1
|
Wang Y, Chen C, Chou K, Huang S, Ou K. Low-dose estrogen release from silastic capsule enhanced flap wound healing in an animal model. Int Wound J 2024; 21:e70083. [PMID: 39401979 PMCID: PMC11473190 DOI: 10.1111/iwj.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Deep and extensive wounds usually cannot be closed directly by suturing or skin grafting. Flap transplantation is typically used to reconstruct large wounds clinically. The flap survival is based on a stable blood perfusion. It is established that estrogen promotes wound healing and angiogenesis, and regulates the inflammatory response, leading to enhanced flap survival after transplantation. However, estrogen concentrations administered in previous studies were significantly higher than physiological levels, potentially causing systemic side effects. Estrogen-sustained-release silastic capsules can maintain blood serum estrogen closer to physiological levels. This study aimed to investigate whether administering estrogen at a lower concentration, closer to physiological levels, could still enhance flap survival. MATERIALS AND METHODS This study was performed in a random skin flap model in ovariectomized (OVX) mice. Sustained-release estrogen silastic capsules were implanted into OVX mice to determine the functional role of estrogen in wound healing after flap transplantation. Flap blood perfusion was analysed using a colour laser Doppler scanner. Immunohistochemical staining of CD31, hypoxia-inducible factor 1 alpha (HIF-1α), alpha-smooth muscle actin (α-SMA), cleaved caspase 3 and apoptotic terminal dUTP nick end-labelling stain was used to investigate flap angiogenesis, tissue hypoxia, wound healing and cell death in the flap tissue, respectively. RESULTS We observed that administering estrogen at a lower concentration enhanced superficial blood perfusion while reducing the flap's ischemic area and tissue necrosis. HIF-1α expression was significantly decreased in the dermis layer but not in the fascia, whereas cleaved caspase 3 levels decreased in the fascia but remained unchanged in the dermis. Additionally, there was no significant difference in CD31and α-SMA expression between the groups. CONCLUSION In summary, the study showed that an estrogen silastic capsule maintained physiological estrogen levels and improved superficial perfusion, thereby reducing dermal hypoxia, and cell death in a mouse random pattern skin flap model. Although no significant promotion of angiogenesis was observed, the study suggests that appropriate estrogen supplements could enhance flap wound recovery.
Collapse
Affiliation(s)
- Yi‐Wen Wang
- Department and Graduate Institute of Biology and AnatomyNational Defense Medical CenterTaipeiTaiwan
| | - Chun‐Ting Chen
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTri‐Service General Hospital Penghu Branch, National Defense Medical CenterPenghuTaiwan
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Kai‐Chieh Chou
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
| | - Shih‐Ming Huang
- Department of BiochemistryNational Defense Medical CenterTaipeiTaiwan
| | - Kuang‐Ling Ou
- Burn Center and Division of Plastic and Reconstructive Surgery, Department of SurgeryTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
2
|
Lee J, Peesh P, Quaicoe V, Tan C, Banerjee A, Mooz P, Ganesh BP, Petrosino J, Bryan RM, McCullough LD, Venna VR. Estradiol mediates colonic epithelial protection in aged mice after stroke and is associated with shifts in the gut microbiome. Gut Microbes 2023; 15:2271629. [PMID: 37910478 PMCID: PMC10730206 DOI: 10.1080/19490976.2023.2271629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.
Collapse
Affiliation(s)
- Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victoria Quaicoe
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick Mooz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert M. Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Xiang X, Xie L, Lin J, Pare R, Huang G, Huang J, Wang Y, Song S, Ruan Y. Estrogen receptor alpha mediates 17β-estradiol, up-regulates autophagy and alleviates hydrogen peroxide-induced vascular senescence. Biogerontology 2023; 24:783-799. [PMID: 36683095 DOI: 10.1007/s10522-023-10015-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Atherosclerosis threatens human health by developing cardiovascular diseases, the deadliest disease world widely. The major mechanism contributing to the formation of atherosclerosis is mainly due to vascular endothelial cell (VECs) senescence. We have shown that 17β-estradiol (17β-E2) may protect VECs from senescence by upregulating autophagy. However, little is known about how 17β-E2 activates the autophagy pathway to alleviate cellular senescence. Therefore, the aim of this study is to determine the role of estrogen receptor (ER) α and β in the effects of 17β-E2 on vascular autophagy and aging through in vitro and in vivo models. Hydrogen peroxide (H2O2) was used to establish Human Umbilical Vein Endothelial Cells (HUVECs) senescence. Autophagy activity was measured through immunofluorescence and immunohistochemistry staining of light chain 3 (LC3) expression. Inhibition of ER activity was established using shRNA gene silencing and ER antagonist. Compared with ER-β knockdown, we found that knockdown of ER-α resulted in a significant increase in the extent of HUVEC senescence and senescence-associated secretory phenotype (SASP) secretion. ER-α-specific shRNA was found to reduce 17β-E2-induced autophagy, promote HUVEC senescence, disrupt the morphology of HUVECs, and increase the expression of Rb dephosphorylation and SASP. These in vitro findings were found consistent with the in vivo results. In conclusion, our data suggest that 17β-E2 activates the activity of ER-α and then increases the formation of autophagosomes (LC3 high expression) and decreases the fusion of lysosomes with autophagic vesicles (P62 low expression), which in turn serves to decrease the secretion of SASP caused by H2O2 and consequently inhibit H2O2-induced senescence in HUVEC cells.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - LiangZhen Xie
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jieqi Lin
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianming Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shicong Song
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Schmiedecke SS, Thagard AS, Edwards SM, Talley RL, Dornisch EM, Damicis JR, McLane M, Burd I, Napolitano PG, Ieronimakis N. Estrogen receptor 1 appears essential for fetal viability in a murine model of premature birth. Am J Reprod Immunol 2023; 89:e13662. [PMID: 36458539 DOI: 10.1111/aji.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
PROBLEM Protective effects for adult neurological disorders have been attributed to sex hormones. Using a murine model of prematurity, we evaluated the role of estrogen signaling in the process of perinatal brain injury following exposure to intrauterine inflammation. METHOD OF STUDY Intrauterine lipopolysaccharide (LPS) was used to invoke preterm labor and fetal neuroinflammation. Fetal brains were analyzed for changes in Esr1, Esr2 and Cyp19. Dams heterozygous for the Esr1 knockout allele were also given intrauterine LPS to compare delivery and offspring viability to wild type controls. RESULTS The upregulation in inflammatory cytokines was accompanied by an increase in Esr1 and Esr2 transcripts, though protein levels declined. Cyp19 did not differ by mRNA or protein abundance. Offspring from Esr1 mutants were larger, had a longer gestation and significantly greater mortality. CONCLUSIONS Estrogen signaling is altered in the fetal brains of preterm offspring exposed to neuroinflammatory injury. The reduction of Esr1 and Esr2 proteins with LPS suggests that these proteins are degraded. It is possible that transcriptional upregulation of Esr1 and Esr2 occurs to compensate for the loss of these proteins. Alternatively, the translation of Esr1 and Esr2 mRNAs may be disrupted with LPS while a feedback mechanism upregulates transcription. Intact Esr1 signaling is also associated with early preterm delivery following exposure to intrauterine LPS. A loss of one Esr1 allele delays this process, but appears to do so at the cost of fetal viability. These results suggest estrogen signaling plays opposing roles between maternal and fetal responses to preterm birth.
