1
|
Hali K, Gagnon S, Raleigh M, Ali I, Sniderman J, Halai M, Hall J, Schemitsch EH, Nauth A. The Effect of Cryopreservation on the Bone Healing Capacity of Endothelial Progenitor Cells in a Bone Defect Model. J Orthop Res 2025; 43:904-911. [PMID: 39888074 DOI: 10.1002/jor.26051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Endothelial progenitor cells (EPCs) have proven to be a highly effective cell therapy for critical-sized bone defects. Cryopreservation can enable long-term storage of EPCs, allowing their immediate availability on demand. This study compares the therapeutic potential of EPCs before and after cryopreservation in a small animal critical-sized bone defect model. Five-millimeter segmental defects were created in the right femora of Fischer 344 rats, followed by stabilization with a miniplate and screws. The animals received 2 × 106 fresh EPCs (n = 7) or 2 × 106 cryopreserved EPCs (n = 9) delivered on a gelatin scaffold. Cryopreserved EPCs were stored for 7 days at -80°C prior to thawing and loading onto the gelatin scaffold. Biweekly radiographs were taken until the animals were euthanized 10 weeks after surgery. The operated femora were then evaluated using microscopic-computed tomography (micro-CT) and biomechanical testing. All animals treated with fresh (n = 7/7) or cryopreserved (n = 9/9) EPCs achieved radiographic union at 10 weeks. Animals treated with fresh EPCs had statistically significant higher radiographic scores at 2 weeks (p < 0.05) but showed no statistically significant differences thereafter (p > 0.05). Micro-CT analysis showed no statistically significant differences between the groups in bone volume (BV) or BV normalized to total volume (p > 0.05), with excellent bone formation in both groups. Finally, there were no differences in biomechanical outcomes between the groups (p > 0.05). These results demonstrate that cryopreserved EPCs are highly effective and equivalent to fresh EPCs for healing critical-sized bone defects in a rat model of nonunion.
Collapse
Affiliation(s)
- Kalter Hali
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Stéphane Gagnon
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Matthew Raleigh
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Ikran Ali
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Jhase Sniderman
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Mansur Halai
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | - Jeremy Hall
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| | | | - Aaron Nauth
- Keenan Research Centre for Biomedical Science, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery, Unity Health Toronto (St. Michael's Hospital), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Cucinotta L, Palermo N, Ardizzone A, Capra AP, Campolo M, Esposito E, Casili G, Lanza M. The Inhibition of Prolyl Endopeptidase (PREP) by KYP-2047 Treatment to Reduce Myocardial Ischemia/Reperfusion Injury. Antioxidants (Basel) 2025; 14:442. [PMID: 40298805 PMCID: PMC12024445 DOI: 10.3390/antiox14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/30/2025] Open
Abstract
Myocardial ischemia-reperfusion injury (MI/R) is a negative and adverse cardiovascular outcome following myocardial ischemia, cardiac surgery, or circulatory arrest. Prolyl endopeptidase (PREP) appears to be involved in inflammatory responses, so it could be a possible therapeutic target for counteracting ischemia injury. This study aimed to investigate the role of PREP inhibitor, KYP-2047 (4-phenylbutanoyl-l-prolyl-2(S)-cyanopyrolidine), in the modulation of molecular and biochemical processes involved in MI/R. MI/R was induced through coronary artery occlusion (15 min), followed by reperfusion (2 h). KYP-2047 was intraperitoneally administrated at doses of 2.5 mg/kg and 5 mg/kg 24 h before the surgical procedures. The hearts were removed and processed for analysis. KYP-2047 treatment limited ischemic myocardial-induced histological damage and neutrophil accumulation, limiting inflammation, fibrosis, and apoptosis processes. Additionally, KYP-2047 was able to modulate p-38 and p-ERK expression, suggesting an improving role in recovering cardiac function. These findings highlighted the protective effects of KYP-2047 pretreatment in MI/R injury, suggesting PREP as a potential target therapy for the pathogenesis of MI/R. Although the molecular mechanisms underlying the action of KYP-2047 are still to be explored, these results suggested that the regulation of NF-κB, apoptosis, and MAPK pathways by KYP-2047 treatment could preventatively limit the damage caused by MI/R.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy
| | - Nicoletta Palermo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
3
|
Huang H, Huang G, Li R, Wei L, Yuan Z, Huang W. Exercise Training After Myocardial Infarction Enhances Endothelial Progenitor Cells Function via NRG-1 Signaling. Cardiovasc Toxicol 2025; 25:411-426. [PMID: 39893285 DOI: 10.1007/s12012-025-09967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Vascular regeneration after myocardial infarction (MI) is essential to improve myocardial ischemia, delay post-infarction ventricular remodeling, and improve the long-term prognosis of MI. Endothelial progenitor cells (EPCs) play important roles in the functional repair and homeostatic maintenance of the vascular endothelium. Exercise training stimulates EPC mobilization and increases the number of circulating EPCs, which has beneficial effects on the restoration of vascular integrity and hemodynamic reconstitution. After post-MI exercise training, cardiac function, the myocardial infarct area, and capillary density in the peri-infarct zone were measured. Bone marrow-derived EPCs were isolated from mice to measure the proliferation, migration, and in vitro angiogenesis of EPCs after myocardial infarction exercise. The expression of NRG-1/ErbB4 signaling factor and related proteins in downstream PI3K/AKT signaling pathway were detected, and the level of autocrine NRG-1 in EPCs was detected. Post-MI resistance training, aerobic exercise training, and combined exercise training increased EPC mobilization and proliferation, migration, and tube-forming capacity, promoted myocardial vascular regeneration, improved cardiac function, and reduced infarct size. Exercise training upregulated NRG-1 expression in EPCs, and NRG-1/ErbB4 signaling activated the downstream PI3K/Akt signaling pathway. Moreover, EPCs may have a positive feedback autocrine loop with NRG-1 to improve the function of EPCs and promote vascular repair and regeneration in mice with MI. Exercise training after MI promotes the function of bone marrow-derived EPCs through NRG-1/ErbB4/PI3K/AKT signaling, thus exerting a role in angiogenesis.
Collapse
Affiliation(s)
- Huai Huang
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guoqiang Huang
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Ruojun Li
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liqin Wei
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhu Yuan
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiqiang Huang
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Xia T, Yu J, Du M, Chen X, Wang C, Li R. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm (Beijing) 2025; 6:e70057. [PMID: 39931738 PMCID: PMC11809559 DOI: 10.1002/mco2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies-ranging from pharmacological interventions to regenerative approaches and lifestyle modifications-face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.
Collapse
Affiliation(s)
- Tian Xia
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Jiachi Yu
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Meng Du
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Clinical LaboratoryHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Ximeng Chen
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Chengbin Wang
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Ruibing Li
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| |
Collapse
|
5
|
Kim S, Hong HS. Substance P alleviates liver fibrosis by modulating inflammation and mobilizing reparative stem cells. Int Immunopharmacol 2024; 142:113211. [PMID: 39321699 DOI: 10.1016/j.intimp.2024.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Repetitive hepatic damage resulting from viral hepatitis, toxins, and alcohol abuse induces chronic inflammation and excessive accumulation of the extracellular matrix, leading to the development of liver cirrhosis. Substance P (SP) promotes endogenous wound healing by mobilizing bone marrow stem cells and stimulating anti-inflammatory responses. This study aimed to investigate whether SP exerts a therapeutic effect on liver fibrosis by recruiting endogenous stem cells and modulating immune responses. A non-clinical model of liver cirrhosis was established through repeated injections of thioacetamide and recombinant leptin. After confirming liver fibrosis, SP was administered intravenously for 6 weeks. SP treatment decreased the formation of hepatic micronodules on the external surface of the liver and the infiltration of immune cells. Furthermore, SP treatment notably reduced the deposition of collagen and the activation of hepatic stellate cells, concomitant with decreased levels of transforming growth factor-β1 and matrix metalloproteinase activity. In the context of severe hepatic damage, SP increased the number of circulating stem cells, leading to the restoration of the reparative stem cell pool in the bone marrow. The findings of this study suggest that SP alleviates liver fibrosis by modulating the mobilization of functional stem cells and the immune response.
Collapse
Affiliation(s)
- Suna Kim
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Deokyoung dae-ro, 1732, Yong In 17104, Republic of Korea; Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee dae-ro 23, Hoegi-dong, Seoul 02447, Republic of Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Kyung Hee dae-ro, 24, Seoul 02461, Republic of Korea; East-West Medical Research Institute, Kyung Hee University, Kyung Hee dae-ro, 24, Hoegi-dong, Seoul 02461, Republic of Korea; Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee dae-ro 23, Hoegi-dong, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Baranwal G, Mukhtar H, Kane J, Lemieux A, Misra S. Advancements in Mesenchymal Stem Cell-Based Therapy for Enhancing Arteriovenous Fistula Patency. Int J Mol Sci 2024; 25:12719. [PMID: 39684430 DOI: 10.3390/ijms252312719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the world's population. Hemodialysis, along with peritoneal dialysis and renal transplant, is one of the renal replacement therapies offered to patients with CKD/end-stage renal disease (ESRD). To proceed with hemodialysis, vascular access is required. The two means of long-term access are arteriovenous fistula (AVF) and arteriovenous graft (AVG). Multiple therapies have been created to help the long-term patency of AVFs. These therapies are needed as 40% of AVFs fail within the first year and additional intervention is required. Much of the existing research has focused on biomarkers, immune cells, hypoxia, and cell-based therapies. Regeneration therapy using mesenchymal stem cells seeks to investigate other ways that we can treat AVF failure. Mesenchymal stem cells are harvested as two main types, fetal and adult. Fetal cells are harvested at different times in fetal gestation and from multiple sources, placental blood, Whartons jelly, and amniotic stem cell fluid. Taken together, this review summarizes the different preclinical/clinical studies conducted using different types of MSCs towards vascular regenerative medicine and further highlights its potential to be a suitable alternative approach to enhance AVF patency.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haseeb Mukhtar
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jamie Kane
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alaura Lemieux
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Liu B, Wang H, Xie W, Gong T. TRIM27 Promotes Endothelial Progenitor Cell Apoptosis in Patients with In-Stent Restenosis by Ubiquitinating TBK1. Appl Biochem Biotechnol 2024; 196:7792-7804. [PMID: 38558276 DOI: 10.1007/s12010-024-04933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Approximately 2-10% in-stent restenosis (ISR) may occur following percutaneous coronary intervention (PCI) despite the use of modern drug-eluting stents (DES); thus, our study aimed to explore the effects of tripartite motif-containing (TRIM) 27 on ISR and the underlying mechanism. For this purpose, a total of 42 patients undergoing coronary angiography who had prior coronary angiography with DES implantation were recruited. Endothelial progenitor cells (EPCs) markers (defined as CD34 and vascular endothelial growth factoreceptor-2 (VEGFR-2)) in peripheral blood were measured to asses the circulating EPC level. The TRIM family-related gene expressions were detected by reverse transcription-quantitative polymerase chain reaction. Results suggested that ISR patients had reduced CD34+VEGFR-2+ and increased apoptosis rate of EPCs, along with upregulated TRIM27 and TRIM37 and downregulated TRIM28. TRIM27 promoted and TBK1 inhibited the apoptosis rate of EPCs. Mechanically, TRIM27 interacted with TBK1 to ubiquitinate TBK1 in in vitro study. In summary, TRIM27 promoted the progression of ISR in patients after PCI by ubiquitinating TBK1, which might provide novel ideas for the clinical treatment of ISR.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiovascular Medicine, Jingshan People's Hospital, Jingshan, 431800, Hubei, China
| | - Huai Wang
- Department of Cardiovascular Medicine, Jingshan People's Hospital, Jingshan, 431800, Hubei, China
| | - Wenhao Xie
- Department of Cardiovascular Medicine, Jingshan People's Hospital, Jingshan, 431800, Hubei, China
| | - Ting Gong
- Department of Cardiovascular Medicine, Jingshan People's Hospital, Jingshan, 431800, Hubei, China.
