1
|
Basak AK, Piasecka A, Hucklenbroich J, Türksoy GM, Guan R, Zhang P, Getzke F, Garrido-Oter R, Hacquard S, Strzałka K, Bednarek P, Yamada K, Nakano RT. ER body-resident myrosinases and tryptophan specialized metabolism modulate root microbiota assembly. THE NEW PHYTOLOGIST 2024; 241:329-342. [PMID: 37771245 DOI: 10.1111/nph.19289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Endoplasmic reticulum (ER) bodies are ER-derived structures that contain a large amount of PYK10 myrosinase, which hydrolyzes tryptophan (Trp)-derived indole glucosinolates (IGs). Given the well-described role of IGs in root-microbe interactions, we hypothesized that ER bodies in roots are important for interaction with soil-borne microbes at the root-soil interface. We used mutants impaired in ER bodies (nai1), ER body-resident myrosinases (pyk10bglu21), IG biosynthesis (myb34/51/122), and Trp specialized metabolism (cyp79b2b3) to profile their root microbiota community in natural soil, evaluate the impact of axenically collected root exudates on soil or synthetic microbial communities, and test their response to fungal endophytes in a mono-association setup. Tested mutants exhibited altered bacterial and fungal communities in rhizoplane and endosphere, respectively. Natural soils and bacterial synthetic communities treated with mutant root exudates exhibited distinctive microbial profiles from those treated with wild-type (WT) exudates. Most tested endophytes severely restricted the growth of cyp79b2b3, a part of which also impaired the growth of pyk10bglu21. Our results suggest that root ER bodies and their resident myrosinases modulate the profile of root-secreted metabolites and thereby influence root-microbiota interactions.
Collapse
Affiliation(s)
- Arpan Kumar Basak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jana Hucklenbroich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Gözde Merve Türksoy
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Rui Guan
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Pengfan Zhang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Stephane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Krakow, 30-387, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ryohei Thomas Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
2
|
Singh DP, Bisen MS, Prabha R, Maurya S, Yerasu SR, Shukla R, Tiwari JK, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Singh PM, Behera TK, Farag MA. Untargeted Metabolomics of Alternaria solani-Challenged Wild Tomato Species Solanum cheesmaniae Revealed Key Metabolite Biomarkers and Insight into Altered Metabolic Pathways. Metabolites 2023; 13:585. [PMID: 37233626 PMCID: PMC10220610 DOI: 10.3390/metabo13050585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023] Open
Abstract
Untargeted metabolomics of moderately resistant wild tomato species Solanum cheesmaniae revealed an altered metabolite profile in plant leaves in response to Alternaria solani pathogen. Leaf metabolites were significantly differentiated in non-stressed versus stressed plants. The samples were discriminated not only by the presence/absence of specific metabolites as distinguished markers of infection, but also on the basis of their relative abundance as important concluding factors. Annotation of metabolite features using the Arabidopsis thaliana (KEGG) database revealed 3371 compounds with KEGG identifiers belonging to biosynthetic pathways including secondary metabolites, cofactors, steroids, brassinosteroids, terpernoids, and fatty acids. Annotation using the Solanum lycopersicum database in PLANTCYC PMN revealed significantly upregulated (541) and downregulated (485) features distributed in metabolite classes that appeared to play a crucial role in defense, infection prevention, signaling, plant growth, and plant homeostasis to survive under stress conditions. The orthogonal partial least squares discriminant analysis (OPLS-DA), comprising a significant fold change (≥2.0) with VIP score (≥1.0), showed 34 upregulated biomarker metabolites including 5-phosphoribosylamine, kaur-16-en-18-oic acid, pantothenate, and O-acetyl-L-homoserine, along with 41 downregulated biomarkers. Downregulated metabolite biomarkers were mapped with pathways specifically known for plant defense, suggesting their prominent role in pathogen resistance. These results hold promise for identifying key biomarker metabolites that contribute to disease resistive metabolic traits/biosynthetic routes. This approach can assist in mQTL development for the stress breeding program in tomato against pathogen interactions.
Collapse
Affiliation(s)
| | | | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India
| | | | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi 110012, India
| | | | | | - Md. Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India
| | | | | | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Zuo Y, Li B, Guan S, Jia J, Xu X, Zhang Z, Lu Z, Li X, Pang X. EuRBG10 involved in indole alkaloids biosynthesis in Eucommia ulmoides induced by drought and salt stresses. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153813. [PMID: 36179396 DOI: 10.1016/j.jplph.2022.153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Alkaloids are natural products with many important medicinal activities. To explore the mechanism of abiotic stress promoting alkaloid biosynthesis in Eucommia ulmoides, transcriptomic analysis and metabonomic analysis were used, virus-induced gene silencing (VIGS) lines of target gene were constructed. The results showed that drought and salt stress caused wilting and blackening of leaves, decreased chlorophyll level, and significantly induced MDA and relative conductivity. To resist the damage of stress to cells, the level of secondary metabolites such as alkaloids increased significantly with the extension of stress time. Transcriptomic results showed that, were. Six alkaloid related genes (AWGs) were gathered in five modules positively correlated with either salt stress or alkaloid contents by WGCNA. Results of GO and KEGG enrichment revealed that biosynthesis of alkaloid, especially indole alkaloid was induced, and degradation of alkaloid was inhibited under salt stress. Combining the results of transcriptome and metabolomics, it was suggested that EuRBG10 promotes the production of indole alkaloids and EuAMO5 inhibits the degradation of alkaloids, which may be the core mechanism of the indole alkaloid biosynthesis pathway (map00901) induced by salt stress. The results of these hub proteins were also consistent with the chordal graph of KEGG enrichment. Hub roles of EuRGB10 was checked in E. ulmoides by VIGS. Our findings provide a preliminary understanding of abiotic stress regulating secondary metabolites such as alkaloids, and propose hub genes that can be used to improve the level of bioactive components in medicinal plant.
Collapse
Affiliation(s)
- Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Bairu Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Suixia Guan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jingyu Jia
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xinjie Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zilong Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zheng Lu
- Department of Biology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, 471000, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China.
| | - Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
4
|
Liu Y, Wang M, Cao Y, Zeng M, Zhang Q, Ren Y, Chen X, He C, Fan X, Zheng X, Feng W. Chemical Constituents from the Flowers of Carthamus tinctorius L. and Their Lung Protective Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113573. [PMID: 35684510 PMCID: PMC9182397 DOI: 10.3390/molecules27113573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
A new flavonoid, saffloflavanside (1), a new sesquiterpene, safflomegastigside (2), and a new amide, saffloamide (3), together with twenty-two known compounds (4-25), were isolated from the flowers of Carthamus tinctorius L. Their structures were determined based on interpretation of their spectroscopic data and comparison with those reported in the literature. The protective effects against lipopolysaccharide (LPS)-stimulated damage on human normal lung epithelial (BEAS-2B) cells of the compounds were evaluated using MTT assay and cellular immunofluorescence assay. The results showed that compounds 2-3, 8-11, and 15-19 exhibited protective effects against LPS-induced damage to BEAS-2B cells. Moreover, compounds 2-3, 8-11, and 15-19 can significantly downregulate the level of nuclear translocation of NF-κB p-p65. In summary, this study revealed chemical constituents with lung protective activity from C. tinctorius, which may be developed as a drug for the treatment of lung injury.
Collapse
Affiliation(s)
- Yanling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Mengna Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Yangang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Qinqin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Yingjie Ren
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Chen He
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Xiling Fan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
- Correspondence: (X.Z.); (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (Y.L.); (M.W.); (Y.C.); (M.Z.); (Q.Z.); (Y.R.); (X.C.); (C.H.); (X.F.)
- The Engineering and Technology Center for Chinese Medicine, Development of Henan Province China, Zhengzhou 450046, China
- Correspondence: (X.Z.); (W.F.)
| |
Collapse
|
5
|
Gahloth D, Fisher K, Payne KAP, Cliff M, Levy C, Leys D. Structural and biochemical characterization of the prenylated flavin mononucleotide-dependent indole-3-carboxylic acid decarboxylase. J Biol Chem 2022; 298:101771. [PMID: 35218772 PMCID: PMC8988006 DOI: 10.1016/j.jbc.2022.101771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/08/2023] Open
Abstract
The ubiquitous UbiD family of reversible decarboxylases is implicated in a wide range of microbial processes and depends on the prenylated flavin mononucleotide cofactor for catalysis. However, only a handful of UbiD family members have been characterized in detail, and comparison between these has suggested considerable variability in enzyme dynamics and mechanism linked to substrate specificity. In this study, we provide structural and biochemical insights into the indole-3-carboxylic acid decarboxylase, representing an UbiD enzyme activity distinct from those previously studied. Structural insights from crystal structure determination combined with small-angle X-ray scattering measurements reveal that the enzyme likely undergoes an open-closed transition as a consequence of domain motion, an event that is likely coupled to catalysis. We also demonstrate that the indole-3-carboxylic acid decarboxylase can be coupled with carboxylic acid reductase to produce indole-3-carboxyaldehyde from indole + CO2 under ambient conditions. These insights provide further evidence for a common mode of action in the widespread UbiD enzyme family.
Collapse
Affiliation(s)
- Deepankar Gahloth
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Karl A P Payne
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Matthew Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Colin Levy
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Kempthorne CJ, Nielsen AJ, Wilson DC, McNulty J, Cameron RK, Liscombe DK. Metabolite profiling reveals a role for intercellular dihydrocamalexic acid in the response of mature Arabidopsis thaliana to Pseudomonas syringae. PHYTOCHEMISTRY 2021; 187:112747. [PMID: 33823457 DOI: 10.1016/j.phytochem.2021.112747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The leaf intercellular space is a site of plant-microbe interactions where pathogenic bacteria such as Pseudomonas syringae grow. In Arabidopsis thaliana, the biosynthesis of tryptophan-derived indolic metabolites is induced by P. syringae infection. Using high-resolution mass spectrometry-based profiling and biosynthetic mutants, we investigated the role of indolic compounds and other small molecules in the response of mature Arabidopsis to P. syringae. We observed dihydrocamalexic acid (DHCA), the precursor to the defense-related compound camalexin, accumulating in intercellular washing fluids (IWFs) without further conversion to camalexin. The indolic biosynthesis mutant cyp71a12/cyp71a13 was more susceptible to P. syringae compared to mature wild-type plants displaying age-related resistance (ARR). DHCA and structural analogs inhibit P. syringae growth (MIC ~ 500 μg/mL), but not at concentrations found in IWFs, and DHCA did not inhibit biofilm formation in vitro. However, infiltration of exogenous DHCA enhanced resistance in mature cyp71a12/cyp71a13. These results provide evidence that DHCA derived from CYP71A12 and CYP71A13 activity accumulates in the intercellular space and contributes to the resistance of mature Arabidopsis to P. syringae without directly inhibiting bacterial growth.
