1
|
Patil A, Patil S, Anupama CE, Rajarajan S, Nimbalkar VP, Amirtham U, Champaka G, Suma MN, Patil GV, Nargund A, Pallavi VR, Jacob L, Premalatha CS, Prabhu JS. BRCA1 expression, its correlation with clinicopathological features, and response to neoadjuvant chemotherapy in high-grade serous ovarian cancer. J Obstet Gynaecol Res 2023; 49:2875-2882. [PMID: 37737055 DOI: 10.1111/jog.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
AIM In high-grade serous ovarian cancers (HG-SOC), BRCA1 mutation is one of the predominant mutations reported by various studies. However, the non-mutational mechanisms of BRCA pathway inactivation in HG-SOC are unclear. We evaluated BRCA1 inactivation by estimating its expression with its repressor, ID4, in primary and neoadjuvant chemotherapy (NACT)-treated HG-SOC tumors with known therapeutic responses. METHODS We evaluated the expression pattern of BRCA1 protein by immunohistochemistry in 119 cases of HG-SOC from a hospital cohort consisting of primary (N = 69) and NACT-treated (N = 50) tumors. Histological patterns (SET), stromal infiltration by lymphocytes (sTILs), and chemotherapy response score (CRS) were estimated by microscopic examination. Gene expression levels of BRCA1, and its repressor ID4, were estimated by qPCR. The association of BRCA1 protein and mRNA with clinicopathological features was studied. The relevance of the BRCA1/ID4 ratio was evaluated in tumors with different CRS. RESULTS BRCA1 protein expression was observed in 12% of primary and 19% of NACT-treated HG-SOC tumors. We observed moderate concordance between BRCA1 protein and mRNA expression (AUC = 0.677). High BRCA1 mRNA expression was significantly associated with a more frequent SET pattern (p = 0.024), higher sTILs density (p = 0.042), and increased mitosis (p = 0.028). BRCA1-negative tumors showed higher expression of ID4 though not statistically significant. A higher BRCA1/ID4 ratio was associated with high sTILs density in primary (p = 0.042) and NACT-treated tumors (p = 0.040). CONCLUSION Our findings show the utility of the BRCA1/ID4 ratio in predicting neoadjuvant therapy response, which needs further evaluation in larger cohorts with long-term outcomes.
Collapse
Affiliation(s)
- Akkamahadevi Patil
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Sharada Patil
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - C E Anupama
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Savitha Rajarajan
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Vidya P Nimbalkar
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Usha Amirtham
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - G Champaka
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - M N Suma
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Geetha V Patil
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Ashwini Nargund
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - V R Pallavi
- Department of Gynecological Oncology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Linu Jacob
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - C S Premalatha
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| |
Collapse
|
2
|
Alidoost Z, Attari F, Saadatpour F, Arefian E. Inhibitory effect of miR342 on the progression of triple-negative breast cancer cells in vitro and in the mice model. BIOIMPACTS : BI 2023; 14:27758. [PMID: 38327636 PMCID: PMC10844590 DOI: 10.34172/bi.2023.27758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 06/12/2023] [Indexed: 02/09/2024]
Abstract
Introduction Breast cancer is the most common cancer in women worldwide, and the triple-negative subtype is the most invasive, with limited therapeutic options. Since miRNAs are involved in many cellular processes, they harbor great value for cancer treatment. Therefore, in this study, we have investigated the anti-proliferative and anti-invasive roles of miR342 in 4T1 triple-negative cells in vitro and also studied the effect of this miRNA on tumor progression and the expression of its target genes in vivo. Methods 4T1 cells were transduced with conditioned media of miR342-transfected Hek-LentiX cells. MTT and clonogenic assays were used to assess the viability and colony-forming ability of 4T1 cells. Apoptosis and invasion rates were respectively evaluated by annexin/7-AAD and wound healing assays. At last, in vivo tumor progression was evaluated using H&E staining, real-time PCR, and immunohistochemistry. Results The viability of transduced-4T1 cells reduced significantly 48 hours after cell seeding and colony forming ability of these cells reduced to 50% of the control group. Also, miR342 imposed apoptotic and anti-invasive influence on these cells in vitro. A 30-day follow-up of the breast tumor in the mice model certified significant growth suppression along with reduced mitotic index and tumor grade in the treatment group. Moreover, decreased expression of Bcl2l1, Mcl1, and ID4, as miR342 target genes, was observed, accompanied by reduced expression of VEGF and Bcl2/Bax ratio at the protein level. Conclusion To conclude, our data support the idea that miR342 might be a potential therapeutic target for the treatment of triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Zahra Alidoost
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Villegas-Ruíz V, Medina-Vera I, Arellano-Perdomo P, Castillo-Villanueva A, Galván-Diaz CA, Paredes-Aguilera R, Rivera-Luna R, Juárez-Méndez S. Low Expression of BRCA1 as a Potential Relapse Predictor in B-Cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2023; 45:e167-e173. [PMID: 36730467 DOI: 10.1097/mph.0000000000002595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/21/2022] [Indexed: 02/04/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the most common childhood hematological malignancy worldwide. Treatment outcomes have improved dramatically in recent years; despite this, relapse is still a problem, and the potential molecular explanation for this remains an important field of study. We performed microarray and single-cell RNA-Seq data mining, and we selected significant data with a P -value<0.05. We validated BRCA1 gene expression by means of quantitative (reverse transcription-polymerase chain reaction.) We performed statistical analysis and considered a P -value<0.05 significant. We identified the overexpression of breast cancer 1, early onset (BRCA1; P -value=2.52 -134 ), by means of microarray analysis. Moreover, the normal distribution of BRCA1 expression in healthy bone marrow. In addition, we confirmed the increases in BRCA1 expression using real-time (reverse transcription-polymerase chain reaction and determined that it was significantly reduced in patients with relapse ( P -values=0.026). Finally, we identified that the expression of the BRCA1 gene could predict early relapse ( P -values=0.01). We determined that low expression of BRCA1 was associated with B-cell acute lymphoblastic leukemia relapse and could be a potential molecular prognostic marker.
Collapse
|
5
|
Tsang T, He Q, Cohen EB, Stottrup C, Lien EC, Zhang H, Lau CG, Chin YR. Upregulation of Receptor Tyrosine Kinase Activity and Stemness as Resistance Mechanisms to Akt Inhibitors in Breast Cancer. Cancers (Basel) 2022; 14:5006. [PMID: 36291790 PMCID: PMC9599323 DOI: 10.3390/cancers14205006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
The PI3K/Akt pathway is frequently deregulated in human cancers, and multiple Akt inhibitors are currently under clinical evaluation. Based on the experience from other molecular targeted therapies, however, it is likely that acquired resistance will be developed in patients treated with Akt inhibitors. We established breast cancer models of acquired resistance by prolonged treatment of cells with allosteric or ATP-competitive Akt inhibitors. Phospho-Receptor tyrosine kinase (Phospho-RTK) arrays revealed hyper-phosphorylation of multiple RTKS, including EGFR, Her2, HFGR, EhpB3 and ROR1, in Akt-inhibitor-resistant cells. Importantly, resistance can be overcome by treatment with an EGFR inhibitor. We further showed that cancer stem cells (CSCs) are enriched in breast tumor cells that have developed resistance to Akt inhibitors. Several candidates of CSC regulators, such as ID4, are identified by RNA sequencing. Cosmic analysis indicated that sensitivity of tumor cells to Akt inhibitors can be predicted by ID4 and stem cell/epithelial-mesenchymal transition pathway targets. These findings indicate the potential of targeting the EGFR pathway and CSC program to circumvent Akt inhibitor resistance in breast cancer.
Collapse
Affiliation(s)
- Tiffany Tsang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Emily B. Cohen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Casey Stottrup
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Evan C. Lien
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Huiqi Zhang
- Department of Neuroscience, City University of Hong Kong, Hong Kong
| | - C. Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong
| | - Y. Rebecca Chin
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
- Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Cheng C, Feng X, Li X, Wu M. Robust analysis of cancer heterogeneity for high-dimensional data. Stat Med 2022; 41:5448-5462. [PMID: 36117143 DOI: 10.1002/sim.9578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/04/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
Cancer heterogeneity plays an important role in the understanding of tumor etiology, progression, and response to treatment. To accommodate heterogeneity, cancer subgroup analysis has been extensively conducted. However, most of the existing studies share the limitation that they cannot accommodate heavy-tailed or contaminated outcomes and also high dimensional covariates, both of which are not uncommon in biomedical research. In this study, we propose a robust subgroup identification approach based on M-estimators together with concave and pairwise fusion penalties, which advances from existing studies by effectively accommodating high-dimensional data containing some outliers. The penalties are applied on both latent heterogeneity factors and covariates, where the estimation is expected to achieve subgroup identification and variable selection simultaneously, with the number of subgroups being apriori unknown. We innovatively develop an algorithm based on parallel computing strategy, with a significant advantage of capable of processing large-scale data. The convergence property of the proposed algorithm, oracle property of the penalized M-estimators, and selection consistency of the proposed BIC criterion are carefully established. Simulation and analysis of TCGA breast cancer data demonstrate that the proposed approach is promising to efficiently identify underlying subgroups in high-dimensional data.