Collapse
Affiliation(s)
- Stacey S Schmiedecke
- Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Andrew S Thagard
- Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Sarah M Edwards
- Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Rebecca L Talley
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Elisabeth M Dornisch
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Jennifer R Damicis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Michael McLane
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Peter G Napolitano
- Department of Obstetrics & Gynecology, University of Washington Medical Center, Seattle, Washington, USA
| | - Nicholas Ieronimakis
- Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, Washington, USA.,Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| |
Collapse
|
5
|
Al Fauzi A, Apriawan T, Ranuh IGMAR, Christi AY, Bajamal AH, Turchan A, Agus Subagio E, Suroto NS, Santoso B, Dachlan EG, Utomo B, Kasper EM. Traumatic brain injury in pregnancy: A systematic review of epidemiology, management, and outcome. J Clin Neurosci 2023; 107:106-117. [PMID: 36527810 DOI: 10.1016/j.jocn.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) during pregnancy is an extremely rare condition in our neurosurgical emergency practices. Studies on the epidemiology and management of TBI in pregnancy are limited to case reports or serial case reports. There is no specific guidelines of management of TBI in pregnancy yet. METHODS The authors performed a structured search of all published articles on TBI in pregnancy from 1990 to 2020. We restricted search for papers in English and Bahasa. RESULTS The literature search yielded 22 articles with total 43 patients. We distinguished C-section based on its timing according to the neurosurgical treatment into primary (simultaneous or prior to neurosurgery) and secondary group (delayed C-section). The mean GOS value in primary C-section is better compared to secondary C-section in severe TBI group (3.57 ± 1.47 vs 3.0 ± 1.27, respectively) consistently in the moderate TBI group (4.33 ± 1.11 vs 3.62 ± 1.47, respectively). The fetal death rate in primary C-section is lower compared to secondary C-section in severe TBI group (14.2 % vs 33.3 %, respectively), contrary, in moderate TBI group (16.7 % vs 12.5 %, respectively). CONCLUSIONS Care of pregnant patients with TBI often requires multidisciplinary approach to optimize treatment strategy on a case-by-case basis in light of prior experience across different center. We propose management guideline for head injury in pregnancy.
Collapse
Affiliation(s)
- Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Tedy Apriawan
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - I G M Aswin R Ranuh
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ayu Yoniko Christi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Agus Turchan
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Eko Agus Subagio
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Nur Setiawan Suroto
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Budi Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Erry Gumilar Dachlan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Budi Utomo
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ekkehard M Kasper
- Department of Neurosurgery, St. Elizabeth's Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, Yang J, Li L, Luo L. Neuroprotective Mechanism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1330928. [PMID: 36425058 PMCID: PMC9681555 DOI: 10.1155/2022/1330928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024]
Abstract
Objective Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor β (ERβ) pathway in neonatal mice with HIBD. Methods A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERβ were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERβ inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERβ pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERβ proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERβ proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion ICA pretreatment may promote autophagy by activating the ERα and ERβ pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingqi Guo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linyang Song
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Medical Association, Guangzhou 510180, China
| |
Collapse
|
7
|
Mechanism of Salvia miltiorrhiza Bge. for the Treatment of Ischemic Stroke Based on Bioinformatics and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1767421. [PMID: 36133785 PMCID: PMC9484879 DOI: 10.1155/2022/1767421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Background and Purpose. A large number of pharmacological experiments have proved that many components of Salvia miltiorrhiza Bge. have neuroprotective, anti-inflammatory, and antioxidant effects. Middle cerebral artery occlusion (MCAO) models treated with Salvia miltiorrhiza Bge. can significantly reduce the infarct size and change the pathological morphology of brain tissue. However, not only the internal mechanism but also the material basis is unclear to researchers. Our research aims to elucidate the potential effective material basis and molecular internal mechanism between Salvia miltiorrhiza Bge. and stroke. Methods. In this study, SymMap was used to screen the 50 bioactive scored components and 65 putative targets of Salvia miltiorrhiza Bge., and their targets were standardized using the UniProt platform. The disease targets related to stroke were collected by comparative toxicogenomics database (CTD), GeneCards, and quantitative structure-activity relationships-TargetNet (QSAR-TargetNet). Thereafter, the protein-protein interaction (PPI) network was constructed using the STRING platform and visualized by Cytoscape (3.8.2) software. Then, the Metascape platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Cytoscape (3.7.2) software was also used to construct the network of the “herb-component-target-pathway.” We found that Tanshinol B, Tanshinol A, Przewaquinone C, Tanshinone II, and other main components of Salvia miltiorrhiza Bge. may regulate neurotransmitters and neurological function. Therefore, we speculate Salvia miltiorrhiza Bge. has a neuroprotective effect. For further verification, potential core targets (STAT3, MMP2, ESR1, TERT, and MMP9 proteins) for ischemic stroke and core active ingredients (Tanshinol A, Tanshinol B, Tanshinone II A, and Przewaquinone C) for Salvia miltiorrhiza Bge. were further verified by molecular docking. Results. Our findings revealed that Tanshinol A, Tanshinol B, Tanshinone II A, and Przewaquinone C as the main component of Salvia miltiorrhiza Bge. may have a neuroprotective effect against ischemic stroke, which provides a new understanding for the development of therapies for the prevention and treatment of ischemic stroke.
Collapse
|
8
|
Systematic Understanding of Mechanism of Danggui Shaoyao San against Ischemic Stroke Using a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3747285. [PMID: 35035503 PMCID: PMC8754614 DOI: 10.1155/2022/3747285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Purpose Danggui Shaoyao San (DSS) was developed to treat the ischemic stroke (IS) in patients and animal models. The purpose of this study was to explore its active compounds and demonstrate its mechanism against IS through network pharmacology, molecular docking, and animal experiment. Methods All the components of DSS were retrieved from the pharmacology database of TCM system. The genes corresponding to the targets were retrieved using OMIM, CTD database, and TTD database. The herb-compound-target network was constructed by Cytoscape software. The target protein-protein interaction network was built using the STRING database. The core targets of DSS were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, we achieved molecular docking between the hub proteins and the key active compounds. Finally, animal experiments were performed to verify the core targets. Triphenyltetrazolium chloride (TTC) staining was used to calculate the infarct size in mice. The protein expression was determined using the Western blot. Results Compound-target network mainly contained 51 compounds and 315 corresponding targets. Key targets contained MAPK1, SRC, PIK3R1, HRAS, AKT1, RHOA, RAC1, HSP90AA1, and RXRA FN1. There were 417 GO items in GO enrichment analysis (p < 0.05) and 119 signaling pathways (p < 0.05) in KEGG, mainly including negative regulation of apoptosis, steroid hormone-mediated signaling pathway, neutrophil activation, cellular response to oxidative stress, and VEGF signaling pathway. MAPK1, SRC, and PIK3R1 docked with small molecule compounds. According to the Western blot, the expression of p-MAPK 1, p-AKT, and p-SRC was regulated by DSS. Conclusions This study showed that DSS can treat IS through multiple targets and routes and provided new insights to explore the mechanisms of DSS against IS.
