+)-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases.
Collapse
Affiliation(s)
- Edward Seto
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | | |
Collapse
|
25
|
Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, Everett LJ, Nabel CS, Li Y, Selvakumaran V, Won KJ, Lazar MA. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell 2013; 52:769-82. [PMID: 24268577 DOI: 10.1016/j.molcel.2013.10.022] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/17/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022]
Abstract
Histone deacetylases (HDACs) are believed to regulate gene transcription by catalyzing deacetylation reactions. HDAC3 depletion in mouse liver upregulates lipogenic genes and results in severe hepatosteatosis. Here we show that pharmacologic HDAC inhibition in primary hepatocytes causes histone hyperacetylation but does not upregulate expression of HDAC3 target genes. Meanwhile, deacetylase-dead HDAC3 mutants can rescue hepatosteatosis and repress lipogenic genes expression in HDAC3-depleted mouse liver, demonstrating that histone acetylation is insufficient to activate gene transcription. Mutations abolishing interactions with the nuclear receptor corepressor (NCOR or SMRT) render HDAC3 nonfunctional in vivo. Additionally, liver-specific knockout of NCOR, but not SMRT, causes metabolic and transcriptomal alterations resembling those of mice without hepatic HDAC3, demonstrating that interaction with NCOR is essential for deacetylase-independent function of HDAC3. These findings highlight nonenzymatic roles of a major HDAC in transcriptional regulation in vivo and warrant reconsideration of the mechanism of action of HDAC inhibitors.
Collapse
Affiliation(s)
- Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Fang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seo-Hee You
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Logan J Everett
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher S Nabel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Li
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vignesh Selvakumaran
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Ebrahimi A, Schittenhelm J, Honegger J, Schluesener H. Prognostic relevance of global histone 3 lysine 9 acetylation in ependymal tumors. J Neurosurg 2013; 119:1424-31. [PMID: 24116725 DOI: 10.3171/2013.9.jns13511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECT Ependymal tumors are highly variable in clinical and molecular behavior and affect both children and adults. Regarding the paucity of appropriate experimental models, the underlying molecular mechanisms of their behavioral variability are poorly understood. Considering the increasing evidence of epigenetic changes in various tumors, in addition to the preclinical success of epigenetic-based therapeutics in tumors of the CNS, epigenetic study of ependymal tumors is warranted. METHODS Using immunohistochemistry, the authors investigated the patterns of global acetylation of lysine position 9 of histone 3 (H3K9Ac), an epigenetic marker of active gene transcription, in 85 ependymal tumors with various WHO grades and clinicopathological characteristics. RESULTS Most of the nuclei in all ependymal tumors were H3K9Ac negative (mean ± SD 65.9% ± 26.5 vs 34.1% ± 26.5% positive, p < 0.0001). Subependymomas had more H3K9Ac-positive nuclei (67.2% ± 10.2%) than myxopapillary ependymomas, ependymomas, and anaplastic ependymomas (p < 0.05). Additionally, intracranial parenchymal tumors had significantly fewer H3K9Ac-positive nuclei (13.1% ± 21.9%) than tumors of other CNS localizations (p < 0.001), and supratentorial ventricular tumors had the highest number of H3K9Ac-positive nuclei (66.4% ± 11.8%) among CNS ependymal tumors (p < 0.0001). The H3K9Ac pattern in ependymal tumors also revealed prognostic significance such that tumors with less than 20% acetylated nuclei had a higher probability of recurrence than tumors with 20% or more acetylated nuclei (p = 0.0327), and recurrent tumors had significantly fewer H3K9Ac-positive nuclei than primary ones (16% ± 22.5% vs. 38% ± 25.8%; p < 0.0001). However, the effect of tumor location on survival of patients was nonsignificant in a multivariate survival analysis, and H3K9 acetylation levels of tumors contributed independently to the survival of patients. In addition, ependymal tumors with more than or equal to 20% H3K9 acetylated cells had lower MIB-1 expression than those with less than 20% H3K9 acetylated cells (p < 0.01). CONCLUSIONS Global H3K9Ac contributes independently to the prognosis of patients with ependymal tumors such that tumors with lower H3K9Ac values have a higher probability of recurrence and are more proliferative. Additionally, subependymomas have a higher H3K9Ac profile than other ependymal tumor subclasses, underlining their benign clinical behavior.
Collapse
|
27
|
Kaluza D, Kroll J, Gesierich S, Manavski Y, Boeckel JN, Doebele C, Zelent A, Rössig L, Zeiher AM, Augustin HG, Urbich C, Dimmeler S. Histone Deacetylase 9 Promotes Angiogenesis by Targeting the Antiangiogenic MicroRNA-17–92 Cluster in Endothelial Cells. Arterioscler Thromb Vasc Biol 2013; 33:533-43. [DOI: 10.1161/atvbaha.112.300415] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective—
Histone deacetylases (HDACs) modulate gene expression by deacetylation of histone and nonhistone proteins. Several HDACs control angiogenesis, but the role of HDAC9 is unclear.