Collapse
Affiliation(s)
- Chao Cheng
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
| | - Xingdong Feng
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
| | - Xiaoguang Li
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
| | - Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
| |
Collapse
|
7
|
Nasif D, Real S, Roqué M, Branham MT. CDC42 as an epigenetic regulator of ID4 in triple-negative breast tumors. Breast Cancer 2022; 29:562-573. [DOI: 10.1007/s12282-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/09/2022] [Indexed: 12/01/2022]
|
8
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
9
|
Dai P, Zhu W, Yan B, Miao Y, Hu S, Gao X, Liu X, Zhang Y, Li G, Zhang T, Zhang H, Fan H. Regulation of ID4 In Vivo for Efficient Magnetothermal Therapy of Breast Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems School of Life Sciences Northwest University 229 Taibai North Road Xi'an 710069 China
| | - Wenjing Zhu
- National Engineering Research Center for Miniaturized Detection Systems School of Life Sciences Northwest University 229 Taibai North Road Xi'an 710069 China
| | - Bin Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University 229 Taibai North Road Xi'an 710069 China
| | - Yuqing Miao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| | - Shanshuang Hu
- National Engineering Research Center for Miniaturized Detection Systems School of Life Sciences Northwest University 229 Taibai North Road Xi'an 710069 China
| | - Xiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University 229 Taibai North Road Xi'an 710069 China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University 229 Taibai North Road Xi'an 710069 China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| | - Galong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University 229 Taibai North Road Xi'an 710069 China
| | - Tingbin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| | - Haiming Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University 229 Taibai North Road Xi'an 710069 China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| |
Collapse
|
10
|
Garcia-Escolano M, Montoyo-Pujol YG, Ortiz-Martinez F, Ponce JJ, Delgado-Garcia S, Martin TA, Ballester H, Aranda FI, Castellon-Molla E, Sempere-Ortells JM, Peiro G. ID1 and ID4 Are Biomarkers of Tumor Aggressiveness and Poor Outcome in Immunophenotypes of Breast Cancer. Cancers (Basel) 2021; 13:cancers13030492. [PMID: 33514024 PMCID: PMC7865969 DOI: 10.3390/cancers13030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Inhibitor of differentiation (ID) proteins are essential to promote proliferation during embryonic development, but they are silenced in most adult tissues. Evidence to date shows ID1 expression in many tumor types, including breast cancer. However, the role of the remaining ID family members, especially ID4, in breast cancer remains unclear. In this work, we aimed to assess the four ID genes expression in breast cancer cell lines and a long series of breast cancer samples and correlate them with clinicopathological features and patients’ survival. We observed a significantly higher expression of ID4 in tumor cell lines than the healthy breast epithelium cell line. We confirmed that the overexpression of ID1 and ID4 correlated with more aggressive phenotypes and poor survival in breast cancer patients’ samples. Our results support the importance of ID proteins as targets for the development of anti-cancer drugs. Abstract Inhibitor of differentiation (ID) proteins are a family of transcription factors that contribute to maintaining proliferation during embryogenesis as they avoid cell differentiation. Afterward, their expression is mainly silenced, but their reactivation and contribution to tumor development have been suggested. In breast cancer (BC), the overexpression of ID1 has been previously described. However, whether the remaining ID genes have a specific role in this neoplasia is still unclear. We studied the mRNA expression of all ID genes by q RT-PCR in BC cell lines and 307 breast carcinomas, including all BC subtypes. Our results showed that ID genes are highly expressed in all cell lines tested. However, ID4 presented higher expression in BC cell lines compared to a healthy breast epithelium cell line. In accordance, ID1 and ID4 were predominantly overexpressed in Triple-Negative and HER2-enriched samples. Moreover, high levels of both genes were associated with larger tumor size, histological grade 3, necrosis and vascular invasion, and poorer patients’ outcomes. In conclusion, ID1 and ID4 may act as biomarkers of tumor aggressiveness and worse prognosis in breast cancer, and they could be used as potential targets for new treatments discover.
Collapse
Affiliation(s)
- Marta Garcia-Escolano
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
- Correspondence: ; Tel.: +34-965-913953 (ext. 3952)
| | - Yoel G. Montoyo-Pujol
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
| | - Fernando Ortiz-Martinez
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
| | - Jose J. Ponce
- Medical Oncology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain;
| | - Silvia Delgado-Garcia
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - Tina A. Martin
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - Hortensia Ballester
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - F. Ignacio Aranda
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| | - Elena Castellon-Molla
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| | - J. Miguel Sempere-Ortells
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n. 03080-San Vicente del Raspeig, 03010 Alicante, Spain;
| | - Gloria Peiro
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| |
Collapse
|
11
|
Manasa P, Sidhanth C, Krishnapriya S, Vasudevan S, Ganesan TS. Oncogenes in high grade serous adenocarcinoma of the ovary. Genes Cancer 2020; 11:122-136. [PMID: 33488950 PMCID: PMC7805537 DOI: 10.18632/genesandcancer.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
High grade serous ovarian cancer is characterized by relatively few mutations occurring at low frequency, except in TP53. However other genetic aberrations such as copy number variation alter numerous oncogenes and tumor suppressor genes. Oncogenes are positive regulators of tumorigenesis and play a critical role in cancer cell growth, proliferation, and survival. Accumulating evidence suggests that they are crucial for the development and the progression of high grade serous ovarian carcinoma (HGSOC). Though many oncogenes have been identified, no successful inhibitors targeting these molecules and their associated pathways are available. This review discusses oncogenes that have been identified recently in HGSOC using different screening strategies. All the genes discussed in this review have been functionally characterized both in vitro and in vivo and some of them are able to transform immortalized ovarian surface epithelial and fallopian tube cells upon overexpression. However, it is necessary to delineate the molecular pathways affected by these oncogenes for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pacharla Manasa
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| |
Collapse
|
12
|
Jones MR, Peng PC, Coetzee SG, Tyrer J, Reyes ALP, Corona RI, Davis B, Chen S, Dezem F, Seo JH, Kar S, Dareng E, Berman BP, Freedman ML, Plummer JT, Lawrenson K, Pharoah P, Hazelett DJ, Gayther SA. Ovarian Cancer Risk Variants Are Enriched in Histotype-Specific Enhancers and Disrupt Transcription Factor Binding Sites. Am J Hum Genet 2020; 107:622-635. [PMID: 32946763 PMCID: PMC7536645 DOI: 10.1016/j.ajhg.2020.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022] Open
Abstract
Quantifying the functional effects of complex disease risk variants can provide insights into mechanisms underlying disease biology. Genome-wide association studies have identified 39 regions associated with risk of epithelial ovarian cancer (EOC). The vast majority of these variants lie in the non-coding genome, where they likely function through interaction with gene regulatory elements. In this study we first estimated the heritability explained by known common low penetrance risk alleles for EOC. The narrow sense heritability (hg2) of EOC overall and high-grade serous ovarian cancer (HGSOCs) were estimated to be 5%-6%. Partitioned SNP heritability across broad functional categories indicated a significant contribution of regulatory elements to EOC heritability. We collated epigenomic profiling data for 77 cell and tissue types from Roadmap Epigenomics and ENCODE, and from H3K27Ac ChIP-seq data generated in 26 ovarian cancer and precursor-related cell and tissue types. We identified significant enrichment of risk single-nucleotide polymorphisms (SNPs) in active regulatory elements marked by H3K27Ac in HGSOCs. To further investigate how risk SNPs in active regulatory elements influence predisposition to ovarian cancer, we used motifbreakR to predict the disruption of transcription factor binding sites. We identified 469 candidate causal risk variants in H3K27Ac peaks that are predicted to significantly break transcription factor (TF) motifs. The most frequently broken motif was REST (p value = 0.0028), which has been reported as both a tumor suppressor and an oncogene. Overall, these systematic functional annotations with epigenomic data improve interpretation of EOC risk variants and shed light on likely cells of origin.
Collapse
Affiliation(s)
- Michelle R Jones
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pei-Chen Peng
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simon G Coetzee
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jonathan Tyrer
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Alberto Luiz P Reyes
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rosario I Corona
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brian Davis
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephanie Chen
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Felipe Dezem
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Siddartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Eileen Dareng
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jasmine T Plummer
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kate Lawrenson
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul Pharoah
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Dennis J Hazelett
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
13
|
Baker LA, Holliday H, Roden D, Krisp C, Wu SZ, Junankar S, Serandour AA, Mohammed H, Nair R, Sankaranarayanan G, Law AMK, McFarland A, Simpson PT, Lakhani S, Dodson E, Selinger C, Anderson L, Samimi G, Hacker NF, Lim E, Ormandy CJ, Naylor MJ, Simpson K, Nikolic I, O'Toole S, Kaplan W, Cowley MJ, Carroll JS, Molloy M, Swarbrick A. Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer. Breast Cancer Res 2020; 22:63. [PMID: 32527287 PMCID: PMC7291584 DOI: 10.1186/s13058-020-01306-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- Mass Spectrometric Proteome Analysis, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sunny Z Wu
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Simon Junankar
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Aurelien A Serandour
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Hisham Mohammed
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Radhika Nair
- Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Geetha Sankaranarayanan
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Andrew M K Law
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrea McFarland
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Peter T Simpson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sunil Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, , Brisbane, QLD, Australia
| | - Eoin Dodson
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christina Selinger
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Goli Samimi
- National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Neville F Hacker
- School of Women's and Children's Health, University of New South Wales, and Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, NSW, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher J Ormandy
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Matthew J Naylor
- School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kaylene Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sandra O'Toole
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Warren Kaplan
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jason S Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mark Molloy
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
14
|
Wang X, Lu Q, Fei X, Zhao Y, Shi B, Li C, Chen H. Expression and Prognostic Value of Id-4 in Patients with Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1225-1234. [PMID: 32103990 PMCID: PMC7024802 DOI: 10.2147/ott.s230678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
Background Our previous study demonstrated that Id-1 may promote the tumorigenicity of esophageal squamous cell carcinoma (ESCC). Id-4 is another member of Id family, which is rare to be studied in ESCC. In this study, we investigated the expression of Id-4 in human ESCC specimens and determined whether Id-4 expression was associated with the clinicopathologic characteristic and the prognosis of ESCC patients. Methods We examined Id-4 expression using immunohistochemistry in 92 ESCC tissues and adjacent normal tissues. The association between Id-4 expression and clinical parameters and survival was evaluated by statistical analysis. Cox regression analyses were conducted to identify prognostic factors associated with overall survival (OS). In addition, we explored the functional mechanism of Id-4 in ESCC. Results Id-4 expression was significantly downregulated in ESCC tissues compared with adjacent normal tissues. The expression of Id-4 was associated negatively with pT stage (p=0.002), AJCC stage (p=0.008) and histologic differentiation (p<0.001). OS was more unfavorable in patients with low expression of Id-4 than those with high expression of ESCC patients (p=0.007). In subgroup analysis, low expression of Id-4 could reveal unfavorable OS of patients with pT1b/T2 stage (p=0.024) or with pN0/N1 stage (p=0.004). By univariate analysis, pT stage and Id-4 expression showed statistically significant associations with OS (p=0.025, p=0.01, respectively). By multivariate analysis, Id-4 expression was an independent prognostic factor in ESCC (p =0.038). In addition, we observed that Id-4 could decrease the levels of the p-Smad2, p-Smad3 and TGF-β1 in both Eca109 and TE1 cells, indicating Id-4 may inactivate the TGF-β signaling pathway. Conclusion Low expression of Id-4 suggested unfavorable prognosis for ESCC patients and could identify the prognosis in patients of early-stage tumors. The potential mechanism for Id-4’s tumor suppressor role in ESCC may be related to its inhibitory effect on TGF-β signaling pathway. Thus, we believe that Id-4 may be a promising prognostic marker and a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Qijue Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Bowen Shi
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chunguang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
15
|
Cheng D, Fan J, Ma Y, Zhou Y, Qin K, Shi M, Yang J. LncRNA SNHG7 promotes pancreatic cancer proliferation through ID4 by sponging miR-342-3p. Cell Biosci 2019; 9:28. [PMID: 30949340 PMCID: PMC6431029 DOI: 10.1186/s13578-019-0290-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/15/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Small nucleolar RNA host gene 7 (SNHG7) is a novel identified oncogenic gene in tumorigenesis. However, the role that SNHG7 plays in pancreatic cancer (PC) remains unclear. In this study, we aimed to investigate the functional effects of SNHG7 on PC and the possible mechanism. METHODS The expression levels of SNHG7 in tissues and cell lines were measured by RT-qPCR. Cell viability, apoptosis, migration and invasion were examined to explore the function of SNHG7 on PC. Bioinformatics methods were used to predict the target genes. The mechanism was further investigated by transfection with specific si-RNA, miRNA mimics or miRNA inhibitor. Tumor xenograft was carried out to verify the effects of SNHG7 in vivo. RESULTS We found that SNHG7 was overexpressed in both PC tissues and cell lines. High expression level of SNHG7 was correlated with the poor prognosis. SNHG7 knockdown inhibited the proliferation, migration and invasion of PC cells. Moreover, SNHG7 was found to regulate the expression of ID4 via sponging miR-342-3p. Additionally, this finding was supported by in vivo experiments. CONCLUSIONS LncRNA SNHG7 was overexpressed in PC tissues, and knockdown of SNHG7 suppressed PC cell proliferation, migration and invasion via miR-342-3p/ID4 axis. The results indicated that SNHG7 as a potential target for clinical treatment of PC.