Collapse
Affiliation(s)
- Christine J Kempthorne
- Vineland Research and Innovation Centre, 4890 Victoria Ave North Box 4000, Vineland Station, Ontario, L0R 2E0, Canada; McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada; Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada.
| | | | - Daniel C Wilson
- McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| | - James McNulty
- McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| | - Robin K Cameron
- McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| | - David K Liscombe
- Vineland Research and Innovation Centre, 4890 Victoria Ave North Box 4000, Vineland Station, Ontario, L0R 2E0, Canada; Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
7
|
Bai HF, Li YP, Qin FY, Yan YM, Wang SM, Zhang HX, Cheng YX. Periplanetols A-F, phenolic compounds from Periplaneta americana with potent COX-2 inhibitory activity. Fitoterapia 2020; 143:104589. [PMID: 32272163 DOI: 10.1016/j.fitote.2020.104589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
Six new compounds, periplanetols A - F (1-4, 6 and 7), a compound isolated from natural origin for the first time (5), and nine known ones (8-16) were isolated from the 70% ethanol extract of the whole bodies of Periplaneta americana. Their structures including absolute configurations were unambiguously identified by comprehensive spectroscopic analyses and computational methods. Biological evaluation toward COX-2 inhibition revealed that compounds 1, 2, and 10 could inhibit COX-2 activity with the IC50 values of 768.0 nM, 617.7 nM, and 599.5 nM respectively, indicating their potential in developping novel agents against inflammation related disorders.
Collapse
Affiliation(s)
- Hong-Fu Bai
- Guangdong Pharmaceutical University, Guangzhou 510006, PR China; School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, PR China
| | - Yan-Peng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Fu-Ying Qin
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, PR China
| | - Yong-Ming Yan
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, PR China
| | - Shu-Mei Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Hao-Xing Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Yong-Xian Cheng
- Guangdong Pharmaceutical University, Guangzhou 510006, PR China; School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
8
|
Behr M, Neutelings G, El Jaziri M, Baucher M. You Want it Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:571399. [PMID: 33042189 PMCID: PMC7525049 DOI: 10.3389/fpls.2020.571399] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 05/02/2023]
Abstract
Oxidative stress is a cellular threat which puts at risk the productivity of most of crops valorized by humankind in terms of food, feed, biomaterial, or bioenergy. It is therefore of crucial importance to understand the mechanisms by which plants mitigate the deleterious effects of oxidizing agents. Glycosylation of antioxidant molecules and phytohormones modifies their chemical properties as well as their cellular and histological repartition. This review emphasizes the mechanisms and the outcomes of this conjugation reaction on plant ability to face growing conditions favoring oxidative stress, in mirror with the activity of deglycosylating enzymes. Pioneer evidence bridging flavonoid, glycosylation, and redox homeostasis paved the way for numerous functional analyses of UDP-glycosyltransferases (UGTs), such as the identification of their substrates and their role to circumvent oxidative stress resulting from various environmental challenges. (De)glycosylation appears as a simple chemical reaction regulating the biosynthesis and/or the activity of a myriad of specialized metabolites partaking in response to pathogen and abiotic stresses. This outcome underlies the possibility to valorize UGTs potential to upgrade plant adaptation and fitness in a rising context of sub-optimal growing conditions subsequent to climate change.
Collapse
Affiliation(s)
- Marc Behr
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Gosselies, Belgium
| | - Godfrey Neutelings
- UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, Université de Lille, CNRS, Lille, France
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Gosselies, Belgium
- *Correspondence: Marie Baucher,
| |
Collapse
|
9
|
Pastorczyk M, Kosaka A, Piślewska-Bednarek M, López G, Frerigmann H, Kułak K, Glawischnig E, Molina A, Takano Y, Bednarek P. The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. THE NEW PHYTOLOGIST 2020; 225:400-412. [PMID: 31411742 DOI: 10.1111/nph.16118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/07/2019] [Indexed: 05/14/2023]
Abstract
Effective defense of Arabidopsis against filamentous pathogens requires two mechanisms, both of which involve biosynthesis of tryptophan (Trp)-derived metabolites. Extracellular resistance involves products of PEN2-dependent metabolism of indole glucosinolates (IGs). Restriction of further fungal growth requires PAD3-dependent camalexin and other, as yet uncharacterized, indolics. This study focuses on the function of CYP71A12 monooxygenase in pathogen-triggered Trp metabolism, including the biosynthesis of indole-3-carboxylic acid (ICA). Moreover, to investigate the contribution of CYP71A12 and its products to Arabidopsis immunity, we analyzed infection phenotypes of multiple mutant lines combining pen2 with pad3, cyp71A12, cyp71A13 or cyp82C2. Metabolite profiling of cyp71A12 lines revealed a reduction in ICA accumulation. Additionally, analysis of mutant plants showed that low amounts of ICA can form during an immune response by CYP71B6/AAO1-dependent metabolism of indole acetonitrile, but not via IG hydrolysis. Infection assays with Plectosphaerella cucumerina and Colletotrichum tropicale, two pathogens with different lifestyles, revealed cyp71A12-, cyp71A13- and cyp82C2-associated defects associated with Arabidopsis immunity. Our results indicate that CYP71A12, but not CYP71A13, is the major enzyme responsible for the accumulation of ICA in Arabidopsis in response to pathogen ingression. We also show that both enzymes are key players in the resistance of Arabidopsis against selected filamentous pathogens after they invade.
Collapse
Affiliation(s)
- Marta Pastorczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Ayumi Kosaka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Henning Frerigmann
- Max Planck Institute for Plant Breeding Research and Cluster of Excellence on Plant Sciences (CEPLAS), Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Erich Glawischnig
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Microbial Biotechnology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
10
|
Müller TM, Böttcher C, Glawischnig E. Dissection of the network of indolic defence compounds in Arabidopsis thaliana by multiple mutant analysis. PHYTOCHEMISTRY 2019; 161:11-20. [PMID: 30798200 DOI: 10.1016/j.phytochem.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Characteristic for cruciferous plants is the synthesis of a complex array of defence-related indolic compounds. In Arabidopsis, these include indol-3-ylmethyl glucosinolates (IMGs), as well as stress-inducible indole-3-carbaldehyde (ICHO)/indole-3-carboxylic acid (ICOOH) derivatives and camalexin. Key enzymes in the biosynthesis of the inducible metabolites are the cytochrome P450 enzymes CYP71A12, CYP71A13 and CYP71B6 and Arabidopsis Aldehyde Oxidase 1 (AAO1). Multiple mutants in the corresponding genes were generated and their metabolic phenotypes were comprehensively analysed in untreated, UV exposed and silver nitrate-treated leaves. Most strikingly, ICOOH and ICHO derivatives synthesized in response to UV exposure were not metabolically related. While ICHO concentrations correlated with IMGs, ICOOH derivatives were anti-correlated with IMGs and partially dependent on CYP71B6. The AAO1 genotype was shown to not only be important for ICHO metabolism but also for the accumulation of 4-pyridoxic acid, suggesting a dual role of AAO1 in vitamin B6 metabolism and IMG degradation in Arabidopsis.
Collapse
Affiliation(s)
- Teresa M Müller
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Christoph Böttcher
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, 14195 Berlin, Germany
| | - Erich Glawischnig
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; Microbial Biotechnology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany.
| |
Collapse
|
11
|
Park KJ, Kim DH, Kim CS, Oh J, Subedi L, Son MW, Choi SZ, Kim SY, Lee KR. Isolation of indole alkaloid and anthranilic acid derivatives from Indigo Pulverata Levis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Kherkhache H, Benabdelaziz I, Silva AMS, Lahrech MB, Benalia M, Haba H. A new indole alkaloid, antioxidant and antibacterial activities of crude extracts from Saccocalyx satureioides. Nat Prod Res 2018; 34:1528-1534. [PMID: 30445859 DOI: 10.1080/14786419.2018.1519817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The new acylated indole alkaloid glucoside indole-3-carboxylic acid-(6'-O-caffeoyl)-β-D-glucoside 1 has been isolated from the ethyl acetate (EtOAC) extract of Saccocalyx satureioides Coss. & Dur. (Lamiaceae) together with eight known secondary metabolites 2-9. Two indoles 2 and 3, five methylated flavone aglycones 4-8 and one monoterpene glucoside 9 were reported for the first time in the genus Saccocalyx. The structural elucidation of these compounds was accomplished by spectroscopic methods including 1 D (1H and 13C) and 2 D (COSY, HSQC and HMBC) NMR techniques, and mass spectrometry, and by comparison with literature data. Light petroleum, EtOAc, chloroform and n-butanol (n-BuOH) extracts of S. Satureioides were screened for their antioxidant activity using DPPH radical scavenging and β-carotene bleaching methods. The antibacterial activity of these extracts indicates that n-BuOH and EtOAc extracts possess the strongest activity.