Methods and Results—
Here, we analyzed the function of HDAC9 in angiogenesis and its involvement in regulating microRNAs. In vitro, silencing of HDAC9 reduces endothelial cell tube formation and sprouting. Furthermore, HDAC9 silencing decreases vessel formation in a spheroid-based Matrigel plug assay in mice and disturbs vascular patterning in zebrafish embryos. Genetic deletion of HDAC9 reduces retinal vessel outgrowth and impairs blood flow recovery after hindlimb ischemia. Consistently, overexpression of HDAC9 increases endothelial cell sprouting, whereas mutant constructs lacking the catalytic domain, the nuclear localization sequence, or sumoylation site show no effect. To determine the mechanism underlying the proangiogenic effect of HDAC9, we measured the expression of the microRNA (miR)-17–92 cluster, which is known for its antiangiogenic activity. We demonstrate that silencing of HDAC9 in endothelial cells increases the expression of miR-17–92. Inhibition of miR-17–20a rescues the sprouting defects induced by HDAC9 silencing in vitro and blocking miR-17 expression partially reverses the disturbed vascular patterning of HDAC9 knockdown in zebrafish embryos.
Conclusion—
We found that HDAC9 promotes angiogenesis and transcriptionally represses the miR-17–92 cluster.
Collapse
Affiliation(s)
- David Kaluza
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Jens Kroll
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Sabine Gesierich
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Yosif Manavski
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Jes-Niels Boeckel
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Carmen Doebele
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Arthur Zelent
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Lothar Rössig
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Andreas M. Zeiher
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Hellmut G. Augustin
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Carmen Urbich
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| |
Collapse
|
28
|
Schlumm F, Mauceri D, Freitag HE, Bading H. Nuclear calcium signaling regulates nuclear export of a subset of class IIa histone deacetylases following synaptic activity. J Biol Chem 2013; 288:8074-8084. [PMID: 23364788 DOI: 10.1074/jbc.m112.432773] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In neurons, dynamic changes in the subcellular localization of histone deacetylases (HDACs) are thought to contribute to signal-regulated gene expression. Here we show that in mouse hippocampal neurons, synaptic activity-dependent nucleo-cytoplasmic shuttling is a common feature of all members of class IIa HDACs, which distinguishes them from other classes of HDACs. Nuclear calcium, a key regulator in neuronal gene expression, is required for the nuclear export of a subset of class IIa HDACs. We found that inhibition of nuclear calcium signaling using CaMBP4 or increasing the nuclear calcium buffering capacity by means of expression of a nuclear targeted version of parvalbumin (PV.NLS-mC) led to a build-up of HDAC4 and HDAC5 in the cell nucleus, which in the case of PV.NLS-mC can be reversed by nuclear calcium transients triggered by bursts of action potential firing. A similar nuclear accumulation of HDAC4 and HDAC5 was observed in vivo in the mouse hippocampus following stereotaxic delivery of recombinant adeno-associated viruses expressing either CaMBP4 or PV.NLS-mC. The modulation of HDAC4 activity either by RNA interference-mediated reduction of HDAC4 protein levels or by expression of a constitutively nuclear localized mutant of HDAC4 leads to changes in the mRNA levels of several nuclear calcium-regulated genes with known functions in acquired neuroprotection (atf3, serpinb2), memory consolidation (homer1, arc), and the development of chronic pain (ptgs2, c1qc). These results identify nuclear calcium as a regulator of nuclear export of HDAC4 and HDAC5. The reduction of nuclear localized HDACs represents a novel transcription-promoting pathway stimulated by nuclear calcium.
Collapse
Affiliation(s)
- Friederike Schlumm
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364 69120 Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364 69120 Heidelberg, Germany
| | - H Eckehard Freitag
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Nuclear export of histone deacetylase 7 during thymic selection is required for immune self-tolerance. EMBO J 2012; 31:4453-65. [PMID: 23103766 DOI: 10.1038/emboj.2012.295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/02/2012] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylase 7 (HDAC7) is a T-cell receptor (TCR) signal-dependent regulator of differentiation that is highly expressed in CD4/CD8 double-positive (DP) thymocytes. Here, we examine the effect of blocking TCR-dependent nuclear export of HDAC7 during thymic selection, through expression of a signal-resistant mutant of HDAC7 (HDAC7-ΔP) in thymocytes. We find that HDAC7-ΔP transgenic thymocytes exhibit a profound block in negative thymic selection, but can still undergo positive selection, resulting in the escape of autoreactive T cells into the periphery. Gene expression profiling reveals a comprehensive suppression of the negative selection-associated gene expression programme in DP thymocytes, associated with a defect in the activation of MAP kinase pathways by TCR signals. The consequence of this block in vivo is a lethal autoimmune syndrome involving the exocrine pancreas and other abdominal organs. These experiments establish a novel molecular model of autoimmunity and cast new light on the relationship between thymic selection and immune self-tolerance.
