1
|
Chisada S, Ohtsuka K, Fujiwara M, Yoshida M, Matsushima S, Watanabe T, Karita K, Ohnishi H. A rad50 germline mutation induces tumorigenesis and ataxia-telangiectasia phenotype in a transparent medaka model. PLoS One 2023; 18:e0282277. [PMID: 37098078 PMCID: PMC10129005 DOI: 10.1371/journal.pone.0282277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/11/2023] [Indexed: 04/26/2023] Open
Abstract
The MRE11A-RAD50-NBS1 complex activates the ataxia-telangiectasia mutated (ATM) pathway and plays a central role in genome homeostasis. The association of RAD50 mutations with disease remains unclear; hence, we adopted a medaka rad50 mutant to demonstrate the significance of RAD50 mutation in pathogenesis using the medaka as an experimental animal. A 2-base pair deletion in the rad50 gene was introduced into transparent STIII medaka using the CRISPR/Cas9 system. The mutant was analyzed histologically for tumorigenicity and hindbrain quality, as well as for swimming behavior, to compare with existing ATM-, MRE11A-, and NBS1-mutation-related pathology. Our results revealed that the medaka rad50 mutation concurrently reproduced tumorigenesis (8 out of 10 rad50Δ2/+ medaka), had a decrease in median survival time (65.7 ± 1.1 weeks in control vs. 54.2 ± 2.6 weeks in rad50Δ2/+ medaka, p = 0.001, Welch's t-test), exhibited semi-lethality in rad50Δ2/Δ2 medaka and most of the major ataxia-telangiectasia phenotypes, including ataxia (rheotaxis ability was lower in rad50Δ2/+ medaka than in the control, Mann-Whitney U test, p < 0.05), and telangiectasia (6 out of 10 rad50Δ2/+ medaka). The fish model may aid in further understanding the tumorigenesis and phenotype of ataxia-telangiectasia-related RAD50 germline mutations and in developing novel therapeutic strategies against RAD50 molecular disorders.
Collapse
Affiliation(s)
- Shinichi Chisada
- Department of Hygiene and Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kouki Ohtsuka
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Masachika Fujiwara
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Masao Yoshida
- Department of Hygiene and Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Satsuki Matsushima
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takashi Watanabe
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kanae Karita
- Department of Hygiene and Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
2
|
Wu GS, Culberson EJ, Allyn BM, Bassing CH. Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2583-2592. [PMID: 35534211 PMCID: PMC9133172 DOI: 10.4049/jimmunol.2100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/23/2022] [Indexed: 06/03/2023]
Abstract
The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRβ locus, one Vβ gene segment (V31) rearranges only by inversion, whereas all other Vβ segments rearrange by deletion except for rare cases in which they rearrange through inversion following V31 rearrangement. The poor-quality recombination signal sequences (RSSs) of V31 and V2 help establish TCRβ gene repertoire and allelic exclusion by stochastically limiting initiation of Vβ rearrangements before TCRβ protein-signaled permanent silencing of Vβ recombination. We show in this study in mice that ATM functions with these RSSs and the weak V1 RSS to shape TCRβ gene repertoire by restricting their Vβ segments from initiating recombination and hindering aberrant nonfunctional Vβ recombination products, especially during inversional V31 rearrangements. We find that ATM collaborates with the V1 and V2 RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vβ segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vβ recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRβ genes.
Collapse
Affiliation(s)
- Glendon S Wu
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica J Culberson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Chen K, Wang P, Chen J, Ying Y, Chen Y, Gilson E, Lu Y, Ye J. Loss of atm in Zebrafish as a Model of Ataxia-Telangiectasia Syndrome. Biomedicines 2022; 10:392. [PMID: 35203601 PMCID: PMC8962326 DOI: 10.3390/biomedicines10020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is a key DNA damage signaling kinase that is mutated in humans with ataxia-telangiectasia (A-T) syndrome. This syndrome is characterized by neurodegeneration, immune abnormality, cancer predisposition, and premature aging. To better understand the function of ATM in vivo, we engineered a viable zebrafish model with a mutated atm gene. Zebrafish atm loss-of-function mutants show characteristic features of A-T-like motor disturbance, including coordination disorders, immunodeficiency, and tumorigenesis. The immunological disorder of atm homozygote fish is linked to the developmental blockade of hematopoiesis, which occurs at the adulthood stage and results in a decrease in infection defense but, with little effect on wound healing. Malignant neoplasms found in atm mutant fish were mainly nerve sheath tumors and myeloid leukemia, which rarely occur in A-T patients or Atm-/- mice. These results underscore the importance of atm during immune cell development. This zebrafish A-T model opens up a pathway to an improved understanding of the molecular basis of tumorigenesis in A-T and the cellular role of atm.
Collapse
Affiliation(s)
- Kehua Chen
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Peng Wang
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Jingrun Chen
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Yiling Ying
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Yi Chen
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Eric Gilson
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
- Faculty of Medicine, University Côte d’Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
- Department of Medical Genetics, CHU, 06107 Nice, France
| | - Yiming Lu
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Jing Ye
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| |
Collapse
|
4
|
García MEG, Kirsch DG, Reitman ZJ. Targeting the ATM Kinase to Enhance the Efficacy of Radiotherapy and Outcomes for Cancer Patients. Semin Radiat Oncol 2022; 32:3-14. [PMID: 34861994 PMCID: PMC8647772 DOI: 10.1016/j.semradonc.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeting the DNA damage response represents a promising approach to improve the efficacy of radiation therapy. One appealing target for this approach is the serine/threonine kinase ataxia telangiectasia mutated (ATM), which is activated by DNA double strand breaks to orchestrate the cellular response to ionizing radiation. Small-molecule inhibitors targeting ATM have entered clinical trials testing their safety in combination with radiation therapy or in combination with other DNA damaging agents. Here, we review biochemical, genetic, and cellular functional studies of ATM, phenotypes associated with germline and somatic cancer mutations in ATM in humans, and experiments in genetically engineered mouse models that support a rationale for investigating ATM inhibitors as radiosensitizers for cancer therapy. These data identify important synthetic lethal relationships, which suggest that ATM inhibitors may be particularly effective in tumors with defects in other nodes of the DNA damage response. The potential for ATM inhibition to improve immunotherapy responses in preclinical models represents another emerging area of research. We summarize ongoing clinical trials of ATM inhibitors with radiotherapy. We also discuss critical ongoing areas of investigation that include discovery of biomarkers that predict for radiosensitization by ATM inhibitors and identification of effective combinations of ATM inhibitors, radiation therapy, other DNA damage response-directed therapies, and/or immunotherapies.
Collapse
Affiliation(s)
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham NC; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham NC
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University School of Medicine, Durham NC; The Preston Robert Tisch Brain Tumor Center at Duke University Medical Center, Durham NC.
| |
Collapse
|
5
|
Chora AF, Pedroso D, Kyriakou E, Pejanovic N, Colaço H, Gozzelino R, Barros A, Willmann K, Velho T, Moita CF, Santos I, Pereira P, Carvalho S, Martins FB, Ferreira JA, de Almeida SF, Benes V, Anrather J, Weis S, Soares MP, Geerlof A, Neefjes J, Sattler M, Messias AC, Neves-Costa A, Moita LF. DNA damage independent inhibition of NF-κB transcription by anthracyclines. eLife 2022; 11:77443. [PMID: 36476511 PMCID: PMC9771368 DOI: 10.7554/elife.77443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.
Collapse
Affiliation(s)
- Angelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Eleni Kyriakou
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Nadja Pejanovic
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Henrique Colaço
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - André Barros
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Tiago Velho
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Centro Hospitalar Lisboa Norte - Hospital de Santa Maria, EPE, Avenida Professor Egas MonizLisbonPortugal
| | - Catarina F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Serviço de Cirurgia, Centro Hospitalar de SetúbalSetúbalPortugal
| | - Pedro Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Silvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Filipa Batalha Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - João A Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | | | | | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Friedrich-Schiller UniversityJenaGermany,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller UniversityJenaGermany,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI)JenaGermany
| | - Miguel P Soares
- Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMCLeidenNetherlands
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de LisboaLisbonPortugal
| |
Collapse
|
6
|
Milanovic M, Shao Z, Estes VM, Wang XS, Menolfi D, Lin X, Lee BJ, Xu J, Cupo OM, Wang D, Zha S. FATC Domain Deletion Compromises ATM Protein Stability, Blocks Lymphocyte Development, and Promotes Lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1228-1239. [PMID: 33536256 DOI: 10.4049/jimmunol.2000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays. In this article, we show that in mouse models, knock-in ATM-R3057X mutation (Atm RX , corresponding to R3047X in human ATM) severely compromises ATM protein stability and causes T cell developmental defects, B cell Ig class-switch recombination defects, and infertility resembling ATM-null. The residual ATM-R3057X protein retains minimal yet functional measurable DNA damage-induced checkpoint activation and significantly delays lymphomagenesis in Atm RX/RX mice compared with Atm -/- . Together, these results support a physiological role of the FATC domain in ATM protein stability and show that the presence of minimal residual ATM-R3057X protein can prevent growth retardation and delay tumorigenesis without restoring lymphocyte development and fertility.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; .,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
7
|
Milanovic M, Sprinzen L, Menolfi D, Lee JH, Yamamoto K, Li Y, Lee BJ, Xu J, Estes VM, Wang D, Mckinnon PJ, Paull TT, Zha S. The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange. Cancer Res 2021; 81:426-437. [PMID: 33239428 PMCID: PMC8137556 DOI: 10.1158/0008-5472.can-20-2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Lisa Sprinzen
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Demis Menolfi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Ji-Hoon Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Kenta Yamamoto
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Yang Li
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brian J Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Verna M Estes
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York.