Collapse
Affiliation(s)
- Hayat Kherkhache
- Laboratoire de Chimie Organique et Substances Naturelles, Université de Djelfa, Djelfa, Algérie
| | - Imane Benabdelaziz
- Département de Chimie, Laboratoire de Chimie et Chimie de l'Environnement (L.C.C.E), Faculté des Sciences de la Matière, Université de Batna-1, Batna, Algérie
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Mokhtar Boualem Lahrech
- Laboratoire de Chimie Organique et Substances Naturelles, Université de Djelfa, Djelfa, Algérie
| | - Mokhtar Benalia
- Département de Chimie Industrielle, Laboratoire de Chimie, Université de Laghouat, Laghouat, Algérie
| | - Hamada Haba
- Département de Chimie, Laboratoire de Chimie et Chimie de l'Environnement (L.C.C.E), Faculté des Sciences de la Matière, Université de Batna-1, Batna, Algérie
| |
Collapse
|
13
|
Kang W, Zhu X, Wang Y, Chen L, Duan Y. Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC PLANT BIOLOGY 2018; 18:86. [PMID: 29751738 PMCID: PMC5948838 DOI: 10.1186/s12870-018-1302-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/30/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Our previous study showed that the plant growth-promoting rhizobacterium Bacillus simplex strain Sneb545 promotes soybean resistance to SCN. Here, we conducted a combined metabolomic and transcriptomic analysis to gain information regarding the biological mechanism of defence enhancement against SCN in Sneb545-treated soybean. To this end, we compared the transcriptome and metabolome of Sneb545-treated and non-treated soybeans under SCN infection. RESULTS Transcriptomic analysis showed that 6792 gene transcripts were common in Sneb545-treated and non-treated soybeans. However, Sneb545-treated soybeans showed a higher concentration of various nematicidal metabolites, including 4-vinylphenol, methionine, piperine, and palmitic acid, than non-treated soybeans under SCN infection. CONCLUSIONS Overall, our results validated and expanded the existing models regarding the co-regulation of gene expression and metabolites in plants, indicating the advantage of integrated system-oriented analysis.
Collapse
Affiliation(s)
- Wenshu Kang
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Yuanyuan Wang
- Institute of Biotechnology, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| |
Collapse
|
14
|
Mackelprang R, Okrent RA, Wildermuth MC. Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. PHYTOCHEMISTRY 2017; 143:19-28. [PMID: 28743075 DOI: 10.1016/j.phytochem.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The GH3 family of adenylating enzymes conjugate acyl substrates such as the growth hormone indole-3-acetic acid (IAA) to amino acids via a two-step reaction of acyl substrate adenylation followed by amino acid conjugation. Arabidopsis thaliana GH3.5 was previously shown to be unusual in that it could adenylate both IAA and the defense hormone salicylic acid (SA, 2-hydroxybenzoate). Our detailed studies of the kinetics of GH3.5 on a variety of auxin and benzoate substrates provides insight into the acyl preference and reaction mechanism of GH3.5. For example, we found GH3.5 activity on substituted benzoates is not defined by the substitution position as it is for GH3.12/PBS3. Most importantly, we show that GH3.5 strongly prefers Asp as the amino acid conjugate and that the concentration of Asp dictates the functional activity of GH3.5 on IAA vs. SA. Not only is Asp used in amino acid biosynthesis, but it also plays an important role in nitrogen mobilization and in the production of downstream metabolites, including pipecolic acid which propagates defense systemically. During active growth, [IAA] and [Asp] are high and the catalytic efficiency (kcat/Km) of GH3.5 for IAA is 360-fold higher than with SA. GH3.5 is expressed under these conditions and conversion of IAA to inactive IAA-Asp would provide fine spatial and temporal control over local auxin developmental responses. By contrast, [SA] is dramatically elevated in response to (hemi)-biotrophic pathogens which also induce GH3.5 expression. Under these conditions, [Asp] is low and GH3.5 has equal affinity (Km) for SA and IAA with similar catalytic efficiencies. However, the concentration of IAA tends to be very low, well below the Km for IAA. Therefore, GH3.5 catalyzed formation of SA-Asp would occur, fine-tuning localized defensive responses through conversion of active free SA to SA-Asp. Taken together, we show how GH3.5, with dual activity on IAA and SA, can integrate cellular metabolic status via Asp to provide fine control of growth vs. defense outcomes and hormone homeostasis.
Collapse
Affiliation(s)
- Rebecca Mackelprang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Rachel A Okrent
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
15
|
Preston GM. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:443-456. [PMID: 28026146 PMCID: PMC6638297 DOI: 10.1111/mpp.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens during natural infections?
Collapse
Affiliation(s)
- Gail M. Preston
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
16
|
Engelsdorf T, Will C, Hofmann J, Schmitt C, Merritt BB, Rieger L, Frenger MS, Marschall A, Franke RB, Pattathil S, Voll LM. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:701-713. [PMID: 28204541 PMCID: PMC5441917 DOI: 10.1093/jxb/erw434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Cornelia Will
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Jörg Hofmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Christine Schmitt
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Brian B Merritt
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Leonie Rieger
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Marc S Frenger
- Universität Bonn, Institute for Cellular and Molecular Botany, Department of Ecophysiology, Kirschallee 1, Bonn, Germany
| | - André Marschall
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Technische Hochschule Nürnberg Georg-Simon Ohm, Nürnberg, Germany
| | - Rochus B Franke
- Universität Bonn, Institute for Cellular and Molecular Botany, Department of Ecophysiology, Kirschallee 1, Bonn, Germany
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Lars M Voll
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| |
Collapse
|
17
|
Vogel C, Bodenhausen N, Gruissem W, Vorholt JA. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. THE NEW PHYTOLOGIST 2016; 212:192-207. [PMID: 27306148 DOI: 10.1111/nph.14036] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Plants are colonized by a variety of bacteria, most of which are not pathogenic. Currently, the plant responses to phyllosphere commensals or to pathogen infection in the presence of commensals are not well understood. Here, we examined the transcriptional response of Arabidopsis thaliana leaves to colonization by common commensal bacteria in a gnotobiotic system using RNA sequencing and conducted plant mutant assays. Arabidopsis responded differently to the model bacteria Sphingomonas melonis Fr1 (S.Fr1) and Methylobacterium extorquens PA1 (M.PA1). Whereas M.PA1 only marginally affected the expression of plant genes (< 10), S.Fr1 colonization changed the expression of almost 400 genes. For the latter, genes related to defense responses were activated and partly overlapped with those elicited by the pathogen Pseudomonas syringae DC3000 (Pst). As S.Fr1 is able to mediate plant protective activity against Pst, we tested plant immunity mutants and found that the pattern-recognition co-receptor mutant bak1/bkk1 showed attenuated S.Fr1-dependent plant protection. The experiments demonstrate that the plant responds differently to members of its natural phyllosphere microbiota. A subset of commensals trigger expression of defense-related genes and thereby may contribute to plant health upon pathogen encounter.
Collapse
Affiliation(s)
- Christine Vogel
- Department of Biology, Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Natacha Bodenhausen
- Department of Biology, Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Julia A Vorholt
- Department of Biology, Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
18
|
Finnegan T, Steenkamp PA, Piater LA, Dubery IA. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways. PLoS One 2016; 11:e0163572. [PMID: 27656890 PMCID: PMC5033345 DOI: 10.1371/journal.pone.0163572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/11/2016] [Indexed: 11/19/2022] Open
Abstract
Lipopolysaccharides (LPSs), as MAMP molecules, trigger the activation of signal transduction pathways involved in defence. Currently, plant metabolomics is providing new dimensions into understanding the intracellular adaptive responses to external stimuli. The effect of LPS on the metabolomes of Arabidopsis thaliana cells and leaf tissue was investigated over a 24 h period. Cellular metabolites and those secreted into the medium were extracted with methanol and liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. Multivariate statistical data analyses were used to extract interpretable information from the generated multidimensional LC-MS data. The results show that LPS perception triggered differential changes in the metabolomes of cells and leaves, leading to variation in the biosynthesis of specialised secondary metabolites. Time-dependent changes in metabolite profiles were observed and biomarkers associated with the LPS-induced response were tentatively identified. These include the phytohormones salicylic acid and jasmonic acid, and also the associated methyl esters and sugar conjugates. The induced defensive state resulted in increases in indole-and other glucosinolates, indole derivatives, camalexin as well as cinnamic acid derivatives and other phenylpropanoids. These annotated metabolites indicate dynamic reprogramming of metabolic pathways that are functionally related towards creating an enhanced defensive capacity. The results reveal new insights into the mode of action of LPS as an activator of plant innate immunity, broadens knowledge about the defence metabolite pathways involved in Arabidopsis responses to LPS, and identifies specialised metabolites of functional importance that can be employed to enhance immunity against pathogen infection.
Collapse
Affiliation(s)
- Tarryn Finnegan
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
- CSIR- Biosciences, Natural Products and Agroprocessing Group, Pretoria, 0001, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| |
Collapse
|
19
|
Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. MOLECULAR PLANT 2016; 9:662-681. [PMID: 26802249 DOI: 10.1016/j.molp.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/08/2015] [Accepted: 01/01/2016] [Indexed: 05/27/2023]
Abstract
Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Patricia Bellwon
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Stefan Huber
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Klaus Schlaeppi
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Friederike Bernsdorff
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Armelle Vallat-Michel
- Institut de Chimie, Université de Neuchâtel, Avenue Bellevaux 51, 2007 Neuchâtel, Switzerland
| | - Felix Mauch
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Frerigmann H, Piślewska-Bednarek M, Sánchez-Vallet A, Molina A, Glawischnig E, Gigolashvili T, Bednarek P. Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. MOLECULAR PLANT 2016; 9:682-695. [PMID: 26802248 DOI: 10.1016/j.molp.2016.01.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 05/20/2023]
Abstract
MYB34, MYB51, and MYB122 transcription factors are known as decisive regulators of indolic glucosinolate (IG) biosynthesis with a strong impact on expression of genes encoding CYP79B2 and CYP79B3 enzymes that redundantly convert tryptophan to indole-3-acetaldoxime (IAOx). This intermediate represents a branching point for IG biosynthesis, and pathways leading to camalexin and indole-carboxylic acids (ICA). Here we investigate how these MYBs affect the pathogen-triggered Trp metabolism. Our experiments indicated that these three MYBs affect not only IG production but also constitutive biosynthesis of other IAOx-derived metabolites. Strikingly, the PENETRATION 2 (PEN2)-dependent IG-metabolism products, which are absent in myb34/51/122 and pen2 mutants, were indispensable for full flg22-mediated induction of other IAOx-derived compounds. However, gene induction and accumulation of ICAs and camalexin upon pathogen infection was not compromised in myb34/51/122 plants, despite strongly reduced IG levels. Hence, in comparison with cyp79B2/B3, which lacks all IAOx-derived metabolites, we found myb34/51/122 an ideal tool to analyze IG contribution to resistance against the necrotrophic fungal pathogen Plectosphaerella cucumerina. The susceptibility of myb34/51/122 was similar to that of pen2, but much lower than susceptibility of cyp79B2/B3, indicating that MYB34/51/122 contribute to resistance toward P. cucumerina exclusively through IG biosynthesis, and that PEN2 is the main leaf myrosinase activating IGs in response to microbial pathogens.