| |
Collapse
|
8
|
Valsamaki A, Vazgiourakis V, Mantzarlis K, Stamatiou R, Makris D. MicroRNAs in Sepsis. Biomedicines 2024; 12:2049. [PMID: 39335561 PMCID: PMC11428652 DOI: 10.3390/biomedicines12092049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is an insidious and frequent condition of severe inflammation due to infections. Several biomarkers have been established for initial screening, but the non-specific nature of the existing biomarkers has led to the investigation of more sensitive and specific tools, such as microRNAs (miRs). These non-coding RNAs are involved in several diseases, including sepsis, due to their roles in cellular homeostasis. Herein, a literature overview was attempted to distinguish the most prominent miRs identified in septic conditions and their usefulness in diagnosis, prognosis and even classification of sepsis. miRs implicated in the regulation of pro and anti-inflammatory mechanisms, such as MIR-146a, MIR-155, MIR-181b, MIR-223-5p, MIR-494-3p, MIR-2055b, MIR-150 and MIR-143 have been pinpointed as acceptable testing tools. Furthermore, the use of miRs as screening panels, specific for septic parameters, such as type of causal infection, inflammation immune pathways affected (NF-kB, STAT/JACK), organs inflicted, as well as parallel screening of certain miRs alongside other long non-coding RNAs (LNCs), as co-regulators of sepsis progression. Overall, miRs exhibit benefits in terms of specificity and sensitivity, as well as practical ease of use and test stability. Furthermore, miRs could offer valuable insights into the molecular basis of disease causality and provide valuable therapeutic information.
Collapse
Affiliation(s)
- Asimina Valsamaki
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | | | | | - Rodopi Stamatiou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Demosthenes Makris
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
9
|
Rashidi S, Bagherpour G, Abbasi‐Malati Z, Khosrowshahi ND, Chegeni SA, Roozbahani G, Lotfimehr H, Sokullu E, Rahbarghazi R. Endothelial progenitor cells for fabrication of engineered vascular units and angiogenesis induction. Cell Prolif 2024; 57:e13716. [PMID: 39051852 PMCID: PMC11503262 DOI: 10.1111/cpr.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
The promotion of vascularization and angiogenesis in the grafts is a crucial phenomenon in the healing process and tissue engineering. It has been shown that stem cells, especially endothelial progenitor cells (EPCs), can stimulate blood vessel formation inside the engineered hydrogels after being transplanted into the target sites. The incorporation of EPCs into the hydrogel can last the retention time, long-term survival, on-target delivery effects, migration and differentiation into mature endothelial cells. Despite these advantages, further modifications are mandatory to increase the dynamic growth and angiogenesis potential of EPCs in in vitro and in vivo conditions. Chemical modifications of distinct composites with distinct physical properties can yield better regenerative potential and angiogenesis during several pathologies. Here, we aimed to collect recent findings related to the application of EPCs in engineered vascular grafts and/or hydrogels for improving vascularization in the grafts. Data from the present article can help us in the application of EPCs as valid cell sources in the tissue engineering of several ischemic tissues.
Collapse
Affiliation(s)
- Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of MedicineZanjan University of Medical SciencesZanjanIran
| | - Ghasem Bagherpour
- Department of Medical Biotechnology, Faculty of MedicineZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Biotechnology Research CenterZanjan University of Medical SciencesZanjanIran
| | - Zahra Abbasi‐Malati
- Student Research CenterTabriz University of Medical SciencesTabrizIran
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Sara Aghakhani Chegeni
- Department of Clinical Biochemistry and Laboratory MedicineTabriz University of Medical SciencesTabrizIran
| | - Golbarg Roozbahani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
| | - Hamid Lotfimehr
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbulTurkey
- Biophysics DepartmentKoç University School of MedicineIstanbulTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
10
|
Shabani P, Ohanyan V, Alghadeer A, Gavazzi D, Dong F, Yin L, Kolz C, Shockling L, Enrick M, Zhang P, Shi X, Chilian W. Bone marrow cells contribute to seven different endothelial cell populations in the heart. Basic Res Cardiol 2024; 119:699-715. [PMID: 38963562 PMCID: PMC11319501 DOI: 10.1007/s00395-024-01065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ammar Alghadeer
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Daniel Gavazzi
- Hiram College Physics and Computer Science Department, Hiram, OH, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Lindsay Shockling
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
11
|
Barć P, Lubieniecki P, Antkiewicz M, Kupczyńska D, Barć J, Frączkowska-Sioma K, Dawiskiba T, Dorobisz T, Sekula W, Czuwara B, Małodobra-Mazur M, Baczyńska D, Witkiewicz W, Skóra JP, Janczak D. Gene Therapy of Thromboangiitis Obliterans with Growth Factor Plasmid (VEGF165) and Autologous Bone Marrow Cells. Biomedicines 2024; 12:1506. [PMID: 39062079 PMCID: PMC11275074 DOI: 10.3390/biomedicines12071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND We performed gene therapy for critical limb ischemia in thromboangiitis obliterans (TAO) by the intramuscular administration of plasmids of the vascular endothelial growth factor gene (VEGF 165) with or without bone marrow-derived stem cells. METHODS The 21 patients were randomly assigned to three groups: A-with dual therapy, cells and plasmid; B-plasmid only; and C-control group, where patients received intramuscular injections of saline. Serum VEGF levels, the ankle-brachial index (ABI), transcutaneous oxygen pressure (TcPO2), and the rest pain measured by the visual analog scale (VAS) were determined sequentially before treatment, and then 1 and 3 months after treatment. RESULTS In the treatment groups, serum VEGF levels increased by 4 weeks and returned to baseline values after 3 months. ABI after 12 weeks increased by an average of 0.18 in group A, and 0.09 in group B and group C. TcPO2 increased by an average of 17.3 mmHg in group A, 14.1 mmHg in group B, and 10.7 mmHg in group C. The largest pain decrease was observed in group A and averaged 5.43 less pain intensity. CONCLUSIONS Gene therapy using the VEGF plasmid along with or without bone marrow-derived mononuclear cells administered intramuscularly into an ischemic limb in TAO is a safe and effective therapy.
Collapse
Affiliation(s)
- Piotr Barć
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Paweł Lubieniecki
- Clinical Department of Diabetology and Internal Disease, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland
| | - Maciej Antkiewicz
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Diana Kupczyńska
- Ars Estetica-Clinic for Aesthetic Medicine and Laser Therapy, ul. Powstancow Ślaskich 56a/2, 53-333 Wroclaw, Poland;
| | - Jan Barć
- Faculty of Medicine, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Katarzyna Frączkowska-Sioma
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Tomasz Dawiskiba
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Tadeusz Dorobisz
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Wojciech Sekula
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Błażej Czuwara
- Department of Vascular Surgery, Provincial Hospital Center of the Jelenia Gora Valley, Oginskiego Street 6, 58-506 Jelenia Gora, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland;
| | - Jan Paweł Skóra
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| | - Dariusz Janczak
- Clinical Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (P.B.); (M.A.); (K.F.-S.); (T.D.); (T.D.); (W.S.); (J.P.S.); (D.J.)
| |
Collapse
|
12
|
Lee M, Tariq AR, Kim M. Gemigliptin, a potent selective dipeptidyl peptidase 4 inhibitor, protects endothelial progenitor cells by oxidative stress via caspase-3 dependent pathway. Biochem Biophys Rep 2024; 38:101673. [PMID: 38444735 PMCID: PMC10914559 DOI: 10.1016/j.bbrep.2024.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Endothelial progenitor cells (EPCs) are exclusive players in vasculogenesis and endothelial regeneration. EPCs are of two types and their differentiation is mediated by different growth factors. A decrease in EPC number and function causes cardiovascular abnormalities and reduced angiogenesis. Various studies has documented a role of EPCs in diabetes. EPCs treatment with different drugs improve insulin secretion but causes other abnormalities. In vivo and in vitro studies have reported anti glycation effect of gemigliptin but no data is available on in vitro effect of gemigliptin on EPC number and functional credibility. The current study was aimed to find an in vitro effect of gemigliptin on EPC number and function along with an effective treatment dose of gemigliptin. EPCs were isolated, cultured and phenotypically characterized using Dil- AcLDL and ulex-lectin fluorescence staining. EPCs were then treated with different doses of Zemiglo and their viability analyzed with viability assay using water-soluble tetrazolium salt (WST-1), by Annexin V and Propidium Iodide (PI) staining, senescence-associated beta-galactosidase (SA-β-gal) staining, western blot and Flow cytometric analysis of apoptotic signals. The results demonstrated that the isolated EPCs has typical endothelial phenotypes. And these EPCs were of two types based on morphology i.e., early and late EPCs. Gemigliptin dose dependently improved the EPCs morphology and increased EPCs viability, the most effective dose being the 20 μM. Gemigliptin at 10 μM, 20 μM and 50 μM significantly increased the BCL-2 levels and at 20 μM significantly decreased the Caspase-3 levels in EPCs. In conclusion, gemigliptin dose dependently effects the EPCs viability and morphology through Caspase-3 signaling. Our results are the first report of gemigliptin effect on EPC viability and morphology.