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York City, New York
| |
Collapse
|
8
|
Colaço HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho T, Willmann KL, Faisca P, Grabmann G, Yi HS, Shong M, Benes V, Weis S, Köcher T, Moita LF. Tetracycline Antibiotics Induce Host-Dependent Disease Tolerance to Infection. Immunity 2020; 54:53-67.e7. [PMID: 33058782 PMCID: PMC7840524 DOI: 10.1016/j.immuni.2020.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Several classes of antibiotics have long been known to have beneficial effects that cannot be explained strictly on the basis of their capacity to control the infectious agent. Here, we report that tetracycline antibiotics, which target the mitoribosome, protected against sepsis without affecting the pathogen load. Mechanistically, we found that mitochondrial inhibition of protein synthesis perturbed the electron transport chain (ETC) decreasing tissue damage in the lung and increasing fatty acid oxidation and glucocorticoid sensitivity in the liver. Using a liver-specific partial and acute deletion of Crif1, a critical mitoribosomal component for protein synthesis, we found that mice were protected against sepsis, an observation that was phenocopied by the transient inhibition of complex I of the ETC by phenformin. Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial beyond their antibacterial activity and that mitochondrial protein synthesis inhibition leading to ETC perturbation is a mechanism for the induction of disease tolerance. Doxycycline protects from sepsis beyond its direct antibacterial activity Doxycycline protection from infection is microbiome-independent Inhibition of mitochondrial protein synthesis induces disease tolerance Mild and transient perturbations of the mitochondrial ETC induce disease tolerance
Collapse
Affiliation(s)
- Henrique G Colaço
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - André Barros
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Neves-Costa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tiago Velho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Katharina L Willmann
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Pedro Faisca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Vladimir Benes
- EMBL Genomics Core Facilities, D-69117 Heidelberg, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, 1030 Vienna, Austria
| | - Luís F Moita
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
9
|
Shiloh Y. The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability. DNA Repair (Amst) 2020; 95:102950. [PMID: 32871349 DOI: 10.1016/j.dnarep.2020.102950] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T's hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T - the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University Medical School, Tel Aviv, 69978, Israel.
| |
Collapse
|
10
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
11
|
Lee JH, Paull TT. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol 2020; 32:101511. [PMID: 32244177 PMCID: PMC7115119 DOI: 10.1016/j.redox.2020.101511] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
The Ataxia-telangiectasia mutated (ATM) kinase responds to DNA double-strand breaks and other forms of cellular stress, including reactive oxygen species (ROS). Recent work in the field has uncovered links between mitochondrial ROS and ATM activation, suggesting that ATM acts as a sensor for mitochondrial derived ROS and regulates ROS accumulation in cells through this pathway. In addition, characterization of cells from Ataxia-telangiectasia patients as well as ATM-deficient mice and cell models suggest a role for ATM in modulating mitochondrial gene expression and function. Here we review ROS responses related to ATM function, recent evidence for ATM roles in mitochondrial maintenance and turnover, and the relationship between ATM and regulation of protein homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition ≠ deletion. Cell Biosci 2020; 10:8. [PMID: 32015826 PMCID: PMC6990542 DOI: 10.1186/s13578-020-0376-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
DNA damage, especially DNA double strand breaks (DSBs) and replication stress, activates a complex post-translational network termed DNA damage response (DDR). Our review focuses on three PI3-kinase related protein kinases-ATM, ATR and DNA-PKcs, which situate at the apex of the mammalian DDR. They are recruited to and activated at the DNA damage sites by their respective sensor protein complexes-MRE11/RAD50/NBS1 for ATM, RPA/ATRIP for ATR and KU70-KU80/86 (XRCC6/XRCC5) for DNA-PKcs. Upon activation, ATM, ATR and DNA-PKcs phosphorylate a large number of partially overlapping substrates to promote efficient and accurate DNA repair and to coordinate DNA repair with other DNA metabolic events (e.g., transcription, replication and mitosis). At the organism level, robust DDR is critical for normal development, aging, stem cell maintenance and regeneration, and physiological genomic rearrangements in lymphocytes and germ cells. In addition to endogenous damage, oncogene-induced replication stresses and genotoxic chemotherapies also activate DDR. On one hand, DDR factors suppress genomic instability to prevent malignant transformation. On the other hand, targeting DDR enhances the therapeutic effects of anti-cancer chemotherapy, which led to the development of specific kinase inhibitors for ATM, ATR and DNA-PKcs. Using mouse models expressing kinase dead ATM, ATR and DNA-PKcs, an unexpected structural function of these kinases was revealed, where the expression of catalytically inactive kinases causes more genomic instability than the loss of the proteins themselves. The spectrum of genomic instabilities and physiological consequences are unique for each kinase and depends on their activating complexes, suggesting a model in which the catalysis is coupled with DNA/chromatin release and catalytic inhibition leads to the persistence of the kinases at the DNA lesion, which in turn affects repair pathway choice and outcomes. Here we discuss the experimental evidences supporting this mode of action and their implications in the design and use of specific kinase inhibitors for ATM, ATR and DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| |
Collapse
|
13
|
Riabinska A, Lehrmann D, Jachimowicz RD, Knittel G, Fritz C, Schmitt A, Geyer A, Heneweer C, Wittersheim M, Frenzel LP, Torgovnick A, Wiederstein JL, Wunderlich CM, Ortmann M, Paillard A, Wößmann W, Borkhardt A, Burdach S, Hansmann ML, Rosenwald A, Perner S, Mall G, Klapper W, Merseburg A, Krüger M, Grüll H, Persigehl T, Wunderlich FT, Peifer M, Utermöhlen O, Büttner R, Beleggia F, Reinhardt HC. ATM activity in T cells is critical for immune surveillance of lymphoma in vivo. Leukemia 2019; 34:771-786. [PMID: 31690822 DOI: 10.1038/s41375-019-0618-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022]
Abstract
The proximal DNA damage response kinase ATM is frequently inactivated in human malignancies. Germline mutations in the ATM gene cause Ataxia-telangiectasia (A-T), characterized by cerebellar ataxia and cancer predisposition. Whether ATM deficiency impacts on tumor initiation or also on the maintenance of the malignant state is unclear. Here, we show that Atm reactivation in initially Atm-deficient B- and T cell lymphomas induces tumor regression. We further find a reduced T cell abundance in B cell lymphomas from Atm-defective mice and A-T patients. Using T cell-specific Atm-knockout models, as well as allogeneic transplantation experiments, we pinpoint impaired immune surveillance as a contributor to cancer predisposition and development. Moreover, we demonstrate that Atm-deficient T cells display impaired proliferation capacity upon stimulation, due to replication stress. Altogether, our data indicate that T cell-specific restoration of ATM activity or allogeneic hematopoietic stem cell transplantation may prevent lymphomagenesis in A-T patients.
Collapse
Affiliation(s)
- Arina Riabinska
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany.
| | - Daria Lehrmann
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Ron Daniel Jachimowicz
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Gero Knittel
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Christian Fritz
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Anna Schmitt
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Aenne Geyer
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Carola Heneweer
- Department of Radiology, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Maike Wittersheim
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Lukas P Frenzel
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50937, Germany
| | - Alessandro Torgovnick
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50937, Germany
| | - Janica Lea Wiederstein
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50937, Germany
| | | | - Monika Ortmann
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Arlette Paillard
- Intitute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, 50937, Germany
| | - Wilhelm Wößmann
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, 35390, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Medical Faculty, Düsseldorf, 40225, Germany
| | - Stefan Burdach
- Children's Cancer Research Center and Department of Pediatrics, Rechts der Isar Hospital, Technical University of Munich and Comprehensive Cancer Center Munich, Munich, 80333, Germany
| | - Martin-Leo Hansmann
- Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, 60590, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, 97080, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Lübeck, 23538, Germany
| | - Gita Mall
- Institute of Forensic Medicine, University Hospital Jena, Jena, 07743, Germany
| | - Wolfram Klapper
- Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Andrea Merseburg
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, 53175, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50937, Germany
| | - Holger Grüll
- Department of Radiology, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Thorsten Persigehl
- Department of Radiology, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | | | - Martin Peifer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, 50937, Germany.,Department of Translational Genomics, Cologne, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Olaf Utermöhlen
- Intitute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, 50937, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, 50937, Germany.,German Center for Infection Research (DZIF), Bonn-Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, 50937, Germany
| | - Filippo Beleggia
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany
| | - Hans Christian Reinhardt
- Clinic I of Internal Medicine, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, 50937, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50937, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, Cologne, 50937, Germany.