Collapse
|
9
|
Duncan KA. Estrogen Formation and Inactivation Following TBI: What we Know and Where we Could go. Front Endocrinol (Lausanne) 2020; 11:345. [PMID: 32547495 PMCID: PMC7272601 DOI: 10.3389/fendo.2020.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17β-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.
Collapse
|
10
|
Laouafa S, Roussel D, Marcouiller F, Soliz J, Gozal D, Bairam A, Joseph V. Roles of oestradiol receptor alpha and beta against hypertension and brain mitochondrial dysfunction under intermittent hypoxia in female rats. Acta Physiol (Oxf) 2019; 226:e13255. [PMID: 30635990 DOI: 10.1111/apha.13255] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
AIM Chronic intermittent hypoxia (CIH) induces systemic (hypertension) and central alterations (mitochondrial dysfunction underlying cognitive deficits). We hypothesized that agonists of oestradiol receptors (ER) α and β prevent CIH-induced hypertension and brain mitochondrial dysfunction. METHODS Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh), the ERα agonist propylpyraoletriol (PPT - 30 μg/kg/day) or the ERβ agonist diarylpropionitril (DPN - 100 μg/kg/day). Animals were exposed to CIH (21%-10% FI O2 - 10 cycles/hour - 8 hours/day - 7 days) or normoxia. Arterial blood pressure was measured after CIH or normoxia exposures. Mitochondrial respiration and H2 O2 production were measured in brain cortex with high-resolution respirometry, as well as activity of complex I and IV of the electron transport chain, citrate synthase, pyruvate, and lactate dehydrogenase (PDH and LDH). RESULTS Propylpyraoletriol but not DPN prevented the rise of arterial pressure induced by CIH. CIH exposures decreased O2 consumption, complex I activity, and increased H2 O2 production. CIH had no effect on citrate synthase activity, but decreased PDH activity and increased LDH activity indicating higher anaerobic glycolysis. Propylpyraoletriol and DPN treatments prevented all these alterations. CONCLUSIONS We conclude that in OVX female rats, the ERα agonist prevents from CIH-induced hypertension while both ERα and ERβ agonists prevent the brain mitochondrial dysfunction and metabolic switch induced by CIH. These findings may have implications for menopausal women suffering of sleep apnoea regarding hormonal therapy.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Damien Roussel
- CNRS, UMR 5023 Université Claude Bernard Lyon 1 Villeurbanne France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - David Gozal
- Department of Child Health University of Missouri School of Medicine Columbia Missouri
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| |
Collapse
|
11
|
Crider A, Pillai A. Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders. J Pharmacol Exp Ther 2017; 360:48-58. [PMID: 27789681 PMCID: PMC5193073 DOI: 10.1124/jpet.116.237412] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Estrogens, the primary female sex hormones, were originally characterized through their important role in sexual maturation and reproduction. However, recent studies have shown that estrogens play critical roles in a number of brain functions, including cognition, learning and memory, neurodevelopment, and adult neuroplasticity. A number of studies from both clinical as well as preclinical research suggest a protective role of estrogen in neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. Alterations in the levels of estrogen receptors have been found in subjects with ASD or schizophrenia, and adjunctive estrogen therapy has been shown to be effective in enhancing the treatment of schizophrenia. This review summarizes the findings on the role of estrogen in the pathophysiology of neurodevelopmental disorders with a focus on ASD and schizophrenia. We also discuss the potential of estrogen as a therapeutic target in the above disorders.
Collapse
Affiliation(s)
- Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
12
|
Tskitishvili E, Pequeux C, Munaut C, Viellevoye R, Nisolle M, Noël A, Foidart JM. Estrogen receptors and estetrol-dependent neuroprotective actions: a pilot study. J Endocrinol 2017; 232:85-95. [PMID: 27799463 PMCID: PMC5118942 DOI: 10.1530/joe-16-0434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Estetrol (E4) has strong antioxidative, neurogenic and angiogenic effects in neural system resulting in the attenuation of neonatal hypoxic-ischemic encephalopathy. We aimed to define the role of estrogen receptors in E4-dependent actions in neuronal cell cultures and prove the promyelinating effect of E4. In vitro the antioxidative and cell survival/proliferating effects of E4 on H2O2-induced oxidative stress in primary hippocampal cell cultures were studied using different combinations of specific inhibitors for ERα (MPP dihydrochloride), ERβ (PHTTP), GPR30 (G15) and palmytoilation (2-BR). LDH activity and cell survival assays were performed. In vivo the promyelinating role of different concentrations of E4 (1 mg/kg/day, 5 mg/kg/day, 10 mg/kg/day, 50 mg/kg/day) was investigated using the hypoxic-ischemic brain damage model in the 7-day-old immature rats before/after the induction of hypoxic-ischemic insult. Myelin basic protein (MBP) immunostaining was performed on brain coronal sections. Our results show that LDH activity is significantly upregulated in cell cultures where the E4's effect was completely blocked by concomitant treatment either with ERα and ERβ inhibitors (MPP and PHTPP, respectively), or ERα and ERβ inhibitors combined with 2-BR. Cell survival is significantly downregulated in cell cultures where the effect of E4 was blocked by ERβ inhibitor (PHTTP) alone. The blockage of GRP30 receptor did affect neither LDH activity nor cell survival. MBP immunostaining is significantly upregulated in E4-pretreated groups at a concentration of 5 mg/kg/day and 50 mg/kg/day E4, whereas the MBP-positive area OD ratio is significantly increased in all the E4-treated groups. E4's antioxidative actions mostly depend on ERα and ERβ, whereas neurogenesis and possibly promyelinating activities might be realized through ERβ.