Collapse
|
30
|
Jacob C, Lebrun-Julien F, Suter U. How histone deacetylases control myelination. Mol Neurobiol 2011; 44:303-12. [PMID: 21861092 DOI: 10.1007/s12035-011-8198-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Myelinated axons are a beautiful example of symbiotic interactions between two cell types: Myelinating glial cells organize axonal membranes and build their myelin sheaths to allow fast action potential conduction, while axons regulate myelination and enhance the survival of myelinating cells. Axonal demyelination, occurring in neurodegenerative diseases or after a nerve injury, results in severe motor and/or mental disabilities. Thus, understanding how the myelination process is induced, regulated, and maintained is crucial to develop new therapeutic strategies for regeneration in the nervous system. Epigenetic regulation has recently been recognized as a fundamental contributing player. In this review, we focus on the central mechanisms of gene regulation mediated by histone deacetylation and other key functions of histone deacetylases in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, Institute of Cell Biology, ETH Zurich, ETH-Hönggerberg, HPM E39, Schafmattstrasse 18, CH-8093 Zürich, Switzerland.
| | | | | |
Collapse
|
31
|
Greco TM, Yu F, Guise AJ, Cristea IM. Nuclear import of histone deacetylase 5 by requisite nuclear localization signal phosphorylation. Mol Cell Proteomics 2011; 10:M110.004317. [PMID: 21081666 PMCID: PMC3033682 DOI: 10.1074/mcp.m110.004317] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 5 (HDAC5), a class IIa deacetylase, is a prominent regulator of cellular and epigenetic processes that underlie the progression of human disease, ranging from cardiac hypertrophy to cancer. Although it is established that phosphorylation mediates 14-3-3 protein binding and provides the essential link between HDAC5 nucleo-cytoplasmic shuttling and transcriptional repression, thus far only four phospho-acceptor sites have been functionally characterized. Here, using a combinatorial proteomics approach and phosphomutant screening, we present the first evidence that HDAC5 has at least 17 in vivo phosphorylation sites within functional domains, including Ser278 and Ser279 within the nuclear localization signal (NLS), Ser1108 within the nuclear export signal, and Ser755 in deacetylase domain. Global and targeted MS/MS analyses of NLS peptides demonstrated the presence of single (Ser278 and Ser279) and double (Ser278/Ser279) phosphorylations. The double S278/279A mutation showed reduced association with HDAC3, slightly decreased deacetylation activity, and significantly increased cytoplasmic localization compared with wild type HDAC5, whereas the S278A and S1108A phosphomutants were not altered. Live cell imaging revealed a deficiency in nuclear import of S278/279A HDAC5. Phosphomutant stable cell lines confirmed the cellular redistribution of NLS mutants and revealed a more pronounced cytoplasmic localization for the single S279A mutant. Proteomic analysis of immunoisolated S278/279A, S279A, and S259/498A mutants linked altered cellular localization to changes in protein interactions. S278/279A and S279A HDAC5 showed reduced association with the NCoR-HDAC3 nuclear corepressor complex as well as protein kinase D enzymes, which were potentiated in the S259/498A mutant. These results provide the first link between phosphorylation outside the known 14-3-3 sites and downstream changes in protein interactions. Together these studies identify Ser279 as a critical phosphorylation within the NLS involved in the nuclear import of HDAC5, providing a regulatory point in nucleo-cytoplasmic shuttling that may be conserved in other class IIa HDACs-HDAC4 and HDAC9.
Collapse
Affiliation(s)
| | | | - Amanda J. Guise
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, U.S.A
| | - Ileana M. Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, U.S.A
- § To whom correspondence should be addressed: 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544. Tel.: 6092589417; Fax: 6092584575; E-mail:
| |
Collapse
|
32
|
Chen YH, Yeh FL, Yeh SP, Ma HT, Hung SC, Hung MC, Li LY. Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor gamma-2. J Biol Chem 2011; 286:10671-80. [PMID: 21247904 DOI: 10.1074/jbc.m110.199612] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EZH2, a catalytic subunit of Polycomb-repressive complex 2 (PRC2), is a histone lysine methyltransferase that methylates lysine 27 of histone H3, resulting in gene silencing. It has been shown that EZH2 plays a pivotal role in fostering self-renewal and inhibiting the differentiation of embryonic stem cells. Mesenchymal stem cells (MSCs) can be induced to differentiate into adipogenic and osteogenic lineages, which are mutually exclusive. However, it is not clear whether the molecular events of EZH2-mediated epigenetic silencing may coordinate differentiation between osteoblasts and adipocytes. Disruption of the balance between adipogenesis and osteogenesis is associated with many diseases; thus, identifying a switch that determines the fate of MSC is critical. In this study, we used EZH2-ChIP-on-chip assay to identify differential EZH2 targets in the two differentiation stages on a genome-wide scale. After validating the targets, we found that myocyte enhancer factor-2 interacting transcriptional repressor (MITR)/HDAC9c was expressed in osteoblasts and greatly decreased in adipocytes. We demonstrated that MITR plays a crucial role in the acceleration of MSC osteogenesis and attenuation of MSC adipogenesis through interaction with peroxisome proliferator-activated receptor (PPAR) γ-2 in the nucleus of osteoblasts, which interrupts PPARγ-2 activity and prevents adipogenesis. Together, our results demonstrated that MITR plays a master switch role to balance osteogenic and adipogenic differentiation of MSCs through regulation of PPARγ-2 transcriptional activity.