| |
Collapse
|
14
|
Warren R, Domm W, Yee M, Campbell A, Malone J, Wright T, Mayer-Pröschel M, O'Reilly MA. Ataxia-telangiectasia mutated is required for the development of protective immune memory after influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2019; 317:L591-L601. [PMID: 31509427 DOI: 10.1152/ajplung.00031.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ataxia-telangiectasia (A-T), caused by mutations in the A-T mutated (ATM) gene, is a neurodegenerative disorder affecting ∼1 in 40,000-100,000 children. Recurrent respiratory infections are a common and challenging comorbidity, often leading to the development of bronchiectasis in individuals with A-T. The role of ATM in development of immune memory in response to recurrent respiratory viral infections is not well understood. Here, we infect wild-type (WT) and Atm-null mice with influenza A virus (IAV; HKx31, H3N2) and interrogate the immune memory with secondary infections designed to challenge the B cell memory response with homologous infection (HKx31) and the T cell memory response with heterologous infection (PR8, H1N1). Although Atm-null mice survived primary and secondary infections, they lost more weight than WT mice during secondary infections. This enhanced morbidity to secondary infections was not attributed to failure to effectively clear virus during the primary IAV infection. Instead, Atm-null mice developed persistent peribronchial inflammation, characterized in part by clusters of B220+ B cells. Additionally, levels of select serum antibodies to hemagglutinin-specific IAV were significantly lower in Atm-null than WT mice. These findings reveal that Atm is required to mount a proper memory response to a primary IAV infection, implying that vaccination of children with A-T by itself may not be sufficiently protective against respiratory viral infections.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew Campbell
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Jane Malone
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Terry Wright
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
15
|
Liu X, Wang XS, Lee BJ, Wu-Baer FK, Lin X, Shao Z, Estes VM, Gautier J, Baer R, Zha S. CtIP is essential for early B cell proliferation and development in mice. J Exp Med 2019; 216:1648-1663. [PMID: 31097467 PMCID: PMC6605744 DOI: 10.1084/jem.20181139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/10/2018] [Accepted: 04/24/2019] [Indexed: 11/08/2022] Open
Abstract
B cell development requires efficient proliferation and successful assembly and modifications of the immunoglobulin gene products. CtIP is an essential gene implicated in end resection and DNA repair. Here, we show that CtIP is essential for early B cell development but dispensable in naive B cells. CtIP loss is well tolerated in G1-arrested B cells and during V(D)J recombination, but in proliferating B cells, CtIP loss leads to a progressive cell death characterized by ATM hyperactivation, G2/M arrest, genomic instability, and 53BP1 nuclear body formation, indicating that the essential role of CtIP during proliferation underscores its stage-specific requirement in B cells. B cell proliferation requires phosphorylation of CtIP at T847 presumably by CDK, but not its interaction with CtBP or Rb or its nuclease activity. CtIP phosphorylation by ATM/ATR at T859 (T855 in mice) promotes end resection in G1-arrested cells but is dispensable for B cell development and class switch recombination, suggesting distinct roles for T859 and T847 phosphorylation in B cell development.
Collapse
Affiliation(s)
- Xiangyu Liu
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Pathobiology and Human Disease Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Foon K Wu-Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jean Gautier
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| |
Collapse
|
16
|
Nicolas L, Cols M, Smolkin R, Fernandez KC, Yewdell WT, Yen WF, Zha S, Vuong BQ, Chaudhuri J. Cutting Edge: ATM Influences Germinal Center Integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3137-3142. [PMID: 31028119 PMCID: PMC6529280 DOI: 10.4049/jimmunol.1801033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/09/2019] [Indexed: 01/21/2023]
Abstract
The DNA damage response protein ATM has long been known to influence class switch recombination in ex vivo-cultured B cells. However, an assessment of B cell-intrinsic requirement of ATM in humoral responses in vivo was confounded by the fact that its germline deletion affects T cell function, and B:T cell interactions are critical for in vivo immune responses. In this study, we demonstrate that B cell-specific deletion of ATM in mice leads to reduction in germinal center (GC) frequency and size in response to immunization. We find that loss of ATM induces apoptosis of GC B cells, likely due to unresolved DNA lesions in cells attempting to undergo class-switch recombination. Accordingly, suboptimal GC responses in ATM-deficient animals are characterized by decreased titers of class-switched Abs and decreased rates of somatic hypermutation. These results unmask the critical B cell-intrinsic role of ATM in maintaining an optimal GC response following immunization.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Montserrat Cols
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ryan Smolkin
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Keith C Fernandez
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| | - William T Yewdell
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Wei-Feng Yen
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pediatrics, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; and
| | - Bao Q Vuong
- Department of Biology, City College of New York, City University of New York, New York, NY 10031
| | - Jayanta Chaudhuri
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
17
|
ATM, DNA-PKcs and ATR: shaping development through the regulation of the DNA damage responses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Jiang W, Estes VM, Wang XS, Shao Z, Lee BJ, Lin X, Crowe JL, Zha S. Phosphorylation at S2053 in Murine (S2056 in Human) DNA-PKcs Is Dispensable for Lymphocyte Development and Class Switch Recombination. THE JOURNAL OF IMMUNOLOGY 2019; 203:178-187. [PMID: 31101667 DOI: 10.4049/jimmunol.1801657] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/22/2019] [Indexed: 11/19/2022]
Abstract
The classical nonhomologous end-joining (cNHEJ) pathway is a major DNA double-strand break repair pathway in mammalian cells and is required for lymphocyte development and maturation. The DNA-dependent protein kinase (DNA-PK) is a cNHEJ factor that encompasses the Ku70-Ku80 (KU) heterodimer and the large DNA-PK catalytic subunit (DNA-PKcs). In mouse models, loss of DNA-PKcs (DNA-PKcs-/- ) abrogates end processing (e.g., hairpin opening), but not end-ligation, whereas expression of the kinase-dead DNA-PKcs protein (DNA-PKcsKD/KD ) abrogates end-ligation, suggesting a kinase-dependent structural function of DNA-PKcs during cNHEJ. Lymphocyte development is abolished in DNA-PKcs-/- and DNA-PKcsKD/KD mice because of the requirement for both hairpin opening and end-ligation during V(D)J recombination. DNA-PKcs itself is the best-characterized substrate of DNA-PK. The S2056 cluster is the best-characterized autophosphorylation site in human DNA-PKcs. In this study, we show that radiation can induce phosphorylation of murine DNA-PKcs at the corresponding S2053. We also generated knockin mouse models with alanine- (DNA-PKcsPQR) or phospho-mimetic aspartate (DNA-PKcsSD) substitutions at the S2053 cluster. Despite moderate radiation sensitivity in the DNA-PKcsPQR/PQR fibroblasts and lymphocytes, both DNA-PKcsPQR/PQR and DNA-PKcsSD/SD mice retained normal kinase activity and underwent efficient V(D)J recombination and class switch recombination, indicating that phosphorylation at the S2053 cluster of murine DNA-PKcs (corresponding to S2056 of human DNA-PKcs), although important for radiation resistance, is dispensable for the end-ligation and hairpin-opening function of DNA-PK essential for lymphocyte development.
Collapse
Affiliation(s)
- Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jennifer L Crowe
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; .,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
19
|
Tal E, Alfo M, Zha S, Barzilai A, De Zeeuw CI, Ziv Y, Shiloh Y. Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype. DNA Repair (Amst) 2018; 72:10-17. [PMID: 30348496 PMCID: PMC7985968 DOI: 10.1016/j.dnarep.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The genome instability syndrome, ataxia-telangiectasia (A-T) is caused by null mutations in the ATM gene, that lead to complete loss or inactivation of the gene's product, the ATM protein kinase. ATM is the primary mobilizer of the cellular response to DNA double-strand breaks (DSBs) - a broad signaling network in which many components are ATM targets. The major clinical feature of A-T is cerebellar atrophy, characterized by relentless loss of Purkinje and granule cells. In Atm-knockout (Atm-KO) mice, complete loss of Atm leads to a very mild neurological phenotype, suggesting that Atm loss is not sufficient to markedly abrogate cerebellar structure and function in this organism. Expression of inactive ("kinase-dead") Atm (AtmKD) in mice leads to embryonic lethality, raising the question of whether conditional expression of AtmKD in the murine nervous system would lead to a more pronounced neurological phenotype than Atm loss. We generated two mouse strains in which AtmKD was conditionally expressed as the sole Atm species: one in the CNS and one specifically in Purkinje cells. Focusing our analysis on Purkinje cells, the dynamics of DSB readouts indicated that DSB repair was delayed longer in the presence of AtmKD compared to Atm loss. However, both strains exhibited normal life span and displayed no gross cerebellar histological abnormalities or significant neurological phenotype. We conclude that the presence of AtmKD is indeed more harmful to DSB repair than Atm loss, but the murine central nervous system can reasonably tolerate the extent of this DSB repair impairment. Greater pressure needs to be exerted on genome stability to obtain a mouse model that recapitulates the severe A-T neurological phenotype.