Collapse
Affiliation(s)
- Mijung Lee
- Neurology, Center for Medical Innovation, Seoul National University Hospital, Seoul, South Korea
| | - Amna Rashid Tariq
- Neurology, Center for Medical Innovation, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Neurology, Seoul National University Hospital, Neuroscience and Dementia Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Xiujin Z, Lili G, Jing F, Wenhai Y, Sikai L, Wan-Yin S. HOXD9 regulated mitophagy to promote endothelial progenitor cells angiogenesis and deep vein thrombosis recanalization and resolution. Mol Med 2024; 30:84. [PMID: 38867168 PMCID: PMC11167931 DOI: 10.1186/s10020-024-00852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a common vascular surgical disease caused by the coagulation of blood in the deep veins, and predominantly occur in the lower limbs. Endothelial progenitor cells (EPCs) are multi-functional stem cells, which are precursors of vascular endothelial cells. EPCs have gradually evolved into a promising treatment strategy for promoting deep vein thrombus dissolution and recanalization through the stimulation of various physical and chemical factors. METHODS In this study, we utilized a mouse DVT model and performed several experiments including qRT-PCR, Western blot, tube formation, wound healing, Transwell assay, immunofluorescence, flow cytometry analysis, and immunoprecipitation to investigate the role of HOXD9 in the function of EPCs cells. The therapeutic effect of EPCs overexpressing HOXD9 on the DVT model and its mechanism were also explored. RESULTS Overexpression of HOXD9 significantly enhanced the angiogenesis and migration abilities of EPCs, while inhibiting cell apoptosis. Additionally, results indicated that HOXD9 specifically targeted the HRD1 promoter region and regulated the downstream PINK1-mediated mitophagy. Interestingly, intravenous injection of EPCs overexpressing HOXD9 into mice promoted thrombus dissolution and recanalization, significantly decreasing venous thrombosis. CONCLUSIONS The findings of this study reveal that HOXD9 plays a pivotal role in stimulating vascular formation in endothelial progenitor cells, indicating its potential as a therapeutic target for DVT management.
Collapse
Affiliation(s)
- Zhang Xiujin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Guo Lili
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fan Jing
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Wenhai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liu Sikai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shi Wan-Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
14
|
Bennett JI, Boit MO, Gregorio NE, Zhang F, Kibler RD, Hoye JW, Prado O, Rapp PB, Murry CE, Stevens KR, DeForest CA. Genetically Encoded XTEN-based Hydrogels with Tunable Viscoelasticity and Biodegradability for Injectable Cell Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301708. [PMID: 38477407 PMCID: PMC11200090 DOI: 10.1002/advs.202301708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/08/2024] [Indexed: 03/14/2024]
Abstract
While direct cell transplantation holds great promise in treating many debilitating diseases, poor cell survival and engraftment following injection have limited effective clinical translation. Though injectable biomaterials offer protection against membrane-damaging extensional flow and supply a supportive 3D environment in vivo that ultimately improves cell retention and therapeutic costs, most are created from synthetic or naturally harvested polymers that are immunogenic and/or chemically ill-defined. This work presents a shear-thinning and self-healing telechelic recombinant protein-based hydrogel designed around XTEN - a well-expressible, non-immunogenic, and intrinsically disordered polypeptide previously evolved as a genetically encoded alternative to PEGylation to "eXTENd" the in vivo half-life of fused protein therapeutics. By flanking XTEN with self-associating coil domains derived from cartilage oligomeric matrix protein, single-component physically crosslinked hydrogels exhibiting rapid shear thinning and self-healing through homopentameric coiled-coil bundling are formed. Individual and combined point mutations that variably stabilize coil association enables a straightforward method to genetically program material viscoelasticity and biodegradability. Finally, these materials protect and sustain viability of encapsulated human fibroblasts, hepatocytes, embryonic kidney (HEK), and embryonic stem-cell-derived cardiomyocytes (hESC-CMs) through culture, injection, and transcutaneous implantation in mice. These injectable XTEN-based hydrogels show promise for both in vitro cell culture and in vivo cell transplantation applications.
Collapse
Affiliation(s)
| | - Mary O'Kelly Boit
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
| | | | - Fan Zhang
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Ryan D. Kibler
- Department of BiochemistryUniversity of WashingtonSeattleWA98105USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98105USA
| | - Jack W. Hoye
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
| | - Olivia Prado
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Peter B. Rapp
- Flagship Labs 83, Inc.135 Morrissey Blvd.BostonMA02125USA
| | - Charles E. Murry
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWA98195USA
- Department of Medicine/CardiologyUniversity of WashingtonSeattleWA98109USA
| | - Kelly R. Stevens
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWA98195USA
| | - Cole A. DeForest
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of ChemistryUniversity of WashingtonSeattleWA98105USA
- Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWA98105USA
| |
Collapse
|
15
|
Kwon JY, Maeng YS. Human Cord Blood Endothelial Progenitor Cells and Pregnancy Complications (Preeclampsia, Gestational Diabetes Mellitus, and Fetal Growth Restriction). Int J Mol Sci 2024; 25:4444. [PMID: 38674031 PMCID: PMC11050478 DOI: 10.3390/ijms25084444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.
Collapse
Affiliation(s)
- Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Shang X, Jin Y, Xue Y, Pan X, Zhu H, Meng X, Cao Z, Rui Y. Overexpression of ETV2 in BMSCs promoted wound healing in cutaneous wound mice by triggering the differentiation of BMSCs into endothelial cells and modulating the transformation of M1 phenotype macrophages to M2 phenotype macrophages. Tissue Cell 2024; 87:102334. [PMID: 38430850 DOI: 10.1016/j.tice.2024.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to investigate the effects of E26-transformation-specific variant-2 (ETV2) overexpression on wound healing in a cutaneous wound (CW) model and clarify associated mechanisms. pLVX-ETV2 lentivirus expressing ETV2 was constructed and infected into BMSCs to generate ETV2-overexpressed BMSCs (BMSCs+pLVX+ETV2). The RT-PCR assay was applied to amplify ETV2, VE-cadherin, vWF, ARG-1, IL-6, iNOS, TGF-β, IL-10, TNF-α. Western blot was used to determine expression of VE-cadherin and vWF. ETV2 induced differentiation of BMSCs into ECs by increasing CDH5/CD31, triggering tube-like structures, inducing Dil-Ac-LDL positive BMSCs. ETV2 overexpression increased the gene transcription and expression of VE-cadherin and vWF (P<0.01). Transcription of M1 phenotype specific iNOS gene was lower and transcription of M2 phenotype specific ARG-1 gene was higher in the RAW264.7+BMSCs+ETV2 group compared to the RAW264.7+BMSCs+pLVX group (P<0.01). ETV2 overexpression (RAW264.7+BMSCs+ETV2) downregulated IL-6 and TNF-α, and upregulated IL-10 and TGF-β gene transcription compared to RAW264.7+BMSCs+pLVX group (P<0.01). ETV2-overexpressed BMSCs promoted wound healing in CW mice and triggered the migration of BMSCs to the wound region and macrophage activation. ETV2-overexpressed BMSCs promoted collagen fibers and blood vessel formation in the wound region of CW mice. In conclusion, this study revealed a novel biofunction of ETV2 molecule in the wound healing process. ETV2 overexpression in BMSCs promoted wound healing in CW mice by triggering BMSCs differentiation into endothelial cells and modulating the transformation of M1 pro-inflammatory and M2 anti-inflammatory macrophages in vitro and in vivo.
Collapse
Affiliation(s)
- Xiuchao Shang
- Medical College, Soochow University, Suzhou. China; The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yesheng Jin
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Yuan Xue
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xiaoyun Pan
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Haiquan Zhu
- The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiangsheng Meng
- The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zhihai Cao
- Medical College, Soochow University, Suzhou. China
| | - Yongjun Rui
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
17
|
Huang C, Huang W, Meng Y, Zhou C, Wang X, Zhang C, Tian Y, Wei W, Li Y, Zhou Q, Chen W, Tang Y. T1-weighted MRI of targeting atherosclerotic plaque based on CD40 expression on engulfed USPIO's cell surface. Biomed Mater 2024; 19:025019. [PMID: 38215489 DOI: 10.1088/1748-605x/ad1df6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of cholesterol within the arterial wall. Its progression can be monitored via magnetic resonance imaging (MRI). Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) (<5 nm) have been employed as T1 contrast agents for MRI applications. In this study, we synthesized USPIO with an average surface carboxylation of approximately 5.28 nm and a zeta potential of -47.8 mV. These particles were phagocytosed by mouse aortic endothelial cells (USPIO-MAECs) and endothelial progenitor cells (USPIO-EPCs), suggesting that they can be utilized as potential contrast agent and delivery vehicle for the early detection of atherosclerosis. However, the mechanism by which this contrast agent is delivered to the plaque remains undetermined. Our results demonstrated that with increasing USPIO concentration during 10-100 μg ml-1, consistent change appeared in signal enhancement on T1-weighted MRI. Similarly, T1-weighted MRI of MAECs and EPCs treated with these concentrations exhibited a regular change in signal enhancement. Prussian blue staining of USPIO revealed substantial absorption into MAECs and EPCs after treatment with 50 μg ml-1USPIO for 24 h. The iron content in USPIO-EPCs was much higher (5 pg Fe/cell) than in USPIO-MAECs (0.8 pg Fe/cell). In order to substantiate our hypothesis that CD40 protein on the cell surface facilitates migration towards inflammatory cells, we utilized AuNPs-PEI (gold nanoparticles-polyethylenimine) carrying siRNACD40to knockout CD40 expression in MAECs. It has been documented that gold nanoparticle-oligonucleotide complexes could be employed as intracellular gene regulation agents for the control of protein level in cells. Our results confirmed that macrophages are more likely to bind to MAECs treated with AuNPs-PEI-siRNANC(control) for 72 h than to MAECs treated with AuNPs-PEI-siRNACD40(reduced CD40 expression), thus confirming CD40 targeting at the cellular level. When USPIO-MAECs and MAECs (control) were delivered to mice (high-fat-fed) via tail vein injection respectively, we observed a higher iron accumulation in plaques on blood vessels in high-fat-fed mice treated with USPIO-MAECs. We also demonstrated that USPIO-EPCs, when delivered to high-fat-fed mice via tail vein injection, could indeed label plaques by generating higher T1-weighted MRI signals 72 h post injection compared to controls (PBS, USPIO and EPCs alone). In conclusion, we synthesized a USPIO suitable for T1-weighted MRI. Our results have confirmed separately at the cellular and tissue andin vivolevel, that USPIO-MAECs or USPIO-EPCs are more accessible to atherosclerotic plaques in a mouse model. Furthermore, the high expression of CD40 on the cell surface is a key factor for targeting and USPIO-EPCs may have potential therapeutic effects.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Xiaozhuan Wang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, People's Republic of China
| | - Chunyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, People's Republic of China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, People's Republic of China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, People's Republic of China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China
| |
Collapse
|
18
|
Wang W, Peng H, Zeng M, Liu J, Liang G, He Z. Endothelial progenitor cells systemic administration alleviates multi-organ senescence by down-regulating USP7/p300 pathway in chronic obstructive pulmonary disease. J Transl Med 2023; 21:881. [PMID: 38057857 PMCID: PMC10699081 DOI: 10.1186/s12967-023-04735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has impacted approximately 390 million people worldwide and the morbidity is increasing every year. However, due to the poor treatment efficacy of COPD, exploring novel treatment has become the hotpot of study on COPD. Endothelial progenitor cells (EPCs) aging is a possible molecular way for COPD development. We aimed to explore the effector whether intravenous administration of EPCs has therapeutic effects in COPD mice. METHODS COPD mice model was induced by cigarette smoke exposure and EPCs were injected intravenously to investigate their effects on COPD mice. At day 127, heart, liver, spleen, lung and kidney tissues of mice were harvested. The histological effects of EPCs intervention on multiple organs of COPD mice were detected by morphology assay. Quantitative real-time PCR and Western blotting were used to detect the effect of EPCs intervention on the expression of multi-organ senescence-related indicators. And we explored the effect of EPCs systematically intervening on senescence-related USP7/p300 pathway. RESULTS Compared with COPD group, senescence-associated β-galactosidase activity was decreased, protein and mRNA expression of p16 was down-regulated, while protein and mRNA expression of cyclin D1 and TERT were up-regulated of multiple organs, including lung, heart, liver, spleen and kidney in COPD mice after EPCs system intervention. But the morphological alterations of the tissues described above in COPD mice failed to be reversed. Mechanistically, EPCs systemic administration inhibited the expression of mRNA and protein of USP7 and p300 in multiple organs of COPD mice, exerting therapeutic effects. CONCLUSIONS EPCs administration significantly inhibited the senescence of multiple organs in COPD mice via down-regulating USP7/p300 pathway, which presents a possibility of EPCs therapy for COPD.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huaihuai Peng
- Department of Intensive Care Unit, Hunan Province Directly Affiliated Traditional Chinese Medicine Hospital, Zhuzhou, Hunan, China
| | - Menghao Zeng
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Liu
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guibin Liang
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Benítez-Camacho J, Ballesteros A, Beltrán-Camacho L, Rojas-Torres M, Rosal-Vela A, Jimenez-Palomares M, Sanchez-Gomar I, Durán-Ruiz MC. Endothelial progenitor cells as biomarkers of diabetes-related cardiovascular complications. Stem Cell Res Ther 2023; 14:324. [PMID: 37950274 PMCID: PMC10636846 DOI: 10.1186/s13287-023-03537-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetes mellitus (DM) constitutes a chronic metabolic disease characterized by elevated levels of blood glucose which can also lead to the so-called diabetic vascular complications (DVCs), responsible for most of the morbidity, hospitalizations and death registered in these patients. Currently, different approaches to prevent or reduce DM and its DVCs have focused on reducing blood sugar levels, cholesterol management or even changes in lifestyle habits. However, even the strictest glycaemic control strategies are not always sufficient to prevent the development of DVCs, which reflects the need to identify reliable biomarkers capable of predicting further vascular complications in diabetic patients. Endothelial progenitor cells (EPCs), widely known for their potential applications in cell therapy due to their regenerative properties, may be used as differential markers in DVCs, considering that the number and functionality of these cells are affected under the pathological environments related to DM. Besides, drugs commonly used with DM patients may influence the level or behaviour of EPCs as a pleiotropic effect that could finally be decisive in the prognosis of the disease. In the current review, we have analysed the relationship between diabetes and DVCs, focusing on the potential use of EPCs as biomarkers of diabetes progression towards the development of major vascular complications. Moreover, the effects of different drugs on the number and function of EPCs have been also addressed.