Collapse
Affiliation(s)
- Ekaterine Tskitishvili
- Department of Obstetrics and Gynecology/Department of Clinical SciencesLaboratory of Development Biology and Tumor, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Christel Pequeux
- Department of Obstetrics and Gynecology/Department of Clinical SciencesLaboratory of Development Biology and Tumor, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Carine Munaut
- Department of Obstetrics and Gynecology/Department of Clinical SciencesLaboratory of Development Biology and Tumor, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Renaud Viellevoye
- Department of PediatricsNeonatal Intensive Care Unit, University of Liege, CHR de la CITADELLE, Liege, Belgium
| | - Michelle Nisolle
- Department of Obstetrics and GynecologyUniversity of Liege, CHR de la CITADELLE, Liege, Belgium
| | - Agnes Noël
- Department of Obstetrics and Gynecology/Department of Clinical SciencesLaboratory of Development Biology and Tumor, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Jean-Michel Foidart
- Department of Obstetrics and Gynecology/Department of Clinical SciencesLaboratory of Development Biology and Tumor, GIGA-Cancer, University of Liege, Liege, Belgium
| |
Collapse
|
13
|
Kwakowsky A, Milne MR, Waldvogel HJ, Faull RL. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. Int J Mol Sci 2016; 17:E2122. [PMID: 27999310 PMCID: PMC5187922 DOI: 10.3390/ijms17122122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Michael R Milne
- School of Biomedical Sciences, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
14
|
Tskitishvili E, Pequeux C, Munaut C, Viellevoye R, Nisolle M, Noël A, Foidart JM. Use of estetrol with other steroids for attenuation of neonatal hypoxic-ischemic brain injury: to combine or not to combine? Oncotarget 2016; 7:33722-43. [PMID: 27231853 PMCID: PMC5085115 DOI: 10.18632/oncotarget.9591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Estetrol (E4), estradiol (E2) and progesterone (P4) have important antioxidative and neuroprotective effects in neuronal system. We aimed to study the consequence of combined steroid therapy in neonatal hypoxic-ischemic encephalopathy (HIE). In vitro the effect of E4 combined with other steroids on oxidative stress and the cell viability in primary hippocampal cultures was evaluated by lactate dehydrogenase and cell survival assays. In vivo neuroprotective and therapeutic efficacy of E4 combined with other steroids was studied in HIE model of immature rats. The rat pups rectal temperature, body and brain weights were evaluated.The hippocampus and the cortex were investigated by histo/immunohistochemistry: intact cell number counting, expressions of markers for early gray matter lose, neuro- and angiogenesis were studied. Glial fibrillary acidic protein was evaluated by ELISA in blood samples. In vitro E4 and combinations of high doses of E4 with P4 and/or E2 significantly diminished the LDH activity and upregulated the cell survival.In vivopretreatment or treatment by different combinations of E4 with other steroids had unalike effects on body and brain weight, neuro- and angiogenesis, and GFAP expression in blood. The combined use of E4 with other steroids has no benefit over the single use of E4.
Collapse
Affiliation(s)
- Ekaterine Tskitishvili
- Laboratory of Development Biology and Tumor, GIGA-Cancer, Department of Obstetrics and Gynecology/Department of Clinical Sciences, University of Liege, Liege 1, Belgium
| | - Christel Pequeux
- Laboratory of Development Biology and Tumor, GIGA-Cancer, Department of Obstetrics and Gynecology/Department of Clinical Sciences, University of Liege, Liege 1, Belgium
| | - Carine Munaut
- Laboratory of Development Biology and Tumor, GIGA-Cancer, Department of Obstetrics and Gynecology/Department of Clinical Sciences, University of Liege, Liege 1, Belgium
| | - Renaud Viellevoye
- Neonatal Intensive Care Unit, Department of Pediatrics, University of Liege, Liege 1, Belgium
| | - Michelle Nisolle
- Department of Obstetrics and Gynecology, University of Liege, Liege1, Belgium
| | - Agnes Noël
- Laboratory of Development Biology and Tumor, GIGA-Cancer, Department of Obstetrics and Gynecology/Department of Clinical Sciences, University of Liege, Liege 1, Belgium
| | - Jean-Michel Foidart
- Laboratory of Development Biology and Tumor, GIGA-Cancer, Department of Obstetrics and Gynecology/Department of Clinical Sciences, University of Liege, Liege 1, Belgium
| |
Collapse
|
15
|
Yano S, Sakamoto KQ, Habara Y. Female Mice Avoid Male Odor from the Same Strain via the Vomeronasal System in an Estrogen-Dependent Manner. Chem Senses 2015; 40:641-8. [PMID: 26377346 DOI: 10.1093/chemse/bjv052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inbreeding avoidance is essential to providing offspring with genetic diversity. Females' mate choice is more crucial than males' for successful reproduction because of the high cost of producing gametes and limited chances to mate. However, the mechanism of female inbreeding avoidance is still unclear. To elucidate the mechanism underlying inbreeding avoidance by females, we conducted Y-maze behavioral assays using BALB/c and C57BL/6 female mice. In both strains, the avoidance of male urine from the same strain was lower in the low estrogen phase than in the high estrogen phase. The estrous cycle-dependent avoidance was completely prevented by vomeronasal organ (VNO) removal. To assess the regulation of the vomeronasal system by estrogen, the neural excitability was evaluated by immunohistochemistry of the immediate early gene products. Although estrogen did not affect neural excitability in the VNO, estrogen enhanced the neural excitability of the mitral cell layer in the AOB induced by urine from the cognate males. These results suggest that female mice avoid odor from genetically similar males in an estrogen-dependent manner via the vomeronasal system and the excitability of the mitral cells in the AOB is presumed to be regulated by estrogen.
Collapse
Affiliation(s)
- Saori Yano
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kentaro Q Sakamoto
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yoshiaki Habara
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
16
|
AL-BADER MD, MALATIALI SA, REDZIC ZB. Expression of Estrogen Receptor α and β in Rat Astrocytes in Primary Culture: Effects of Hypoxia and Glucose Deprivation. Physiol Res 2011; 60:951-60. [DOI: 10.33549/physiolres.932167] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Estrogen replacement therapy could play a role in the reduction of injury associated with cerebral ischemia in vivo, which could be, at least partially, a consequence of estrogen influence of glutamate buffering by astrocytes during hypoxia/ischemia. Estrogen exerts biological effects through interaction with its two receptors: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are both expressed in astrocytes. This study explored effects of hypoxia and glucose deprivation (HGD), alone or followed by 1 h recovery, on ERα and ERβ expression in primary rat astrocyte cultures following 1 h exposure to: a) 5 % CO2 in air (control group-CG); b) 2 % O2/5 % CO2 in N2 with glucose deprivation (HGD group-HGDG); or c) the HGDG protocol followed by 1 h CG protocol (recovery group-RG). ERα mRNA expression decreased in HGDG. At the protein level, full-length ERα (67 kDa) and three ERα-immunoreactive protein bands (63, 60 and 52 kDa) were detected. A significant decrease in the 52 kDa band was seen in HGDG, while a significant decrease in expression of the full length ERα was seen in the RG. ERβ mRNA and protein expression (a 54 kDa single band) did not change. The observed decrease in ERα protein may limit estrogen-mediated signalling in astrocytes during hypoxia and recovery.
Collapse
Affiliation(s)
| | | | - Z. B. REDZIC
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
17
|
Neuroprotection mediated through estrogen receptor-alpha in astrocytes. Proc Natl Acad Sci U S A 2011; 108:8867-72. [PMID: 21555578 DOI: 10.1073/pnas.1103833108] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Estrogen has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the CNS, including autoimmune inflammation, traumatic injury, stroke, and neurodegenerative diseases. The beneficial effects of estrogens in CNS disorders include mitigation of clinical symptoms, as well as attenuation of histopathological signs of neurodegeneration and inflammation. The cellular mechanisms that underlie these CNS effects of estrogens are uncertain, because a number of different cell types express estrogen receptors in the peripheral immune system and the CNS. Here, we investigated the potential roles of two endogenous CNS cell types in estrogen-mediated neuroprotection. We selectively deleted estrogen receptor-α (ERα) from either neurons or astrocytes using well-characterized Cre-loxP systems for conditional gene knockout in mice, and studied the effects of these conditional gene deletions on ERα ligand-mediated neuroprotective effects in a well-characterized model of adoptive experimental autoimmune encephalomyelitis (EAE). We found that the pronounced and significant neuroprotective effects of systemic treatment with ERα ligand on clinical function, CNS inflammation, and axonal loss during EAE were completely prevented by conditional deletion of ERα from astrocytes, whereas conditional deletion of ERα from neurons had no significant effect. These findings show that signaling through ERα in astrocytes, but not through ERα in neurons, is essential for the beneficial effects of ERα ligand in EAE. Our findings reveal a unique cellular mechanism for estrogen-mediated CNS neuroprotective effects by signaling through astrocytes, and have implications for understanding the pathophysiology of sex hormone effects in diverse CNS disorders.