Collapse
Affiliation(s)
- Efrat Tal
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Marina Alfo
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, and the Royal Netherlands Academy of Art & Science, Amsterdam, Netherlands
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States.
| |
Collapse
|
20
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
21
|
Cornelis FMF, Monteagudo S, Guns LAKA, den Hollander W, Nelissen RGHH, Storms L, Peeters T, Jonkers I, Meulenbelt I, Lories RJ. ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone. Sci Transl Med 2018; 10:10/458/eaar8426. [DOI: 10.1126/scitranslmed.aar8426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing global prevalence due to aging of the population. Current therapy is limited to symptom relief, yet there is no cure. Its multifactorial etiology includes oxidative stress and overproduction of reactive oxygen species, but the regulation of these processes in the joint is insufficiently understood. We report that ANP32A protects the cartilage against oxidative stress, preventing osteoarthritis development and disease progression. ANP32A is down-regulated in human and mouse osteoarthritic cartilage. Microarray profiling revealed that ANP32A protects the joint by promoting the expression of ATM, a key regulator of the cellular oxidative defense. Antioxidant treatment reduced the severity of osteoarthritis, osteopenia, and cerebellar ataxia features in Anp32a-deficient mice, revealing that the ANP32A/ATM axis discovered in cartilage is also present in brain and bone. Our findings indicate that modulating ANP32A signaling could help manage oxidative stress in cartilage, brain, and bone with therapeutic implications for osteoarthritis, neurological disease, and osteoporosis.
Collapse
Affiliation(s)
- Frederique M. F. Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Laura-An K. A. Guns
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Wouter den Hollander
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Integrated research on Developmental determinants of Ageing and Longevity (IDEAL), 2300 RC Leiden, Netherlands
| | - Rob G. H. H. Nelissen
- Department of Orthopaedics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Lies Storms
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Tine Peeters
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Ilse Jonkers
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Human Movement Biomechanics, Department of Kinesiology, KU Leuven, 3000 Leuven, Belgium
| | - Ingrid Meulenbelt
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Integrated research on Developmental determinants of Ageing and Longevity (IDEAL), 2300 RC Leiden, Netherlands
| | - Rik J. Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Kasai M, Ishida R, Nakahara K, Okumura K, Aoki K. Mesenchymal cell differentiation and diseases: involvement of translin/TRAX complexes and associated proteins. Ann N Y Acad Sci 2018; 1421:37-45. [PMID: 29740830 DOI: 10.1111/nyas.13690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 12/22/2022]
Abstract
Translin and translin-associated factor X (translin/TRAX) proteins have been implicated in a variety of cellular activities central to nucleic acid metabolism. Accumulating evidence indicates that translin/TRAX complexes participate in processes ensuring the replication of DNA, as well as cell division. Significant progress has been made in understanding the roles of translin/TRAX complexes in RNA metabolism, such as through RNA-induced silencing complex activation or the microRNA depletion that occurs in Dicer deficiency. At the cellular level, translin-deficient (Tsn-/- ) mice display delayed endochondral ossification or progressive bone marrow failure with ectopic osteogenesis and adipogenesis, suggesting involvement in mesenchymal cell differentiation. In this review, we summarize the molecular and cellular functions of translin homo-octamer and translin/TRAX hetero-octamer. Finally, we discuss the multifaceted roles of translin, TRAX, and associated proteins in the healthy and disease states.
Collapse
Affiliation(s)
- Masataka Kasai
- Juntendo University School of Medicine, Atopy Research Center, Tokyo, Japan.,Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Ishida
- Center for Stem Cell and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakahara
- National Institution for Academic Degrees and Quality Enhancement of Higher Education, Tokyo, Japan
| | - Ko Okumura
- Juntendo University School of Medicine, Atopy Research Center, Tokyo, Japan
| | - Katsunori Aoki
- Occupational Health Department, Sony Corporate Service Corporation, Kanagawa, Japan
| |
Collapse
|
23
|
Di Siena S, Campolo F, Gimmelli R, Di Pietro C, Marazziti D, Dolci S, Lenzi A, Nussenzweig A, Pellegrini M. Atm reactivation reverses ataxia telangiectasia phenotypes in vivo. Cell Death Dis 2018; 9:314. [PMID: 29472706 PMCID: PMC5833483 DOI: 10.1038/s41419-018-0357-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Abstract
Hereditary deficiencies in DNA damage signaling are invariably associated with cancer predisposition, immunodeficiency, radiation sensitivity, gonadal abnormalities, premature aging, and tissue degeneration. ATM kinase has been established as a central player in DNA double-strand break repair and its deficiency causes ataxia telangiectasia, a rare, multi-system disease with no cure. So ATM represents a highly attractive target for the development of novel types of gene therapy or transplantation strategies. Atm tamoxifen-inducible mouse models were generated to explore whether Atm reconstitution is able to restore Atm function in an Atm-deficient background. Body weight, immunodeficiency, spermatogenesis, and radioresistance were recovered in transgenic mice within 1 month from Atm induction. Notably, life span was doubled after Atm restoration, mice were protected from thymoma and no cerebellar defects were observed. Atm signaling was functional after DNA damage in vivo and in vitro. In summary, we propose a new Atm mouse model to investigate novel therapeutic strategies for ATM activation in ataxia telangiectasia disease.
Collapse
Affiliation(s)
- Sara Di Siena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Roberto Gimmelli
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20893, USA
| | - Manuela Pellegrini
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University, Rome, Italy. .,Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy. .,Department of Medicine and Health Science 'V. Tiberio', University of Molise, Campobasso, Italy.
| |
Collapse
|
24
|
DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp Gerontol 2017; 105:118-127. [PMID: 29101015 DOI: 10.1016/j.exger.2017.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
The aging process is the major driver of morbidity and mortality, steeply increasing the risk to succumb to cancer, cardiovascular disease, infection and neurodegeneration. Inflammation is a common denominator in age-related pathologies, identifying the immune system as a gatekeeper in aging overall. Among immune cells, T cells are long-lived and exposed to intense replication pressure, making them sensitive to aging-related abnormalities. In successful T cell aging, numbers of naïve cells, repertoire diversity and activation thresholds are preserved as long as possible; in maladaptive T cell aging, protective T cell functions decline and pro-inflammatory effector cells are enriched. Here, we review in the model system of rheumatoid arthritis (RA) how maladaptive T cell aging renders the host susceptible to chronic, tissue-damaging inflammation. In T cells from RA patients, known to be about 20years pre-aged, three interconnected functional domains are altered: DNA damage repair, metabolic activity generating energy and biosynthetic precursor molecules, and shaping of plasma membranes to promote T cell motility. In each of these domains, key molecules and pathways have now been identified, including the glycolytic enzymes PFKFB3 and G6PD; the DNA repair molecules ATM, DNA-PKcs and MRE11A; and the podosome marker protein TKS5. Some of these molecules may help in defining targetable pathways to slow the T cell aging process.
Collapse
|
25
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2943-2956. [PMID: 28213501 PMCID: PMC5360515 DOI: 10.4049/jimmunol.1601639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
Abstract
Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.
Collapse
Affiliation(s)
- Megan R Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Adrian Rivera-Reyes
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| | - Noah B Bloch
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06520
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
27
|
Khoronenkova SV. Mechanisms of Non-canonical Activation of Ataxia Telangiectasia Mutated. BIOCHEMISTRY (MOSCOW) 2017; 81:1669-1675. [PMID: 28260489 DOI: 10.1134/s0006297916130058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATM is a master regulator of the cellular response to DNA damage. The classical mechanism of ATM activation involves its monomerization in response to DNA double-strand breaks, resulting in ATM-dependent phosphorylation of more than a thousand substrates required for cell cycle progression, DNA repair, and apoptosis. Here, new experimental evidence for non-canonical mechanisms of ATM activation in response to stimuli distinct from DNA double-strand breaks is discussed. It includes cytoskeletal changes, chromatin modifications, RNA-DNA hybrids, and DNA single-strand breaks. Noncanonical ATM activation may be important for the pathology of the multisystemic disease Ataxia Telangiectasia.