Collapse
Affiliation(s)
- Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Ballesteros
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Lucía Beltrán-Camacho
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Cell Biology, Physiology and Immunology Department, Córdoba University, Córdoba, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain.
| |
Collapse
|
20
|
Simmons Beck R, Liang OD, Klinger JR. Light at the ENDothelium-role of Sox17 and Runx1 in endothelial dysfunction and pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1274033. [PMID: 38028440 PMCID: PMC10656768 DOI: 10.3389/fcvm.2023.1274033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that is characterized by an obliterative vasculopathy of the distal pulmonary circulation. Despite significant progress in our understanding of the pathophysiology, currently approved medical therapies for PAH act primarily as pulmonary vasodilators and fail to address the underlying processes that lead to the development and progression of the disease. Endothelial dysregulation in response to stress, injury or physiologic stimuli followed by perivascular infiltration of immune cells plays a prominent role in the pulmonary vascular remodeling of PAH. Over the last few decades, our understanding of endothelial cell dysregulation has evolved and brought to light a number of transcription factors that play important roles in vascular homeostasis and angiogenesis. In this review, we examine two such factors, SOX17 and one of its downstream targets, RUNX1 and the emerging data that implicate their roles in the pathogenesis of PAH. We review their discovery and discuss their function in angiogenesis and lung vascular development including their roles in endothelial to hematopoietic transition (EHT) and their ability to drive progenitor stem cells toward an endothelial or myeloid fate. We also summarize the data from studies that link mutations in Sox17 with an increased risk of developing PAH and studies that implicate Sox17 and Runx1 in the pathogenesis of PAH. Finally, we review the results of recent studies from our lab demonstrating the efficacy of preventing and reversing pulmonary hypertension in animal models of PAH by deleting RUNX1 expression in endothelial or myeloid cells or by the use of RUNX1 inhibitors. By investigating PAH through the lens of SOX17 and RUNX1 we hope to shed light on the role of these transcription factors in vascular homeostasis and endothelial dysregulation, their contribution to pulmonary vascular remodeling in PAH, and their potential as novel therapeutic targets for treating this devastating disease.
Collapse
Affiliation(s)
- Robert Simmons Beck
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| | - Olin D. Liang
- Division of Hematology/Oncology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| | - James R. Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Schwarz N, Yadegari H. Potentials of Endothelial Colony-Forming Cells: Applications in Hemostasis and Thrombosis Disorders, from Unveiling Disease Pathophysiology to Cell Therapy. Hamostaseologie 2023; 43:325-337. [PMID: 37857295 DOI: 10.1055/a-2101-5936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells circulating in a limited number in peripheral blood. They can give rise to mature endothelial cells (ECs) and, with intrinsically high proliferative potency, contribute to forming new blood vessels and restoring the damaged endothelium in vivo. ECFCs can be isolated from peripheral blood or umbilical cord and cultured to generate large amounts of autologous ECs in vitro. Upon differentiation in culture, ECFCs are excellent surrogates for mature ECs showing the same phenotypic, genotypic, and functional features. In the last two decades, the ECFCs from various vascular disease patients have been widely used to study the diseases' pathophysiology ex vivo and develop cell-based therapeutic approaches, including vascular regenerative therapy, tissue engineering, and gene therapy. In the current review, we will provide an updated overview of past studies, which have used ECFCs to elucidate the molecular mechanisms underlying the pathogenesis of hemostatic disorders in basic research. Additionally, we summarize preceding studies demonstrating the utility of ECFCs as cellular tools for diagnostic or therapeutic clinical applications in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Nadine Schwarz
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Hamideh Yadegari
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
22
|
Zhao ZA, Yan L, Wen J, Satyanarayanan SK, Yu F, Lu J, Liu YU, Su H. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. BURNS & TRAUMA 2023; 11:tkad033. [PMID: 37675267 PMCID: PMC10478165 DOI: 10.1093/burnst/tkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 09/08/2023]
Abstract
Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Neurology, General Hospital of Northern Theater Command, 83# Wen-Hua Road, Shenyang 110840, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong U Liu
- Laboratory of Neuroimmunology in Health and Disease Institute, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 511400, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
23
|
Lamin V, Mani AM, Singh MV, Dokun AO. Endothelial Progenitor Cells and Macrophage Subsets Recruitment in Postischemic Mouse Hind Limbs. J Vasc Res 2023; 60:148-159. [PMID: 37336198 DOI: 10.1159/000530732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/14/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Peripheral arterial disease (PAD) occurs from atherosclerotic obstruction of arteries in the lower extremities. Restoration of perfusion requires angiogenesis and arteriogenesis through migration and differentiation of endothelial progenitor cells (EPCs) and macrophages at the site of injury. The time of recruitment has not been fully investigated. In this study, we investigated the infiltration of these cells in murine hind limb ischemia (HLI) model of PAD. METHODS EPCs and M1-like and M2-like macrophages from ischemic skeletal muscles were quantified by flow cytometry at day-0, 1, 3, 7, and 14 post-HLI. RESULTS The abundance of EPCs increased from day 1 and was highest on day 7 until day 14. M1-like population similarly increased and was highest on day 14 during the experiment. M2-like population was significantly greater than M1-like at baseline but surpassed the highest value of M1-like by day 7 during the experiment. Muscle regeneration and capillary density also increased and were highest at days 3 and 7, respectively, during the experiment. All mice achieved near full perfusion recovery by day 14. CONCLUSION Thus, we observed a gradual increase in the percentage of EPC's and this was temporally paralleled with initial increase in M1-like followed by sustained increased in M2-like macrophages and perfusion recovered post-HLI.
Collapse
Affiliation(s)
- Victor Lamin
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Arul M Mani
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Madhu V Singh
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ayotunde O Dokun
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Balikji J, Mackus M, Garssen J, Hoogbergen MM, Verster JC. Immune Fitness, Migraine, and Headache Complaints in Individuals with Self-Reported Impaired Wound Healing. Int J Gen Med 2023; 16:2245-2253. [PMID: 37293517 PMCID: PMC10246567 DOI: 10.2147/ijgm.s413258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Background Having chronic wounds and impaired wound healing are associated with psychological distress. The current study aims to evaluate migraine and headache complaints in young adults with self-reported impaired wound healing. Methods A survey was conducted among N=1935 young adults (83.6% women), 18-30 years old, living in the Netherlands. Wound healing status was verified, immune fitness was assessed using a single-item rating scale, and ID Migraine was completed. In addition, several questions were answered on past year's headache experiences (including frequency, quantity, type, location, and severity). Results In both the control group (p < 0.001) and the IWH group (p = 0.002) immune fitness was significantly lower among those that reported headaches compared to those that reported no headaches. Individuals with self-reported impaired wound healing (IWH) scored significantly higher on the ID Migraine scale, and individuals of the IWH group scored significantly more often positive for migraine (ie, an ID Migraine score ≥2). They reported a younger age of onset of experiencing headaches, and significantly more often reported having a beating or pounding headache than the control group. Compared to the control group, the IWH group reported being significantly more limited in their daily activities compared to the control group. Conclusion Headaches and migraines are more frequently reported by individuals with self-reported impaired wound healing, and their reported immune fitness is significantly poorer compared to healthy controls. These headache and migraine complaints significantly limit them in their daily activities.