Collapse
Affiliation(s)
- Ya-Huey Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhou B, Margariti A, Zeng L, Xu Q. Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis. Cardiovasc Res 2011; 90:413-20. [DOI: 10.1093/cvr/cvr003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans. EMBO J 2010; 29:3992-4007. [PMID: 20967026 PMCID: PMC3020644 DOI: 10.1038/emboj.2010.264] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/28/2010] [Indexed: 01/28/2023] Open
Abstract
Although histone deacetylases are generally known as pro-tumourigenic factors, loss of HDAC1 is here shown to promote proliferation and inhibit differentiation in a mouse teratoma model, at least partly via regulation of the transcription factor SNAIL1. Histone deacetylase (HDAC) inhibitors induce cell cycle arrest, differentiation or apoptosis in tumour cells and are, therefore, promising anti-cancer reagents. However, the specific HDAC isoforms that mediate these effects are not yet identified. To explore the role of HDAC1 in tumourigenesis and tumour proliferation, we established an experimental teratoma model using wild-type and HDAC1-deficient embryonic stem cells. HDAC1-deficient teratomas showed no significant difference in size compared with wild-type teratomas. Surprisingly, loss of HDAC1 was not only linked to increased apoptosis, but also to significantly enhanced proliferation. Epithelial structures showed reduced differentiation as monitored by Oct3/4 expression and changed E-cadherin localization and displayed up-regulated expression of SNAIL1, a regulator of epithelial cell plasticity. Increased levels of the transcriptional regulator SNAIL1 are crucial for enhanced proliferation and reduced differentiation of HDAC1-deficient teratoma. Importantly, the analysis of human teratomas revealed a similar link between loss of HDAC1 and enhanced tumour malignancy. These findings reveal a novel role for HDAC1 in the control of tumour proliferation and identify HDAC1 as potential marker for benign teratomas.
Collapse
|
35
|
Yuan Z, Peng L, Radhakrishnan R, Seto E. Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein. J Biol Chem 2010; 285:39329-38. [PMID: 20947501 DOI: 10.1074/jbc.m110.179333] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 9 (HDAC9), like most Class II HDACs, catalyzes the removal of acetyl moieties from the ε-amino groups of conserved lysine residues in the N-terminal tail of histones. Biologically, HDAC9 regulates a wide variety of normal and abnormal physiological functions, including cardiac growth, T-regulatory cell function, neuronal disorders, muscle differentiation, development, and cancer. In a biochemical approach to identify non-histone substrates of HDAC9, we found that HDAC9 co-purifies specifically with the ataxia telangiectasia group D-complementing (ATDC; also called TRIM29) protein. HDAC9 deacetylates ATDC, alters the ability of ATDC to associate with p53, and consequently inhibits the cell proliferation-promoting activity of ATDC. These results implicate the importance of non-histone deacetylation by HDAC9 and confirm and further extend the multifunctions of this Class II deacetylase.