Collapse
Affiliation(s)
- Dongfeng Cheng
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | | | - Yang Ma
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Yiran Zhou
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Kai Qin
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Minmin Shi
- Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingrui Yang
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| |
Collapse
|
16
|
Ebili HO, Iyawe VO, Adeleke KR, Salami BA, Banjo AA, Nolan C, Rakha E, Ellis I, Green A, Agboola AOJ. Checkpoint Kinase 1 Expression Predicts Poor Prognosis in Nigerian Breast Cancer Patients. Mol Diagn Ther 2018; 22:79-90. [PMID: 29075961 DOI: 10.1007/s40291-017-0302-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Checkpoint kinase 1 (CHEK1), a DNA damage sensor and cell death pathway stimulator, is regarded as an oncogene in tumours, where its activities are considered essential for tumourigenesis and the survival of cancer cells treated with chemotherapy and radiotherapy. In breast cancer, CHEK1 expression has been associated with an aggressive tumour phenotype, the triple-negative breast cancer subtype, an aberrant response to tamoxifen, and poor prognosis. However, the relevance of CHEK1 expression has, hitherto, not been investigated in an indigenous African population. We therefore aimed to investigate the clinicopathological, biological, and prognostic significance of CHEK1 expression in a cohort of Nigerian breast cancer cases. MATERIAL AND METHODS Tissue microarrays of 207 Nigerian breast cancer cases were tested for CHEK1 expression using immunohistochemistry. The clinicopathological, molecular, and prognostic characteristics of CHEK1-positive tumours were determined using the Chi-squared test and Kaplan-Meier and Cox regression analyses in SPSS Version 16. RESULTS Nuclear expression of CHEK1 was present in 61% of breast tumours and was associated with tumour size, triple-negative cancer, basal-like phenotype, the epithelial-mesenchymal transition, p53 over-expression, DNA homologous repair pathway dysfunction, and poor prognosis. CONCLUSIONS The rate expression of CHEK1 is high in Nigerian breast cancer cases and is associated with an aggressive phenotype and poor prognosis.
Collapse
Affiliation(s)
- Henry Okuchukwu Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria.
| | - Victoria O Iyawe
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | - Kikelomo Rachel Adeleke
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | | | - Adekunbiola Aina Banjo
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| | - Chris Nolan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ayodeji Olayinka Johnson Agboola
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu Campus, Hospital Road, Sagamu, Ogun State, Nigeria
| |
Collapse
|
17
|
Nasif D, Campoy E, Laurito S, Branham R, Urrutia G, Roqué M, Branham MT. Epigenetic regulation of ID4 in breast cancer: tumor suppressor or oncogene? Clin Epigenetics 2018; 10:111. [PMID: 30139383 PMCID: PMC6108146 DOI: 10.1186/s13148-018-0542-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Inhibitor of differentiation protein 4 (ID4) is a dominant negative regulator of the basic helix-loop-helix (bHLH) family of transcription factors. During tumorigenesis, ID4 may act as a tumor suppressor or as an oncogene in different tumor types. However, the role of ID4 in breast cancer is not clear where both an oncogenic and a tumor suppressor function have been attributed. Here, we hypothesize that ID4 behaves as both, but its role in breast differs according to the estrogen receptor (ER) status of the tumor. Methods ID4 expression was retrieved from TCGA database using UCSC Xena. Association between overall survival (OS) and ID4 was assessed using Kaplan–Meier plotter. Correlation between methylation and expression was analyzed using the MEXPRESS tool. In vitro experiments involved ectopic expression of ID4 in MCF-7, T47D, and MDA-MB231 breast cancer cell lines. Migration and colony formation capacity were assessed after transfection treatments. Gene expression was analyzed by ddPCR and methylation by MSP, MS-MLPA, or ddMSP. Results Data mining analysis revealed that ID4 expression is significantly lower in ER+ tumors with respect to ER− tumors or normal tissue. We also demonstrate that ID4 is significantly methylated in ER+ tumors. Kaplan–Meier analysis indicated that low ID4 expression levels were associated with poor overall survival in patients with ER+ tumors. In silico expression analysis indicated that ID4 was associated with the expression of key genes of the ER pathway only in ER+ tumors. In vitro experiments revealed that ID4 overexpression in ER+ cell lines resulted in decreased migration capacity and reduced number of colonies. ID4 overexpression induced a reduction in ER levels in ER+ cell lines, while estrogen deprivation with fulvestrant did not induce changes neither in ID4 methylation nor in ID4 expression. Conclusions We propose that ID4 is frequently silenced by promoter methylation in ER+ breast cancers and functions as a tumor suppressor gene in these tumors, probably due to its interaction with key genes of the ER pathway. Our present study contributes to the knowledge of the role of ID4 in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13148-018-0542-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Nasif
- IHEM, National University of Cuyo, CONICET, Mendoza, Argentina
| | - Emanuel Campoy
- IHEM, CONICET, Facultad de Ciencias Médicas, National University of Cuyo, Mendoza, Argentina
| | - Sergio Laurito
- IHEM, Faculty of Exact and Natural Sciences, National University of Cuyo, CONICET, Mendoza, Argentina
| | | | | | - María Roqué
- IHEM, Faculty of Exact and Natural Sciences, National University of Cuyo, CONICET, Mendoza, Argentina
| | - María T Branham
- IHEM, National University of Cuyo, CONICET, Mendoza, Argentina.
| |
Collapse
|
18
|
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53:59-74. [PMID: 30059727 DOI: 10.1016/j.semcancer.2018.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The current view is that breast cancer is a stem cell disease characterized by the existence of cancer cells with stem-like features and tumor-initiating potential. These cells are made responsible for tumor dissemination and metastasis. Common therapies by chemotherapeutic drugs fail to eradicate these cells and rather increase the pool of cancer stem cells in tumors, an effect that may increase the likelyhood of recurrence. Fifteen years after the first evidence for a small stem-like subpopulation playing a major role in breast cancer initiation has been published a large body of knowledge has been accumulated regarding the signaling cascades and proteins involved in maintaining stemness in breast cancer. Differences in the stem cell pool size and in mechanisms regulating stemness in the different breast cancer subtypes have emerged. Overall, this knowledge offers new approaches to intervene with breast cancer stem cell activity. New options are particularly needed for the treatment of triple-negative breast cancer subtype, which is particularly rich in cancer stem cells and is also the subtype for which specific therapies are still not available.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
19
|
Donzelli S, Milano E, Pruszko M, Sacconi A, Masciarelli S, Iosue I, Melucci E, Gallo E, Terrenato I, Mottolese M, Zylicz M, Zylicz A, Fazi F, Blandino G, Fontemaggi G. Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-associated macrophages. Breast Cancer Res 2018; 20:59. [PMID: 29921315 PMCID: PMC6009061 DOI: 10.1186/s13058-018-0990-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Background As crucial regulators of the immune response against pathogens, macrophages have been extensively shown also to be important players in several diseases, including cancer. Specifically, breast cancer macrophages tightly control the angiogenic switch and progression to malignancy. ID4, a member of the ID (inhibitors of differentiation) family of proteins, is associated with a stem-like phenotype and poor prognosis in basal-like breast cancer. Moreover, ID4 favours angiogenesis by enhancing the expression of pro-angiogenic cytokines interleukin-8, CXCL1 and vascular endothelial growth factor. In the present study, we investigated whether ID4 protein exerts its pro-angiogenic function while also modulating the activity of tumour-associated macrophages in breast cancer. Methods We performed IHC analysis of ID4 protein and macrophage marker CD68 in a triple-negative breast cancer series. Next, we used cell migration assays to evaluate the effect of ID4 expression modulation in breast cancer cells on the motility of co-cultured macrophages. The analysis of breast cancer gene expression data repositories allowed us to evaluate the ability of ID4 to predict survival in subsets of tumours showing high or low macrophage infiltration. By culturing macrophages in conditioned media obtained from breast cancer cells in which ID4 expression was modulated by overexpression or depletion, we identified changes in the expression of ID4-dependent angiogenesis-related transcripts and microRNAs (miRNAs, miRs) in macrophages by RT-qPCR. Results We determined that ID4 and macrophage marker CD68 protein expression were significantly associated in a series of triple-negative breast tumours. Interestingly, ID4 messenger RNA (mRNA) levels robustly predicted survival, specifically in the subset of tumours showing high macrophage infiltration. In vitro and in vivo migration assays demonstrated that expression of ID4 in breast cancer cells stimulates macrophage motility. At the molecular level, ID4 protein expression in breast cancer cells controls, through paracrine signalling, the activation of an angiogenic programme in macrophages. This programme includes both the increase of angiogenesis-related mRNAs and the decrease of members of the anti-angiogenic miR-15b/107 group. Intriguingly, these miRNAs control the expression of the cytokine granulin, whose enhanced expression in macrophages confers increased angiogenic potential. Conclusions These results uncover a key role for ID4 in dictating the behaviour of tumour-associated macrophages in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-0990-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Donzelli
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Elisa Milano
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Andrea Sacconi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Ilaria Iosue
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elisa Melucci
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Enzo Gallo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistics Unit, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marcella Mottolese
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy. .,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
20
|
Rangarao R, Smruti BK, Singh K, Gupta A, Batra S, Choudhary RK, Gupta A, Sahani S, Kabra V, Parikh PM, Aggarwal S. Practical consensus recommendations on management of triple-negative metastatic breast cancer. South Asian J Cancer 2018; 7:127-131. [PMID: 29721479 PMCID: PMC5909290 DOI: 10.4103/sajc.sajc_118_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Patients with breast cancer along with metastatic estrogen and progesterone receptor (ER/PR)- and human epidermal growth factor receptor 2 (HER2)-negative tumors are referred to as having metastatic triple-negative breast cancer (mTNBC) disease. Resistance to current standard therapies such as anthracyclines or taxanes limits the available options for previously treated patients with metastatic TNBC to a small number of non-cross-resistant regimens, and there is currently no preferred standard chemotherapy. Clinical experience suggests that many women with triple-negative metastatic breast cancer (MBC) relapse quickly. Expert oncologist discussed about new chemotherapeutic strategies and agents used in treatment of mTNBC and the expert group used data from published literature, practical experience and opinion of a large group of academic oncologists to arrive at this practical consensus recommendations for the benefit of community oncologists.