Collapse
|
18
|
Abstract
Stroke is a leading cause of permanent disability and death. It is well accepted that the principal mammalian estrogen (E2), 17-β estradiol, provides robust neuroprotection in a variety of brain injury models in animals of both sexes. E2 enhances neurogenesis after stroke in the subventricular zone; however, it is unknown if these cells survive long-term or enhance functional recovery. In this study, we examined stroke-induced neurogenesis in male, gonadally intact female, and ovariectomized female mice 2 and 6 weeks after stroke. Treatment with 17-β estradiol increased 5-bromo-2'-deoxyuridine-labeled cells at both time points in both the dentate gyrus and subventricular zone; the majority were colabeled with doublecortin at 2 weeks and with NeuN at 6 weeks. Stroke-induced neurogenesis was reduced in estrogen receptor knockout mice, as well as in mice lacking the gene for aromatase, which converts testosterone into E2. Improved behavioral deficits were seen in E2-treated mice, suggesting that E2-induced increases in poststroke neurogenesis contribute to poststroke recovery.
Collapse
|
19
|
Abstract
17beta-Estradiol (E(2)) was shown to exert neuroprotective effects both in in vitro and in vivo models of stroke. Although these effects of E(2) are known to require estrogen receptor-alpha (ER alpha), the cellular target of estrogen-mediated neuroprotection remains unknown. Using cell type-specific ER mutant mice in an in vivo model of stroke, we specifically investigated the role of ER alpha in neuronal cells versus its role in the microglia in the mediation of neuroprotection by estrogens. We generated and analyzed two different tissue-specific knockout mouse lines lacking ER alpha either in cells of myeloid lineage, including microglia, or in the neurons of the forebrain. Both E(2)-treated and E(2)-untreated mutant and control mice were subjected to a permanent middle cerebral artery occlusion for 48 h, and the infarct volume was quantified. Although the infarct volume of E(2)-treated female myeloid-specific ER alpha knockout mice was similar to that of E(2)-treated control mice, both male and female neuron-specific ER alpha mutant mice had larger infarcts than did control mice after E(2) treatment. We conclude that neuronal ER alpha in female and male mice mediates neuroprotective estrogen effects in an in vivo mouse model of stroke, whereas microglial ER alpha is dispensable.
Collapse
|
20
|
Banerjee A, Rose R, Johnson GA, Burghardt RC, Ramaiah SK. The Influence of Estrogen on Hepatobiliary Osteopontin (SPP1) Expression in a Female Rodent Model of Alcoholic Steatohepatitis. Toxicol Pathol 2009; 37:492-501. [DOI: 10.1177/0192623309335633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our recent studies suggest that higher neutrophil infiltration in females correlates with increased hepatobiliary expression of osteopontin (OPN) in alcoholic steatohepatitis (ASH). The objective of this study was to understand the role of alcohol in altering estrogen levels in females by examining the effect of ethanol (EtOH) on the estrous cycle and then investigate the potential relationship between estradiol (E2) and hepatobiliary OPN expression in a female rat ASH model. Ovariectomized (OVX) and E2-implanted OVX rats in the ASH group were evaluated for OPN mRNA and protein expression. Low doses of E2 resulted in significant down-regulation of OPN protein and mRNA as compared to the OVX group. However, with increasing doses of E2, there was up-regulation of both OPN mRNA and protein. Osteopontin was localized primarily to the biliary epithelium. Liver injury assessed by serum ALT and histopathology revealed a pattern similar to OPN expression. In all groups, hepatic neutrophilic infiltration correlated positively with OPN expression. Based on these data, we conclude that in our ASH model, low doses of E2 appear to be hepatoprotective, whereas the protective effect appears to diminish with increasing doses of E2, although additional cause and effect studies are needed for confirmation.
Collapse
Affiliation(s)
- Atrayee Banerjee
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Robert Rose
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Greg A. Johnson
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Robert C. Burghardt
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Shashi K. Ramaiah
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| |
Collapse
|
21
|
Noppens RR, Kofler J, Grafe MR, Hurn PD, Traystman RJ. Estradiol after cardiac arrest and cardiopulmonary resuscitation is neuroprotective and mediated through estrogen receptor-beta. J Cereb Blood Flow Metab 2009; 29:277-86. [PMID: 18957991 PMCID: PMC2682442 DOI: 10.1038/jcbfm.2008.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated long-term administration of estrogen after cardiac arrest and cardiopulmonary resuscitation (CA/CPR) on neurohistopathological and behavioral outcome. We also examined the effect of estrogen receptor (ER) stimulation using ER-alpha agonist propyl pyrazole triol (PPT) and ER-beta agonist diarylpropionitrile (DPN) on neuronal survival after CA/CPR to determine whether possible neuroprotective effects of estrogen are ER-mediated. Male C57Bl/6 mice underwent 10 mins of CA/CPR and 3-day survival. In protocol 1, intravenous injection of vehicle (NaCl 0.9%) and 0.5 or 2.5 microg 17beta-estradiol (E2 loading dose) was performed followed by subcutaneous implants containing vehicle (oil) or E2 (12.6 microg), according to a treatment group. In experimental protocol 2, mice were injected (intravenously) with the ER-alpha agonist PPT or ER-beta agonist DPN followed by Alzet pump implants (subcutaneously) containing PPT (200 microg) or DPN (800 microg). Long-term E2 administration reduced neuronal injury in the striatum after administration of either loading dose (41%+/-19%, 35%+/-26% of injured neurons), as compared with vehicle (68%+/-7%, P<0.01), with no effect in the hippocampal CA1 field. In protocol 2, treatment with ER-beta agonist DPN reduced neuronal injury in the striatum (51%+/-13% injured neurons) as compared with ER-alpha agonist PPT (68%+/-10%) and vehicle (69%+/-11%; P<0.01). Estrogen receptor-beta agonist DPN reduced neuronal injury in the hippocampal CA1 field (29%+/-22% injured neurons) as compared with ER-alpha agonist PPT treatment (62%+/-33%; P<0.05). Injury was not different in hippocampal CA1 between vehicle and ER-alpha agonist-treated animals. We conclude that long-term E2 administration after CA/CPR is neuroprotective and that this effect is most likely mediated via ER-beta.