Collapse
Affiliation(s)
- Zhigang Yuan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
36
|
Lee JH, Jeong EG, Choi MC, Kim SH, Park JH, Song SH, Park J, Bang YJ, Kim TY. Inhibition of histone deacetylase 10 induces thioredoxin-interacting protein and causes accumulation of reactive oxygen species in SNU-620 human gastric cancer cells. Mol Cells 2010; 30:107-12. [PMID: 20680488 DOI: 10.1007/s10059-010-0094-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/04/2010] [Accepted: 05/11/2010] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase (HDAC)10, a novel class IIb histone deacetylase, is the most similar to HDAC6, since both contain a unique second catalytic domain. Unlike HDAC6, which is located in the cytoplasm, HDAC10 resides in both the nucleus and cytoplasm. The transcriptional targets of HDAC10 that are associated with HDAC10 gene regulation have not been identified. In the present study, we found that knockdown of HDAC10 significantly increased the mRNA expression levels of thioredoxin-interacting protein (TXNIP) in SNU-620 human gastric cancer cells; whereas inhibition of HDAC1, HDAC2, and HDAC6 did not affect TXNIP expression. TXNIP is the endogenous inhibitor of thioredoxin (TRX), which acts as a cellular antioxidant. Real-time PCR and immunoblot analysis confirmed that inhibition of HDAC10 induced TXNIP expression. Compared to class I only HDAC inhibitors, inhibitors targeting both class I and II upregulated TXNIP, indicating that TXNIP is regulated by class II HDACs such as HDAC10. We further verified that inhibition of HDAC10 induced release of cytochrome c and activated apoptotic signaling molecules through accumulation of reactive oxygen species (ROS). Taken together, our results demonstrate that HDAC10 is involved in transcriptional downregulation of TXNIP, leading to altered ROS signaling in human gastric cancer cells. How TXNIP is preferentially regulated by HDAC10 needs further investigation.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R. Chemical phylogenetics of histone deacetylases. Nat Chem Biol 2010; 6:238-243. [PMID: 20139990 PMCID: PMC2822059 DOI: 10.1038/nchembio.313] [Citation(s) in RCA: 558] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
Abstract
The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Collapse
Affiliation(s)
- James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Nathan West
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Melissa L. Grachan
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114
| | - Edward F. Greenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Stephen J. Haggarty
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114
| | - Tandy Warnow
- Department of Computer Sciences, University of Texas, Austin, TX 78712
| | - Ralph Mazitschek
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
38
|
Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen YE. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 2010; 285:9383-9389. [PMID: 20118242 DOI: 10.1074/jbc.m109.095612] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRs) have been reported to play a critical role in muscle differentiation and function. The purpose of this study is to determine the role of miRs during smooth muscle cell (SMC) differentiation from embryonic stem cells (ESCs). MicroRNA profiling showed that miR-10a expression is steadily increased during in vitro differentiation of mouse ESCs into SMCs. Loss-of-function approaches using miR-10a inhibitors uncovered that miR-10a is a critical mediator for SMC lineage determination in our retinoic acid-induced ESC/SMC differentiation system. In addition, we have documented for the first time that histone deacetylase 4 is a novel target of miR-10a and mediates miR-10a function during ESC/SMC differentiation. To determine the molecular mechanism through which retinoic acid induced miR-10a expression, a consensus NF-kappaB element was identified in the miR-10a gene promoter by bioinformatics analysis, and chromatin immunoprecipitation assay confirmed that NF-kappaB could bind to this element. Finally, inhibition of NF-kappaB nuclear translocation repressed miR-10a expression and decreased SMC differentiation from ESCs. Our data demonstrate for the first time that miR-10a is a novel regulator in SMC differentiation from ESCs. These studies suggest that miR-10a may play important roles in vascular biology and have implications for the diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Huarong Huang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Changqing Xie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Xuan Sun
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109; Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410078, China
| | - Raquel P Ritchie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109.
| |
Collapse
|
39
|
Copray S, Huynh JL, Sher F, Casaccia-Bonnefil P, Boddeke E. Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia 2009; 57:1579-87. [PMID: 19373939 PMCID: PMC2760733 DOI: 10.1002/glia.20881] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The process of oligodendrocyte differentiation is regulated by a dynamic interaction between a genetic and an epigenetic program. Recent studies, addressing nucleosomal histone modifications have considerably increased our knowledge regarding epigenetic regulation of gene expression during oligodendrocyte development and aging. These results have generated new hypotheses regarding the mechanisms underlying the decreased efficiency of endogenous remyelination in response to demyelinating injuries with increasing age. In this review, we present an overview of the epigenetic mechanisms regulating gene expression at specific stages of oligodendrocyte differentiation and maturation as well as the changes that occur with aging.
Collapse
Affiliation(s)
- Sjef Copray
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| | - Jimmy Long Huynh
- Department of Neuroscience, and Genetics and Genomics Mount Sinai School of Medicine, New York, NY 10029
| | - Falak Sher
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| | - Patrizia Casaccia-Bonnefil
- Department of Neuroscience, and Genetics and Genomics Mount Sinai School of Medicine, New York, NY 10029
| | - Erik Boddeke
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| |
Collapse
|
40
|
A limited group of class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression. J Virol 2009; 83:4749-56. [PMID: 19279091 DOI: 10.1128/jvi.02585-08] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Silencing of the integrated human immunodeficiency virus type 1 (HIV-1) genome in resting CD4(+) T cells is a significant contributor to the persistence of infection, allowing the virus to evade both immune detection and pharmaceutical attack. Nonselective histone deacetylase (HDAC) inhibitors are capable of inducing expression of quiescent HIV-1 in latently infected cells. However, potent global HDAC inhibition can induce host toxicity. To determine the specific HDACs that regulate HIV-1 transcription, we evaluated HDAC1 to HDAC11 RNA expression and protein expression and compartmentalization in the resting CD4(+) T cells of HIV-1-positive, aviremic patients. HDAC1, -3, and -7 had the highest mRNA expression levels in these cells. Although all HDACs were detected in resting CD4(+) T cells by Western blot analysis, HDAC5, -8, and -11 were primarily sequestered in the cytoplasm. Using chromatin immunoprecipitation assays, we detected HDAC1, -2, and -3 at the HIV-1 promoter in Jurkat J89GFP cells. Targeted inhibition of HDACs by small interfering RNA demonstrated that HDAC2 and HDAC3 contribute to repression of HIV-1 long terminal repeat expression in the HeLa P4/R5 cell line model of latency. Together, these results suggest that HDAC inhibitors specific for a limited number of class I HDACs may offer a targeted approach to the disruption of persistent HIV-1 infection.