Collapse
Affiliation(s)
- S V Khoronenkova
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, UK.
| |
Collapse
|
28
|
Liu X, Shao Z, Jiang W, Lee BJ, Zha S. PAXX promotes KU accumulation at DNA breaks and is essential for end-joining in XLF-deficient mice. Nat Commun 2017; 8:13816. [PMID: 28051062 PMCID: PMC5216128 DOI: 10.1038/ncomms13816] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
Non-homologous end-joining (NHEJ) is the most prominent DNA double strand break (DSB) repair pathway in mammalian cells. PAXX is the newest NHEJ factor, which shares structural similarity with known NHEJ factors—XRCC4 and XLF. Here we report that PAXX is dispensable for physiological NHEJ in otherwise wild-type mice. Yet Paxx−/− mice require XLF and Xlf−/− mice require PAXX for end-ligation. As such, Xlf−/−Paxx−/− mice display severe genomic instability and neuronal apoptosis, which eventually lead to embryonic lethality. Despite their structural similarities, only Xlf−/− cells, but not Paxx−/− cells require ATM/DNA-PK kinase activity for end-ligation. Mechanistically, PAXX promotes the accumulation of KU at DSBs, while XLF enhances LIG4 recruitment without affecting KU dynamics at DNA breaks in vivo. Together these findings identify the molecular functions of PAXX in KU accumulation at DNA ends and reveal distinct, yet critically complementary functions of PAXX and XLF during NHEJ. Non-homologous end-joining is the key pathway for repairing double-stranded DNA breaks in mammalian cells. Here the authors show that PAXX promotes the accumulation of KU at DNA breaks and is essential for end-joining in cells lacking XLF.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| | - Zhengping Shao
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| | - Wenxia Jiang
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| | - Brian J Lee
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| | - Shan Zha
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians &Surgeons, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| |
Collapse
|
29
|
Barzilai A, Schumacher B, Shiloh Y. Genome instability: Linking ageing and brain degeneration. Mech Ageing Dev 2017; 161:4-18. [DOI: 10.1016/j.mad.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 02/06/2023]
|
30
|
Pizzamiglio L, Focchi E, Murru L, Tamborini M, Passafaro M, Menna E, Matteoli M, Antonucci F. New Role of ATM in Controlling GABAergic Tone During Development. Cereb Cortex 2016; 26:3879-88. [PMID: 27166172 DOI: 10.1093/cercor/bhw125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The capacity to guarantee the proper excitatory/inhibitory balance is one of the most critical steps during early development responsible for the correct brain organization, function, and plasticity. GABAergic neurons guide this process leading to the right structural organization, brain circuitry, and neuronal firing. Here, we identified the ataxia telangiectasia mutated (ATM), a serine/threonine protein kinase linked to DNA damage response, as crucial in regulating neurotransmission. We found that reduced levels of ATM in the hippocampal neuronal cultures produce an excitatory/inhibitory unbalance toward inhibition as indicated by the higher frequency of miniature inhibitory postsynaptic current events and an increased number of GABAergic synapses. In vivo, the increased inhibition still persists and, even if a higher excitation is also present, a reduced neuronal excitability is found as indicated by the lower action potential frequency generated in response to high-current intensity stimuli. Finally, we found an elevated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in heterozygous hippocampi associated with lower expression levels of the ERK1/2 phosphatase PP1. Given that the neurodegenerative condition associated with genetic mutations in the Atm gene, ataxia telangiectasia, presents a variable phenotype with impairment in cognition, our molecular findings provide a logical frame for a more clear comprehension of cognitive defects in the pathology, opening to novel therapeutic strategies.
Collapse
Affiliation(s)
- Lara Pizzamiglio
- Department of Biology and Biotechnology, Lazzaro Spallanzani, University of Pavia, 27100 Pavia, Italy Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Elisa Focchi
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy Humanitas Clinical and Research Center, IRCCS Rozzano, Rozzano (Milan), Italy
| | - Luca Murru
- Institute of Neuroscience, C.N.R., 20129 Milan, Italy
| | - Matteo Tamborini
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | | | - Elisabetta Menna
- Humanitas Clinical and Research Center, IRCCS Rozzano, Rozzano (Milan), Italy Institute of Neuroscience, C.N.R., 20129 Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Center, IRCCS Rozzano, Rozzano (Milan), Italy Institute of Neuroscience, C.N.R., 20129 Milan, Italy
| | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy Institute of Neuroscience, C.N.R., 20129 Milan, Italy
| |
Collapse
|
31
|
Cheema AK, Maier I, Dowdy T, Wang Y, Singh R, Ruegger PM, Borneman J, Fornace AJ, Schiestl RH. Chemopreventive Metabolites Are Correlated with a Change in Intestinal Microbiota Measured in A-T Mice and Decreased Carcinogenesis. PLoS One 2016; 11:e0151190. [PMID: 27073845 PMCID: PMC4830457 DOI: 10.1371/journal.pone.0151190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/24/2016] [Indexed: 11/18/2022] Open
Abstract
Intestinal microbiota play a significant role in nutrient metabolism, modulation of the immune system, obesity, and possibly in carcinogenesis, although the underlying mechanisms resulting in disease or impacts on longevity caused by different intestinal microbiota are mostly unknown. Herein we use isogenic Atm-deficient and wild type mice as models to interrogate changes in the metabolic profiles of urine and feces of these mice, which are differing in their intestinal microbiota. Using high resolution mass spectrometry approach we show that the composition of intestinal microbiota modulates specific metabolic perturbations resulting in a possible alleviation of a glycolytic phenotype. Metabolites including 3-methylbutyrolactone, kyneurenic acid and 3-methyladenine known to be onco-protective are elevated in Atm-deficient and wild type mice with restricted intestinal microbiota. Thus our approach has broad applicability to study the direct influence of gut microbiome on host metabolism and resultant phenotype. These results for the first time suggest a possible correlation of metabolic alterations and carcinogenesis, modulated by intestinal microbiota in A-T mice.
Collapse
Affiliation(s)
- Amrita K. Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Irene Maier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tyrone Dowdy
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Yiwen Wang
- Department of Biostatistics, Biomathematics and Bioinformatics, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rajbir Singh
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Paul M. Ruegger
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Albert J. Fornace
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Robert H. Schiestl
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Radiation Oncology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
32
|
Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature 2015; 525:134-139. [PMID: 26308889 PMCID: PMC4592165 DOI: 10.1038/nature14970] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023]
Abstract
During B-cell development, RAG endonuclease cleaves immunoglobulin heavy chain (IgH) V, D, and J gene segments and orchestrates their fusion as deletional events that assemble a V(D)J exon in the same transcriptional orientation as adjacent Cμ constant region exons. In mice, six additional sets of constant region exons (CHs) lie 100-200 kilobases downstream in the same transcriptional orientation as V(D)J and Cμ exons. Long repetitive switch (S) regions precede Cμ and downstream CHs. In mature B cells, class switch recombination (CSR) generates different antibody classes by replacing Cμ with a downstream CH (ref. 2). Activation-induced cytidine deaminase (AID) initiates CSR by promoting deamination lesions within Sμ and a downstream acceptor S region; these lesions are converted into DNA double-strand breaks (DSBs) by general DNA repair factors. Productive CSR must occur in a deletional orientation by joining the upstream end of an Sμ DSB to the downstream end of an acceptor S-region DSB. However, the relative frequency of deletional to inversional CSR junctions has not been measured. Thus, whether orientation-specific joining is a programmed mechanistic feature of CSR as it is for V(D)J recombination and, if so, how this is achieved is unknown. To address this question, we adapt high-throughput genome-wide translocation sequencing into a highly sensitive DSB end-joining assay and apply it to endogenous AID-initiated S-region DSBs in mouse B cells. We show that CSR is programmed to occur in a productive deletional orientation and does so via an unprecedented mechanism that involves in cis Igh organizational features in combination with frequent S-region DSBs initiated by AID. We further implicate ATM-dependent DSB-response factors in enforcing this mechanism and provide an explanation of why CSR is so reliant on the 53BP1 DSB-response factor.
Collapse
|
33
|
Campbell A, Krupp B, Bushman J, Noble M, Pröschel C, Mayer-Pröschel M. A novel mouse model for ataxia-telangiectasia with a N-terminal mutation displays a behavioral defect and a low incidence of lymphoma but no increased oxidative burden. Hum Mol Genet 2015; 24:6331-49. [PMID: 26310626 DOI: 10.1093/hmg/ddv342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare multi-system disorder caused by mutations in the ATM gene. Significant heterogeneity exists in the underlying genetic mutations and clinical phenotypes. A number of mouse models have been generated that harbor mutations in the distal region of the gene, and a recent study suggests the presence of residual ATM protein in the brain of one such model. These mice recapitulate many of the characteristics of A-T seen in humans, with the notable exception of neurodegeneration. In order to study how an N-terminal mutation affects the disease phenotype, we generated an inducible Atm mutant mouse model (Atm(tm1Mmpl/tm1Mmpl), referred to as A-T [M]) predicted to express only the first 62 amino acids of Atm. Cells derived from A-T [M] mutant mice exhibited reduced cellular proliferation and an altered DNA damage response, but surprisingly, showed no evidence of an oxidative imbalance. Examination of the A-T [M] animals revealed an altered immunophenotype consistent with A-T. In contrast to mice harboring C-terminal Atm mutations that disproportionately develop thymic lymphomas, A-T [M] mice developed lymphoma at a similar rate as human A-T patients. Morphological analyses of A-T [M] cerebella revealed no substantial cellular defects, similar to other models of A-T, although mice display behavioral defects consistent with cerebellar dysfunction. Overall, these results suggest that loss of Atm is not necessarily associated with an oxidized phenotype as has been previously proposed and that loss of ATM protein is not sufficient to induce cerebellar degeneration in mice.