Collapse
Affiliation(s)
- R. Rangarao
- Department of Medical Oncology, Max Hospital, New Delhi, India
| | - B. K. Smruti
- Dept of Medical Oncology, Bombay Hospital, Mumbai, Maharashtra, India
| | - K. Singh
- Department of Radiation Oncology, MAMC, New Delhi, India
| | - A. Gupta
- Department of Radiation Oncology, Safdarjung Hospital, New Delhi, India
| | - S. Batra
- Department of Medical Oncology, Max Hospital, New Delhi, India
| | - R. K. Choudhary
- Department of Medical Oncology, Metro Cancer Center, New Delhi, India
| | - A. Gupta
- Department of Radiation Oncology, GMC, Jammu and Kashmir, India
| | - S. Sahani
- Department of Surgical Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Vedant Kabra
- Department of Surgical Oncology, Manipal Super Specialty Hospital, Gurugram, Haryana, India
| | - Purvish M. Parikh
- Department of Oncology, Shalby Cancer and Research Institute, Mumbai, Maharashtra, India
| | - S. Aggarwal
- Department of Medical Oncology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
21
|
Chalakur-Ramireddy NKR, Pakala SB. Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer. Biosci Rep 2018; 38:BSR20171357. [PMID: 29298879 PMCID: PMC5789156 DOI: 10.1042/bsr20171357] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 01/01/2018] [Indexed: 12/19/2022] Open
Abstract
TNBC (Triple Negative Breast Cancer) is a subtype of breast cancer with an aggressive phenotype which shows high metastatic capability and poor prognosis. Owing to its intrinsic properties like heterogeneity, lack of hormonal receptors and aggressive phenotype leave chemotherapy as a mainstay for the treatment of TNBC. Various studies have demonstrated that chemotherapy alone or therapeutic drugs targeting TNBC pathways, epigenetic mechanisms and immunotherapy alone have not shown significant improvement in TNBC patients. On the other hand, a combination of therapeutic drugs or addition of chemotherapy with therapeutic drugs has shown substantial improvement in results and proven to be an effective strategy for TNBC treatment. This review sheds light on effective combinational drug strategies and current clinical trial status of various combinatorial drugs for the treatment of TNBC.
Collapse
Affiliation(s)
| | - Suresh B Pakala
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| |
Collapse
|
22
|
Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat 2018; 169:397-406. [DOI: 10.1007/s10549-018-4697-y] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
|
23
|
Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA, Chae YK, Cristofanilli M, Gradishar WJ, Giles FJ. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat Rev 2017; 53:111-119. [DOI: 10.1016/j.ctrv.2016.12.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
|
24
|
Zhang Y, Zhang LX, Liu XQ, Zhao FY, Ge C, Chen TY, Yao M, Li JJ. Id4 promotes cell proliferation in hepatocellular carcinoma. CHINESE JOURNAL OF CANCER 2017; 36:19. [PMID: 28143562 PMCID: PMC5286768 DOI: 10.1186/s40880-017-0186-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 01/14/2017] [Indexed: 11/29/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor in the world, especially in China. As a member of the inhibitor of differentiation (Id) family, Id4 has been reported to function in many cancer types, but relatively little is known about its role in HCC. The purpose of this study was to investigate the potential relationship between Id4 and HCC development and the underlying mechanism involving the function of Id4 in HCC. Methods We used quantitative real-time polymerase chain reaction and Western blotting to examine the RNA and protein expression of Id4. In addition, we used Cell Counting Kit-8 assay and colony formation assay to identify the function of Id4 in the regulation of cell proliferation in human HCC. Results We found that the expression of Id4 protein was up-regulated in tumor tissues from HCC patients. Overexpression of Id4 promoted HCC cell proliferation, clonogenicity in vitro, and tumorigenicity in vivo. Id4 knockdown experiments showed that silencing Id4 blocked the proliferation and colony formation ability of HCC cells in vitro. Furthermore, overexpression of CCAAT/enhancer-binding protein β inhibited Id4 expression in HCC cells. Conclusion Id4 may be developed as a potent therapeutic agent for the treatment of HCC, but more details about the underlying mechanisms of action are needed.
Collapse
Affiliation(s)
- Yang Zhang
- Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, P. R. China
| | - Li-Xing Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, P. R. China
| | - Xiao-Qin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, P. R. China
| | - Fang-Yu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, P. R. China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, P. R. China
| | - Tao-Yang Chen
- Qidong Liver Cancer Institute, Qidong, 226200, Jiangsu, P. R. China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, P. R. China
| | - Jin-Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, P. R. China.
| |
Collapse
|
25
|
Costa R, Carneiro B, Wainwright D, Santa-Maria C, Kumthekar P, Chae Y, Gradishar W, Cristofanilli M, Giles F. Developmental therapeutics for patients with breast cancer and central nervous system metastasis: current landscape and future perspectives. Ann Oncol 2017; 28:44-56. [PMID: 28177431 PMCID: PMC7360139 DOI: 10.1093/annonc/mdw532] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the second-leading cause of metastatic disease in the central nervous system (CNS). Recent advances in the biological understanding of breast cancer have facilitated an unprecedented increase of survival in a subset of patients presenting with metastatic breast cancer. Patients with HER2 positive (HER2+) or triple negative breast cancer are at highest risk of developing CNS metastasis, and typically experience a poor prognosis despite treatment with local and systemic therapies. Among the obstacles ahead in the realm of developmental therapeutics for breast cancer CNS metastasis is the improvement of our knowledge on its biological nuances and on the interaction of the blood–brain barrier with new compounds. This article reviews recent discoveries related to the underlying biology of breast cancer brain metastases, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- R. Costa
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - B.A. Carneiro
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - D.A. Wainwright
- Department of Pathology
- Department of Neurology
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - C.A. Santa-Maria
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | | | - Y.K. Chae
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - W.J. Gradishar
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - M. Cristofanilli
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - F.J. Giles
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| |
Collapse
|
26
|
Agboola AOJ, Ebili HO, Iyawe VO, Banjo AAF, Salami BA, Rakha EA, Nolan CC, Ellis IO, Green AR. Clinicopathological and molecular characteristics of Ku 70/80 expression in Nigerian breast cancer and its potential therapeutic implications. Pathol Res Pract 2016; 213:27-33. [PMID: 27914769 DOI: 10.1016/j.prp.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/29/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022]
Abstract
Ku 70/80 is a regulator of the Non-Homologous End Joining (NHEJ) roles in clinicopathological features, and has prognostic significance in breast cancer (BC) in Caucasian populations. However, its significance in the Nigerian BC population, which is characterized by a higher rate of the triple-negative and basal phenotype, p53 mutation rate and BRCA1 deficiency, still needs to be investigated. We hypothesize that Ku70/80 expression shows adverse expression in Nigerian BC and, furthermore, that it is likely to have a therapeutic implication for Black BC management. This study investigated the biological, clinicopathological and prognostic significance of Ku 70/80 expression in a BC cohort from a Nigerian population. Ku 70/80 expression was determined in 188 well-characterized formalin-fixed, paraffin-embedded (FFPE) BC samples using tissue microarray and immunohistochemistry. Ku 70/80 expression was correlated with clinicopathological, molecular and prognostic characteristics of patients. Ku 70/80 was expressed in 113 (60.1%) tumors, and was positively associated with metastatic disease, triple-negative and basal phenotype, BRCA1 down regulators (MTA-1 and ID4), p-cadherin, PI3KCA and p53 expression. It inversely correlated with BRCA1, BRCA2, BARD1 and p27. Ku 70/80 was predictive of breast cancer-specific survival in multivariate analysis, but not of disease-free interval. This study demonstrated that Ku 70/80 expression is associated with triple negativity and down-regulation of the homologous recombination pathway of DNA repair. Therefore, the development of novel drugs to target KU70/80 may improve the patients' outcome in the treatment of Black BC.
Collapse
Affiliation(s)
- Ayodeji O J Agboola
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu, Nigeria.