Collapse
Affiliation(s)
- Jessica Balikji
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, the Netherlands
| | - Marlou Mackus
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, the Netherlands
- Division of Plastic Surgery, Catharina Ziekenhuis, Eindhoven, 5623 EJ, the Netherlands
| | - Maarten M Hoogbergen
- Global Centre of Excellence Immunology, Nutricia Danone Research, Utrecht, 3584 CT, the Netherlands
| | - Joris C Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, the Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, 3122, Australia
| |
Collapse
|
25
|
Shariatzadeh M, Binda TR, van Holten-Neelen C, ten Berge JC, Martinez Ciriano JP, Wong KT, Dik WA, Leenen PJ. Aberration in myeloid-derived pro-angiogenic cells in type-2 diabetes mellitus; implication for diabetic retinopathy? FRONTIERS IN OPHTHALMOLOGY 2023; 3:1119050. [PMID: 38983045 PMCID: PMC11182312 DOI: 10.3389/fopht.2023.1119050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 07/11/2024]
Abstract
Purpose Diabetic retinopathy (DR) is a major microvascular complication of type 2 diabetes mellitus (T2DM). Myelomonocytic proangiogenic cells (PAC) have been implicated in DR pathogenesis, but their functional and developmental abnormalities are unclear. In this study we assessed PAC characteristics from healthy controls, T2DM patients with DR (DR) and without (NoDR) in order to determine the consequence of the diabetic condition on PAC phenotype and function, and whether these differ between DR and NoDR patients. Methods PAC were generated by culturing PBMC on fibronectin coating and then immunophenotyped using flow cytometry. Furthermore, cells were sorted based on CD14, CD105, and CD133 expression and added to an in vitro 3-D endothelial tubule formation assay, containing GFP-expressing human retinal endothelial cells (REC), pericytes, and pro-angiogenic growth factors. Tubule formation was quantified by fluorescence microscopy and image analysis. Moreover, sorted populations were analyzed for angiogenic mediator production using a multiplex assay. Results The expression of CD16, CD105 and CD31, but not CD133, was lower in PAC from T2DM patients with or without DR. Myeloid and non-myeloid T2DM-derived sorted populations increased REC angiogenesis in vitro as compared to control cultures. They also showed increased S100A8 secretion, decreased VEGF-A secretion, and similar levels of IL-8, HGF, and IL-3 as compared to healthy control (HC)-derived cell populations. Conclusion T2DM PAC are phenotypically and functionally altered compared to PAC from HC. Differences between DR and NoDR PAC are limited. We propose that impaired T2DM PAC provide inadequate vascular support and promote compensatory, albeit pathological, retinal neovascularization.
Collapse
Affiliation(s)
- Mahnaz Shariatzadeh
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trishika R.R. Binda
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Conny van Holten-Neelen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Josianne C. ten Berge
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Willem A. Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pieter J.M. Leenen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
26
|
Ono S, Hatayama N, Miyamoto K, Naito M, Ishimoto T, Ito Y. Intimal growth on the luminal surface of arteriovenous grafts in rats. Clin Exp Nephrol 2023; 27:402-410. [PMID: 36773176 DOI: 10.1007/s10157-023-02320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Endothelial cells are known to grow on the luminal surface of arteriovenous grafts (AVGs) used in hemodialysis. Although endothelial cells are important for preventing infection, a detailed growth of endothelial cells in AVGs is unknown. This study sought to create a simpler animal model of AVGs and to investigate how endothelial cells form on the luminal surface. METHODS Polyethylene grafts were placed between the cervical artery and vein of Wistar rats. The grafts were removed at 6 h, 24 h, 3 days, or 7 days after placement. The luminal surface was observed under optical and polarizing microscopy and stained with endothelial cell markers (LEL, CD31), the progenitor cell marker CD34, and the macrophage marker ED-1. RESULTS Microscopy demonstrated many diffuse vascular endothelial cells on the luminal surface of AVGs after placement. While there was no difference in the number of LEL-positive cells between the arterial side (AS) and venous side (VS) at 6 h or 7 days, there were significantly more of these cells on the VS at both 24 h and 3 days (p < 0.05). Analysis at 24 h showed some CD31-positive cells and few CD34-positive cells. CONCLUSIONS This was the first study to use a simple rat model of AVG placement. Endothelial cell formation was initially more active on the VS than on the AS, but these cells subsequently increased in number across the luminal surface. Future clinical studies might contribute clinically by confirming whether AS versus VS puncture results in different infection rates.
Collapse
Affiliation(s)
- Sumihisa Ono
- Department of Nephrology, Central Japan International Medical Center, 1-1, Kenkounomachi, Minokamoshi, Gifu, Japan.,Division of Nephrology and Rheumatology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Yazakokarimata, Nagakute, Aichi, Japan
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi, Japan.
| | - Kanyu Miyamoto
- Department of Nephrology, Central Japan International Medical Center, 1-1, Kenkounomachi, Minokamoshi, Gifu, Japan
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi, Japan
| | - Takuji Ishimoto
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Yazakokarimata, Nagakute, Aichi, Japan
| | - Yasuhiko Ito
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Yazakokarimata, Nagakute, Aichi, Japan.
| |
Collapse
|
27
|
Role of Endothelial Progenitor Cells in Frailty. Int J Mol Sci 2023; 24:ijms24032139. [PMID: 36768461 PMCID: PMC9916666 DOI: 10.3390/ijms24032139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Frailty is a clinical condition closely related to aging which is characterized by a multidimensional decline in biological reserves, a failure of physiological mechanisms and vulnerability to minor stressors. Chronic inflammation, the impairment of endothelial function, age-related endocrine system modifications and immunosenescence are important mechanisms in the pathophysiology of frailty. Endothelial progenitor cells (EPCs) are considered important contributors of the endothelium homeostasis and turn-over. In the elderly, EPCs are impaired in terms of function, number and survival. In addition, the modification of EPCs' level and function has been widely demonstrated in atherosclerosis, hypertension and diabetes mellitus, which are the most common age-related diseases. The purpose of this review is to illustrate the role of EPCs in frailty. Initially, we describe the endothelial dysfunction in frailty, the response of EPCs to the endothelial dysfunction associated with frailty and, finally, interventions which may restore the EPCs expression and function in frail people.
Collapse
|
28
|
Yoshida Y, Takeda Y, Yamahara K, Yamamoto H, Takagi T, Kuramoto Y, Nakano-Doi A, Nakagomi T, Soma T, Matsuyama T, Doe N, Yoshimura S. Enhanced angiogenic properties of umbilical cord blood primed by OP9 stromal cells ameliorates neurological deficits in cerebral infarction mouse model. Sci Rep 2023; 13:262. [PMID: 36609640 PMCID: PMC9822952 DOI: 10.1038/s41598-023-27424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Umbilical cord blood (UCB) transplantation shows proangiogenic effects and contributes to symptom amelioration in animal models of cerebral infarction. However, the effect of specific cell types within a heterogeneous UCB population are still controversial. OP9 is a stromal cell line used as feeder cells to promote the hematoendothelial differentiation of embryonic stem cells. Hence, we investigated the changes in angiogenic properties, underlying mechanisms, and impact on behavioral deficiencies caused by cerebral infarction in UCB co-cultured with OP9 for up to 24 h. In the network formation assay, only OP9 pre-conditioned UCB formed network structures. Single-cell RNA sequencing and flow cytometry analysis showed a prominent phenotypic shift toward M2 in the monocytic fraction of OP9 pre-conditioned UCB. Further, OP9 pre-conditioned UCB transplantation in mice models of cerebral infarction facilitated angiogenesis in the peri-infarct lesions and ameliorated the associated symptoms. In this study, we developed a strong, fast, and feasible method to augment the M2, tissue-protecting, pro-angiogenic features of UCB using OP9. The ameliorative effect of OP9-pre-conditioned UCB in vivo could be partly due to promotion of innate angiogenesis in peri-infarct lesions.
Collapse
Affiliation(s)
- Yasunori Yoshida
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Yuki Takeda
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hanae Yamamoto
- grid.272264.70000 0000 9142 153XLaboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Toshinori Takagi
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Yoji Kuramoto
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Akiko Nakano-Doi
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Takayuki Nakagomi
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Toshihiro Soma
- grid.272264.70000 0000 9142 153XDepartment of Hematology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Tomohiro Matsuyama
- grid.272264.70000 0000 9142 153XDepartment of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan ,grid.272264.70000 0000 9142 153XDepartment of Occupational Therapy, School of Rehabilitation, Hyogo Medical University, 1-3-6 Minatojima, Chuo-Ku, Kobe, Hyogo 650-8530 Japan
| | - Shinichi Yoshimura
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| |
Collapse
|
29
|
Reshamwala R, Oieni F, Shah M. Non-stem Cell Mediated Tissue Regeneration and Repair. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
30
|
Hassanpour M, Salybekov AA, Kobayashi S, Asahara T. CD34 positive cells as endothelial progenitor cells in biology and medicine. Front Cell Dev Biol 2023; 11:1128134. [PMID: 37138792 PMCID: PMC10150654 DOI: 10.3389/fcell.2023.1128134] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
CD34 is a cell surface antigen expressed in numerous stem/progenitor cells including hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs), which are known to be rich sources of EPCs. Therefore, regenerative therapy using CD34+ cells has attracted interest for application in patients with various vascular, ischemic, and inflammatory diseases. CD34+ cells have recently been reported to improve therapeutic angiogenesis in a variety of diseases. Mechanistically, CD34+ cells are involved in both direct incorporation into the expanding vasculature and paracrine activity through angiogenesis, anti-inflammatory, immunomodulatory, and anti-apoptosis/fibrosis roles, which support the developing microvasculature. Preclinical, pilot, and clinical trials have well documented a track record of safety, practicality, and validity of CD34+ cell therapy in various diseases. However, the clinical application of CD34+ cell therapy has triggered scientific debates and controversies in last decade. This review covers all preexisting scientific literature and prepares an overview of the comprehensive biology of CD34+ cells as well as the preclinical/clinical details of CD34+ cell therapy for regenerative medicine.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Amankeldi A. Salybekov
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Shuzo Kobayashi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- *Correspondence: Takayuki Asahara,
| |
Collapse
|
31
|
The Long Telling Story of "Endothelial Progenitor Cells": Where Are We at Now? Cells 2022; 12:cells12010112. [PMID: 36611906 PMCID: PMC9819021 DOI: 10.3390/cells12010112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Endothelial progenitor cells (EPCs): The name embodies years of research and clinical expectations, but where are we now? Do these cells really represent the El Dorado of regenerative medicine? Here, past and recent literature about this eclectic, still unknown and therefore fascinating cell population will be discussed. This review will take the reader through a temporal journey that, from the first discovery, will pass through years of research devoted to attempts at their definition and understanding their biology in health and disease, ending with the most recent evidence about their pathobiological role in cardiovascular disease and their recent applications in regenerative medicine.