Collapse
Affiliation(s)
- Andrew Campbell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA, Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA and
| | - Brittany Krupp
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Jared Bushman
- Division of Pharmaceutical Sciences, University of Wyoming School of Pharmacy, 1000 East University Ave., Dept. 3375, Laramie, WY 82071, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA,
| |
Collapse
|
34
|
Pinkney KA, Jiang W, Lee BJ, Loredan DG, Li C, Bhagat G, Zha S. Haploinsufficiency of Bcl11b suppresses the progression of ATM-deficient T cell lymphomas. J Hematol Oncol 2015. [PMID: 26219558 PMCID: PMC4518599 DOI: 10.1186/s13045-015-0191-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bcl11b is a transcription factor important for T cell development and also a tumor-suppressor gene that is hemizygously inactivated in ~10% human T cell acute lymphoblastic leukemia (T-ALL) and several murine T-ALL models, including ATM(-/-) thymic lymphomas. Here we report that heterozygous loss of Bcl11b (Bcl11b(+/-)) unexpectedly reduced lethal thymic lymphoma in ATM(-/-) mice by suppressing lymphoma progression, but not initiation. The suppression was associated with a T cell-mediated immune response in ATM(-/-)Bcl11b(+/-) mice, revealing a haploid insufficient function of Bcl11b in immune modulation against lymphoma and offering an explanation for the complex relationship between Bcl11b status with T-ALL prognosis.
Collapse
Affiliation(s)
- Kerice A Pinkney
- Department of Pediatrics, Division of Hematology, Oncology and Stem Cell Transplantation, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Current address: Joe DiMaggio's Children's Hospital, 1150 North 35th Avenue, Suite 100, Hollywood, FL, 33021, USA.
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| | - Brian J Lee
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Denis G Loredan
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Chen Li
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pediatrics, Division of Hematology, Oncology and Stem Cell Transplantation, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
35
|
Yamamoto K, Lee BJ, Li C, Dubois RL, Hobeika E, Bhagat G, Zha S. Early B-cell-specific inactivation of ATM synergizes with ectopic CyclinD1 expression to promote pre-germinal center B-cell lymphomas in mice. Leukemia 2015; 29:1414-24. [PMID: 25676421 PMCID: PMC5282516 DOI: 10.1038/leu.2015.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/22/2015] [Accepted: 02/06/2015] [Indexed: 01/12/2023]
Abstract
Ataxia telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin lymphomas, including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B cells causes cell autonomous, clonal mature B-cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly, naive B-cell-specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. Although EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increases the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas toward pre-GC-derived small lymphocytic neoplasms, sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naive B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.e. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Graduate Program for Pathobiology and Molecular Medicine, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J. Lee
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Chen Li
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Richard L. Dubois
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Elias Hobeika
- Centre for Biological Signaling Studies BIOSS, Albert-Ludwigs-Universität Freiburg, Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg and Max Planck Institute for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | - Govind Bhagat
- Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
36
|
Aberrant TCRδ rearrangement underlies the T-cell lymphocytopenia and t(12;14) translocation associated with ATM deficiency. Blood 2015; 125:2665-8. [PMID: 25721125 DOI: 10.1182/blood-2015-01-622621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/21/2015] [Indexed: 11/20/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) is a protein kinase and a master regulator of DNA-damage responses. Germline ATM inactivation causes ataxia-telangiectasia (A-T) syndrome with severe lymphocytopenia and greatly increased risk for T-cell lymphomas/leukemia. Both A-T and T-cell prolymphoblastic leukemia patients with somatic mutations of ATM frequently carry inv(14;14) between the T-cell receptor α/δ (TCRα/δ) and immunoglobulin H loci, but the molecular origin of this translocation remains elusive. ATM(-/-) mice recapitulate lymphocytopenia of A-T patients and routinely succumb to thymic lymphomas with t(12;14) translocation, syntenic to inv(14;14) in humans. Here we report that deletion of the TCRδ enhancer (Eδ), which initiates TCRδ rearrangement, significantly improves αβ T cell output and effectively prevents t(12;14) translocations in ATM(-/-) mice. These findings identify the genomic instability associated with V(D)J recombination at the TCRδ locus as the molecular origin of both lymphocytopenia and the signature t(12;14) translocations associated with ATM deficiency.
Collapse
|
37
|
Ehrlich LA, Yang-Iott K, DeMicco A, Bassing CH. Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia. Cell Cycle 2015; 14:388-98. [PMID: 25659036 PMCID: PMC4614830 DOI: 10.4161/15384101.2014.988020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of immature T cells that exhibits heterogeneity of oncogenic lesions, providing an obstacle for development of more effective and less toxic therapies. Inherited deficiency of ATM, a regulator of the cellular DNA damage response, predisposes young humans and mice to T-ALLs with clonal chromosome translocations. While acquired ATM mutation or deletion occurs in pediatric T-ALLs, the role of somatic ATM alterations in T-ALL pathogenesis remains unknown. We demonstrate here that somatic Atm inactivation in haematopoietic cells starting as these cells differentiate in utero predisposes mice to T-ALL at similar young ages and harboring analogous translocations as germline Atm-deficient mice. However, some T-ALLs from haematopoietic cell specific deletion of Atm were of more mature thymocytes, revealing that the developmental timing and celluar origin of Atm inactivation influences the phenotype of ATM-deficient T-ALLs. Although it has been hypothesized that ATM suppresses cancer by preventing deletion and inactivation of TP53, we find that Atm inhibits T-ALL independent of Tp53 deletion. Finally, we demonstrate that the Cyclin D3 protein that drives immature T cell proliferation is essential for transformation of Atm-deficient thymocytes. Our study establishes a pre-clinical model for pediatric T-ALLs with acquired ATM inactivation and identifies the cell cycle machinery as a therapeutic target for this aggressive childhood T-ALL subtype.
Collapse
Affiliation(s)
- Lori A Ehrlich
- Division of Oncology, Department of Pediatrics; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Katherine Yang-Iott
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Amy DeMicco
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
- Cell and Molecular Biology Graduate Group; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA
| | - Craig H Bassing
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
- Cell and Molecular Biology Graduate Group; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
38
|
Herrup K, Chen J, Li J, Plummer MR. Ataxia-Telangiectasia and the Biology of Ataxia-Telangiectasia Mutated (ATM). Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Strain background determines lymphoma incidence in Atm knockout mice. Neoplasia 2014; 16:129-36. [PMID: 24709420 DOI: 10.1593/neo.131980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
About 10% to 30% of patients with ataxia-telangiectasia (A-T) develop leukemias or lymphomas. There is considerable interpatient variation in the age of onset and leukemia/lymphoma type. The incomplete penetrance and variable age of onset may be attributable to several factors. These include competing mortality from other A-T-associated pathologies, particularly neurodegeneration and interstitial lung disease, allele-specific effects of ataxia-telangiectasia mutated (ATM) gene mutations. There is also limited evidence from clinical observations and studies using Atm knockout mice that modifier genes may account for some variation in leukemia/lymphoma susceptibility. We have introgressed the Atm(tm1Awb) knockout allele (Atm(-)) onto several inbred murine strains and observed differences in thymic lymphoma incidence and latency between Atm(-/-) mice on the different strain backgrounds and between their F1 hybrids. The lymphomas that arose in these mice had a pattern of sequence gains and losses that were similar to those previously described by others. These results provide further evidence for the existence of modifier genes controlling lymphomagenesis in individuals carrying defective copies of Atm, at least in mice, the characterized Atm(-) congenic strain set provides a resource with which to identify these genes. In addition, we found that fewer than expected Atm(-/-) pups were weaned on two strain backgrounds and that there was no correlation between body weight of young Atm-/- mice and lymphoma incidence or latency.