Collapse
|
41
|
Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008; 7:854-68. [PMID: 18827828 DOI: 10.1038/nrd2681] [Citation(s) in RCA: 553] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs)--enzymes that affect the acetylation status of histones and other important cellular proteins--have been recognized as potentially useful therapeutic targets for a broad range of human disorders. Pharmacological manipulations using small-molecule HDAC inhibitors--which may restore transcriptional balance to neurons, modulate cytoskeletal function, affect immune responses and enhance protein degradation pathways--have been beneficial in various experimental models of brain diseases. Although mounting data predict a therapeutic benefit for HDAC-based therapy, drug discovery and development of clinical candidates face significant challenges. Here, we summarize the current state of development of HDAC therapeutics and their application for the treatment of human brain disorders such as Rubinstein-Taybi syndrome, Rett syndrome, Friedreich's ataxia, Huntington's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Aleksey G Kazantsev
- Harvard Medical School, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts 02129-4404, USA.
| | | |
Collapse
|
42
|
Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res 2008; 23:361-72. [PMID: 17997710 PMCID: PMC2669158 DOI: 10.1359/jbmr.071104] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED HDAC7 associates with Runx2 and represses Runx2 transcriptional activity in a deacetylase-independent manner. HDAC7 suppression accelerates osteoblast maturation. Thus, HDAC7 is a novel Runx2 co-repressor that regulates osteoblast differentiation. INTRODUCTION Runx2 is a key regulator of gene expression in osteoblasts and can activate or repress transcription depending on interactions with various co-factors. Based on previous observations that several histone deacetylases (HDACs) repress Runx2 activity and that HDAC inhibitors accelerate osteoblast differentiation in vitro, we hypothesized that additional HDACs may also affect Runx2 activity. MATERIALS AND METHODS A panel of HDACs was screened for repressors of Runx2 activity. Immunofluorescence, co-immunoprecipitation, GST-pulldowns, and chromatin immunoprecipitations were used to characterize the interactions between Runx2 and HDAC7. Expression of osteoblast markers was examined in a C2C12 cell osteoblast differentiation model in which HDAC7 levels were reduced by RNAi. RESULTS Runx2 activity was repressed by HDAC7 but not by HDAC9, HDRP, HDAC10, or HDAC11. HDAC7 and Runx2 were found co-localized in nuclei and associated with Runx2-responsive promoter elements in osseous cells. A carboxy-terminal domain of Runx2 associated with multiple regions of HDAC7. Although direct interactions with Runx2 were confined to the carboxy terminus of HDAC7, this region was dispensable for repression. In contrast, the amino terminus of HDAC7 bound Runx2 indirectly and was necessary and sufficient for transcriptional repression. Treatment with HDAC inhibitors did not decrease inhibition by HDAC7, indicating that HDAC7 repressed Runx2 by deacetylation-independent mechanism(s). Suppression of HDAC7 expression in C2C12 multipotent cells by RNAi accelerated their BMP2-dependent osteoblast differentiation program. Consistent with this observation, BMP2 decreased nuclear localization of HDAC7. CONCLUSIONS These results establish HDAC7 as a regulator of Runx2's transcriptional activity and suggest that HDAC7 may be an important regulator of the timing and/or rate of osteoblast maturation.
Collapse
|
43
|
Jones P, Altamura S, De Francesco R, Gallinari P, Lahm A, Neddermann P, Rowley M, Serafini S, Steinkühler C. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg Med Chem Lett 2008; 18:1814-9. [PMID: 18308563 DOI: 10.1016/j.bmcl.2008.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 02/07/2008] [Accepted: 02/09/2008] [Indexed: 10/22/2022]
Abstract
It has been widely debated whether class IIa HDACs have catalytic deacetylase activity, and whether this plays any part in controlling gene expression. Herein, it has been demonstrated that class IIa HDACs isolated from mammalian cells are contaminated with other deacetylases, but can be prepared cleanly in Escherichia coli. These bacteria preparations have weak but measurable deacetylase activity. The low efficiency can be restored either by: mutation of an active site histidine to tyrosine, or by the use of a non-acetylated lysine substrate, allowing the development of assays to identify class IIa HDAC inhibitors.