Collapse
|
32
|
Jang HH, Son Y, Park G, Park KS. Bone Marrow-Derived Vasculogenic Mesenchymal Stem Cells Enhance In Vitro Angiogenic Sprouting of Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2022; 24:ijms24010413. [PMID: 36613857 PMCID: PMC9820660 DOI: 10.3390/ijms24010413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Vasculogenic properties of bone marrow-derived mesenchymal stem cells (MSCs) have been reported, but it is still unclear whether the vasculogenic properties are restricted to some populations of MSCs or whether the entire population of MSCs has these properties. We cultured two different populations of MSCs in different culture media and their vasculogenic properties were evaluated using In vitro spheroid sprouting assay. Neither population of MSCs expressed markers of endothelial progenitor cells (EPCs), but they were different in the profiling of angiogenic factor expression as well as vasculogenic properties. One population of MSCs expressed basic fibroblast growth factor (bFGF) and another expressed hepatocyte growth factor (HGF). MSCs expressing HGF exhibited In vitro angiogenic sprouting capacity in response to bFGF derived from other MSCs as well as to their autocrine HGF. The vasculogenic mesenchymal stem cells (vMSCs) derived from the bone marrow also enhanced In vitro angiogenic sprouting capacity of human umbilical vein endothelial cells (HUVECs) in an HGF-dependent manner. These results suggest that MSCs exhibit different vasculogenic properties, and vMSCs that are different from EPCs may contribute to neovascularization and could be a promising cellular therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Hyun Hee Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Youngsook Son
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Gabee Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: ; Tel.: +82-2-958-9368
| |
Collapse
|
33
|
Mohd Satar A, Othman FA, Tan SC. Biomaterial application strategies to enhance stem cell-based therapy for ischemic stroke. World J Stem Cells 2022; 14:851-867. [PMID: 36619694 PMCID: PMC9813837 DOI: 10.4252/wjsc.v14.i12.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ischemic stroke is a condition in which an occluded blood vessel interrupts blood flow to the brain and causes irreversible neuronal cell death. Transplantation of regenerative stem cells has been proposed as a novel therapy to restore damaged neural circuitry after ischemic stroke attack. However, limitations such as low cell survival rates after transplantation remain significant challenges to stem cell-based therapy for ischemic stroke in the clinical setting. In order to enhance the therapeutic efficacy of transplanted stem cells, several biomaterials have been developed to provide a supportable cellular microenvironment or functional modification on the stem cells to optimize their reparative roles in injured tissues or organs. AIM To discuss state-of-the-art functional biomaterials that could enhance the therapeutic potential of stem cell-based treatment for ischemic stroke and provide detailed insights into the mechanisms underlying these biomaterial approaches. METHODS The PubMed, Science Direct and Scopus literature databases were searched using the keywords of "biomaterial" and "ischemic stroke". All topically-relevant articles were then screened to identify those with focused relevance to in vivo, in vitro and clinical studies related to "stem cells" OR "progenitor cells" OR "undifferentiated cells" published in English during the years of 2011 to 2022. The systematic search was conducted up to September 30, 2022. RESULTS A total of 19 articles matched all the inclusion criteria. The data contained within this collection of papers comprehensively represented 19 types of biomaterials applied on seven different types of stem/progenitor cells, namely mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, neural progenitor cells, endothelial progenitor cells, neuroepithelial progenitor cells, and neuroblasts. The potential major benefits gained from the application of biomaterials in stem cell-based therapy were noted as induction of structural and functional modifications, increased stem cell retention rate in the hostile ischemic microenvironment, and promoting the secretion of important cytokines for reparative mechanisms. CONCLUSION Biomaterials have a relatively high potential for enhancing stem cell therapy. Nonetheless, there is a scarcity of evidence from human clinical studies for the efficacy of this bioengineered cell therapy, highlighting that it is still too early to draw a definitive conclusion on efficacy and safety for patient usage. Future in-depth clinical investigations are necessary to realize translation of this therapy into a more conscientious and judicious evidence-based therapy for clinical application.
Collapse
Affiliation(s)
- Asmaa' Mohd Satar
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farah Amna Othman
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Suat Cheng Tan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
| |
Collapse
|
34
|
Fujita Y, Kawamoto A. Therapeutic Angiogenesis Using Autologous CD34-Positive Cells for Vascular Diseases. Ann Vasc Dis 2022; 15:241-252. [PMID: 36644256 PMCID: PMC9816028 DOI: 10.3400/avd.ra.22-00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 12/25/2022] Open
Abstract
CD34 is a cell surface marker, which is expressed in various somatic stem/progenitor cells such as bone marrow (BM)-derived hematopoietic stem cells and endothelial progenitor cells (EPCs), skeletal muscle satellite cells, epithelial hair follicle stem cells, and adipose tissue mesenchymal stem cells. CD34+ cells in BM and peripheral blood are known as a rich source of EPCs. Thus, vascular regeneration therapy using granulocyte colony stimulating factor (G-CSF) mobilized- or BM CD34+ cells has been carried out in patients with various vascular diseases such as chronic severe lower limb ischemia, acute myocardial infarction, refractory angina, ischemic cardiomyopathy, and dilated cardiomyopathy as well as ischemic stroke. Pilot and randomized clinical trials demonstrated the safety, feasibility, and effectiveness of the CD34+ cell therapy in peripheral arterial, cardiovascular, and cerebrovascular diseases. This review provides an overview of the preclinical and clinical reports of CD34+ cell therapy for vascular regeneration.
Collapse
Affiliation(s)
- Yasuyuki Fujita
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan,Corresponding author: Atsuhiko Kawamoto, MD, PhD. Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan Tel: +81-78-304-5772, Fax: +81-78-304-5263, E-mail:
| |
Collapse
|
35
|
Yeh KC, Lee CJ, Song JS, Wu CH, Yeh TK, Wu SH, Hsieh TC, Chen YT, Tseng HY, Huang CL, Chen CT, Jan JJ, Chou MC, Shia KS, Chiang KH. Protective Effect of CXCR4 Antagonist DBPR807 against Ischemia-Reperfusion Injury in a Rat and Porcine Model of Myocardial Infarction: Potential Adjunctive Therapy for Percutaneous Coronary Intervention. Int J Mol Sci 2022; 23:ijms231911730. [PMID: 36233031 PMCID: PMC9570210 DOI: 10.3390/ijms231911730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
CXCR4 antagonists have been claimed to reduce mortality after myocardial infarction in myocardial infarction (MI) animals, presumably due to suppressing inflammatory responses caused by myocardial ischemia-reperfusion injury, thus, subsequently facilitating tissue repair and cardiac function recovery. This study aims to determine whether a newly designed CXCR4 antagonist DBPR807 could exert better vascular-protective effects than other clinical counterparts (e.g., AMD3100) to alleviate cardiac damage further exacerbated by reperfusion. Consequently, we find that instead of traditional continuous treatment or multiple-dose treatment at different intervals of time, a single-dose treatment of DBPR807 before reperfusion in MI animals could attenuate inflammation via protecting oxidative stress damage and preserve vascular/capillary density and integrity via mobilizing endothelial progenitor cells, leading to a desirable fibrosis reduction and recovery of cardiac function, as evaluated with the LVEF (left ventricular ejection fraction) in infarcted hearts in rats and mini-pigs, respectively. Thus, it is highly suggested that CXCR4 antagonists should be given at a single high dose prior to reperfusion to provide the maximal cardiac functional improvement. Based on its favorable efficacy and safety profiles indicated in tested animals, DBPR807 has a great potential to serve as an adjunctive medicine for percutaneous coronary intervention (PCI) therapies in acute MI patients.
Collapse
Affiliation(s)
- Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Jui Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Tsung-Chin Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Huan-Yi Tseng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jiing-Jyh Jan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Ming-Chen Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (K.-S.S.); (K.-H.C.)
| | - Kuang-Hsing Chiang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department of Cardiology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan
- Correspondence: (K.-S.S.); (K.-H.C.)
| |
Collapse
|
36
|
Bauer CJ, Findlay M, Koliamitra C, Zimmer P, Schick V, Ludwig S, Gurtner GC, Riedel B, Schier R. Preoperative exercise induces endothelial progenitor cell mobilisation in patients undergoing major surgery – A prospective randomised controlled clinical proof-of-concept trial. Heliyon 2022; 8:e10705. [PMID: 36200018 PMCID: PMC9529507 DOI: 10.1016/j.heliyon.2022.e10705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Prehabilitation is increasingly recognised as a therapeutic option to reduce postoperative complications. Investigating the beneficial effects of exercise on cellular mechanisms, we have previously shown that a single episode of exhaustive exercise effectively stimulates endothelial progenitor cells (a cell population associated with vascular maintenance, repair, angiogenesis, and neovascularization) in correlation with fewer postoperative complications, despite the ongoing debate about the appropriate cell surface marker profiles of these cells (common phenotypical definitions include CD45dim, CD133+, CD34+ and/or CD31+). In order to translate these findings into clinical application, a feasible prehabilitation programme achieving both functional and cellular benefits in a suitable timeframe to expedite surgery is necessary. Objective The objective of this study was to test the hypothesis that a four-week prehabilitation programme of vigorous-intensity interval exercise training is feasible, increases physical capacity (primary outcome) and the circulatory number of endothelial progenitor cells within peripheral blood. Methods In this unblinded, parallel-group, randomised controlled proof-of-concept clinical trial (German Clinical Trial Register number: DRKS00000527) conducted between 01st December 2014 and 30th November 2016, fifteen female adult patients scheduled for incontinence surgery with abdominal laparotomy at the University Hospital Cologne were allocated to either an exercise (n = 8, exclusion of 1 patient, analysed n = 7) or non-exercise group (n = 7, exclusion of 1 patient, analysed n = 6). The exercise group's intervention consisted of a vigorous-intensity interval training for four weeks preoperatively. Cardiopulmonary Exercise Testing accompanied by peripheral blood collection was performed before and after the (non-)training phase. Cellular investigations were conducted by flow cytometry and cluster-based analyses. Results Vigorous-intensity interval training over four weeks was feasible in the exercise group (successful completion by 8 out of 8 patients without any harms), with significant improvements in patients' functional capacity (increased oxygen uptake at anaerobic threshold [intervention group mean + 1.71 ± 3.20 mL/min/kg vs. control group mean −1.83 ± 2.14 mL/min/kg; p = 0.042] and peak exercise [intervention group mean + 1.71 ± 1.60 mL/min/kg vs. control group mean −1.67 ± 1.37 mL/min/kg; p = 0.002]) and a significant increase in the circulatory number of endothelial progenitor cells (proportionate CD45dim/CD14dim/CD133+/CD309+/CD34+/CD31 + subpopulation within the circulating CD45-pool [p = 0.016]). Conclusions We introduce a novel prehabilitation concept that shows effective stimulation of an endothelial progenitor cell subpopulation within four weeks of preoperative exercise, serving as a clinical cell-mediated intervention with the aim to reduce surgical complications. Funding Institutional funding. DFG (German Research Foundation, 491454339) support for the Article Processing Charge.