Collapse
|
40
|
Rybanska-Spaeder I, Ghosh R, Franco S. 53BP1 mediates the fusion of mammalian telomeres rendered dysfunctional by DNA-PKcs loss or inhibition. PLoS One 2014; 9:e108731. [PMID: 25264618 PMCID: PMC4181871 DOI: 10.1371/journal.pone.0108731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
Telomere dysfunction promotes genomic instability and carcinogenesis via inappropriate end-to-end chromosomal rearrangements, or telomere fusions. Previous work indicates that the DNA Damage Response (DDR) factor 53BP1 promotes the fusion of telomeres rendered dysfunctional by loss of TRF2, but is dispensable for the fusion of telomeres lacking Pot1 or critically shortened (in telomerase-deficient mice). Here, we examine a role for 53BP1 at telomeres rendered dysfunctional by loss or catalytic inhibition of DNA-PKcs. Using mouse embryonic fibroblasts lacking 53BP1 and/or DNA-PKcs, we show that 53BP1 deficiency suppresses G1-generated telomere fusions that normally accumulate in DNA-PKcs-deficient fibroblasts with passage. Likewise, we find that 53BP1 promotes telomere fusions during the replicative phases of the cell cycle in cells treated with the specific DNA-PKcs inhibitor NU7026. However, telomere fusions are not fully abrogated in DNA-PKcs-inhibited 53BP1-deficient cells, but occur with a frequency approximately 10-fold lower than in control 53BP1-proficient cells. Treatment with PARP inhibitors or PARP1 depletion abrogates residual fusions, while Ligase IV depletion has no measurable effect, suggesting that PARP1-dependent alternative end-joining operates at low efficiency at 53BP1-deficient, DNA-PKcs-inhibited telomeres. Finally, we have also examined the requirement for DDR factors ATM, MDC1 or H2AX in this context. We find that ATM loss or inhibition has no measurable effect on the frequency of NU7026-induced fusions in wild-type MEFs. Moreover, analysis of MEFs lacking both ATM and 53BP1 indicates that ATM is also dispensable for telomere fusions via PARP-dependent end-joining. In contrast, loss of either MDC1 or H2AX abrogates telomere fusions in response to DNA-PKcs inhibition, suggesting that these factors operate upstream of both 53BP1-dependent and -independent telomere rejoining. Together, these experiments define a novel requirement for 53BP1 in the fusions of DNA-PKcs-deficient telomeres throughout the cell cycle and uncover a Ligase IV-independent, PARP1-dependent pathway that fuses telomeres at reduced efficiency in the absence of 53BP1.
Collapse
Affiliation(s)
- Ivana Rybanska-Spaeder
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rajib Ghosh
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sonia Franco
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
41
|
Tepsuporn S, Hu J, Gostissa M, Alt FW. Mechanisms that can promote peripheral B-cell lymphoma in ATM-deficient mice. Cancer Immunol Res 2014; 2:857-66. [PMID: 24913718 PMCID: PMC4156541 DOI: 10.1158/2326-6066.cir-14-0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ataxia Telangiectasia-mutated (ATM) kinase senses DNA double-strand breaks (DSB) and facilitates their repair. In humans, ATM deficiency predisposes to B- and T-cell lymphomas, but in mice it leads only to thymic lymphomas. We tested the hypothesis that increased DSB frequency at a cellular oncogene could promote B-cell lymphoma by generating ATM-deficient mice with a V(D)J recombination target (DJβ cassette) within c-myc intron 1 ("DA" mice). We also generated ATM-deficient mice carrying an Eμ-Bcl-2 transgene (AB mice) to test whether enhanced cellular survival could promote B-cell lymphomas. About 30% of DA or AB mice and nearly 100% of mice harboring the combined genotypes (DAB mice) developed mature B-cell lymphomas. In all genotypes, B-cell tumors harbored oncogenic c-myc amplification generated by breakage-fusion-bridge (BFB) from dicentric chromosomes formed through fusion of IgH V(D)J recombination-associated DSBs on chromosome 12 to sequences downstream of c-myc on chromosome 15. AB tumors demonstrate that B lineage cells harboring spontaneous DSBs leading to IgH/c-myc dicentrics are blocked from progressing to B-cell lymphomas by cellular apoptotic responses. DA and DAB tumor translocations were strictly linked to the cassette, but occurred downstream, frequently in a 6-kb region adjacent to c-myc that harbors multiple cryptic V(D)J recombination targets, suggesting that bona fide V(D)J target sequences may activate linked cryptic targets. Our findings indicate that ATM deficiency allows IgH V(D)J recombination DSBs in developing B cells to generate dicentric translocations that, via BFB cycles, lead to c-myc-activating oncogenic translocations and amplifications in mature B cells.
Collapse
Affiliation(s)
- Suprawee Tepsuporn
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Monica Gostissa
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors. Neurogenetics 2014; 15:217-28. [PMID: 25038946 DOI: 10.1007/s10048-014-0415-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
Since identification of mutations in the ATM gene leading to ataxia-telangiectasia, enormous efforts have been devoted to discovering the roles this protein plays in DNA repair as well as other cellular functions. Even before the identification of ATM mutations, it was clear that other diseases with different genomic loci had very similar neurological symptoms. There has been significant progress in understanding why cancer and immunodeficiency occur in ataxia-telangiectasia even though many details remain to be determined, but the field is no closer to determining why the nervous system requires ATM and other DNA repair genes. Even though rodent disease models have similar DNA repair abnormalities as the human diseases, they have no consistent, robust neuropathological phenotype making it difficult to understand the neurological underpinnings of disease. Therefore, it may be useful to reassess the neurological and neuropathological characteristics of ataxia-telangiectasia in human patients to look for potential commonalities in DNA repair diseases that result in ataxia. In doing so, it is clear that ataxia-telangiectasia and similar diseases share neurological features other than merely ataxia, such as length-dependent motor and sensory neuropathies, and that the neuroanatomical localization for these symptoms is understood. Cells affected in ataxia-telangiectasia and similar diseases are some of the largest single nucleated cells in the body. In addition, a subset of these diseases also has extrapyramidal movements and oculomotor apraxia. These neurological and neuropathological similarities may indicate a common DNA repair related pathogenesis with very large cell size as a critical risk factor.
Collapse
|
43
|
Carlessi L, Poli EF, Bechi G, Mantegazza M, Pascucci B, Narciso L, Dogliotti E, Sala C, Verpelli C, Lecis D, Delia D. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis 2014; 5:e1342. [PMID: 25032865 PMCID: PMC4123100 DOI: 10.1038/cddis.2014.310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 11/21/2022]
Abstract
Loss of ataxia telangiectasia mutated (ATM) kinase, a key factor of the DNA damage response (DDR) pathway, causes the cancer predisposing and neurodegenerative syndrome ataxia-telangiectasia (A-T). To investigate the mechanisms of neurodegeneration, we have reprogrammed fibroblasts from ATM-null A-T patients and normal controls to pluripotency (human-induced pluripotent stem cells), and derived from these neural precursor cells able to terminally differentiate into post-mitotic neurons positive to >90% for β-tubulin III+/microtubule-associated protein 2+. We show that A-T neurons display similar voltage-gated potassium and sodium currents and discharges of action potentials as control neurons, but defective expression of the maturation and synaptic markers SCG10, SYP and PSD95 (postsynaptic density protein 95). A-T neurons exhibited defective repair of DNA double-strand breaks (DSBs) and repressed phosphorylation of ATM substrates (e.g., γH2AX, Smc1-S966, Kap1-S824, Chk2-T68, p53-S15), but normal repair of single-strand breaks, and normal short- and long-patch base excision repair activities. Moreover, A-T neurons were resistant to apoptosis induced by the genotoxic agents camptothecin and trabectedin, but as sensitive as controls to the oxidative agents. Most notably, A-T neurons exhibited abnormal accumulation of topoisomerase 1-DNA covalent complexes (Top1-ccs). These findings reveal that ATM deficiency impairs neuronal maturation, suppresses the response and repair of DNA DSBs, and enhances Top1-cc accumulation. Top1-cc could be a risk factor for neurodegeneration as they may interfere with transcription elongation and promote transcriptional decline.
Collapse
Affiliation(s)
- L Carlessi
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - E Fusar Poli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - G Bechi
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133 Milano, Italy
| | - M Mantegazza
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133 Milano, Italy
- Institute of Molecular and Cellular Pharmacology (IPMC) CNRS UMR7275 and University of Nice-Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France
| | - B Pascucci
- CNR Institute of Crystallography, Via Salaria, Km. 29.300, 00016 Monterotondo Scalo, Roma, Italy
| | - L Narciso
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - E Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - C Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - C Verpelli
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - D Lecis
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - D Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| |
Collapse
|
44
|
Hu J, Tepsuporn S, Meyers RM, Gostissa M, Alt FW. Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci U S A 2014; 111:10269-74. [PMID: 24982162 PMCID: PMC4104897 DOI: 10.1073/pnas.1410112111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mature IgM(+) B-cell lymphomas that arise in certain ataxia telangiectasia-mutated (ATM)-deficient compound mutant mice harbor translocations that fuse V(D)J recombination-initiated IgH double-strand breaks (DSBs) on chromosome 12 to sequences downstream of c-myc on chromosome 15, generating dicentric chromosomes and c-myc amplification via a breakage-fusion-bridge mechanism. As V(D)J recombination DSBs occur in developing progenitor B cells in the bone marrow, we sought to elucidate a mechanism by which such DSBs contribute to oncogenic translocations/amplifications in mature B cells. For this purpose, we applied high-throughput genome-wide translocation sequencing to study the fate of introduced c-myc DSBs in splenic IgM(+) B cells stimulated for activation-induced cytidine deaminase (AID)-dependent IgH class switch recombination (CSR). We found frequent translocations of c-myc DSBs to AID-initiated DSBs in IgH switch regions in wild-type and ATM-deficient B cells. However, c-myc also translocated frequently to newly generated DSBs within a 35-Mb region downstream of IgH in ATM-deficient, but not wild-type, CSR-activated B cells. Moreover, we found such DSBs and translocations in activated B cells that did not express AID or undergo CSR. Our findings indicate that ATM deficiency leads to formation of chromosome 12 dicentrics via recombination-activating gene-initiated IgH DSBs in progenitor B cells and that these dicentrics can be propagated developmentally into mature B cells where they generate new DSBs downstream of IgH via breakage-fusion-bridge cycles. We propose that dicentrics formed by joining V(D)J recombination-associated IgH DSBs to DSBs downstream of c-myc in ATM-deficient B lineage cells similarly contribute to c-myc amplification and mature B-cell lymphomas.