| | - Henry O Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Victoria O Iyawe
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Adekunbiola A F Banjo
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu, Nigeria
| | | | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, Nottingham University Hospitals and University of Nottingham, Nottingham, United Kingdom
| | - Chrstopher C Nolan
- Division of Cancer and Stem Cells, School of Medicine, Nottingham University Hospitals and University of Nottingham, Nottingham, United Kingdom
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, Nottingham University Hospitals and University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, Nottingham University Hospitals and University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
27
|
Baker LA, Holliday H, Swarbrick A. ID4 controls luminal lineage commitment in normal mammary epithelium and inhibits BRCA1 function in basal-like breast cancer. Endocr Relat Cancer 2016; 23:R381-92. [PMID: 27412917 DOI: 10.1530/erc-16-0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
Inhibitor of differentiation (ID) proteins are key regulators of development and tumorigenesis. One member of this family, ID4, controls lineage commitment during mammary gland development by acting upstream of key developmental pathways. Recent evidence suggests an emerging role for ID4 as a lineage-dependent proto-oncogene that is overexpressed and amplified in a subset of basal-like breast cancers (BLBCs), conferring poor prognosis. Several lines of evidence suggest ID4 may suppress BRCA1 function in BLBC and in doing so, define a subset of BLBC patients who may respond to therapies traditionally used in BRCA1-mutant cancers. This review highlights recent advances in our understanding of the requirement for ID4 in mammary lineage commitment and the role for ID4 in BLBC. We address current shortfalls in this field and identify important areas of future research.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Nguyen T, Shively JE. Induction of Lumen Formation in a Three-dimensional Model of Mammary Morphogenesis by Transcriptional Regulator ID4: ROLE OF CaMK2D IN THE EPIGENETIC REGULATION OF ID4 GENE EXPRESSION. J Biol Chem 2016; 291:16766-76. [PMID: 27302061 DOI: 10.1074/jbc.m115.710160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Indexed: 01/19/2023] Open
Abstract
Concomitant loss of lumen formation and cell adhesion protein CEACAM1 is a hallmark feature of breast cancer. In a three-dimensional culture model, transfection of CEACAM1 into MCF7 breast cells can restore lumen formation by an unknown mechanism. ID4, a transcriptional regulator lacking a DNA binding domain, is highly up-regulated in CEACAM1-transfected MCF7 cells, and when down-regulated with RNAi, abrogates lumen formation. Conversely, when MCF7 cells, which fail to form lumena in a three-dimensional culture, are transfected with ID4, lumen formation is restored, demonstrating that ID4 may substitute for CEACAM1. After showing the ID4 promoter is hypermethylated in MCF7 cells but hypomethylated in MCF/CEACAM1 cells, ID4 expression was induced in MCF7 cells by agents affecting chromatin remodeling and methylation. Mechanistically, CaMK2D was up-regulated in CEACAM1-transfected cells, effecting phosphorylation of HDAC4 and its sequestration in the cytoplasm by the adaptor protein 14-3-3. CaMK2D also phosphorylates CEACAM1 on its cytoplasmic domain and mutation of these phosphorylation sites abrogates lumen formation. Thus, CEACAM1 is able to maintain the active transcription of ID4 by an epigenetic mechanism involving HDAC4 and CaMK2D, and the same kinase enables lumen formation by CEACAM1. Because ID4 can replace CEACAM1 in parental MCF7 cells, it must act downstream from CEACAM1 by inhibiting the activity of other transcription factors that would otherwise prevent lumen formation. This overall mechanism may be operative in other cancers, such as colon and prostate, where the down-regulation of CEACAM1 is observed.
Collapse
Affiliation(s)
- Tung Nguyen
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - John E Shively
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
29
|
Identification of BRCA1 Deficiency Using Multi-Analyte Estimation of BRCA1 and Its Repressors in FFPE Tumor Samples from Patients with Triple Negative Breast Cancer. PLoS One 2016; 11:e0153113. [PMID: 27077368 PMCID: PMC4831669 DOI: 10.1371/journal.pone.0153113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Apart from germ-line BRCA1-mutated breast cancers, a significant proportion of women with sporadic triple negative breast cancer (TNBC) sub-type are known to harbour varying levels of BRCA1-dysfuction. There is currently no established diagnostic method to identify these patients. METHODS The analysis was performed on 183 primary breast cancer tumor specimens from our longitudinal case-series archived as formalin-fixed-paraffin-embedded (FFPE) blocks comprising 71 TNBCs and 112 Hormone receptor positive HER2 negative (HR+HER2-) tumors. Transcript levels of BRCA1 and two of its repressors ID4 and microRNA182 were determined by TaqMan quantitative PCR. BRCA1 protein was detected immunohistochemically with the MS110 antibody. RESULTS The representation of BRCA1 and its repressor ID4 as a ratio led to improved separation of TNBCs from HR+HER2- compared to either measure by itself. We then dichotomised the continuous distribution of each of the three measurements (Protein, MIRNA and transcript:repressor ratio) into categories of deficient (0) and adequate (1). A composite BRCA1 Deficiency Score (BDS) was computed by the addition of the score for all three measures. Samples deficient on 2 or more measures were deemed to be BRCA1 deficient; and 40% of all TNBCs met this criterion. CONCLUSION We propose here a simple multi-level assay of BRCA1 deficiency using the BRCA1:ID4 ratio as a critical parameter that can be performed on FFPE samples in clinical laboratories by the estimation of only 3 bio-markers. The ease of testing will hopefully encourage adoption and clinical validation.
Collapse
|
30
|
Cantrell MA, Ebelt ND, Pfefferle AD, Perou CM, Van Den Berg CL. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression. Oncotarget 2016; 6:11863-81. [PMID: 25970777 PMCID: PMC4494910 DOI: 10.18632/oncotarget.3787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis.
Collapse
Affiliation(s)
- Michael A Cantrell
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Nancy D Ebelt
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Adam D Pfefferle
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Carla Lynn Van Den Berg
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA.,Division of Pharmacology &Toxicology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
31
|
Branham MT, Campoy E, Laurito S, Branham R, Urrutia G, Orozco J, Gago F, Urrutia R, Roqué M. Epigenetic regulation of ID4 in the determination of the BRCAness phenotype in breast cancer. Breast Cancer Res Treat 2016; 155:13-23. [PMID: 26610810 PMCID: PMC6036618 DOI: 10.1007/s10549-015-3648-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/18/2015] [Indexed: 01/15/2023]
Abstract
BRCAness breast tumors represent a group of sporadic tumors characterized by a reduction in BRCA1 gene expression. As BRCA1 is involved in double-strand breaks (DSBs) repair, dysfunctional BRCA pathway could make a tumor sensitive to DNA damaging drugs (e.g., platinum agents). Thus, accurately identifying BRCAness could contribute to therapeutic decision making in patients harboring these tumors. The purpose of this study was to identify if BRCAness tumors present a characteristic methylation profile and/or were related to specific clinico-pathological features. BRCAness was measured by MLPA in 63 breast tumors; methylation status of 98 CpG sites within 84 cancer-related genes was analyzed by MS-MLPA. Protein and mRNA expressions of the selected genes were measured by quantitative real-time PCR and Western Blot. BRCAness was associated with younger age, higher nuclear pleomorphism, and triple-negative (TN) status. Epigenetically, we found that the strongest predictors for BRCAness tumors were the methylations of MLH1 and PAX5 plus the unmethylations of CCND2 and ID4. We determined that ID4 unmethylation correlated with the expression levels of both its mRNA and protein. We observed an inverse relation between the expressions of ID4 and BRCA1. To the best of our knowledge, this is the first report suggesting an epigenetic regulation of ID4 in BRCAness tumors. Our findings give new information of BRCAness etiology and encourage future studies on potential drug targets for BRCAness breast tumors.
Collapse
Affiliation(s)
- M T Branham
- IHEM-CCT-CONICET Mendoza and National University of Cuyo, Mendoza, Argentina.
| | - E Campoy
- IHEM-CCT-CONICET Mendoza and National University of Cuyo, Mendoza, Argentina
| | - S Laurito
- IHEM-CCT-CONICET Mendoza and National University of Cuyo, Mendoza, Argentina
| | - R Branham
- IANIGLA-CCT-CONICET Mendoza, Mendoza, Argentina
| | - G Urrutia
- IHEM-CCT-CONICET Mendoza and National University of Cuyo, Mendoza, Argentina
| | - J Orozco
- Gineco-Mamario Institute of Mendoza, Mendoza, Argentina
| | - F Gago
- Gineco-Mamario Institute of Mendoza, Mendoza, Argentina
| | - R Urrutia
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, USA
| | - M Roqué
- IHEM-CCT-CONICET Mendoza and National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
32
|
Thike AA, Tan PH, Ikeda M, Iqbal J. Increased ID4 expression, accompanied by mutant p53 accumulation and loss of BRCA1/2 proteins in triple-negative breast cancer, adversely affects survival. Histopathology 2015; 68:702-12. [PMID: 26259780 DOI: 10.1111/his.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Abstract
AIMS Breast cancer 1 (BRCA1) expression is down-regulated in a significant proportion of non-hereditary breast cancers, in the absence of any mutation. This phenomenon is more pronounced in oestrogen (ER)-negative tumours. Recent studies have suggested that inhibitor of DNA binding 4 (ID4), as well as p53, participate in the transcriptional regulation of BRCA1. METHODS Immunohistochemical expression of ID4, BRCA1, BRCA2 and p53 in 699 women with triple-negative breast cancer was investigated using tissue microarrays. The prognostic role of these biomarkers was also evaluated. Survival outcomes were estimated with the Kaplan-Meier method and compared between groups with log-rank statistics. RESULTS Loss of BRCA1 and BRCA2 expression and overexpression of ID4 and p53 was observed in 75%, 90%, 95% and 66% of tumours, respectively. ID4 expression was increased in higher tumour grade (P < 0.001) and was associated significantly with basal-like subtype (P < 0.001), BRCA2 down-regulation (P = 0.037) and p53 accumulation (P < 0.001). Patients with strong ID4 expression displayed worse disease-free survival in both triple-negative breast cancers (P = 0.041) and basal-like triple-negative breast cancers (P = 0.026). CONCLUSION There is frequent ID4 expression and concomitant loss of BRCA proteins in triple-negative breast cancer. We hypothesize that strong ID4 expression could be useful as a prognostic marker in triple-negative breast cancer, predicting early tumour recurrence.
Collapse
Affiliation(s)
- Aye A Thike
- Department of Pathology, Singapore General Hospital, Academia, Singapore, Singapore
| | - Puay H Tan
- Department of Pathology, Singapore General Hospital, Academia, Singapore, Singapore
| | - Murasaki Ikeda
- Department of Pathology, Singapore General Hospital, Academia, Singapore, Singapore
| | - Jabed Iqbal
- Department of Pathology, Singapore General Hospital, Academia, Singapore, Singapore
| |
Collapse
|
33
|
Zhai L, Li S, Li H, Zheng Y, Lang R, Fan Y, Gu F, Guo X, Zhang X, Fu L. Polymorphisms in poly (ADP-ribose) polymerase-1 (PARP1) promoter and 3' untranslated region and their association with PARP1 expression in breast cancer patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7059-7071. [PMID: 26261599 PMCID: PMC4525933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Within the past several years, inhibition of the PARP1 activity has been emerged as one of the most exciting and promising strategies for triple-negative breast cancer (TNBC) therapy. The purpose of this study is to assess PARP1 expression in TNBCs and to evaluate the association between polymorphisms in PARP1 promoter or 3' untranslated region (3'UTR) and PARP1 expression. It was found that PARP1 was overexpressed in nuclear (nPARP1), cytoplasm (cPARP1) and nuclear-cytoplasmic coexisting (coPARP1) of 187 TNBCs in comparison to that of 115 non-TNBCs (nPARP1, p<0.001; cPARP1, p<0.001; coPARP1, p<0.001). High expression of nPARP1 and cPARP1 in breast cancer was related to worse progression-free survival (nPARP1, p=0.007, cPARP1, p=0.003). Additionally, we identified seven published polymorphism sites in the promoter region and in 3'UTR of PARP1 by sequencing. rs7527192 and rs2077197 genotypes were found to be significantly associated with the cPARP1 expression in TNBC patients (rs7527192 AA+GA versus GG, p=0.014; rs2077197 AA+GA versus GG, p=0.041). These findings were confirmed in an independent validation set of 88 TNBCs (rs7527192 GG versus GA+AA, p=0.030; rs2077197 GG versus GA+AA, p=0.030). The PARP1 over-expression including nuclear, cytoplasm and nuclear-cytoplasmic coexisting is a feature of TNBCs and the assessment of its expression may help to predict the efficacy of chemotherapy with PARP1 inhibitor.