Collapse
Affiliation(s)
- Henning Frerigmann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | | | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Erich Glawischnig
- Lehrstuhl für Genetik, Technische Universität München, Emil-Ramann-Str. 8, 85354 Freising, Germany
| | - Tamara Gigolashvili
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego12/14, 61-704 Poznań, Poland.
| |
Collapse
|
21
|
Kim MS, Jin JS, Kwak YS, Hwang GS. Metabolic Response of Strawberry (Fragaria x ananassa) Leaves Exposed to the Angular Leaf Spot Bacterium (Xanthomonas fragariae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1889-98. [PMID: 26890088 DOI: 10.1021/acs.jafc.5b05201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants have evolved various defense mechanisms against biotic stress. The most common mechanism involves the production of metabolites that act as defense compounds. Bacterial angular leaf spot disease (Xanthomonas fragariae) of the strawberry (Fragaria x ananassa) has become increasingly destructive to strawberry leaves and plant production. In this study, we examined metabolic changes associated with the establishment of long-term bacterial disease stress using UPLC-QTOF mass spectrometry. Infected leaves showed decreased levels of gallic acid derivatives and ellagitannins, which are related to the plant defense system. The levels of phenylalanine, tryptophan, and salicylic acid as precursors of aromatic secondary metabolites were increased in inoculated leaves, whereas levels of coumaric acid, quinic acid, and flavonoids were decreased in infected plants, which are involved in the phenylpropanoid pathway. In addition, phenylalanine ammonia-lyase (PAL) activity, a key enzyme in the phenylpropanoid pathway, was decreased following infection. These results suggest that long-term bacterial disease stress may lead to down-regulation of select molecules of the phenylpropanoid metabolic pathway in strawberry leaves. This approach could be applied to explore the metabolic pathway associated with plant protection/breeding in strawberry leaves.
Collapse
Affiliation(s)
- Min-Sun Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute , Seoul 120-140, Republic of Korea
| | - Jong Sung Jin
- Busan Center, Korea Basic Science Institute , Busan 609-735, Republic of Korea
| | - Youn-Sig Kwak
- Department of Plant Medicine & RILS, Gyeongsang National University , Jinju 52828, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute , Seoul 120-140, Republic of Korea
- Chemistry & Nanoscience, Ewha Womans University , Seoul 120-750, Republic of Korea
| |
Collapse
|
22
|
Müller TM, Böttcher C, Morbitzer R, Götz CC, Lehmann J, Lahaye T, Glawischnig E. TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines. PLANT PHYSIOLOGY 2015; 168:849-58. [PMID: 25953104 PMCID: PMC4741344 DOI: 10.1104/pp.15.00481] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/05/2015] [Indexed: 05/05/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), a number of defense-related metabolites are synthesized via indole-3-acetonitrile (IAN), including camalexin and indole-3-carboxylic acid (ICOOH) derivatives. Cytochrome P450 71A13 (CYP71A13) is a key enzyme for camalexin biosynthesis and catalyzes the conversion of indole-3-acetaldoxime (IAOx) to IAN. The CYP71A13 gene is located in tandem with its close homolog CYP71A12, also encoding an IAOx dehydratase. However, for CYP71A12, indole-3-carbaldehyde and cyanide were identified as major reaction products. To clarify CYP71A12 function in vivo and to better understand IAN metabolism, we generated two cyp71a12 cyp71a13 double knockout mutant lines. CYP71A12-specific transcription activator-like effector nucleases were introduced into the cyp71a13 background, and very efficient somatic mutagenesis was achieved. We observed stable transmission of the cyp71a12 mutation to the following generations, which is a major challenge for targeted mutagenesis in Arabidopsis. In contrast to cyp71a13 plants, in which camalexin accumulation is partially reduced, double mutants synthesized only traces of camalexin, demonstrating that CYP71A12 contributes to camalexin biosynthesis in leaf tissue. A major role of CYP71A12 was identified for the inducible biosynthesis of ICOOH. Specifically, the ICOOH methyl ester was reduced to 12% of the wild-type level in AgNO3-challenged cyp71a12 leaves. In contrast, indole-3-carbaldehyde derivatives apparently are synthesized via alternative pathways, such as the degradation of indole glucosinolates. Based on these results, we present a model for this surprisingly complex metabolic network with multiple IAN sources and channeling of IAOx-derived IAN into camalexin biosynthesis. In conclusion, transcription activator-like effector nuclease-mediated mutation is a powerful tool for functional analysis of tandem genes in secondary metabolism.
Collapse
Affiliation(s)
- Teresa M Müller
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (T.M.M., C.C.G., J.L., E.G.);Julius Kühn-Institut, Institut für Ökologische Chemie, Pflanzenanalytik, und Vorratsschutz, 14195 Berlin, Germany (C.B.); andCenter for Plant Molecular Biology-General Genetics, University of Tübingen, 72076 Tuebingen, Germany (R.M., T.L.)
| | - Christoph Böttcher
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (T.M.M., C.C.G., J.L., E.G.);Julius Kühn-Institut, Institut für Ökologische Chemie, Pflanzenanalytik, und Vorratsschutz, 14195 Berlin, Germany (C.B.); andCenter for Plant Molecular Biology-General Genetics, University of Tübingen, 72076 Tuebingen, Germany (R.M., T.L.)
| | - Robert Morbitzer
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (T.M.M., C.C.G., J.L., E.G.);Julius Kühn-Institut, Institut für Ökologische Chemie, Pflanzenanalytik, und Vorratsschutz, 14195 Berlin, Germany (C.B.); andCenter for Plant Molecular Biology-General Genetics, University of Tübingen, 72076 Tuebingen, Germany (R.M., T.L.)
| | - Cornelia C Götz
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (T.M.M., C.C.G., J.L., E.G.);Julius Kühn-Institut, Institut für Ökologische Chemie, Pflanzenanalytik, und Vorratsschutz, 14195 Berlin, Germany (C.B.); andCenter for Plant Molecular Biology-General Genetics, University of Tübingen, 72076 Tuebingen, Germany (R.M., T.L.)
| | - Johannes Lehmann
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (T.M.M., C.C.G., J.L., E.G.);Julius Kühn-Institut, Institut für Ökologische Chemie, Pflanzenanalytik, und Vorratsschutz, 14195 Berlin, Germany (C.B.); andCenter for Plant Molecular Biology-General Genetics, University of Tübingen, 72076 Tuebingen, Germany (R.M., T.L.)
| | - Thomas Lahaye
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (T.M.M., C.C.G., J.L., E.G.);Julius Kühn-Institut, Institut für Ökologische Chemie, Pflanzenanalytik, und Vorratsschutz, 14195 Berlin, Germany (C.B.); andCenter for Plant Molecular Biology-General Genetics, University of Tübingen, 72076 Tuebingen, Germany (R.M., T.L.)
| | - Erich Glawischnig
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (T.M.M., C.C.G., J.L., E.G.);Julius Kühn-Institut, Institut für Ökologische Chemie, Pflanzenanalytik, und Vorratsschutz, 14195 Berlin, Germany (C.B.); andCenter for Plant Molecular Biology-General Genetics, University of Tübingen, 72076 Tuebingen, Germany (R.M., T.L.)
| |
Collapse
|
23
|
Ahrazem O, Rubio-Moraga A, Trapero-Mozos A, Climent MFL, Gómez-Cadenas A, Gómez-Gómez L. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:60-73. [PMID: 25804810 DOI: 10.1016/j.plantsci.2015.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 05/03/2023]
Abstract
Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Fundación Parque Científico y Tecnológico de Albacete, Spain
| | - Angela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Almudena Trapero-Mozos
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | | | - Aurelio Gómez-Cadenas
- Universitat Jaume I, Department of Agricultural and Environmental Sciences, 12071 Castelló de la Plana, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
24
|
Mitchell K, Brown I, Knox P, Mansfield J. The role of cell wall-based defences in the early restriction of non-pathogenic hrp mutant bacteria in Arabidopsis. PHYTOCHEMISTRY 2015; 112:139-150. [PMID: 25108744 DOI: 10.1016/j.phytochem.2014.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
We have investigated the cause of the restricted multiplication of hrp mutant bacteria in leaves of Arabidopsis. Our focus was on early interactions leading to differentiation between virulent wild-type and non-pathogenic hrpA mutant strains of Pseudomonas syringae pv. tomato. An initial drop in recoverable bacteria detected 0-4 h after inoculation with either strain was dependent on a functional FLS2 receptor and H2O2 accumulation in challenged leaves. Wild-type bacteria subsequently multiplied rapidly whereas the hrpA mutant was restricted within 6 h. Despite the early restriction, the hrpA mutant was still viable several days after inoculation. Analysis of intercellular washing fluids (IWFs), showed that high levels of nutrients were readily available to bacteria in the apoplast and that no diffusible inhibitors were produced in response to bacterial challenge. Histochemical and immunocytochemical methods were used to detect changes in polysaccharides (callose, two forms of cellulose, and pectin), arabinogalactan proteins (AGPs), H2O2 and peroxidase. Quantitative analysis showed very similar changes in localisation of AGPs, cellulose epitopes and callose 2 and 4 h after inoculation with either strain. However from 6 to 12 h after inoculation papillae expanded only next to the hrp mutant. In contrast to the similar patterns of secretory activity recorded from mesophyll cells, accumulation of H2O2 and peroxidase was significantly greater around the hrpA mutant within the first 4h after inoculation. A striking differential accumulation of H2O2 was also found in chloroplasts in cells next to the mutant. Ascorbate levels were lower in the IWFs recovered from sites inoculated with the hrp mutant than with wild-type bacteria. The critical response, observed at the right time and place to explain the observed differential behaviour of wild-type and hrpA mutant bacteria was the accumulation of H2O2, probably generated through Type III peroxidase activity and in chloroplasts. It is proposed that H2O2 and apoplastic peroxidase cross-link secreted glycoproteins and polysaccharides to agglutinate the hrp mutant. Generation of H2O2 has been identified as a likely target for effector proteins injected into plant cells by the wild-type bacteria.