Collapse
Affiliation(s)
- Claus Juergen Bauer
- Department of Internal Medicine—Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Michael Findlay
- Department of Surgery, Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Christina Koliamitra
- Institute for Cardiovascular Research and Sports Medicine, German Sports University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Institute of Sports and Sports Medicine, TU Dortmund University, Dortmund, Germany
| | - Volker Schick
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sebastian Ludwig
- Department of Obstetrics and Gynaecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Geoffrey C. Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, USA
| | - Bernhard Riedel
- Department of Anaesthetics, Perioperative Medicine and Pain Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Robert Schier
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Corresponding author.
| |
Collapse
|
37
|
Karakota M, Gounari E, Koliakou I, Papaioannou M, Papanikolaou NA, Koliakos G. Induced differentiation and molecular characterization of monocytes-derived multipotential cells generated from commonly discarded leukapheresis filters. Tissue Cell 2022; 77:101825. [DOI: 10.1016/j.tice.2022.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
38
|
Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int J Mol Sci 2022; 23:ijms23147697. [PMID: 35887039 PMCID: PMC9318195 DOI: 10.3390/ijms23147697] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The challenges and issues surrounding the use of EPCs and the current paradigm being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. It has been observed that controversies have emerged regarding the isolation techniques and classification and origin of EPCs. This manuscript attempts to highlight the concept of EPCs in a sequential manner, from the initial discovery to the present (origin, sources of EPCs, isolation, and identification techniques). Human and murine EPC marker diversity is also discussed. Additionally, this manuscript is aimed at summarizing our current and future prospects regarding the crosstalk of EPCs with the biology of hematopoietic cells and culture techniques in the context of regeneration-associated cells (RACs).
Collapse
|
39
|
"Endothelial Antibody Factory" at the Blood Brain Barrier: Novel Approach to Therapy of Neurodegenerative Diseases. Pharmaceutics 2022; 14:pharmaceutics14071418. [PMID: 35890313 PMCID: PMC9320725 DOI: 10.3390/pharmaceutics14071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The failures of anti-β-amyloid immunotherapies suggested that the very low fraction of injected antibodies reaching the brain parenchyma due to the filtering effect of the BBB may be a reason for the lack of therapeutic effect. However, there is no treatment, as yet, for the amyotrophic lateral sclerosis (ALS) despite substantial evidence existing of the involvement of TDP-43 protein in the evolution of ALS. To circumvent this filtering effect, we have developed a novel approach to facilitate the penetration of antibody fragments (Fabs) into the brain parenchyma. Leveraging the homing properties of endothelial progenitor cells (EPCs), we transfected, ex vivo, such cells with vectors encoding anti-β-amyloid and anti-TDP43 Fabs turning them into an “antibody fragment factory”. When injected these cells integrate into the BBB, where they secrete anti-TDP43 Fabs. The results showed the formation of tight junctions between the injected engineered EPCs and the unlabeled resident endothelial cells. When the EPCs were further modified to express the anti-TDP43 Fab, we could observe integration of these cells into the vasculature and the secretion of Fabs. Results confirm that production and secretion of Fabs at the BBB level leads to their migration to the brain parenchyma where they might exert a therapeutic effect.
Collapse
|
40
|
Short WD, Steen E, Kaul A, Wang X, Olutoye OO, Vangapandu HV, Templeman N, Blum AJ, Moles CM, Narmoneva DA, Crombleholme TM, Butte MJ, Bollyky PL, Keswani SG, Balaji S. IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3. FASEB J 2022; 36:e22298. [PMID: 35670763 PMCID: PMC9796147 DOI: 10.1096/fj.201901024rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to de novo angiogenesis, tissue regeneration, and remodeling. Interleukin 10 (IL-10), an anti-inflammatory cytokine that primarily signals via STAT3, has been shown to drive EPC recruitment to injured tissues. Our previous work demonstrated that overexpression of IL-10 in dermal wounds promotes regenerative tissue repair via STAT3-dependent regulation of fibroblast-specific hyaluronan synthesis. However, IL-10's role and specific mode of action on EPC recruitment, particularly in dermal wound healing and neovascularization in both normal and diabetic wounds, remain to be defined. Therefore, inducible skin-specific STAT3 knockdown mice were studied to determine IL-10's impact on EPCs, dermal wound neovascularization and healing, and whether it is STAT3-dependent. We show that IL-10 overexpression significantly elevated EPC counts in the granulating wound bed, which was associated with robust capillary lumen density and enhanced re-epithelialization of both control and diabetic (db/db) wounds at day 7. We noted increased VEGF and high C-X-C motif chemokine 12 (CXCL12) levels in wounds and a favorable CXCL12 gradient at day 3 that may support EPC mobilization and infiltration from bone marrow to wounds, an effect that was abrogated in STAT3 knockdown wounds. These findings were supported in vitro. IL-10 promoted VEGF and CXCL12 synthesis in primary murine dermal fibroblasts, with blunted VEGF expression upon blocking CXCL12 in the media by antibody binding. IL-10-conditioned fibroblast media also significantly promoted endothelial sprouting and network formation. In conclusion, these studies demonstrate that overexpression of IL-10 in dermal wounds recruits EPCs and leads to increased vascular structures and faster re-epithelialization.
Collapse
Affiliation(s)
- Walker D. Short
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Emily Steen
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Aditya Kaul
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Xinyi Wang
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Oluyinka O. Olutoye
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Hima V. Vangapandu
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Natalie Templeman
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Alexander J. Blum
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Chad M. Moles
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Daria A. Narmoneva
- Biomedical EngineeringDepartment of Biomedical, Chemical and Environmental EngineeringCollege of Engineering and Applied SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Timothy M. Crombleholme
- Division of Pediatric General Thoracic and Fetal SurgeryConnecticut Children’s HospitalUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA,Fetal Care Center DallasDallasTexasUSA
| | - Manish J. Butte
- Division of ImmunologyAllergy, and RheumatologyDepartments of Pediatrics and Microbiology, Immunology, and Molecular GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Paul L. Bollyky
- Division of Infectious DiseasesDepartment of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Sundeep G. Keswani
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Swathi Balaji
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| |
Collapse
|
41
|
El Hage R, Knippschild U, Arnold T, Hinterseher I. Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines 2022; 10:1507. [PMID: 35884812 PMCID: PMC9312797 DOI: 10.3390/biomedicines10071507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a severe complication of diabetes and a challenging medical condition. Conventional treatments for DFU have not been effective enough to reduce the amputation rates, which urges the need for additional treatment. Stem cell-based therapy for DFU has been investigated over the past years. Its therapeutic effect is through promoting angiogenesis, secreting paracrine factors, stimulating vascular differentiation, suppressing inflammation, improving collagen deposition, and immunomodulation. It is controversial which type and origin of stem cells, and which administration route would be the most optimal for therapy. We reviewed the different types and origins of stem cells and routes of administration used for the treatment of DFU in clinical and preclinical studies. Diabetes leads to the impairment of the stem cells in the diseased patients, which makes it less ideal to use autologous stem cells, and requires looking for a matching donor. Moreover, angioplasty could be complementary to stem cell therapy, and scaffolds have a positive impact on the healing process of DFU by stem cell-based therapy. In short, stem cell-based therapy is promising in the field of regenerative medicine, but more studies are still needed to determine the ideal type of stem cells required in therapy, their safety, proper dosing, and optimal administration route.
Collapse
Affiliation(s)
- Racha El Hage
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Tobias Arnold
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
- Berlin Institute of Health, Vascular Surgery Clinic, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane und der Brandenburgischen Technischen Universität Cottbus—Senftenberg, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
42
|
Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells Int 2022; 2022:4460041. [PMID: 35615696 PMCID: PMC9126670 DOI: 10.1155/2022/4460041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) dysfunction has been implicated in a variety of pathological conditions. The collection of ECs from patients is typically conducted postmortem or through invasive procedures, such as surgery and interventional procedures, hampering efforts to clarify the role of ECs in disease onset and progression. In contrast, endothelial colony-forming cells (ECFCs), also termed late endothelial progenitor cells, late outgrowth endothelial cells, blood outgrowth endothelial cells, or endothelial outgrowth cells, are obtained in a minimally invasive manner, namely, by the culture of human peripheral blood mononuclear cells in endothelial growth medium. ECFCs resemble mature ECs phenotypically, genetically, and functionally, making them excellent surrogates for ECs. Numerous studies have been performed that examined ECFC function in conditions such as coronary artery disease, diabetes mellitus, hereditary hemorrhagic telangiectasia, congenital bicuspid aortic valve disease, pulmonary arterial hypertension, venous thromboembolic disease, and von Willebrand disease. Here, we provide an updated review of studies using ECFCs that were performed to better understand the pathophysiology of disease. We also discuss the potential of ECFCs as disease biomarkers and the standardized methods to culture, quantify, and evaluate ECFCs and suggest the future direction of research in this field.
Collapse
|
43
|
MicroRNA-132-3p, Downregulated in Myeloid Angiogenic Cells from Hereditary Hemorrhagic Telangiectasia Patients, Is Enriched in the TGFβ and PI3K/AKT Signalling Pathways. Genes (Basel) 2022; 13:genes13040665. [PMID: 35456471 PMCID: PMC9027908 DOI: 10.3390/genes13040665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background. Hereditary hemorrhagic telangiectasia (HHT) is a rare, autosomal dominant genetic disorder characterized by life-threatening vascular dysplasia. Myeloid angiogenic cells (MACs), alternatively called early endothelial progenitor cells or circulating angiogenic cells, do not directly incorporate into developing blood vessels, but augment angiogenesis in a paracrine manner. MAC dysfunction has been reported in HHT. MicroRNAs (miRNAs) regulate cellular function by modulating gene expression post-transcriptionally. To date, the role of miRNAs in HHT MAC dysfunction has not been documented. Objective. The goal of this study was to comparatively profile miRNAs in HHT patient and control MACs to identify dysregulated miRNAs that may be responsible for the observed MAC dysfunction in HHT. Methodology/Results. Twenty-three dysregulated miRNAs (twenty-one upregulated and two downregulated) in HHT MACs were identified with a TaqMan miRNA microarray. Pathway enrichment analysis showed that the dysregulated miRNAs were significantly enriched in pathways involved in HHT pathogenesis, such as the transforming growth factor β (TGFβ), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and Hippo signalling pathways. Furthermore, miR-132-3p was determined to be significantly reduced in HHT MACs compared with controls by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Bioinformatic analysis revealed that miR-132-3p is significantly enriched in the TGFβ and PI3K/AKT signalling pathways, targeting SMAD4, an effector of the TGFβ signalling pathway and RASA1, a negative regulator of the PI3K/AKT signalling pathway, respectively. Conclusion. MiRNA dysregulation, specifically reduced expression of miR-132-3p, in HHT MACs was identified. The dysregulated miRNAs are significantly enriched in the TGFβ, PI3K/AKT, and Hippo signalling pathways. These data suggest that alteration in miRNA expression may impair these pathways and contribute to MAC dysfunction in HHT.