Collapse
Affiliation(s)
- Lili Zhai
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
| | - Huilan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
| | - Yi Zheng
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
| | - Ronggang Lang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
| | - Yu Fan
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
| | - Xiaojing Guo
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
| | | | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy; State Key Laboratory of Breast Cancer ResearchTianjin, P.R. China
- 2011 Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin, P.R. China
| |
Collapse
|
34
|
Patel D, Morton DJ, Carey J, Havrda MC, Chaudhary J. Inhibitor of differentiation 4 (ID4): From development to cancer. Biochim Biophys Acta Rev Cancer 2014; 1855:92-103. [PMID: 25512197 DOI: 10.1016/j.bbcan.2014.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 12/06/2014] [Indexed: 01/25/2023]
Abstract
Highly conserved Inhibitors of DNA-Binding (ID1-ID4) genes encode multi-functional proteins whose transcriptional activity is based on dominant negative inhibition of basic helix-loop-helix (bHLH) transcription factors. Initial animal models indicated a degree of compensatory overlap between ID genes such that deletion of multiple ID genes was required to generate easily recognizable phenotypes. More recently, new model systems have revealed alterations in mice harboring deletions in single ID genes suggesting complex gene and tissue specific functions for members of the ID gene family. Because ID genes are highly expressed during development and their function is associated with a primitive, proliferative cellular phenotype there has been significant interest in understanding their potential roles in neoplasia. Indeed, numerous studies indicate an oncogenic function for ID1, ID2 and ID3. In contrast, the inhibitor of differentiation 4 (ID4) presents a paradigm shift in context of well-established role of ID1, ID2 and ID3 in development and cancer. Apart from some degree of functional redundancy such as HLH dependent interactions with bHLH protein E2A, many of the functions of ID4 are distinct from ID1, ID2 and ID3: ID4 proteins a) regulate distinct developmental processes and tissue expression in the adult, b) promote stem cell survival, differentiation and/or timing of differentiation, c) epigenetic inactivation/loss of expression in several advanced stage cancers and d) increased expression in some cancers such as those arising in the breast and ovary. Thus, in spite of sharing the conserved HLH domain, ID4 defies the established model of ID protein function and expression. The underlying molecular mechanism responsible for the unique role of ID4 as compared to other ID proteins still remains largely un-explored. This review will focus on the current understanding of ID4 in context of development and cancer.
Collapse
Affiliation(s)
- Divya Patel
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Derrick J Morton
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Jason Carey
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mathew C Havrda
- Norris Cotton Cancer Center and Geisel Medical School at Dartmouth, Lebanon, NH, USA
| | - Jaideep Chaudhary
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA.
| |
Collapse
|
35
|
Zhang S, Lu Z, Unruh AK, Ivan C, Baggerly KA, Calin GA, Li Z, Bast RC, Le XF. Clinically relevant microRNAs in ovarian cancer. Mol Cancer Res 2014; 13:393-401. [PMID: 25304686 DOI: 10.1158/1541-7786.mcr-14-0424] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
microRNAs (miRNAs/miRs) belong to a class of small noncoding RNAs that can negatively regulate messenger RNA (mRNA) expression of target genes. miRNAs are involved in multiple aspects of ovarian cancer cell dysfunction and the phenotype of ovarian cancer cells can be modified by targeting miRNA expression. miRNA profiling has detected a number of candidate miRNAs with the potential to regulate many important biologic functions in ovarian cancer, but their role still needs to be clarified, given the remarkable heterogeneity among ovarian cancers and the context-dependent role of miRNAs. This review summarizes the data collected from The Cancer Genome Atlas (TCGA) and several other genome-wide projects to identify dysregulated miRNAs in ovarian cancers. Copy number variations (CNVs), epigenetic alterations, and oncogenic mutations are also discussed that affect miRNA levels in ovarian disease. Emphasis is given to the role of particular miRNAs in altering expression of genes in human ovarian cancers with the potential to provide diagnostic, prognostic, and therapeutic targets. Particular attention has been given to TP53, BRCA1/2, CA125 (MUC16), HE4 (WFDC2), and imprinted genes such as ARHI (DIRAS3). A better understanding of the abnormalities in miRNA expression and downstream transcriptional and biologic consequences will provide leads for more effective biomarkers and translational approaches in the management of ovarian cancer.
Collapse
Affiliation(s)
- Shu Zhang
- From the Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China. Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna K Unruh
- Department of Bioinformatics Computer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith A Baggerly
- Department of Bioinformatics Computer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zongfang Li
- From the Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Xiao-Feng Le
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
36
|
Best SA, Hutt KJ, Fu NY, Vaillant F, Liew SH, Hartley L, Scott CL, Lindeman GJ, Visvader JE. Dual roles for Id4 in the regulation of estrogen signaling in the mammary gland and ovary. Development 2014; 141:3159-64. [DOI: 10.1242/dev.108498] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The HLH transcriptional regulator Id4 exerts important roles in different organs, including the neural compartment, where Id4 loss usually results in early lethality. To explore the role of this basally restricted transcription factor in the mammary gland, we generated a cre-inducible mouse model. MMTV- or K14-cre-mediated deletion of Id4 led to a delay in ductal morphogenesis, consistent with previous findings using a germ-line knockout mouse model. A striking increase in the expression of ERα (Esr1), PR and FoxA1 was observed in both the basal and luminal cellular subsets of Id4-deficient mammary glands. Together with chromatin immunoprecipitation of Id4 on the Esr1 and Foxa1 promoter regions, these data imply that Id4 is a negative regulator of the ERα signaling axis. Unexpectedly, examination of the ovaries of targeted mice revealed significantly increased numbers of secondary and antral follicles, and reduced Id4 expression in the granulosa cells. Moreover, expression of the cascade of enzymes that are crucial for estrogen biosynthesis in the ovary was decreased in Id4-deficient females and uterine weights were considerably lower, indicating impaired estrogen production. Thus, compromised ovarian function and decreased circulating estrogen likely contribute to the mammary ductal defects evident in Id4-deficient mice. Collectively, these data identify Id4 as a novel regulator of estrogen signaling, where Id4 restrains ERα expression in the basal and luminal cellular compartments of the mammary gland and regulates estrogen biosynthesis in the ovary.
Collapse
Affiliation(s)
- Sarah A. Best
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karla J. Hutt
- Ovarian Biology Laboratory, Prince Henry's Institute, Monash Medical Center, Clayton, Victoria 3168, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Nai Yang Fu
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - François Vaillant
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Seng H. Liew
- Ovarian Biology Laboratory, Prince Henry's Institute, Monash Medical Center, Clayton, Victoria 3168, Australia
| | - Lynne Hartley
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Clare L. Scott
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Geoffrey J. Lindeman
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Jane E. Visvader
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
37
|
Prat A, Cruz C, Hoadley KA, Díez O, Perou CM, Balmaña J. Molecular features of the basal-like breast cancer subtype based on BRCA1 mutation status. Breast Cancer Res Treat 2014; 147:185-91. [PMID: 25048467 PMCID: PMC4131128 DOI: 10.1007/s10549-014-3056-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/05/2014] [Indexed: 02/08/2023]
Abstract
BRCA1-mutated breast cancer is associated with basal-like disease; however, it is currently unclear if the presence of a BRCA1 mutation depicts a different entity within this subgroup. In this study, we compared the molecular features among basal-like tumors with and without BRCA1 mutations. Fourteen patients with BRCA1-mutated (nine germline and five somatic) tumors and basal-like disease, and 79 patients with BRCA1 non-mutated tumors and basal-like disease, were identified from the cancer genome atlas dataset. The following molecular data types were evaluated: global gene expression, selected protein and phospho-protein expression, global miRNA expression, global DNA methylation, total number of somatic mutations, TP53 and PIK3CA somatic mutations, and global DNA copy-number aberrations. For intrinsic subtype identification, we used the PAM50 subtype predictor. Within the basal-like disease, we observed minor molecular differences in terms of gene, protein, and miRNA expression, and DNA methylation variation, according to BRCA1 status (either germinal or somatic). However, there were significant differences according to average number of mutations and DNA copy-number aberrations, and four amplified regions (2q32.2, 3q29, 6p22.3, and 22q12.2), which are characteristic in high-grade serous ovarian carcinomas, were observed in both germline and somatic BRCA1-mutated breast tumors. These results suggest that minor, but potentially relevant, baseline molecular features exist among basal-like tumors according to BRCA1 status. Additional studies are needed to better clarify if BRCA1 genetic status is an independent prognostic feature, and more importantly, if BRCA1 mutation status is a predictive biomarker of benefit from DNA-damaging agents among basal-like disease.
Collapse
Affiliation(s)
- Aleix Prat
- Translational Genomics Group, Vall d´Hebron Institute of Oncology (VHIO), Pg Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Cristina Cruz
- High Risk and Cancer Prevention Group, Vall d´Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 USA
| | - Orland Díez
- Oncogenetics Group, Hospital Universitari de la Vall d´Hebron, Vall d´Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 USA
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d´Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| |
Collapse
|
38
|
Lupo B, Trusolino L. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim Biophys Acta Rev Cancer 2014; 1846:201-15. [PMID: 25026313 DOI: 10.1016/j.bbcan.2014.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerases actualized the biological concept of synthetic lethality in the clinical practice, yielding a paradigmatic example of translational medicine. The profound sensitivity of tumors with germline BRCA mutations to PARP1/2 blockade owes to inherent defects of the BRCA-dependent homologous recombination machinery, which are unleashed by interruption of PARP DNA repair activity and lead to DNA damage overload and cell death. Conversely, aspirant BRCA-like tumors harboring somatic DNA repair dysfunctions (a vast entity of genetic and epigenetic defects known as "BRCAness") not always align with the familial counterpart and appear not to be equally sensitive to PARP inhibition. The acquisition of secondary resistance in initially responsive patients and the lack of standardized biomarkers to identify "BRCAness" pose serious threats to the clinical advance of PARP inhibitors; a feeling is also emerging that a BRCA-centered perspective might have missed the influence of additional, not negligible and DNA repair-independent PARP contributions onto therapy outcome. While regulatory approval for PARP1/2 inhibitors is still pending, novel therapeutic opportunities are sprouting from different branches of the PARP family, although they remain immature for clinical extrapolation. This review is an endeavor to provide a comprehensive appraisal of the multifaceted biology of PARPs and their evolving impact on cancer therapeutics.