Collapse
Affiliation(s)
- Kathy Mitchell
- Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ian Brown
- School of Biological Sciences, University of Kent, Canterbury CT127NZ, UK
| | - Paul Knox
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John Mansfield
- Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
25
|
Strehmel N, Böttcher C, Schmidt S, Scheel D. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. PHYTOCHEMISTRY 2014; 108:35-46. [PMID: 25457500 DOI: 10.1016/j.phytochem.2014.10.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/01/2014] [Accepted: 10/08/2014] [Indexed: 05/20/2023]
Abstract
To explore the chemical composition of root exudates of the model plant Arabidopsis thaliana a workflow for nontargeted metabolite profiling of the semipolar fraction of root exudates was developed. It comprises hydroponic plant cultivation and sampling of root exudates under sterile conditions, sample preparation by solid-phase extraction and analysis by reversed-phase UPLC/ESI-QTOFMS. Following the established workflow, root exudates of six-week-old plants were profiled and a set of reproducibly occurring molecular features was compiled. To structurally elucidate the corresponding metabolites, accurate mass tandem mass spectrometry and on-line hydrogen/deuterium exchange were applied. Currently, a total of 103 compounds were detected and annotated by elemental composition of which more than 90 were structurally characterized or classified. Among them, 42 compounds were rigorously identified using an authenticated standard. The compounds identified so far include nucleosides, deoxynucleosides, aromatic amino acids, anabolites and catabolites of glucosinolates, dipeptides, indolics, salicylic and jasmonic acid catabolites, coumarins, mono-, di- and trilignols, hydroxycinnamic acid derivatives and oxylipins and exemplify the high chemical diversity of plant root exudates.
Collapse
|
26
|
Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genomics 2014; 15:629. [PMID: 25063396 PMCID: PMC4124148 DOI: 10.1186/1471-2164-15-629] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/18/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Fusarium Head Blight (FHB) caused primarily by Fusarium graminearum (Fg) is one of the major diseases of small-grain cereals including bread wheat. This disease both reduces yields and causes quality losses due to the production of deoxynivalenol (DON), the major type B trichothecene mycotoxin. DON has been described as a virulence factor enabling efficient colonization of spikes by the fungus in wheat, but its precise role during the infection process is still elusive. Brachypodium distachyon (Bd) is a model cereal species which has been shown to be susceptible to FHB. Here, a functional genomics approach was performed in order to characterize the responses of Bd to Fg infection using a global transcriptional and metabolomic profiling of B. distachyon plants infected by two strains of F. graminearum: a wild-type strain producing DON (Fgdon+) and a mutant strain impaired in the production of the mycotoxin (Fgdon-). RESULTS Histological analysis of the interaction of the Bd21 ecotype with both Fg strains showed extensive fungal tissue colonization with the Fgdon+ strain while the florets infected with the Fgdon- strain exhibited a reduced hyphal extension and cell death on palea and lemma tissues. Fungal biomass was reduced in spikes inoculated with the Fgdon- strain as compared with the wild-type strain. The transcriptional analysis showed that jasmonate and ethylene-signalling pathways are induced upon infection, together with genes encoding putative detoxification and transport proteins, antioxidant functions as well as secondary metabolite pathways. In particular, our metabolite profiling analysis showed that tryptophan-derived metabolites, tryptamine, serotonin, coumaroyl-serotonin and feruloyl-serotonin, are more induced upon infection by the Fgdon+ strain than by the Fgdon- strain. Serotonin was shown to exhibit a slight direct antimicrobial effect against Fg. CONCLUSION Our results show that Bd exhibits defense hallmarks similar to those already identified in cereal crops. While the fungus uses DON as a virulence factor, the host plant preferentially induces detoxification and the phenylpropanoid and phenolamide pathways as resistance mechanisms. Together with its amenability in laboratory conditions, this makes Bd a very good model to study cereal resistance mechanisms towards the major disease FHB.
Collapse
|
27
|
Böttcher C, Chapman A, Fellermeier F, Choudhary M, Scheel D, Glawischnig E. The Biosynthetic Pathway of Indole-3-Carbaldehyde and Indole-3-Carboxylic Acid Derivatives in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:841-853. [PMID: 24728709 PMCID: PMC4044862 DOI: 10.1104/pp.114.235630] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Indolic secondary metabolites play an important role in pathogen defense in cruciferous plants. In Arabidopsis (Arabidopsis thaliana), in addition to the characteristic phytoalexin camalexin, derivatives of indole-3-carbaldehyde (ICHO) and indole-3-carboxylic acid (ICOOH) are synthesized from tryptophan via the intermediates indole-3-acetaldoxime and indole-3-acetonitrile. Based on feeding experiments combined with nontargeted metabolite profiling, their composition in nontreated and silver nitrate (AgNO3)-treated leaf tissue was comprehensively analyzed. As major derivatives, glucose conjugates of 5-hydroxyindole-3-carbaldehyde, ICOOH, and 6-hydroxyindole-3-carboxylic acid were identified. Quantification of ICHO and ICOOH derivative pools after glucosidase treatment revealed that, in response to AgNO3 treatment, their total accumulation level was similar to that of camalexin. ARABIDOPSIS ALDEHYDE OXIDASE1 (AAO1), initially discussed to be involved in the biosynthesis of indole-3-acetic acid, and Cytochrome P450 (CYP) 71B6 were found to be transcriptionally coexpressed with camalexin biosynthetic genes. CYP71B6 was expressed in Saccharomyces cerevisiae and shown to efficiently convert indole-3-acetonitrile into ICHO and ICOOH, thereby releasing cyanide. To evaluate the role of both enzymes in the biosynthesis of ICHO and ICOOH derivatives, knockout and overexpression lines for CYP71B6 and AAO1 were established and analyzed for indolic metabolites. The observed metabolic phenotypes suggest that AAO1 functions in the oxidation of ICHO to ICOOH in both nontreated and AgNO3-treated leaves, whereas CYP71B6 is relevant for ICOOH derivative biosynthesis specifically after induction. In summary, a model for the biosynthesis of ICHO and ICOOH derivatives is presented.
Collapse
Affiliation(s)
- Christoph Böttcher
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Alexandra Chapman
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Franziska Fellermeier
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Manisha Choudhary
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Erich Glawischnig
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| |
Collapse
|
28
|
Zheng CJ, Deng XH, Wu Y, Jiang YP, Zhu JY, Qin LP. Antiinflammatory Effects and Chemical Constituents of Veronicastrum axillare. Phytother Res 2014; 28:1561-6. [DOI: 10.1002/ptr.5168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Cheng-Jian Zheng
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| | - Xue-Hong Deng
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
- Department of Pharmacy; Fujian University of Traditional Chinese Medicine; 1 Huatuo Road Fuzhou 350108 China
| | - Yu Wu
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| | - Jian-Yong Zhu
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai 200433 China
| |
Collapse
|
29
|
Simon C, Langlois-Meurinne M, Didierlaurent L, Chaouch S, Bellvert F, Massoud K, Garmier M, Thareau V, Comte G, Noctor G, Saindrenan P. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. PLANT, CELL & ENVIRONMENT 2014; 37:1114-29. [PMID: 24131360 DOI: 10.1111/pce.12221] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secondary metabolism plant glycosyltransferases (UGTs) ensure conjugation of sugar moieties to secondary metabolites (SMs) and glycosylation contributes to the great diversity, reactivity and regulation of SMs. UGT73B3 and UGT73B5, two UGTs of Arabidopsis thaliana (Arabidopsis), are involved in the hypersensitive response (HR) to the avirulent bacteria Pseudomonas syringae pv. tomato (Pst-AvrRpm1), but their function in planta is unknown. Here, we report that ugt73b3, ugt73b5 and ugt73b3 ugt73b5 T-DNA insertion mutants exhibited an accumulation of reactive oxygen species (ROS), an enhanced cell death during the HR to Pst-AvrRpm1, whereas glutathione levels increased in the single mutants. In silico analyses indicate that UGT73B3 and UGT73B5 belong to the early salicylic acid (SA)-induced genes whose pathogen-induced expression is co-regulated with genes related to cellular redox homeostasis and general detoxification. Analyses of metabolic alterations in ugt mutants reveal modification of SA and scopoletin contents which correlate with redox perturbation, and indicate quantitative modifications in the pattern of tryptophan-derived SM accumulation after Pst-AvrRpm1 inoculation. Our data suggest that UGT73B3 and UGT73B5 participate in regulation of redox status and general detoxification of ROS-reactive SMs during the HR to Pst-AvrRpm1, and that decreased resistance to Pst-AvrRpm1 in ugt mutants is tightly linked to redox perturbation.
Collapse
Affiliation(s)
- Clara Simon
- Institut de Biologie des Plantes, CNRS-Université Paris-Sud 11, UMR 8618, Bâtiment 630, 91405, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang L, Wang G, Wang M, Jiang H, Chen L, Zhao F, Qiu F. Indole alkaloids from the roots of Isatis indigotica and their inhibitory effects on nitric oxide production. Fitoterapia 2014; 95:175-81. [PMID: 24685504 DOI: 10.1016/j.fitote.2014.03.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/14/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
Three rare indole-2-S-glycosides, indole-3-acetonitrile-2-S-β-D-glucopyranoside (1), indole-3-acetonitrile-4-methoxy-2-S-β-D-glucopyranoside (2) and N-methoxy-indole-3-acetonitrile-2-S-β-D-glucopyranoside (3), together with 11 known indole alkaloids were isolated from the roots of Isatis indigotica Fort. (Cruciferae). The structures of 1-3 were elucidated on the basis of mass spectrometry and extensive 1D and 2D NMR spectroscopy. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. A plausible biosynthesis pathway of 1-3 is also proposed.