Collapse
Affiliation(s)
- Ruediger R Noppens
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
22
|
Blocking glucocorticoid and enhancing estrogenic genomic signaling protects against cerebral ischemia. J Cereb Blood Flow Metab 2009; 29:130-6. [PMID: 18797472 DOI: 10.1038/jcbfm.2008.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoids (GCs) and estrogen can modulate neuron death and dysfunction during neurological insults. Glucocorticoids are adrenal steroids secreted during stress, and hypersecretion of GCs during cerebral ischemia compromises the ability of hippocampal and cortical neurons to survive. In contrast, estrogen can be neuroprotective after cerebral ischemia. Here we evaluate the protective potential of a herpes viral vector expressing a chimeric receptor (ER/GR), which is composed of the ligand-binding domain of the GC receptor (GR) and the DNA-binding domain of the estrogen receptor-alpha (ER). This novel receptor can transduce an endangering GC signal into a protective estrogenic one. Using an in vitro oxygen glucose deprivation model (OGD), GCs exacerbated neuron death in primary cortical cultures, and this worsening effect was completely blocked by ER/GR expression. Moreover, blocking GC actions with a vector expressing a dominant negative GC receptor promoted neuron survival during postischemia, but not preischemia. Thus, gene therapeutic strategies to modulate GC and estrogen signaling can be beneficial during an ischemic insult.
Collapse
|
23
|
Prüss H, Prass K, Ghaeni L, Milosevic M, Muselmann C, Freyer D, Royl G, Reuter U, Baeva N, Dirnagl U, Meisel A, Priller J. Inducible nitric oxide synthase does not mediate brain damage after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2008; 28:526-39. [PMID: 17851454 DOI: 10.1038/sj.jcbfm.9600550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide produced by the inducible nitric oxide synthase (iNOS) is believed to participate in the pathogenic events after cerebral ischemia. In this study, we examined the expression of iNOS in the brain after transient focal cerebral ischemia in mice. We detected differential expression of exons 2 and 3 of iNOS mRNA (16-fold upregulation at 24 to 72 h after middle cerebral artery occlusion, MCAO) compared with exons 6 to 8, 12 to 14, 21 to 22, and 26 to 27 (2- to 5-fold upregulation after 72 and 96 h), which would be compatible with alternative splicing. Expression levels of iNOS mRNA were too low for detection by the Northern blot analysis. Using specific antibodies, we did not detect any iNOS immunoreactivity in the mouse brain 1 to 5 days after MCAO, although we detected iNOS immunoreactivity in the lungs of mice with stroke-associated pneumonia, and in mouse and rat dura mater after lipopolysaccharide administration. In chimeric iNOS-deficient mice transplanted with wild-type bone marrow (BM) cells expressing the green fluorescent protein (GFP) or in wild-type mice transplanted with GFP(+) iNOS-deficient BM cells, no expression of iNOS was detected in GFP(+) leukocytes invading the ischemic brain or in resident brain cells. Moreover, both experimental groups did not show any differences in infarct size. Analysis of three different strains of iNOS-deficient mice and wild-type controls confirmed that infarct size was independent of iNOS deletion, but strongly confounded by the genetic background of mouse strains. In conclusion, our data suggest that iNOS is not a universal mediator of brain damage after cerebral ischemia.
Collapse
Affiliation(s)
- Harald Prüss
- Department of Experimental Neurology, Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci U S A 2007; 104:6013-8. [PMID: 17389368 PMCID: PMC1851608 DOI: 10.1073/pnas.0610394104] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent studies describing the seemingly contradictory actions of estrogens in ischemic stroke injury have led us to reevaluate the circumstances under which estrogen therapy (ET) provides benefits against cerebral stroke and decipher its mechanisms of action. One prominent feature that follows stroke injury is massive central and peripheral inflammatory responses. Evidence now suggests that postischemic inflammatory responses strongly contribute to the extent of brain injury, and 17beta-estradiol (E(2)) may protect the ischemic brain by exerting antiinflammatory actions. In an attempt to explain recently reported dichotomous effects of E(2) in stroke injury, we tested the hypothesis that an extended period of hypoestrogenicity both prevents E(2) from protecting the brain against ischemia and simultaneously suppresses its antiinflammatory actions. We report that E(2) exerts profound neuroprotective action when administered immediately upon ovariectomy, but not when administered after 10 weeks of hypoestrogenicity. Consistently, E(2) treatment given immediately at the time of ovariectomy attenuated central and peripheral production of proinflammatory cytokines after ischemic stroke. In contrast, E(2) did not suppress production of proinflammatory molecules when it was administered after 10 weeks postovariectomy. These results demonstrate that a prolonged period of hypoestrogenicity disrupts both neuroprotective and antiinflammatory actions of E(2). Our findings may help to explain the results of the Women's Health initiative that reported no beneficial effect of ET against stroke because the majority of the subjects initiated ET after an extended period of hypoestrogenicity.
Collapse
Affiliation(s)
- Shotaro Suzuki
- Departments of *Physiology and Biophysics and
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616
| | - Candice M. Brown
- Departments of *Physiology and Biophysics and
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616
| | | | - Enhua Yang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616
| | - David A. Bridwell
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616
| | - Phyllis M. Wise
- Departments of *Physiology and Biophysics and
- Biology, University of Washington, Seattle, WA 98195; and
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Han G, Yu X, Lu L, Li S, Ma H, Zhu S, Cui X, White RE. Estrogen receptor alpha mediates acute potassium channel stimulation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther 2006; 316:1025-30. [PMID: 16299188 DOI: 10.1124/jpet.105.093542] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The pleiotropic effects of estrogen are mediated via stimulation of two estrogen receptor (ER) subtypes, ERalpha and ERbeta. Although a number of studies have identified expression of one or both subtypes in estrogen target tissues, fewer studies have correlated ER expression with a functional role of these proteins in regulating cellular excitability. In the present study, we have combined cellular fluorescence, immunocytochemistry, and molecular expression techniques with single-channel patch-clamp studies to determine which ER mediates estrogen-stimulated potassium channel activity in human coronary artery smooth muscle cells (HCASMC). We had demonstrated previously that estrogen stimulates activity of the large-conductance, calcium- and voltage-activated potassium (BK(Ca)) channel in HCASMC via a nongenomic mechanism. We now demonstrate expression of both ERalpha and ERbeta subtypes in HCASMC. Functionally, however, expression of ERalpha antisense plasmid abolished the acute effect of estrogen on these channels, whereas estrogen retained its ability to stimulate BK(Ca) channels in cells transfected with only green fluorescence protein. In contrast, overexpression of ERalpha enhanced the stimulatory action of estrogen in HCASMC. Transfection with ERalpha antisense/sense plasmid did not alter ERbeta expression. These findings indicate that the ERalpha isoform mediates estrogen-induced stimulation of BK(Ca) channels in HCASMC and thereby provide evidence for a receptor-dependent signaling mechanism that can mediate estrogen-induced inhibition of cellular excitability.