Collapse
Affiliation(s)
- Barbara Lupo
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
39
|
Watkins JA, Irshad S, Grigoriadis A, Tutt ANJ. Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res 2014; 16:211. [PMID: 25093514 PMCID: PMC4053155 DOI: 10.1186/bcr3670] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapies have been found to be particularly effective in tumors that harbor deleterious germline or somatic mutations in the BRCA1 or BRCA2 genes, the products of which contribute to the conservative homologous recombination repair of DNA double-strand breaks. Nonetheless, several setbacks in clinical trial settings have highlighted some of the issues surrounding the investigation of PARP inhibitors, especially the identification of patients who stand to benefit from such drugs. One potential approach to finding this patient subpopulation is to examine the tumor DNA for evidence of a homologous recombination defect. However, although the genomes of many breast and ovarian cancers are replete with aberrations, the presence of numerous factors able to shape the genomic landscape means that only some of the observed DNA abnormalities are the outcome of a cancer cell’s inability to faithfully repair DNA double-strand breaks. Consequently, recently developed methods for comprehensively capturing the diverse ways in which homologous recombination deficiencies may arise beyond BRCA1/2 mutation have used DNA microarray and sequencing data to account for potentially confounding features in the genome. Scores capturing telomeric allelic imbalance, loss of heterozygosity (LOH) and large scale transition score, as well as the total number of coding mutations are measures that summarize the total burden of certain forms of genomic abnormality. By contrast, other studies have comprehensively catalogued different types of mutational pattern and their relative contributions to a given tumor sample. Although at least one study to explore the use of the LOH scar in a prospective clinical trial of a PARP inhibitor in ovarian cancer is under way, limitations that result in a relatively low positive predictive value for these biomarkers remain. Tumors whose genome has undergone one or more events that restore high-fidelity homologous recombination are likely to be misclassified as double-strand break repair-deficient and thereby sensitive to PARP inhibitors and DNA damaging chemotherapies as a result of prior repair deficiency and its genomic scarring. Therefore, we propose that integration of a genomic scar-based biomarker with a marker of resistance in a high genomic scarring burden context may improve the performance of any companion diagnostic for PARP inhibitors.
Collapse
|
40
|
ID proteins regulate diverse aspects of cancer progression and provide novel therapeutic opportunities. Mol Ther 2014; 22:1407-1415. [PMID: 24827908 DOI: 10.1038/mt.2014.83] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
The inhibitor of differentiation (ID) proteins are helix-loop-helix transcriptional repressors with established roles in stem cell self-renewal, lineage commitment, and niche interactions. While deregulated expression of ID proteins in cancer was identified more than a decade ago, emerging evidence has revealed a central role for ID proteins in neoplastic progression of multiple tumor types that often mirrors their function in physiological stem and progenitor cells. ID proteins are required for the maintenance of cancer stem cells, self-renewal, and proliferation in a range of malignancies. Furthermore, ID proteins promote metastatic dissemination through their role in remodeling the tumor microenvironment and by promoting tumor-associated endothelial progenitor cell proliferation and mobilization. Here, we discuss the latest findings in this area and the clinical opportunities that they provide.
Collapse
|
41
|
Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 2014; 14:77-91. [PMID: 24442143 DOI: 10.1038/nrc3638] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life. ID genes are frequently deregulated in many types of human neoplasms, and they endow cancer cells with biological features that are hijacked from normal stem cells. The ability of ID proteins to function as central 'hubs' for the coordination of multiple cancer hallmarks has established these transcriptional regulators as therapeutic targets and biomarkers in specific types of human tumours.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology and Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 241, New York, 10065 New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| |
Collapse
|
42
|
Crippa E, Lusa L, De Cecco L, Marchesi E, Calin GA, Radice P, Manoukian S, Peissel B, Daidone MG, Gariboldi M, Pierotti MA. miR-342 regulates BRCA1 expression through modulation of ID4 in breast cancer. PLoS One 2014; 9:e87039. [PMID: 24475217 PMCID: PMC3903605 DOI: 10.1371/journal.pone.0087039] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/17/2013] [Indexed: 01/08/2023] Open
Abstract
A miRNAs profiling on a group of familial and sporadic breast cancers showed that miRNA-342 was significantly associated with estrogen receptor (ER) levels. To investigate at functional level the role of miR-342 in the pathogenesis of breast cancer, we focused our attention on its "in silico" predicted putative target gene ID4, a transcription factor of the helix-loop-helix protein family whose expression is inversely correlated with that of ER. ID4 is expressed in breast cancer and can negatively regulate BRCA1 expression. Our results showed an inverse correlation between ID4 and miR-342 as well as between ID4 and BRCA1 expression. We functionally validated the interaction between ID4 and miR-342 in a reporter Luciferase system. Based on these findings, we hypothesized that regulation of ID4 mediated by miR-342 could be involved in the pathogenesis of breast cancer by downregulating BRCA1 expression. We functionally demonstrated the interactions between miR-342, ID4 and BRCA1 in a model provided by ER-negative MDA-MB-231 breast cancer cell line that presented high levels of ID4. Overexpression of miR-342 in these cells reduced ID4 and increased BRCA1 expression, supporting a possible role of this mechanism in breast cancer. In the ER-positive MCF7 and in the BRCA1-mutant HCC1937 cell lines miR-342 over-expression only reduced ID4. In the cohort of patients we studied, a correlation between miR-342 and BRCA1 expression was found in the ER-negative cases. As ER-negative cases were mainly BRCA1-mutant, we speculate that the mechanism we demonstrated could be involved in the decreased expression of BRCA1 frequently observed in non BRCA1-mutant breast cancers and could be implicated as a causal factor in part of the familial cases grouped in the heterogeneous class of non BRCA1 or BRCA2-mutant cases (BRCAx). To validate this hypothesis, the study should be extended to a larger cohort of ER-negative cases, including those belonging to the BRCAx class.
Collapse
Affiliation(s)
- Elisabetta Crippa
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Lara Lusa
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Loris De Cecco
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Edoardo Marchesi
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Paolo Radice
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Gariboldi
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | | |
Collapse
|
43
|
Harder J, Müller MJ, Fuchs M, Gumpp V, Schmitt-Graeff A, Fischer R, Frank M, Opitz O, Hasskarl J. Inhibitor of differentiation proteins do not influence prognosis of biliary tract cancer. World J Gastroenterol 2013; 19:9334-9342. [PMID: 24409060 PMCID: PMC3882406 DOI: 10.3748/wjg.v19.i48.9334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/15/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and clinical relevance of inhibitor of differentiation (ID) proteins in biliary tract cancer.
METHODS: ID protein expression was analyzed in 129 samples from patients with advanced biliary tract cancer (BTC) (45 extrahepatic, 50 intrahepatic, and 34 gallbladder cancers), compared to normal controls and correlated with clinical an pathological parameters.
RESULTS: ID1-3 proteins are frequently overexpressed in all BTC subtypes analyzed. No correlation between increased ID protein expression and tumor grading, tumor subtype or treatment response was detected. Survival was influenced primary tumor localization (extrahepatic vs intrahepatic and gall bladder cancer, OS 1.5 years vs 0.9 years vs 0.7 years, P = 0.002), by stage at diagnosis (OS 2.7 years in stage I vs 0.6 years in stage IV, P < 0.001), resection status and response to systemic chemotherapy. In a multivariate model, ID protein expression did not correlate with clinical prognosis. Nevertheless, there was a trend of shorter OS in patients with loss of cytoplasmic ID4 protein expression (P = 0.076).
CONCLUSION: ID protein expression is frequently deregulated in BTC but does not influence clinical prognosis. Their usefulness as prognostic biomarkers in BTC is very limited.
Collapse
|
44
|
Dimitrov SD, Lu D, Naetar N, Hu Y, Pathania S, Kanellopoulou C, Livingston DM. Physiological modulation of endogenous BRCA1 p220 abundance suppresses DNA damage during the cell cycle. Genes Dev 2013; 27:2274-91. [PMID: 24142877 PMCID: PMC3814647 DOI: 10.1101/gad.225045.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BRCA1 p220 participates in DNA damage responses. Dimitrov et al. find that miR-545 directly reduces p220 expression. miR-545 inhibition increased p220 expression, and aberrant p220-associated DNA damage responses and de novo DNA strand breaks accumulated. Strand breaks were a product of p220 overexpression and were also dependent on aberrant, overexpressed p220-driven recruitment of RAD51 to DNA damage sites. These results suggest that, like its loss, an excess of p220 function represents a threat to genome integrity. Endogenous BRCA1 p220 expression peaks in S and G2 when it is activated, and the protein participates in certain key DNA damage responses. In contrast, its expression is markedly reduced in G0/G1. While variations in transcription represent a significant part of p220 expression control, there is at least one other relevant process. We found that a microRNA, miR-545, that is expressed throughout the cell cycle down-modulates endogenous p220 mRNA and protein abundance directly in both G0/G1 and S/G2. When miR-545 function was inhibited by a specific antagomir, endogenous p220 expression increased in G0/G1, and aberrant p220-associated DNA damage responses and de novo DNA strand breaks accumulated. Analogous results were observed upon inhibition of miR-545 function in S/G2. Both sets of antagomir effects were mimicked by infecting cells with a p220 cDNA-encoding adenoviral vector. Thus, strand breaks were a product of p220 overexpression, and their prevention by miR-545 depends on its modulation of p220 expression. Breaks were also dependent on aberrant, overexpressed p220-driven recruitment of RAD51 to either spontaneously arising or mutagen-based DNA damage sites. Hence, when its level is not physiologically maintained, endogenous p220 aberrantly directs at least one DNA repair protein, RAD51, to damage sites, where their action contributes to the development of de novo DNA damage. Thus, like its loss, a surfeit of endogenous p220 function represents a threat to genome integrity.