Collapse
Affiliation(s)
- Liguo Yang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Guan Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Meng Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongmei Jiang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lixia Chen
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, PR China.
| | - Feng Qiu
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
31
|
Montaut S, Bleeker RS. Review on Cardamine diphylla (Michx.) A. wood (Brassicaceae): ethnobotany and glucosinolate chemistry. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:401-408. [PMID: 23892204 DOI: 10.1016/j.jep.2013.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardamine diphylla (Michx.) A. Wood, commonly called toothwort, is a spring perennial herb belonging to the Brassicaceae family. This endemic plant of Eastern North America has been widely used by multiple American First Nations (i.e. indigenous people of North America) for food and medicine for centuries. APPROACH AND METHODS The aim of the review is to describe the botany, ethnopharmacology, phytochemistry, and bioactivity of Cardamine diphylla. The review covers literature on Cardamine diphylla, and the alternative name Dentaria diphylla, from English and French language sources. RESULTS Multiple traditional uses of Cardamine diphylla by American First Nations are well documented. Initial health studies showed that the tested concentrations of the extract were not toxic against brine shrimp larvae and the same extract had a weak free-radical scavenging activity. However, bioactive compounds in the form of aliphatic and indole glucosinolates and some indole alkaloids have been isolated from this plant. Ecological research regarding Cardamine diphylla-insect interactions (such as feeding and oviposition) is also available in the literature. CONCLUSIONS The wide range of traditional uses by multiple American First Nations suggests that the antibacterial, antiviral, immunostimulant, analgesic, antipyretic, and anti-inflammatory activities of this plant should be explored in in vitro and in vivo tests. Traditional modes of preparation of the plant suggest that some of the medicinal properties could certainly be attributed to glucosinolate degradation products (i.e. isothiocyanates), but a clear assignment of active molecules and mechanisms of action remain to be elucidated. The presence of glucosinolates indicates that the plant could be probed for cancer chemopreventive properties. Overall, the review shows that more investigation is necessary to determine the possible benefits of Cardamine diphylla extracts to pharmaceutical companies as a nutraceutic specialty phytotherapeutic agent against respiratory (cold and sore throat) or gastrointestinal problems.
Collapse
Affiliation(s)
- Sabine Montaut
- Department of Chemistry & Biochemistry, Biomolecular Sciences Programme, Laurentian University, Sudbury, ON, Canada.
| | | |
Collapse
|
32
|
Cho K, Kim Y, Wi SJ, Seo JB, Kwon J, Chung JH, Park KY, Nam MH. Metabolic survey of defense responses to a compatible hemibiotroph, Phytophthora parasitica var. nicotianae, in ethylene signaling-impaired tobacco. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8477-89. [PMID: 23866065 DOI: 10.1021/jf401785w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS) and ethylene play an important role in determining the resistance or susceptibility of plants to pathogen attack. A previous study of the response of tobacco cultivar ( Nicotiana tabacum L. cv. Wisconsin 38) to a compatible hemibiotroph, Phytophthora parasitica var. nicotianae (Ppn) showed that biphasic bursts of ROS and ethylene are positively associated with disease severity. The levels of ethylene and ROS might influence the susceptibility of plants to pathogens, with changing levels of metabolite related to disease resistance or susceptibility. In this study, to obtain more detailed information on the interaction of ROS and ethylene signaling related to resistance and/or susceptibility of plants to pathogen, Ppn-induced metabolic profiles from wild type (WT) and ethylene signaling-impaired transgenic plants that expressed Ein3 antisense (Ein3-AS) were compared using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Nonredundant mass ions (576 in ESI+ mode and 336 in ESI- mode) were selected, and 56 mass ions were identified on the basis of their accurate mass ions and MS/MS spectra. Two-way hierarchical clustering analysis of the selected mass ions revealed that nicotine and phenylpropanoid-polyamine conjugates, such as caffeoyl-dihydrocaffeoyl-spermidine, dicaffeoyl-spermidine, caffeoyl-feruloyl-spermidine, and two bis(dihydrocaffeoyl)-spermine isomers, and their intermediates, such as arginine and putrecine, were present at lower levels in Ein3-AS transgenic plants during Ppn interaction than in WT, whereas galactolipid and oxidized free fatty acid levels were higher in Ein3-AS transgenic plants. Taken together, these results reveal a function for ethylene signaling in tobacco defense responses during Ppn interaction.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Seoul Center, Korea Basic Science Institute (KBSI) , Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS One 2013; 8:e70771. [PMID: 23940639 PMCID: PMC3733641 DOI: 10.1371/journal.pone.0070771] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022] Open
Abstract
Glucosinolates are a diverse class of S- and N-containing secondary metabolites that play a variety of roles in plant defense. In this study, we used Arabidopsis thaliana mutants that contain different amounts of glucosinolates and glucosinolate-breakdown products to study the effects of these phytochemicals on phytopathogenic fungi. We compared the fungus Botrytis cinerea, which infects a variety of hosts, with the Brassicaceae-specific fungus Alternaria brassicicola. B. cinerea isolates showed variable composition-dependent sensitivity to glucosinolates and their hydrolysis products, while A. brassicicola was more strongly affected by aliphatic glucosinolates and isothiocyanates as decomposition products. We also found that B. cinerea stimulates the accumulation of glucosinolates to a greater extent than A. brassicicola. In our work with A. brassicicola, we found that the type of glucosinolate-breakdown product is more important than the type of glucosinolate from which that product was derived, as demonstrated by the sensitivity of the Ler background and the sensitivity gained in Col-0 plants expressing epithiospecifier protein both of which accumulate simple nitrile and epithionitriles, but not isothiocyanates. Furthermore, in vivo, hydrolysis products of indole glucosinolates were found to be involved in defense against B. cinerea, but not in the host response to A. brassicicola. We suggest that the Brassicaceae-specialist A. brassicicola has adapted to the presence of indolic glucosinolates and can cope with their hydrolysis products. In contrast, some isolates of the generalist B. cinerea are more sensitive to these phytochemicals.
Collapse
|
34
|
Langenbach C, Campe R, Schaffrath U, Goellner K, Conrath U. UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. THE NEW PHYTOLOGIST 2013; 198:536-545. [PMID: 23356583 DOI: 10.1111/nph.12155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/21/2012] [Indexed: 05/19/2023]
Abstract
Nonhost resistance (NHR) of plants to fungal pathogens comprises different defense layers. Epidermal penetration resistance of Arabidopsis to Phakopsora pachyrhizi requires functional PEN1, PEN2 and PEN3 genes, whereas post-invasion resistance in the mesophyll depends on the combined functionality of PEN2, PAD4 and SAG101. Other genetic components of Arabidopsis post-invasion mesophyll resistance remain elusive. We performed comparative transcriptional profiling of wild-type, pen2 and pen2 pad4 sag101 mutants after inoculation with P. pachyrhizi to identify a novel trait for mesophyll NHR. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis and microscopic analysis confirmed the essential role of the candidate gene in mesophyll NHR. UDP-glucosyltransferase UGT84A2/bright trichomes 1 (BRT1) is a novel component of Arabidopsis mesophyll NHR to P. pachyrhizi. BRT1 is a putative cytoplasmic enzyme in phenylpropanoid metabolism. BRT1 is specifically induced in pen2 with post-invasion resistance to P. pachyrhizi. Silencing or mutation of BRT1 increased haustoria formation in pen2 mesophyll. Yet, the brt1 mutation did not affect NHR to P. pachyrhizi in wild-type plants. We assign a novel function to BRT1, which is important for post-invasion NHR of Arabidopsis to P. pachyrhizi. BRT1 might serve to confer durable resistance against P. pachyrhizi to soybean.
Collapse
Affiliation(s)
- Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Ruth Campe
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
35
|
König S, Feussner K, Schwarz M, Kaever A, Iven T, Landesfeind M, Ternes P, Karlovsky P, Lipka V, Feussner I. Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. THE NEW PHYTOLOGIST 2012; 196:1086-1097. [PMID: 23025549 DOI: 10.1111/j.1469-8137.2012.04351.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the fatty acid moiety of sphingolipids is mainly α-hydroxylated. The consequences of a reduction in this modification were analysed. Mutants of both Fatty Acid Hydroxylase genes (AtFAH1 and AtFAH2) were analysed for sphingolipid profiles. To elucidate further consequences of the mutations, metabolic analyses were performed and the influence on pathogen defence was determined. Ceramide and glucosylceramide profiles of double-mutant plants showed a reduction in sphingolipids with α-hydroxylated fatty acid moieties, and an accumulation of sphingolipids without these moieties. In addition, the free trihydroxylated long-chain bases and ceramides were increased by five- and ten-fold, respectively, whereas the amount of glucosylceramides was decreased by 25%. Metabolite analysis of the double mutant revealed salicylates as enriched metabolites. Infection experiments supported the metabolic changes, as the double mutant showed an enhanced disease-resistant phenotype for infection with the obligate biotrophic pathogen Golovinomyces cichoracearum. In summary, these results suggest that fatty acid hydroxylation of ceramides is important for the biosynthesis of complex sphingolipids. Its absence leads to the accumulation of long-chain bases and ceramides as their precursors. This increases salicylate levels and resistance towards obligate biotrophic fungal pathogens, confirming a role of sphingolipids in salicylic acid-dependent defence reactions.