Collapse
Affiliation(s)
- Guichun Han
- Dept. Pharmacology and Toxicology, 1120 15th Street, Augusta, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Schreihofer DA, Do KD, Schreihofer AM. High-soy diet decreases infarct size after permanent middle cerebral artery occlusion in female rats. Am J Physiol Regul Integr Comp Physiol 2005; 289:R103-8. [PMID: 15956759 DOI: 10.1152/ajpregu.00642.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen is a powerful neuroprotective agent in rodent models of ischemic stroke. However, in humans, estrogen treatment can increase risk of stroke. Health risks associated with hormone replacement have led many women to consider alternative therapies including high-soy diets or supplements containing soy isoflavones, which act as estrogen receptor ligands to selectively mimic some of estrogen's actions. We hypothesized that a high-soy diet would share the neuroprotective actions of estrogen in focal cerebral ischemia. Female Sprague-Dawley rats were ovariectomized and divided into three groups: isoflavone-free diet + placebo (IF-P), isoflavone-free diet + estradiol (IF-E), or high-soy diet + placebo (S-P). Two weeks after being placed on diets, rats underwent left permanent middle cerebral artery occlusion (MCAO). Reductions in ipsilateral cerebral blood flow were equivalent across groups ( approximately 50%). Twenty-four hours later neurological deficit was determined, and brains were collected for assay of cerebral infarct by TTC staining. In the IF-P rats MCAO produced a 50 +/- 4% cerebral infarct. Estrogen and high-soy diet both significantly reduced the size of the infarcts to 26 +/- 5% in IF-E rats and to 37 +/- 5% in S-P rats. Analysis at five rostro-caudal levels revealed that estrogen treatment was slightly more effective at reducing infarct size than high soy diet. Overall neurological deficit scores at 24 h correlated with infarct size; however, there were no statistically significant differences among the treatment groups. These data show that 2 wk of a high-soy diet is an effective prophylactic strategy for reducing stroke size in a rat model of focal cerebral ischemia.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Physiology, 1120 15th St., CA-3145, Medical College of Georgia, Augusta, GA 30912-3000, USA.
| | | | | |
Collapse
|
27
|
Heyer A, Hasselblatt M, von Ahsen N, Häfner H, Sirén AL, Ehrenreich H. In vitro gender differences in neuronal survival on hypoxia and in 17beta-estradiol-mediated neuroprotection. J Cereb Blood Flow Metab 2005; 25:427-30. [PMID: 15689954 DOI: 10.1038/sj.jcbfm.9600056] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gender differences in neuropsychiatric disease are recognized but not well understood. Investigating the survival of primary rat hippocampal neurons in culture, we found significant and inverted gender differences on normoxia versus hypoxia. Male cells were more resistant under normoxia but more vulnerable under hypoxia than female cells. Male vulnerability pattern was acquired in cells from neonatally testosterone-primed females. Estrogens, acting via membrane receptors, had a higher neuroprotective power in male neurons, explained at least in part by the pronounced increase in estrogen receptor beta/alpha ratio during hypoxia in male cells only.
Collapse
Affiliation(s)
- Andrea Heyer
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
28
|
McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 2005; 25:502-12. [PMID: 15689952 DOI: 10.1038/sj.jcbfm.9600059] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that tissue damage and functional outcome after experimental or clinical stroke are shaped by biologic sex. We investigated the novel hypothesis that ischemic cell death from neuronally derived nitric oxide (NO) or poly-ADP ribose polymerase (PARP-1) activation is sexually dimorphic and that interruption of these molecular death pathways benefits only the male brain. Female neuronal nitric oxide synthase (nNOS) knockout (nNOS-/-) mice exhibited exacerbated histological injury after middle cerebral artery occlusion (MCAO) relative to wild-type (WT) females, unlike the protection observed in male nNOS-/- littermates. Similarly, treatment with the nNOS inhibitor (7-nitroindozole, 25 mg/kg) increased infarction in female C57Bl6 WT mice, but protected male mice. The mechanism for this sexually specific response is not mediated through changes in protein expression of endothelial NOS or inducible NOS, or differences in intraischemic cerebral blood flow. Unlike male PARP-1 knockouts (PARP1-/-), female PARP1-/- littermates sustained grossly increased ischemic damage relative to sex-matched WT mice. Treatment with a PARP inhibitor (PJ-34, 10 mg/kg) resulted in identical results. Loss of PARP-1 resulted in reversal of the neuroprotective activity by the female sex steroid, 17beta estradiol. These data suggest that the previously described cell death pathways involving NO and PARP ischemic neurotoxicity may be operant solely in male brain and that the integrity of nNO/PARP-1 signaling is paradoxically protective in the female.
Collapse
Affiliation(s)
- Louise D McCullough
- Department of Neurology, University of Connecticut Health Center, Farmington, Connecticut 06030-1840, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Women are protected from stroke relative to men until the years of menopause. Because stroke is the leading cause of serious, long-term disability in the United States, modeling sex-specific mechanisms and outcomes in animals is vital to research. Important research questions are focused on the effects of hormone replacement therapy, age, reproductive status, and identification of sex-specific risk factors. Available research relevant to stroke in the female has almost exclusively utilized rodent models. Gender-linked stroke outcomes are more detectable in experimental studies than in clinical trials and observational studies. Various estrogens have been extensively studied as neuroprotective agents in women, animals, and a variety of in vitro models of neural injury and degeneration. Most data in animal and cell models are based on 17 beta estradiol and suggest that this steroid is neuroprotective in injury from ischemia/reperfusion. However, current evidence for the clinical benefits of hormone replacement therapy is unclear. Future research in this area will need to expand into stroke models utilizing higher order, gyrencephalic animals such as nonhuman primates if we are to improve extrapolation to the human scenario and to direct and enhance the design of ongoing and future clinical studies and trials.
Collapse
Affiliation(s)
- Stephanie J Murphy
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, OR, USA
| | | | | |
Collapse
|
30
|
Carswell HVO, Macrae IM, Gallagher L, Harrop E, Horsburgh KJ. Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 2004; 287:H1501-4. [PMID: 15155257 DOI: 10.1152/ajpheart.00227.2004] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study employs selective estrogen receptor (ER) agonists to determine whether 17beta-estradiol-induced neuroprotection in global ischemia is receptor mediated and, if so, which subtype of receptor (ERalpha or ERbeta) is predominantly responsible. Halothane-anesthetized female C57Bl/6J mice were ovariectomized, and osmotic minipumps containing ERbeta agonist diarylpropiolnitrile (DPN) (8 mg.kg(-1).day(-1), n = 12) or vehicle (50% DMSO in 0.9% saline) (n = 9) or ERalpha agonist propyl pyrazole triol (PPT) (2 mg.kg(-1).day(-1), n = 13) or vehicle (50% DMSO in 0.9% saline) (n = 10) were implanted subcutaneously. One week later transient global ischemia was induced by bilateral carotid artery occlusion under halothane anesthesia, and the mice were perfusion fixed 72 h later. ERbeta agonist DPN significantly reduced ischemic damage by 70% in the caudate nucleus and 55% in the CA1 region compared with vehicle controls (P < 0.05, Mann-Whitney U-statistic). In contrast, pretreatment with the ERalpha agonist PPT had no effect on the extent of neuronal damage compared with controls. The data indicate a significant estrogen receptor-mediated neuroprotection in a global cerebral ischemia model involving ERbeta.