Collapse
Affiliation(s)
- Stoil D Dimitrov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Maksimenko J, Irmejs A, Nakazawa-Miklasevica M, Melbarde-Gorkusa I, Trofimovics G, Gardovskis J, Miklasevics E. Prognostic role of BRCA1 mutation in patients with triple-negative breast cancer. Oncol Lett 2013; 7:278-284. [PMID: 24348864 PMCID: PMC3861604 DOI: 10.3892/ol.2013.1684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/01/2013] [Indexed: 01/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is proposed to be an immunohistochemical surrogate of the basal-like breast cancer subtype. In spite of the relative chemosensitivity of this cancer subtype, it is characterized by aggressive clinical behavior; therefore, a further subclassification of TNBC is required to develop new targeted treatment. In previous studies, a strong correlation between BRCA1 mutation-associated tumors and TNBC has been identified. The aim of the present study was to investigate the prognostic significance of carrying two germline BRCA1 founder mutations (4153delA and 5382insC) in patients with TNBC in the Latvian population. A total of 78 consecutive BRCA1 mutation-negative and 38 BRCA1 mutation-positive invasive TNBC patients in stage I-IV with no history of ovarian or other primary advanced cancers, who had undergone definitive surgery and genetic testing between 2005 and 2011, were deemed eligible for study. Relapse rates and breast cancer-specific survival (BCS) outcomes were compared between mutation carriers and non-carriers. Univariate and multivariate analyses Cox proportional-hazards models were used to compute independent predictors of survival outcomes. No statistically significant differences were identified in relation to tumor size, T stage, stage, Ki-67 status and tumor differentiation grade between the two groups. The median follow-up period was 36 months for mutation carriers and 41 months for non-carriers. A higher proportion of BRCA1 mutation non-carriers experienced distant recurrence compared with that of mutation carriers (P<0.03). BRCA1 mutation carriers had a significantly higher BCS than non-carriers (94.9 vs. 76.9%; P<0.02). In the univariate analyses, BRCA1-positive status was associated with decreased risk of distant recurrence (HR, 0.228; 95% Cl, 0.052-0.997; P<0.049) and breast cancer-specific mortality (HR, 0.209; 95% Cl, 0.048-0.902; P<0.036). In the multivariate analysis Cox proportional-hazards model, BRCA1-positive status was an independent favorable prognostic factor for distant recurrence-free survival (HR, 3.301; 95% Cl, 1.102-9.893; P<0.033). In conclusion, results of the present study demonstrate that positive BRCA1 founder mutation status in TNBC, with no evidence of ovarian or other cancer type in advanced stage, significantly improves prognosis.
Collapse
Affiliation(s)
| | - Arvids Irmejs
- Oncology Institute, Riga Stradins University, Riga, LV-1012, Latvia
| | | | | | | | - Janis Gardovskis
- Oncology Institute, Riga Stradins University, Riga, LV-1012, Latvia
| | | |
Collapse
|
46
|
The complex genetic landscape of familial breast cancer. Hum Genet 2013; 132:845-63. [PMID: 23552954 DOI: 10.1007/s00439-013-1299-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/21/2013] [Indexed: 01/19/2023]
Abstract
Familial breast cancer represents a minor percentage of all human breast cancers. Mutations in two high susceptibility genes BRCA1 and BRCA2 explain around 25 % of familial breast cancers, while other high, moderate and low susceptibility genes explain up to 20 % more of breast cancer families. Thus, it is important to decipher the genetic architecture of families that show no mutations to improve genetic counselling. The comprehensive description of familial breast cancer using different techniques and platforms has shown to be very valuable for better patient diagnosis, tumour surveillance, and ultimately patient treatment. This review focuses on the complex landscape of pathological, protein, genetic and genomic features associated with BRCA1-, BRCA2-, and non-BRCA1/BRCA2-related cancers described up to date. Special emphasis deserves the coexistence of distinct molecular breast cancer subtypes, the development of tumour classifiers to predict BRCA1/2 mutations, and the last insights from recent whole genome sequencing studies and miRNA profiling.
Collapse
|
47
|
Wang Q, Li J, Yang X, Sun H, Gao S, Zhu H, Wu J, Jin W. Nrf2 is associated with the regulation of basal transcription activity of the BRCA1 gene. Acta Biochim Biophys Sin (Shanghai) 2013; 45:179-87. [PMID: 23353771 DOI: 10.1093/abbs/gmt001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BRCA1 is closely related to the pathogenesis of breast cancer. The activity of BRCA1 promoter is regulated by transcriptional factors. The transcription factor Nrf2 (Nuclear factor-erythroid-2p45-related factor 2) is a potent transcriptional activator and plays a central role in inducible expression of many cytoprotective genes. In this report, we found that over-expression of Nrf2 stimulated BRCA1 expression, knockdown of Nrf2 attenuated BRCA1 expression. Nrf2 also interacted with CBP and p300 to form an active transcription complex, which could bind to the ARE (antioxidant response element) site on the BRCA1 promoter and activate its transcription by inducing histone acetylation. Our finding could lead to a better understanding of the development of breast cancer.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Oncology, Department of Breast Surgery, Breast Cancer Institute, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sakabe T, Tsuchiya H, Kanki K, Azumi J, Gonda K, Mizuta Y, Yamada D, Wada H, Shomori K, Nagano H, Shiota G. Identification of the genes chemosensitizing hepatocellular carcinoma cells to interferon-α/5-fluorouracil and their clinical significance. PLoS One 2013; 8:e56197. [PMID: 23457527 PMCID: PMC3574150 DOI: 10.1371/journal.pone.0056197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/07/2013] [Indexed: 12/20/2022] Open
Abstract
The incidence of advanced hepatocellular carcinoma (HCC) is increasing worldwide, and its prognosis is extremely poor. Interferon-alpha (IFN-α)/5-fluorouracil (5-FU) therapy is reportedly effective in some HCC patients. In the present study, to improve HCC prognosis, we identified the genes that are sensitizing to these agents. The screening strategy was dependent on the concentration of ribozymes that rendered HepG2 cells resistant to 5-FU by the repeated transfection of ribozymes into the cells. After 10 cycles of transfection, which was initiated by 5,902,875 sequences of a ribozyme library, three genes including protein kinase, adenosine monophosphate (AMP)-activated, gamma 2 non-catalytic subunit (PRKAG2); transforming growth factor-beta receptor II (TGFBR2); and exostosin 1 (EXT1) were identified as 5-FU-sensitizing genes. Adenovirus-mediated transfer of TGFBR2 and EXT1 enhanced IFN-α/5-FU-induced cytotoxicity as well as 5-FU, although the overexpression of these genes in the absence of IFN-α/5-FU did not induce cell death. This effect was also observed in a tumor xenograft model. The mechanisms of TGFBR2 and EXT1 include activation of the TGF-β signal and induction of endoplasmic reticulum stress, resulting in apoptosis. In HCC patients treated with IFN-α/5-FU therapy, the PRKAG2 mRNA level in HCC tissues was positively correlated with survival period, suggesting that PRKAG2 enhances the effect of IFN-α/5-FU and serves as a prognostic marker for IFN-α/5-FU therapy. In conclusion, we identified three genes that chemosensitize the effects of 5-FU and IFN-α/5-FU on HCC cells and demonstrated that PRKAG2 mRNA can serve as a prognostic marker for IFN-α/5-FU therapy.
Collapse
Affiliation(s)
- Tomohiko Sakabe
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Tsuchiya
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Keita Kanki
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Junya Azumi
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Kazue Gonda
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Yusuke Mizuta
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Daisaku Yamada
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kohei Shomori
- Department of Microbiology and Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroaki Nagano
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
- * E-mail:
| |
Collapse
|
49
|
Singh N, Ranjan A, Sur S, Chandra R, Tandon V. Inhibition of HIV-1 Integrase gene expression by 10-23 DNAzyme. J Biosci 2012; 37:493-502. [PMID: 22750986 DOI: 10.1007/s12038-012-9216-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HIV Integrase (IN) is an enzyme that is responsible for the integration of the proviral genome into the human genome, and this integration step is the first step of the virus hijacking the human cell machinery for its propagation and replication. 10-23 DNAzyme has the potential to suppress gene expressions through sequence-specific mRNA cleavage. We have designed three novel DNAzymes, DIN54, DIN116, and DIN152, against HIV-1 Integrase gene using Mfold software and evaluated them for target site cleavage activity on the in vitro transcribed mRNA. All DNAzymes were tested for its inhibition of expression of HIV Integrase protein in the transiently transfected cell lines. DIN116 and DIN152 inhibited IN-EGFP expression by 80 percent and 70 percent respectively.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- DNA, Catalytic/chemistry
- DNA, Catalytic/genetics
- DNA, Catalytic/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Gene Expression
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- HIV Integrase/biosynthesis
- HIV Integrase/genetics
- HeLa Cells
- Humans
- Models, Molecular
- Nucleic Acid Conformation
- RNA Cleavage
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Software
Collapse
Affiliation(s)
- Nirpendra Singh
- Dr BR Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India
| | | | | | | | | |
Collapse
|
50
|
Gelmon K, Dent R, Mackey JR, Laing K, McLeod D, Verma S. Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann Oncol 2012; 23:2223-2234. [PMID: 22517820 DOI: 10.1093/annonc/mds067] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a distinct subset of breast cancer (BC) defined by the lack of immunohistochemical expression of the estrogen and progesterone receptors and human epidermal growth factor receptor 2. It is highly heterogeneous and displays overlapping characteristics with both basal-like and BC susceptibility gene 1 and 2 mutant BCs. This review evaluates the activity of emerging targeted agents in TNBC. DESIGN A systematic review of PubMed and conference databases was carried out to identify randomised clinical trials reporting outcomes in women with TNBC treated with targeted and platinum-based therapies. RESULTS AND DISCUSSION Our review identified TNBC studies of agents with different mechanisms of action, including induction of synthetic lethality and inhibition of angiogenesis, growth, and survival pathways. Combining targeted agents with chemotherapy in TNBC produced only modest gains in progression-free survival, and had little impact on survival. Six TNBC subgroups have been identified and found to differentially respond to specific targeted agents. The use of biological preselection to guide therapy will improve therapeutic indices in target-bearing populations. CONCLUSION Ongoing clinical trials of targeted agents in unselected TNBC populations have yet to produce substantial improvements in outcomes, and advancements will depend on their development in target-selected populations.
Collapse
Affiliation(s)
- K Gelmon
- Department of Medicine, University of British Columbia and; Department of Medical Oncology, BC Cancer Agency, Vancouver, Canada.
| | - R Dent
- Medical Oncology, National Cancer Center Singapore and; Office of Clinical Sciences, Duke-NUS Graduate Medical School Singapore, Singapore
| | - J R Mackey
- Department of Oncology, University of Alberta and; Department of Medical Oncology, Cross Cancer Institute, Edmonton, Canada
| | - K Laing
- Department of Medicine, Memorial University and; Cancer Care Program, Eastern Health, St John's, Canada
| | - D McLeod
- Kaleidoscope Strategic, Toronto, Canada
| | - S Verma
- Department of Medicine, University of Toronto; Department of Medicine, Division of Medical Oncology/Hematology, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|