Collapse
Affiliation(s)
- Stefanie König
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Marnie Schwarz
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tim Iven
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Philipp Ternes
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Petr Karlovsky
- Department of Crop Sciences, Molecular Phytopathology and Mycotoxin Research Group, Georg-August-University, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| |
Collapse
|
36
|
Cho K, Kim Y, Wi SJ, Seo JB, Kwon J, Chung JH, Park KY, Nam MH. Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using UPLC-Q-TOF/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11015-28. [PMID: 23072474 DOI: 10.1021/jf303702j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A biphasic reactive oxygen species (ROS) production has previously been observed in tobacco at 1 and 48 h after inoculation with the hemibiotrophic compatible pathogen, Phytophthora parasitica var. nicotianae (Ppn). To characterize the response of tobacco to biphasically produced ROS concerning the propagation of Ppn, ultraperformance liquid chromatography-quadrupole-time of flight/ mass spectrometry (UPLC-Q-TOF/MS) based metabolic profiling combined with multivariate statistical analysis was performed. Among the nonredundant 355 mass ions in ESI+ mode and 345 mass ions in ESI- mode that were selected as significantly changed by Ppn inoculation (|p(corr)| > 0.6 on S-plot of orthogonal partial least-squares discriminant analysis (OPLS-DA), fold-change > 2, and p < 0.05 in the independent two-sample t test), 76 mass ions were identified on the basis of their accurate mass ions and MS/MS spectra. Phenolic amino acids, phenylpropanoids, hydroxycinnamic acid amides, linoleic acid, linolenic acid, lysophospholipids, glycoglycerolipids, and trioxidized phospholipids were identified as having changed after Ppn inoculation. On the basis of their quantitative changes, the metabolic responses occurring at each phase of ROS production after Ppn inoculation were investigated in this study.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Iven T, König S, Singh S, Braus-Stromeyer SA, Bischoff M, Tietze LF, Braus GH, Lipka V, Feussner I, Dröge-Laser W. Transcriptional activation and production of tryptophan-derived secondary metabolites in arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. MOLECULAR PLANT 2012; 5:1389-402. [PMID: 22522512 DOI: 10.1093/mp/sss044] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The soil-borne fungal pathogen Verticillium longisporum causes vascular disease on Brassicaceae host plants such as oilseed rape. The fungus colonizes the root xylem and moves upwards to the foliage where disease symptoms become visible. Using Arabidopsis as a model for early gene induction, we performed root transcriptome analyses in response to hyphal growth immediately after spore germination and during penetration of the root cortex, respectively. Infected roots showed a rapid reprogramming of gene expression such as activation of transcription factors, stress-, and defense-related genes. Here, we focused on the highly coordinated gene induction resulting in the production of tryptophan-derived secondary metabolites. Previous studies in leaves showed that enzymes encoded by CYP81F2 and PEN2 (PENETRATION2) execute the formation of antifungal indole glucosinolate (IGS) metabolites. In Verticillium-infected roots, we found transcriptional activation of CYP81F2 and the PEN2 homolog PEL1 (PEN2-LIKE1), but no increase in antifungal IGS breakdown products. In contrast, indole-3-carboxylic acid (I3CA) and the phytoalexin camalexin accumulated in infected roots but only camalexin inhibited Verticillium growth in vitro. Whereas genetic disruption of the individual metabolic pathways leading to either camalexin or CYP81F2-dependent IGS metabolites did not alter Verticillium-induced disease symptoms, a cyp79b2 cyp79b3 mutant impaired in both branches resulted in significantly enhanced susceptibility. Hence, our data provide an insight into root-specific early defenses and suggest tryptophan-derived metabolites as active antifungal compounds against a vascular pathogen.
Collapse
Affiliation(s)
- Tim Iven
- Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Santos-Filho PR, Vitor SC, Frungillo L, Saviani EE, Oliveira HC, Salgado I. Nitrate Reductase- and Nitric Oxide-Dependent Activation of Sinapoylglucose:malate sinapoyltransferase in Leaves of Arabidopsis thaliana. ACTA ACUST UNITED AC 2012; 53:1607-16. [DOI: 10.1093/pcp/pcs104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D. Cytochromes p450. THE ARABIDOPSIS BOOK 2011; 9:e0144. [PMID: 22303269 PMCID: PMC3268508 DOI: 10.1199/tab.0144] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization.
Collapse
Affiliation(s)
- Søren Bak
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Fred Beisson
- Department of Plant Biology and Environmental Microbiology, CEA/CNRS/Aix-Marseille Université, UMR 6191 Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Gerard Bishop
- Division of Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ
| | - Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - René Höfer
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| | - Suzanne Paquette
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Department of Biological Structure, HSB G-514, Box 357420, University of Washington, Seattle, WA, 98195-9420
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| |
Collapse
|
40
|
Montaut S, Bleeker RS. Isolation and structure elucidation of 5'-O-beta-D-glucopyranosyl-dihydroascorbigen from Cardamine diphylla rhizome. Carbohydr Res 2010; 345:1968-70. [PMID: 20673575 DOI: 10.1016/j.carres.2010.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/30/2010] [Accepted: 07/04/2010] [Indexed: 01/10/2023]
Abstract
From the methanol extract of Cardamine diphylla rhizome, 5'-O-beta-d-glucopyranosyl-dihydroascorbigen (1) and 6-hydroxyindole-3-carboxylic acid 6-O-beta-d-glucopyranoside (2) were isolated. The structures of the compounds were elucidated using spectroscopic methods. This is the second report on the presence of a glucosylated indole ascorbigen in plants.
Collapse
Affiliation(s)
- Sabine Montaut
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.
| | | |
Collapse
|
41
|
Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska-Bednarek M, Schulze-Lefert P, Molina A. Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:115-27. [PMID: 20408997 DOI: 10.1111/j.1365-313x.2010.04224.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A defence pathway contributing to non-host resistance to biotrophic fungi in Arabidopsis involves the synthesis and targeted delivery of the tryptophan (trp)-derived metabolites indol glucosinolates (IGs) and camalexin at pathogen contact sites. We have examined whether these metabolites are also rate-limiting for colonization by necrotrophic fungi. Inoculation of Arabidopsis with adapted or non-adapted isolates of the ascomycete Plectosphaerella cucumerina triggers the accumulation of trp-derived metabolites. We found that their depletion in cyp79B2 cyp79B3 mutants renders Arabidopsis fully susceptible to each of three tested non-adapted P. cucumerina isolates, and super-susceptible to an adapted P. cucumerina isolate. This assigns a key role to trp-derived secondary metabolites in limiting the growth of both non-adapted and adapted necrotrophic fungi. However, 4-methoxy-indol-3-ylmethylglucosinolate, which is generated by the P450 monooxygenase CYP81F2, and hydrolyzed by PEN2 myrosinase, together with the antimicrobial camalexin play a minor role in restricting the growth of the non-adapted necrotrophs. This contrasts with a major role of these two trp-derived phytochemicals in limiting invasive growth of non-adapted biotrophic powdery mildew fungi, thereby implying the existence of other unknown trp-derived metabolites in resistance responses to non-adapted necrotrophic P. cucumerina. Impaired defence to non-adapted P. cucumerina, but not to the non-adapted biotrophic fungus Erysiphe pisi, on cyp79B2 cyp79B3 plants is largely restored in the irx1 background, which shows a constitutive accumulation of antimicrobial peptides. Our findings imply differential contributions of antimicrobials in non-host resistance to necrotrophic and biotrophic pathogens.
Collapse
Affiliation(s)
- Andrea Sanchez-Vallet
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus Montegancedo, E-28223-Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Simon C, Langlois-Meurinne M, Bellvert F, Garmier M, Didierlaurent L, Massoud K, Chaouch S, Marie A, Bodo B, Kauffmann S, Noctor G, Saindrenan P. The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3355-70. [PMID: 20530195 DOI: 10.1093/jxb/erq157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secondary metabolites (SMs) play key roles in pathogen responses, although knowledge of their precise functions is limited by insufficient characterization of their spatial response. The present study addressed this issue in Arabidopsis leaves by non-targeted and targeted metabolite profiling of Pseudomonas syringae pv. tomato (Pst-AvrRpm1) infected and adjacent uninfected leaf tissues. While overlap was observed between infected and uninfected areas, the non-targeted metabolite profiles of these regions differed quantitatively and clustering analysis underscores a differential distribution of SMs within distinct metabolic pathways. Targeted metabolite profiling revealed that infected tissues accumulate more salicylic acid and the characteristic phytoalexin of Arabidopsis, camalexin, than uninfected adjacent areas. On the contrary, the antioxidant coumarin derivative, scopoletin, was induced in infected tissues while its glucoside scopolin predominated in adjacent tissues. To elucidate the still unclear relationship between the accumulation of SMs and reactive oxygen species (ROS) accumulation and signalling, a catalase-deficient line (cat2) in which ROS signalling is up-regulated, was used. Metabolic analysis of cat2 suggests that some SMs have important interactions with ROS in redox homeostasis during the hypersensitive response to Pst-AvrRpm1. Overall, the study demonstrates that ROS availability influences both the amount and the pattern of infection-induced SM accumulation.
Collapse
Affiliation(s)
- Clara Simon
- Institut de Biologie des Plantes, CNRS-Université Paris-Sud 11, UMR 8618, Bâtiment 630, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F. Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:840-51. [PMID: 20230487 DOI: 10.1111/j.1365-313x.2010.04197.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have analysed the role of tryptophan-derived secondary metabolites in disease resistance of Arabidopsis to the oomycete pathogen Phytophthora brassicae. Transcript analysis revealed that genes encoding enzymes involved in tryptophan, camalexin and indole glucosinolate (iGS) biosynthesis are coordinately induced in response to P. brassicae. However, a deficiency in either camalexin or iGS accumulation has only a minor effect on the disease resistance of Arabidopsis mutants. In contrast, the double mutant cyp79B2 cyp79B3, which has a blockage in the production of indole-3-aldoxime (IAOx), the common precursor of tryptophan-derived metabolites including camalexin and iGS, is highly susceptible to P. brassicae. Because cyp79B2 cyp79B3 shows no deficiencies in other tested disease resistance responses, we concluded that the lack of IAOx-derived compounds renders Arabidopsis susceptible despite wild-type-like pathogen-induced hypersensitive cell death, stress hormone signaling and callose deposition. The susceptibility of the double mutant pen2-1 pad3-1, which has a combined defect in camalexin synthesis and PEN2-catalysed hydrolysis of iGS compounds, demonstrates that both camalexin and products of iGS hydrolysis are important for disease resistance to P. brassicae. Products of iGS hydrolysis play an early defensive role, as indicated by enhanced epidermal penetration rates of Arabidopsis mutants affected in iGS synthesis or degradation. Our results show that disease resistance of Arabidopsis to P. brassicae is established by the sequential activity of the phytoanticipin iGS and the phytoalexin camalexin.