Collapse
Affiliation(s)
- H V O Carswell
- Wellcome Surgical Institute & Hugh Fraser Neuroscience Labs., Division of Clinical Neuroscience, University of Glasgow, Glasgow G61 1QH, Scotland, UK.
| | | | | | | | | |
Collapse
|
31
|
Lovegrove AS, Sun J, Gould KA, Lubahn DB, Korach KS, Lane PH. Estrogen receptor alpha-mediated events promote sex-specific diabetic glomerular hypertrophy. Am J Physiol Renal Physiol 2004; 287:F586-91. [PMID: 15149972 DOI: 10.1152/ajprenal.00414.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sex differences in the incidence and progression of renal diseases suggest a protective role for estrogen. This study examined the role of estrogen receptor alpha (ERalpha)-mediated events in normal and diabetic renal and glomerular growth. Wild-type and ERalpha-null mice (ERKO) were observed over 2 wk of streptozocin-induced diabetes. Blood glucose was monitored, and insulin was given daily to maintain levels of 250-350 mg/dl. Body weight, kidney weight, glucose, insulin, renal transforming growth factor-beta(1), and glomerular area were examined for effects of sex, genotype, and diabetes. Genotype had no effect on glomerular or renal size in male mice regardless of metabolic state. Nondiabetic female ERKO mice had kidney weights approaching those of wild-type males and much greater than those of wild-type females (0.15 +/- 0.04 vs. 0.11 +/- 0.04 g; P < 0.001). When only diabetic mice were studied, sex and/or genotype showed no effect on renal weight. Diabetic female ERKO mice had smaller glomerular areas than wild types (2,799 +/- 159 vs. 3,409 +/- 187 microm(2); P = 0.01). Glomerular areas were similar in diabetic wild-type and ERKO males (3,020 +/- 199 vs. 3,406 +/- 176 microm(2)). Transforming growth factor-beta(1) levels, expressed as picograms per milligram total protein, were similar in diabetic wild-type and ERKO males (1.0 +/- 0.6 vs. 0.9 +/- 0.6). In diabetic females, wild types had significantly higher levels of this growth factor than ERKO mice (3.8 +/- 0.7 vs. 1.1 +/- 0.6; P = 0.005). ERalpha-mediated processes influence normal and diabetic renal and glomerular size, but only in female mice. These data do not support a protective role for ERalpha-mediated events in diabetic nephropathy.
Collapse
Affiliation(s)
- Alecia S Lovegrove
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, USA
| | | | | | | | | | | |
Collapse
|
32
|
Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C, Krust A, Dupont S, Ciana P, Chambon P, Maggi A. Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci U S A 2003; 100:9614-9. [PMID: 12878732 PMCID: PMC170966 DOI: 10.1073/pnas.1531957100] [Citation(s) in RCA: 295] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 05/30/2003] [Indexed: 01/26/2023] Open
Abstract
Beyond the key role in reproductive and cognitive functions, estrogens have been shown to protect against neurodegeneration associated with acute and chronic injuries of the adult brain. Current hypotheses reconcile this activity with a direct effect of 17beta-estradiol (E2) on neurons. Here we demonstrate that brain macrophages are also involved in E2 action on the brain. Systemic administration of hormone prevents, in a time- and dose-dependent manner, the activation of microglia and the recruitment of peripheral monocytes induced by intraventricular injection of lipopolysaccharide. This effect occurs by limiting the expression of neuroinflammatory mediators, such as the matrix metalloproteinase 9 and lysosomal enzymes and complement C3 receptor, as well as by preventing morphological changes occurring in microglia during the inflammatory response. By injecting lipopolysaccharide in estrogen receptor (ER)-null mouse brains, we demonstrate that hormone action is mediated by activation of ERalpha but not of ERbeta. The specific role of ERalpha is further confirmed by comparing the effects of ERs on the matrix metalloproteinase 9 promoter activity in transient transfection assays. Finally, we report that genetic ablation of ERalpha is associated with a spontaneous reactive phenotype of microglia in specific brain regions of adult ERalpha-null mice. Altogether, these results reveal a previously undescribed function for E2 in brain and provide a mechanism for its beneficial activity on neuroinflammatory pathologies. They also underline the key role of ERalpha in brain macrophage reactivity and hint toward the usefulness of ERalpha-specific drugs in hormone replacement therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao L, Chen S, Brinton RD. An estrogen replacement therapy containing nine synthetic plant-based conjugated estrogens promotes neuronal survival. Exp Biol Med (Maywood) 2003; 228:823-35. [PMID: 12876302 DOI: 10.1177/15353702-0322807-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epidemiological data from retrospective and case-control studies have indicated that estrogen replacement therapy can decrease the risk of developing Alzheimer's disease. In addition, estrogen replacement therapy has been found to promote neuronal survival both in vivo and in vitro. We have shown that conjugated equine estrogens (CEE), containing 238 different molecules composed of estrogens, progestins, and androgens, exerted neurotrophic and neuroprotective effects in cultured neurons. In the current study, we sought to determine whether a steroidal formulation of nine synthetic conjugated estrogens (SCE) chemically derived from soybean and yam extracts is as effective as the complex multisteroidal formulation of CEE. Analyses of the neuroprotective efficacy indicate that SCE exhibited significant neuroprotection against beta amyloid, hydrogen peroxide, and glutamate-induced toxicity in cultured hippocampal neurons. Indices of neuroprotection included an increase in neuronal survival, a decrease in neurotoxin-induced lactate dehydrogenase release, and a reduction in neurotoxin-induced apoptotic cell death. Furthermore, SCE was found to attenuate excitotoxic glutamate-induced [Ca2+]i rise. Quantitative analyses indicate that the neuroprotective efficacy of SCE was comparable to that of the multisteroidal CEE formulation. Data derived from these investigations predict that SCE could exert neuroprotective effects comparable to CEE in vivo and therefore could reduce the risk of Alzheimer's disease in postmenopausal women.
Collapse
Affiliation(s)
- Lixia Zhao
- Department of Molecular Pharmacology & Toxicology and Neuroscience Program, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
34
|
Rissman EF, Heck AL, Leonard JE, Shupnik MA, Gustafsson JA. Disruption of estrogen receptor beta gene impairs spatial learning in female mice. Proc Natl Acad Sci U S A 2002; 99:3996-4001. [PMID: 11891272 PMCID: PMC122637 DOI: 10.1073/pnas.012032699] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Accepted: 01/18/2002] [Indexed: 11/18/2022] Open
Abstract
Here we provide the first evidence, to our knowledge, that estradiol (E(2)) affects learning and memory via the newly discovered estrogen receptor beta (ERbeta). In this study, ERbeta knockout (ERbetaKO) and wild-type littermates were tested for spatial learning in the Morris water maze after ovariectomy, appropriate control treatment, or one of two physiological doses of E(2). Regardless of treatment, all wild-type females displayed significant learning. However, ERbetaKOs given the low dose of E(2) were delayed in learning acquisition, and ERbetaKOs administered the higher dose of E(2) failed to learn the task. These data show that ERbeta is required for optimal spatial learning and may have implications for hormone replacement therapy in women.
Collapse
Affiliation(s)
- Emilie F Rissman
- Department of Biology and Internal Medicine, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
After humans pass their reproductive primes, estrogen and testosterone concentrations wane. The decline appears to have far-reaching health consequences--on the brain, bones, muscle, and the circulatory system. As scientists tease apart the ramifications of sex hormone loss, they hope to fine-tune therapeutic replacement of those hormones.
Collapse
|