Collapse
|
44
|
Zhang H, Yamaguchi T, Kokubu Y, Kawabata K. Transient ETV2 Expression Promotes the Generation of Mature Endothelial Cells from Human Pluripotent Stem Cells. Biol Pharm Bull 2022; 45:483-490. [DOI: 10.1248/bpb.b21-00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongyan Zhang
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health, and Nutrition
| | - Yasuhiro Kokubu
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health, and Nutrition
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health, and Nutrition
| |
Collapse
|
45
|
Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, Cool S, Lewinson D, Seliktar D. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen Med 2022; 16:380-395. [PMID: 35119200 PMCID: PMC9303443 DOI: 10.1002/term.3285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The ability to repair critical‐sized long‐bone injuries using growth factor and cell delivery was investigated using hydrogel biomaterials. Physiological doses of the recombinant human bone morphogenic protein‐2 (rhBMP2) were delivered in a sustained manner from a biodegradable hydrogel containing peripheral human blood‐derived endothelial progenitor cells (hEPCs). The biodegradable implants made from polyethylene glycol (PEG) and denatured fibrinogen (PEG‐fibrinogen, PF) were loaded with 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs. The safety and efficacy of the implant were tested in a rodent model of a critical‐size long‐bone defect. The hydrogel implants were formed ex‐situ and placed into defects in the tibia of athymic nude rats and analyzed for bone repair after 13 weeks following surgery. The hydrogels containing a combination of 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs were compared to control hydrogels containing 7.7 μg/ml of rhBMP2 only, 2.5 × 106 cells/ml hEPCs only, or bare hydrogels. Assessments of bone repair include histological analysis, bone formation at the site of implantation using quantitative microCT, and assessment of implant degradation. New bone formation was detected in all treated animals, with the highest amounts found in the treatments that included animals that combined the PF implant with rhBMP2. Moreover, statistically significant increases in the tissue mineral density (TMD), trabecular number and trabecular thickness were observed in defects treated with rhBMP2 compared to non‐rhBMP2 defects. New bone formation was significantly higher in the hEPC‐treated defects compared to bare hydrogel defects, but there were no significant differences in new bone formation, trabecular number, trabecular thickness or TMD at 13 weeks when comparing the rhBMP2 + hEPCs‐treated defects to rhBMP2‐treated defects. The study concludes that the bone regeneration using hydrogel implants containing hEPCs are overshadowed by enhanced osteogenesis associated with sustained delivery of rhBMP2.
Collapse
Affiliation(s)
- Talia Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa, Israel
| | - Tova Bick
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Lena Hasanov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tan Tuan Chun
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Simon Cool
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Dina Lewinson
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
46
|
Saito N, Shirado T, Funabashi-Eto H, Wu Y, Mori M, Asahi R, Yoshimura K. Purification and characterization of human adipose-resident microvascular endothelial progenitor cells. Sci Rep 2022; 12:1775. [PMID: 35110646 PMCID: PMC8811023 DOI: 10.1038/s41598-022-05760-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Human adipose tissue is a rich source of adipose-derived stem cells (ASCs) and vascular endothelial progenitor cells (EPCs). However, no standardized method has been established for the isolation and purification of adipose-derived EPCs (AEPCs). The aim of this study was to establish a method for the isolation and purification of AEPCs. The stromal vascular fraction (SVF) was extracted from human lipoaspirates, and the CD45−CD31+ fraction of the SVF was collected by magnetic-activated cell sorting (MACS). The CD45−CD31+ fraction was cultured for 4.5 days, followed by a second MACS separation to collect the CD31+ fraction. Purified AEPCs were expanded without being overwhelmed by proliferating ASCs, indicating that a high level (> 95%) of AEPC purification is a key factor for their successful isolation and expansion. AEPCs exhibited typical endothelial markers, including CD31, von Willebrand factor, and the isolectin-B4 binding capacity. AEPCs formed colonies, comparable to cultured human umbilical vein endothelial cells (HUVECs). Both AEPCs and HUVECs formed capillary-like networks in the tube formation assay, with no significant difference in network lengths. We are the first to establish a purification and expansion method to isolate these cells. Because adipose tissue is a clinically accessible and abundant tissue, AEPCs may have potential advantages as a therapeutic tool for regenerative medicine.
Collapse
Affiliation(s)
- Natsumi Saito
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takako Shirado
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hitomi Funabashi-Eto
- Department of Plastic Surgery, Federation of National Public Service Personnel Mutual Aid Associations, Hamanomachi Hospital, 3-3-1, Nagahama, Chuou-ku, Fukuoka, 810-8539, Japan
| | - Yunyan Wu
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masanori Mori
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Rintaro Asahi
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kotaro Yoshimura
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
47
|
Yoshimi R, Nakajima H. Current State and Issues of Regenerative Medicine for Rheumatic Diseases. Front Med (Lausanne) 2022; 9:813952. [PMID: 35155499 PMCID: PMC8831787 DOI: 10.3389/fmed.2022.813952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The prognosis of rheumatic diseases is generally better than that of malignant diseases. However, some cases with poor prognoses resist conventional therapies and cause irreversible functional and organ damage. In recent years, there has been much research on regenerative medicine, which uses stem cells to restore the function of missing or dysfunctional tissues and organs. The development of regenerative medicine is also being attempted in rheumatic diseases. In diseases such as systemic sclerosis (SSc), systemic lupus erythematosus (SLE), and rheumatoid arthritis, hematopoietic stem cell transplantation has been attempted to correct and reconstruct abnormalities in the immune system. Mesenchymal stem cells (MSCs) have also been tried for the treatment of refractory skin ulcers in SSc using the ability of MSCs to differentiate into vascular endothelial cells and for the treatment of systemic lupus erythematosus SLE using the immunosuppressive effect of MSCs. CD34-positive endothelial progenitor cells (EPCs), which are found in the mononuclear cell fraction of bone marrow and peripheral blood, can differentiate into vascular endothelial cells at the site of ischemia. Therefore, EPCs have been used in research on vascular regeneration therapy for patients with severe lower limb ischemia caused by rheumatic diseases such as SSc. Since the first report of induced pluripotent stem cells (iPSCs) in 2007, research on regenerative medicine using iPSCs has been actively conducted, and their application to rheumatic diseases is expected. However, there are many safety issues and bioethical issues involved in regenerative medicine research, and it is essential to resolve these issues for practical application and spread of regenerative medicine in the future. The environment surrounding regenerative medicine research is changing drastically, and the required expertise is becoming higher. This paper outlines the current status and challenges of regenerative medicine in rheumatic diseases.
Collapse
|
48
|
Wu L, Chen W, Chen Z, Cao J, Dai X, Chen H, Tan X, Yu M. Protocol update for late endothelial progenitor cells identified by double-positive staining. J Cell Mol Med 2022; 26:306-311. [PMID: 34904385 PMCID: PMC8743663 DOI: 10.1111/jcmm.17079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/10/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs), which are precursors of endothelial cells (ECs), have the capacity to circulate, proliferate and differentiate into mature ECs. EPCs are primarily identified by the uptake of 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labelled acetylated low-density lipoprotein (Dil-acLDL) and the binding of fluorescein-isothiocyanate (FITC)-conjugated Ulex europaeus agglutinin lectin (FITC-UEA-I). However, the cytoplasm and nucleus are usually stained by FITC-UEA-I via a typical method to double-stain late EPCs. It is necessary to explore a new method to improve the quality of fluorescence photomicrographs of late EPCs stained with FITC-UEA-I. Here, we described an updated protocol for double-staining late EPCs with Dil-acLDL and FITC-UEA-I, with the cells more optimally stained with FITC-UEA-I.
Collapse
Affiliation(s)
- Lishan Wu
- Department of Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Weijie Chen
- The First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Zeliang Chen
- Department of CardiologyThe First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Jing Cao
- Department of CardiologyThe First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Xiaoqing Dai
- Department of CardiologyThe First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Hongjuan Chen
- Department of CardiologyThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Xuerui Tan
- Department of CardiologyThe First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Min Yu
- Department of Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
49
|
Lamin V, Verry J, Eigner-Bybee I, Fuqua JD, Wong T, Lira VA, Dokun AO. Modulation of miR-29a and ADAM12 Reduces Post-Ischemic Skeletal Muscle Injury and Improves Perfusion Recovery and Skeletal Muscle Function in a Mouse Model of Type 2 Diabetes and Peripheral Artery Disease. Int J Mol Sci 2021; 23:429. [PMID: 35008854 PMCID: PMC8745107 DOI: 10.3390/ijms23010429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/15/2022] Open
Abstract
Both Type 1 diabetes mellitus (DM1) and type 2 diabetes mellitus (DM2) are associated with an increased risk of limb amputation in peripheral arterial disease (PAD). How diabetes contributes to poor PAD outcomes is poorly understood but may occur through different mechanisms in DM1 and DM2. Previously, we identified a disintegrin and metalloproteinase gene 12 (ADAM12) as a key genetic modifier of post-ischemic perfusion recovery. In an experimental PAD, we showed that ADAM12 is regulated by miR-29a and this regulation is impaired in ischemic endothelial cells in DM1, contributing to poor perfusion recovery. Here we investigated whether miR-29a regulation of ADAM12 is altered in experimental PAD in the setting of DM2. We also explored whether modulation of miR-29a and ADAM12 expression can improve perfusion recovery and limb function in mice with DM2. Our result showed that in the ischemic limb of mice with DM2, miR-29a expression is poorly downregulated and ADAM12 upregulation is impaired. Inhibition of miR-29a and overexpression of ADAM12 improved perfusion recovery, reduced skeletal muscle injury, improved muscle function, and increased cleaved Tie 2 and AKT phosphorylation. Thus, inhibition of miR-29a and or augmentation of ADAM12 improves experimental PAD outcomes in DM2 likely through modulation of Tie 2 and AKT signalling.
Collapse
Affiliation(s)
- Victor Lamin
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.L.); (J.V.); (I.E.-B.); (T.W.)
| | - Joseph Verry
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.L.); (J.V.); (I.E.-B.); (T.W.)
| | - Isaac Eigner-Bybee
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.L.); (J.V.); (I.E.-B.); (T.W.)
| | - Jordan D. Fuqua
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.D.F.); (V.A.L.)
| | - Thomas Wong
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.L.); (J.V.); (I.E.-B.); (T.W.)
| | - Vitor A. Lira
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.D.F.); (V.A.L.)
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ayotunde O. Dokun
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.L.); (J.V.); (I.E.-B.); (T.W.)
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.D.F.); (V.A.L.)
| |
Collapse
|
50
|
Xu S, Qiu Y, Tao J. The challenges and optimization of cell-based therapy for cardiovascular disease. J Transl Int Med 2021; 9:234-238. [PMID: 35136722 PMCID: PMC8802397 DOI: 10.2478/jtim-2021-0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the hope of achieving real cardiovascular repair, cell-based therapy raised as a promising strategy for the treatment of cardiovascular disease (CVD) in the past two decades. Various types of cells have been studied for their reparative potential for CVD in the ensuing years. Despite the exciting results from animal experiments, the outcome of clinical trials is unsatisfactory and the development of cell-based therapy for CVD has hit a plateau nowadays. Thus, it is important to summarize the obstacles we are facing in this field in order to explore possible solutions for optimizing cell-based therapy and achieving real clinical application.
Collapse
Affiliation(s)
- Shiyue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou510080, Guangdong Province, China
- Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at BirminghamBirminghamUnited States
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou510080, Guangdong Province, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou510080, Guangdong Province, China
| |
Collapse
|