Collapse
Affiliation(s)
- Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Suprawee Tepsuporn
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Robin M Meyers
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Monica Gostissa
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
45
|
Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, Yang JI, Soto PA, Presley LL, Reliene R, Westbrook AM, Wei B, Loy A, Chang C, Braun J, Borneman J, Schiestl RH. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res 2014; 73:4222-32. [PMID: 23860718 DOI: 10.1158/0008-5472.can-13-0022] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ataxia-telangiectasia is a genetic disorder associated with high incidence of B-cell lymphoma. Using an ataxia-telangiectasia mouse model, we compared lymphoma incidence in several isogenic mouse colonies harboring different bacterial communities, finding that intestinal microbiota are a major contributor to disease penetrance and latency, lifespan, molecular oxidative stress, and systemic leukocyte genotoxicity. High-throughput sequence analysis of rRNA genes identified mucosa-associated bacterial phylotypes that were colony-specific. Lactobacillus johnsonii, which was deficient in the more cancer-prone mouse colony, was causally tested for its capacity to confer reduced genotoxicity when restored by short-term oral transfer. This intervention decreased systemic genotoxicity, a response associated with reduced basal leukocytes and the cytokine-mediated inflammatory state, and mechanistically linked to the host cell biology of systemic genotoxicity. Our results suggest that intestinal microbiota are a potentially modifiable trait for translational intervention in individuals at risk for B-cell lymphoma, or for other diseases that are driven by genotoxicity or the molecular response to oxidative stress.
Collapse
Affiliation(s)
- Mitsuko L Yamamoto
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ehrlich LA, Yang-Iott K, Bassing CH. Tcrδ translocations that delete the Bcl11b haploinsufficient tumor suppressor gene promote atm-deficient T cell acute lymphoblastic leukemia. Cell Cycle 2014; 13:3076-82. [PMID: 25486566 PMCID: PMC4615123 DOI: 10.4161/15384101.2014.949144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
ATM is the master regulator of the cellular response to DNA double strand breaks (DSBs). Deficiency of ATM predisposes humans and mice to αβ T lymphoid cancers with clonal translocations between the T cell receptor (TCR) α/δ locus and a 450 kb region of synteny on human chromosome 14 and mouse chromosome 12. While these translocations target and activate the TCL1 oncogene at 14q32 to cause T cell pro-lymphocytic leukemia (T-PLL), the TCRα/δ;14q32 translocations in ATM-deficient T cell acute lymphoblastic leukemia (T-ALL) have not been characterized and their role in cancer pathogenesis remains unknown. The corresponding lesion in Atm-deficient mouse T-ALLs is a chromosome t(12;14) translocation with Tcrδ genes fused to sequences on chromosome 12; although these translocations do not activate Tcl1, they delete the Bcl11b haploinsufficient tumor suppressor gene. To assess whether Tcrδ translocations that inactivate one copy of Bcl11b promote transformation of Atm-deficient cells, we analyzed Atm(-/-) mice with mono-allelic Bcl11b deletion initiating in thymocytes concomitant with Tcrδ recombination. Inactivation of one Bcl11b copy had no effect on the predisposition of Atm(-/-) mice to clonal T-ALLs. Yet, none of these T-ALLs had a clonal chromosome t(12;14) translocation that deleted Bcl11b indicating that Tcrδ translocations that inactivate a copy of Bcl11b promote transformation of Atm-deficient thymocytes. Our data demonstrate that antigen receptor locus translocations can cause cancer by deleting a tumor suppressor gene. We discuss the implications of these findings for the etiology and therapy of T-ALLs associated with ATM deficiency and TCRα/δ translocations targeting the 14q32 cytogenetic region.
Collapse
Affiliation(s)
- Lori A Ehrlich
- Division of Oncology; Department of Pediatrics; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Katherine Yang-Iott
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Craig H Bassing
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
47
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
48
|
Siddoway B, Hou H, Yang H, Petralia R, Xia H. Synaptic activity bidirectionally regulates a novel sequence-specific S-Q phosphoproteome in neurons. J Neurochem 2013; 128:841-51. [PMID: 24117848 DOI: 10.1111/jnc.12487] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 12/01/2022]
Abstract
Protein phosphorylation plays a critical role in neuronal transcription, translation, cell viability, and synaptic plasticity. In neurons, phospho-enzymes and specific substrates directly link glutamate release and post-synaptic depolarization to these cellular functions; however, many of these enzymes and their protein substrates remain uncharacterized or unidentified. In this article, we identify a novel, synaptically driven neuronal phosphoproteome characterized by a specific motif of serine/threonine-glutamine ([S/T]-Q, abbreviated as SQ). These SQ-containing substrates are predominantly localized to dendrites, synapses, the soma; and activation of this SQ phosphoproteome by bicuculline application is induced via calcium influx through L-type calcium channels. On the other hand, acute application of NMDA can inactivate this SQ phosphoproteome. We demonstrate that the SQ motif kinase Ataxia-telangiectasia mutated can also localize to dendrites and dendritic spines, in addition to other subcellular compartments, and is activated by bicuculline application. Pharmacology studies indicate that Ataxia-telangiectasia mutated and its sister kinase ataxia telangiectasia mutated and Rad3-related up-regulate these neuronal SQ substrates. Phosphoproteomics identified over 150 SQ-containing substrates whose phosphorylation is bidirectionally regulated by synaptic activity.
Collapse
Affiliation(s)
- Benjamin Siddoway
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
49
|
Studying the cerebellar DNA damage response in the tissue culture dish. Mech Ageing Dev 2013; 134:496-505. [DOI: 10.1016/j.mad.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022]
|
50
|
Rybanska-Spaeder I, Reynolds TL, Chou J, Prakash M, Jefferson T, Huso DL, Desiderio S, Franco S. 53BP1 is limiting for NHEJ repair in ATM-deficient model systems that are subjected to oncogenic stress or radiation. Mol Cancer Res 2013; 11:1223-34. [PMID: 23858098 DOI: 10.1158/1541-7786.mcr-13-0252-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The DNA damage response (DDR) factors ataxia telangiectasia mutated (ATM) and p53 binding protein 1 (53BP1) function as tumor suppressors in humans and mice, but the significance of their mutual interaction to the suppression of oncogenic translocations in vivo has not been investigated. To address this question, the phenotypes of compound mutant mice lacking 53BP1 and ATM (Trp53bp1(-/-)/Atm(-/-)), relative to single mutants, were examined. These analyses revealed that loss of 53BP1 markedly decreased the latency of T-lineage lymphomas driven by RAG-dependent oncogenic translocations in Atm(-/-) mice (average survival, 14 and 23 weeks for Trp53bp1(-/-)/Atm(-/-) and Atm(-/-) mice, respectively). Mechanistically, 53BP1 deficiency aggravated the deleterious effect of ATM deficiency on nonhomologous end-joining (NHEJ)-mediated double-strand break repair. Analysis of V(D)J recombinase-mediated coding joints and signal joints in Trp53bp1(-/-)/Atm(-/-) primary thymocytes is, however, consistent with canonical NHEJ-mediated repair. Together, these findings indicate that the greater NHEJ defect in the double mutant mice resulted from decreased efficiency of rejoining rather than switching to an alternative NHEJ-mediated repair mechanism. Complementary analyses of irradiated primary cells indicated that defects in cell-cycle checkpoints subsequently function to amplify the NHEJ defect, resulting in more frequent chromosomal breaks and translocations in double mutant cells throughout the cell cycle. Finally, it was determined that 53BP1 is dispensable for the formation of RAG-mediated hybrid joints in Atm(-/-) thymocytes but is required to suppress large deletions in a subset of hybrid joints. IMPLICATIONS The current study uncovers novel ATM-independent functions for 53BP1 in the suppression of oncogenic translocations and in radioprotection.
Collapse
Affiliation(s)
- Ivana Rybanska-Spaeder
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, 1550 Orleans Street, CRB II, Rm#405, Baltimore, MD 21287.
| | | | | | | | | | | | | | | |
Collapse
|