Collapse
Affiliation(s)
- Philip Jones
- IRBM/Merck Research Laboratories, Via Pontina km 30,600, 00040 Pomezia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A 2007; 104:17335-40. [PMID: 17956988 DOI: 10.1073/pnas.0706487104] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous findings have suggested that class IIa histone deacetylases (HDACs) (HDAC4, -5, -7, and -9) are inactive on acetylated substrates, thus differing from class I and IIb enzymes. Here, we present evidence supporting this view and demonstrate that class IIa HDACs are very inefficient enzymes on standard substrates. We identified HDAC inhibitors unable to bind recombinant human HDAC4 while showing inhibition in a typical HDAC4 enzymatic assay, suggesting that the observed activity rather reflects the involvement of endogenous copurified class I HDACs. Moreover, an HDAC4 catalytic domain purified from bacteria was 1,000-fold less active than class I HDACs on standard substrates. A catalytic Tyr is conserved in all HDACs except for vertebrate class IIa enzymes where it is replaced by His. Given the high structural conservation of HDAC active sites, we predicted the class IIa His-Nepsilon2 to be too far away to functionally substitute the class I Tyr-OH in catalysis. Consistently, a Tyr-to-His mutation in class I HDACs severely reduced their activity. More importantly, a His-976-Tyr mutation in HDAC4 produced an enzyme with a catalytic efficiency 1,000-fold higher than WT, and this "gain of function phenotype" could be extended to HDAC5 and -7. We also identified trifluoroacetyl-lysine as a class IIa-specific substrate in vitro. Hence, vertebrate class IIa HDACs may have evolved to maintain low basal activities on acetyl-lysines and to efficiently process restricted sets of specific, still undiscovered natural substrates.
Collapse
|
45
|
Abstract
In the last decade, the identification of enzymes that regulate acetylation of histones and nonhistone proteins has revealed the key role of dynamic acetylation and deacetylation in various cellular processes. Mammalian histone deacetylases (HDACs), which catalyse the removal of acetyl groups from lysine residues, are grouped into three classes, on the basis of similarity to yeast counterparts. An abundance of experimental evidence has established class IIa HDACs as crucial transcriptional regulators of various developmental and differentiation processes. In the past 5 years, a tremendous effort has been dedicated to characterizing the regulation of these enzymes. In this review, we summarize the latest discoveries in the field and discuss the molecular and structural determinants of class IIa HDACs regulation. Finally, we emphasize that comprehension of the mechanisms underlying class IIa HDAC functions is essential for potential therapeutic applications.
Collapse
Affiliation(s)
- M Martin
- Cellular and Molecular Biology Unit, FUSAGx, Gembloux, Belgium
| | | | | |
Collapse
|
46
|
Kasler HG, Verdin E. Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol 2007; 27:5184-200. [PMID: 17470548 PMCID: PMC1951960 DOI: 10.1128/mcb.02091-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase 7 (HDAC7) is highly expressed in CD4(+)/CD8(+) thymocytes and functions as a signal-dependent repressor of gene transcription during T-cell development. In this study, we expressed HDAC7 mutant proteins in a T-cell line and use DNA microarrays to identify transcriptional targets of HDAC7 in T cells. The changes in gene expression levels were compared to differential gene expression profiles associated with positive and negative thymic selection. This analysis reveals that HDAC7 regulates an extensive set of genes that are differentially expressed during both positive and negative thymic selection. Many of these genes play important functional roles in thymic selection, primarily via modulating the coupling between antigen receptor engagement and downstream signaling events. Consistent with the model that HDAC7 may play an important role in both positive and negative thymic selection, the expression of distinct HDAC7 mutants or the abrogation of HDAC7 expression can either enhance or inhibit the signal-dependent differentiation of a CD4(+)/CD8(+) cell line.
Collapse
Affiliation(s)
- Herbert G Kasler
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
47
|
Pagan JK, Arnold J, Hanchard KJ, Kumar R, Bruno T, Jones MJK, Richard DJ, Forrest A, Spurdle A, Verdin E, Crossley M, Fanciulli M, Chenevix-Trench G, Young DB, Khanna KK. A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP. J Biol Chem 2007; 282:15248-57. [PMID: 17379597 DOI: 10.1074/jbc.m700246200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR. When tethered to a heterologous promoter, BCoR-L1 is capable of strong repression. Like other corepressors, BCoR-L1 associates with histone deacetylase (HDAC) activity. Specifically, BCoR-L1 coprecipitates with the Class II HDACs, HDAC4, HDAC5, and HDAC7, suggesting that they are involved in its role as a transcriptional repressor. BCoR-L1 also interacts with the CtBP corepressor through a CtBP-interacting motif in its amino terminus. Abrogation of the CtBP binding site within BCoR-L1 partially relieves BCoR-L1-mediated transcriptional repression. Furthermore, BCoR-L1 is located on the E-cadherin promoter, a known CtBP-regulated promoter, and represses the E-cadherin promoter activity in a reporter assay. The inhibition of BCoR-L1 expression by RNA-mediated interference results in derepression of E-cadherin in cells that do not normally express E-cadherin, indicating that BCoR-L1 contributes to the repression of an authentic endogenous CtBP target.