Collapse
Affiliation(s)
- Klaus Schlaeppi
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | |
Collapse
|
44
|
Morant M, Ekstrøm C, Ulvskov P, Kristensen C, Rudemo M, Olsen CE, Hansen J, Jørgensen K, Jørgensen B, Møller BL, Bak S. Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2. MOLECULAR PLANT 2010; 3:192-211. [PMID: 20008451 PMCID: PMC2807926 DOI: 10.1093/mp/ssp098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/26/2009] [Indexed: 05/20/2023]
Abstract
Auxin homeostasis is pivotal for normal plant growth and development. The superroot2 (sur2) mutant was initially isolated in a forward genetic screen for auxin overproducers, and SUR2 was suggested to control auxin conjugation and thereby regulate auxin homeostasis. However, the phenotype was not uniform and could not be described as a pure high auxin phenotype, indicating that knockout of CYP83B1 has multiple effects. Subsequently, SUR2 was identified as CYP83B1, a cytochrome P450 positioned at the metabolic branch point between auxin and indole glucosinolate metabolism. To investigate concomitant global alterations triggered by knockout of CYP83B1 and the countermeasures chosen by the mutant to cope with hormonal and metabolic imbalances, 10-day-old mutant seedlings were characterized with respect to their transcriptome and metabolome profiles. Here, we report a global analysis of the sur2 mutant by the use of a combined transcriptomic and metabolomic approach revealing pronounced effects on several metabolic grids including the intersection between secondary metabolism, cell wall turnover, hormone metabolism, and stress responses. Metabolic and transcriptional cross-talks in sur2 were found to be regulated by complex interactions between both positively and negatively acting transcription factors. The complex phenotype of sur2 may thus not only be assigned to elevated levels of auxin, but also to ethylene and abscisic acid responses as well as drought responses in the absence of a water deficiency. The delicate balance between these signals explains why minute changes in growth conditions may result in the non-uniform phenotype. The large phenotypic variation observed between and within the different surveys may be reconciled by the complex and intricate hormonal balances in sur2 seedlings decoded in this study.
Collapse
Affiliation(s)
- Marc Morant
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Claus Ekstrøm
- Department of Natural Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Peter Ulvskov
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | - Mats Rudemo
- Department of Natural Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Carl Erik Olsen
- Department of Natural Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Jørgen Hansen
- Evolva A/S, Bülowsvej 25, DK-1870 Frederiksberg C, Copenhagen, Denmark
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Bodil Jørgensen
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Søren Bak
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Applied Bioinformatics at LIFE, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- To whom correspondence should be addressed. E-mail , fax +45 353 33333, tel. +45 353 33346
| |
Collapse
|
45
|
Mansfield JW. From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity. MOLECULAR PLANT PATHOLOGY 2009; 10:721-34. [PMID: 19849780 PMCID: PMC6640528 DOI: 10.1111/j.1364-3703.2009.00576.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cloning the first avirulence (avr) gene has led not only to a deeper understanding of gene-for-gene interactions in plant disease, but also to fundamental insights into the suppression of basal defences against microbial attack. This article (focusing on Pseudomonas syringae) charts the development of ideas and research progress over the 25 years following the breakthrough achieved by Staskawicz and coworkers. Advances in gene cloning technology underpinned the identification of both avr and hrp genes, the latter being required for the activation of the defensive hypersensitive reaction (HR) and pathogenicity. The delivery of Avr proteins through the type III secretion machinery encoded by hrp gene clusters was demonstrated, and the activity of the proteins inside plant cells as elicitors of the HR was confirmed. Key roles for avr genes in pathogenic fitness have now been established. The rebranding of Avr proteins as effectors, proteins that suppress the HR and cell wall-based defences, has led to the ongoing search for their targets, and is generating new insights into the co-ordination of plant resistance against diverse microbes. Bioinformatics-led analysis of effector gene distribution in genomes has provided a remarkable view of the interchange of effectors and also their functional domains, as the arms race of attack and defence drives the evolution of microbial pathogenicity. The application of our accrued knowledge for the development of disease control strategies is considered.
Collapse
|
46
|
Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. THE PLANT CELL 2009; 21:1830-45. [PMID: 19567706 PMCID: PMC2714930 DOI: 10.1105/tpc.109.066670] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/22/2009] [Accepted: 06/09/2009] [Indexed: 05/18/2023]
Abstract
Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from wild-type plants and camalexin biosynthetic mutants, treated with silver nitrate or inoculated with Phytophthora infestans, were comprehensively analyzed by ultra-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. This metabolomics approach was combined with precursor feeding experiments to characterize the IAN metabolic network and to identify novel biosynthetic intermediates and metabolites of camalexin. Indole-3-carbaldehyde and indole-3-carboxylic acid derivatives were shown to originate from IAN. IAN conjugates with glutathione, gamma-glutamylcysteine, and cysteine [Cys(IAN)] accumulated in challenged phytoalexin deficient3 (pad3) mutants. Cys(IAN) rescued the camalexin-deficient phenotype of cyp79b2 cyp79b3 and was itself converted to dihydrocamalexic acid (DHCA), the known substrate of CYP71B15 (PAD3), by microsomes isolated from silver nitrate-treated Arabidopsis leaves. Surprisingly, yeast-expressed CYP71B15 also catalyzed thiazoline ring closure, DHCA formation, and cyanide release with Cys(IAN) as substrate. In conclusion, in the camalexin biosynthetic pathway, IAN is derivatized to the intermediate Cys(IAN), which serves as substrate of the multifunctional cytochrome P450 enzyme CYP71B15.
Collapse
Affiliation(s)
- Christoph Böttcher
- Department of Stress, Leibniz Institute of Plant Biochemistry, 06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Kwon C, Bednarek P, Schulze-Lefert P. Secretory pathways in plant immune responses. PLANT PHYSIOLOGY 2008; 147:1575-83. [PMID: 18678749 PMCID: PMC2492620 DOI: 10.1104/pp.108.121566] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 06/10/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Chian Kwon
- Department of Plant Microbe Interactions, Max-Planck Institut für Züchtungsforschung, D-50829 Cologne, Germany
| | | | | |
Collapse
|
48
|
Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nürnberger T. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 2007; 282:32338-48. [PMID: 17761682 DOI: 10.1074/jbc.m704886200] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity constitutes the primary plant immune response that has evolved to recognize invariant structures of microbial surfaces. Here we show that Gram-positive bacteria-derived peptidoglycan (PGN) constitutes a novel PAMP of immune responses in Arabidopsis thaliana. Treatment with PGN from Staphylococcus aureus results in the activation of plant responses, such as medium alkalinization, elevation of cytoplasmic calcium concentrations, nitric oxide, and camalexin production and the post-translational induction of MAPK activities. Microarray analysis performed with RNA prepared from PGN-treated Arabidopsis leaves revealed enhanced transcript levels for 236 genes, many of which are also altered upon administration of flagellin. Comparison of cellular responses after treatment with bacteria-derived PGN and structurally related fungal chitin indicated that both PAMPs are perceived via different perception systems. PGN-mediated immune stimulation in Arabidopsis is based upon recognition of the PGN sugar backbone, while muramyl dipeptide, which is inactive in this plant, triggers immunity-associated responses in animals. PGN adds to the list of PAMPs that induce innate immune programs in both plants and animals. However, we propose that PGN perception systems arose independently in both lineages and are the result of convergent evolution.
Collapse
Affiliation(s)
- Andrea A Gust
- Center for Plant Molecular Biology, Plant Biochemistry, and Microbial Genetics, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bellés JM, Garro R, Pallás V, Fayos J, Rodrigo I, Conejero V. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. PLANTA 2006; 223:500-11. [PMID: 16331468 DOI: 10.1007/s00425-005-0109-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 04/26/2005] [Indexed: 05/05/2023]
Abstract
In the present work we have studied the accumulation of gentisic acid (2,5-dihydroxybenzoic acid, a metabolic derivative of salicylic acid, SA) in the plant-pathogen systems, Cucumis sativus and Gynura aurantiaca, infected with either prunus necrotic ringspot virus (PNRSV) or the exocortis viroid (CEVd), respectively. Both pathogens produced systemic infections and accumulated large amounts of the intermediary signal molecule gentisic acid as ascertained by electrospray ionization mass spectrometry (ESI-MS) coupled on line with high performance liquid chromatography (HPLC). The compound was found mostly in a conjugated (beta-glucoside) form. Gentisic acid has also been found to accumulate (although at lower levels) in cucumber inoculated with low doses of Pseudomonas syringae pv. tomato, producing a nonnecrotic reaction. In contrast, when cucumber was inoculated with high doses of this pathogen, a hypersensitive reaction occurred, but no gentisic-acid signal was induced. This is consistent with our results supporting the idea that gentisic-acid signaling may be restricted to nonnecrotizing reactions of the host plant (Bellés et al. in Mol Plant-Microbe Interact 12:227-235, 1999). In cucumber and Gynura plants, the activity of gentisic acid as inducing signal was different to that of SA, thus confirming the data found for tomato. Exogenously supplied gentisic acid was able to induce peroxidase activity in both Gynura and cucumber plants in a similar way as SA or pathogens. However, gentisic-acid treatments strongly induced polyphenol oxidase activity in cucumber, whereas pathogen infection or SA treatment resulted in a lower induction of this enzyme. Nevertheless, gentisic acid did not induce other defensive proteins which are induced by SA in these plants. This indicates that gentisic acid could act as an additional signal to SA for the activation of plant defenses in cucumber and Gynura plants.
Collapse
Affiliation(s)
- José M Bellés
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Hansen BG, Halkier BA. New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. PLANTA 2005; 221:603-6. [PMID: 15931500 DOI: 10.1007/s00425-005-1553-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 03/22/2005] [Indexed: 05/02/2023]
Abstract
In spite of their silent and sessile life, plants are dynamic organisms that have developed advanced defence strategies in their adaptation to the pressure of herbivores and pathogens. Natural plant products play an important role as chemical weapons in this warfare. Characteristic of cruciferous plants is the synthesis of nitrogen- and sulphur-rich compounds, such as glucosinolates (Mikkelsen et al. 2002) and indole alkaloids (Pedras et al. 2000). Glucosinolates are believed to be largely non-toxic, but upon tissue disruption, they are hydrolyzed by endogenous beta-thioglucosidases (myrosinases) (Rask et al. 2000) to primarily isothiocyanates and nitriles, which have many biological activities. These include not only important roles as repellents against herbivorous insects and microorganisms, but also as volatile attraction of specialized insects (Wittstock and Halkier 2002). For humans, these compounds serve as cancer-preventive agents, biopesticides, and flavor compounds (Talalay and Fahey 2001). Indole alkaloids are phytoalexins and production of specific alkaloids is usually limited to only a few species. Cruciferous plants include the model plant Arabidopsis, which produces the indole alkaloid camalexin. This review will focus on the central role of indole-3-acetaldoxime (IAOx) in the biosynthesis of indole glucosinolates, camalexin, and the phytohormone IAA.
Collapse
Affiliation(s)
- Bjarne Gram Hansen
- Plant Biochemistry Laboratory, Department of Plant Biology, and Center of Molecular Plant Physiology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, 1871 Frederiksberg C, Copenhagen, Denmark
| | | |
Collapse
|