Collapse
Affiliation(s)
- Julia K Pagan
- Queensland Institute of Medical Research, 300 Herston Road, Herston 4029, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vuocolo T, Byrne K, White J, McWilliam S, Reverter A, Cockett NE, Tellam RL. Identification of a gene network contributing to hypertrophy in callipyge skeletal muscle. Physiol Genomics 2007; 28:253-72. [PMID: 17077277 DOI: 10.1152/physiolgenomics.00121.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The callipyge mutation in sheep results in postnatal skeletal muscle hypertrophy in the pelvic limbs and loins with little or no effect on anterior skeletal muscles. Associated with the phenotype are changes in the expression of a number of imprinted genes flanking the site of the mutation, which lies in an intergenic region at the telomeric end of ovine chromosome 18. The manner in which these local changes in gene expression are translated into muscle hypertrophy is not known. Microarray-based transcriptional profiling was used to identify differentially expressed genes in longissimus dorsi skeletal muscle samples taken at birth and 12 wk of age from callipyge and wild-type sheep. The phenotype was only expressed at the latter developmental time and associated with decreased type 1 fibers (slow oxidative) and a shift toward type IIx and IIb fibers (fast-twitch glycolytic). We have identified 131 genes in the samples taken at 12 wk of age that were differentially expressed as a function of genotype but not due to the fiber type changes. The gene expression changes occurring as a function of genotype in the samples taken at birth indicated that the transcriptional framework underpinning the phenotype was emerging prior to expression of the phenotype. Eight genes were differentially expressed as a function of genotype at both developmental times. A model is proposed describing a core network of genes and histone epigenetic modifications that is likely to underpin the fiber type changes and muscle hypertrophy characteristic of callipyge sheep.
Collapse
Affiliation(s)
- Tony Vuocolo
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct, St. Lucia, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Maier MSV, Legare ME, Hanneman WH. The aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl induces distinct patterns of gene expression between hepatoma and glioma cells: chromatin remodeling as a mechanism for selective effects. Neurotoxicology 2007; 28:594-612. [PMID: 17316808 DOI: 10.1016/j.neuro.2007.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/01/2007] [Accepted: 01/04/2007] [Indexed: 11/30/2022]
Abstract
Genome-wide oligonucleotide DNA microarrays and real time RT-PCR were used to assess differential gene expression in rat glioma and hepatoma cell lines after exposure to the aryl hydrocarbon receptor (AhR) agonist 3,3',4,4',5-pentachlorobiphenyl (penta-CB). Under maximal inducing concentrations for cytochrome P450 1A1 (CYP1A1) in H4IIE rat hepatoma cells, both H4IIE and C6 rat glioma cells were exposed to sub-micromolar concentrations of penta-CB for 24h. Differential gene expression for approximately 28,000 gene probes were computationally analyzed and compared. As expected, penta-CB potently activated CYP1A1/2 transcription in liver-derived H4IIE hepatoma cells yet did not do so in brain-derived C6 glioma cells. Additionally, we show that penta-CB causes: (1) distinct patterns of gene expression between tumor cells derived from liver or brain; (2) robust transcriptional activation of select C6 glioma gene ontologies; (3) over-expression of H4IIE hepatoma genes associated with tumor progression in liver; (4) greater than 100-fold over-expression of C6 glioma genes associated with protein processing and programmed cell death and/or metastasis; (5) tissue-selective histone deacetylase inhibition in C6 glioma, but not H4IIE hepatoma cells as signaled by galectin-1 over-expression.
Collapse
Affiliation(s)
- Mark S V Maier
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | | | | |
Collapse
|
50
|
McKinsey TA. Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovasc Res 2006; 73:667-77. [PMID: 17217938 DOI: 10.1016/j.cardiores.2006.11.036] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/22/2006] [Accepted: 11/30/2006] [Indexed: 01/09/2023] Open
Abstract
In response to pathologic stresses such as hypertension or myocardial infarction, the heart undergoes a remodeling process that is characterized by myocyte hypertrophy, myocyte death and fibrosis, resulting in impaired cardiac function and heart failure. Cardiac remodeling is associated with derepression of genes that contribute to disease progression. This review focuses on evidence linking members of the Ca(2+)/calmodulin-dependent protein kinase (CaMK) superfamily, specifically CaMKII, protein kinase D (PKD) and microtubule associated kinase (MARK), to stress-induced derepression of pathological cardiac gene expression through their effects on class IIa histone deacetylases (HDACs).
Collapse
Affiliation(s)
- Timothy A McKinsey
- Myogen, Inc./Gilead Colorado, Inc., 7575 West 103rd Ave., Westminster, Colorado 80021, USA.
| |
Collapse
|