1
|
Shao X, Zhang Z, Yang F, Yu Y, Guo J, Li J, Xu T, Pan X. Chilling stress response in tobacco seedlings: insights from transcriptome, proteome, and phosphoproteome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1390993. [PMID: 38872895 PMCID: PMC11170286 DOI: 10.3389/fpls.2024.1390993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Tobacco (Nicotiana tabacum L.) is an important industrial crop, which is sensitive to chilling stress. Tobacco seedlings that have been subjected to chilling stress readily flower early, which seriously affects the yield and quality of their leaves. Currently, there has been progress in elucidating the molecular mechanisms by which tobacco responds to chilling stress. However, little is known about the phosphorylation that is mediated by chilling. In this study, the transcriptome, proteome and phosphoproteome were analyzed to elucidate the mechanisms of the responses of tobacco shoot and root to chilling stress (4 °C for 24 h). A total of 6,113 differentially expressed genes (DEGs), 153 differentially expressed proteins (DEPs) and 345 differential phosphopeptides were identified in the shoot, and the corresponding numbers in the root were 6,394, 212 and 404, respectively. This study showed that the tobacco seedlings to 24 h of chilling stress primarily responded to this phenomenon by altering their levels of phosphopeptide abundance. Kyoto Encyclopedia of Genes and Genomes analyses revealed that starch and sucrose metabolism and endocytosis were the common pathways in the shoot and root at these levels. In addition, the differential phosphopeptide corresponding proteins were also significantly enriched in the pathways of photosynthesis-antenna proteins and carbon fixation in photosynthetic organisms in the shoot and arginine and proline metabolism, peroxisome and RNA transport in the root. These results suggest that phosphoproteins in these pathways play important roles in the response to chilling stress. Moreover, kinases and transcription factors (TFs) that respond to chilling at the levels of phosphorylation are also crucial for resistance to chilling in tobacco seedlings. The phosphorylation or dephosphorylation of kinases, such as CDPKs and RLKs; and TFs, including VIP1-like, ABI5-like protein 2, TCP7-like, WRKY 6-like, MYC2-like and CAMTA7 among others, may play essential roles in the transduction of tobacco chilling signal and the transcriptional regulation of the genes that respond to chilling stress. Taken together, these findings provide new insights into the molecular mechanisms and regulatory networks of the responses of tobacco to chilling stress.
Collapse
Affiliation(s)
- Xiuhong Shao
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Zhenchen Zhang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Faheng Yang
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Yongchao Yu
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Junjie Guo
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Jiqin Li
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Tingyu Xu
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| |
Collapse
|
2
|
Elias E, Liguori N, Croce R. The origin of pigment-binding differences in CP29 and LHCII: the role of protein structure and dynamics. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00368-7. [PMID: 36740636 DOI: 10.1007/s43630-023-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
The first step of photosynthesis in plants is performed by the light-harvesting complexes (LHC), a large family of pigment-binding proteins embedded in the photosynthetic membranes. These complexes are conserved across species, suggesting that each has a distinct role. However, they display a high degree of sequence homology and their static structures are almost identical. What are then the structural features that determine their different properties? In this work, we compared the two best-characterized LHCs of plants: LHCII and CP29. Using molecular dynamics simulations, we could rationalize the difference between them in terms of pigment-binding properties. The data also show that while the loops between the helices are very flexible, the structure of the transmembrane regions remains very similar in the crystal and the membranes. However, the small structural differences significantly affect the excitonic coupling between some pigment pairs. Finally, we analyzed in detail the structure of the long N-terminus of CP29, showing that it is structurally stable and it remains on top of the membrane even in the absence of other proteins. Although the structural changes upon phosphorylation are minor, they can explain the differences in the absorption properties of the pigments observed experimentally.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Longoni FP, Goldschmidt-Clermont M. Thylakoid Protein Phosphorylation in Chloroplasts. PLANT & CELL PHYSIOLOGY 2021; 62:1094-1107. [PMID: 33768241 DOI: 10.1093/pcp/pcab043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of light-harvesting complex II (LHCII) and of photosystem II (PSII) are dynamically phosphorylated and dephosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID-ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls the allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain. Phosphorylation of several core subunits of PSII, regulated mainly by STN8 and PBCP, correlates with changes in thylakoid architecture, the repair cycle of PSII after photodamage as well as regulation of light harvesting and of alternative routes of photosynthetic electron transfer. Other kinases, such as the PLASTID CASEIN KINASE II (pCKII), also intervene in thylakoid protein phosphorylation and take part in the chloroplast kinase network. While some features of thylakoid phosphorylation were conserved through the evolution of photosynthetic eukaryotes, others have diverged in different lineages possibly as a result of their adaptation to varied environments.
Collapse
Affiliation(s)
- Fiamma Paolo Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | | |
Collapse
|
4
|
Huang WL, Wu FL, Huang HY, Huang WT, Deng CL, Yang LT, Huang ZR, Chen LS. Excess Copper-Induced Alterations of Protein Profiles and Related Physiological Parameters in Citrus Leaves. PLANTS (BASEL, SWITZERLAND) 2020; 9:E291. [PMID: 32121140 PMCID: PMC7154894 DOI: 10.3390/plants9030291] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
This present study examined excess copper (Cu) effects on seedling growth, leaf Cu concentration, gas exchange, and protein profiles identified by a two-dimensional electrophoresis (2-DE) based mass spectrometry (MS) approach after Citrus sinensis and Citrus grandis seedlings were treated for six months with 0.5 (control), 200, 300, or 400 μM CuCl2. Forty-one and 37 differentially abundant protein (DAP) spots were identified in Cu-treated C. grandis and C. sinensis leaves, respectively, including some novel DAPs that were not reported in leaves and/or roots. Most of these DAPs were identified only in C. grandis or C. sinensis leaves. More DAPs increased in abundances than DAPs decreased in abundances were observed in Cu-treated C. grandis leaves, but the opposite was true in Cu-treated C. sinensis leaves. Over 50% of DAPs were associated with photosynthesis, carbohydrate, and energy metabolism. Cu-toxicity-induced reduction in leaf CO2 assimilation might be caused by decreased abundances of proteins related to photosynthetic electron transport chain (PETC) and CO2 assimilation. Cu-effects on PETC were more pronounced in C. sinensis leaves than in C. grandis leaves. DAPs related to antioxidation and detoxification, protein folding and assembly (viz., chaperones and folding catalysts), and signal transduction might be involved in Citrus Cu-toxicity and Cu-tolerance.
Collapse
Affiliation(s)
- Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Wei-Tao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Zeng-Rong Huang
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Kushwaha NK, Mansi, Sahu PP, Prasad M, Chakrabroty S. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1185-1196. [PMID: 31564781 PMCID: PMC6745583 DOI: 10.1007/s12298-019-00693-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 05/05/2023]
Abstract
Virus infection alters the expression of several host genes involved in various cellular and biological processes in plants. Most of the studies performed till now have mainly focused on genes which are up-regulated and later projected them as probable stress tolerant/susceptible genes. Nevertheless, genes which are down-regulated during plant-virus interaction could also play a critical role on disease development as well as in combating the virus infection. Hence, to identify such down-regulated genes and pathway, we performed reverse suppression subtractive hybridization in Capsicum annuum var. Punjab Lal following Chilli leaf curl virus (ChiLCV) infection. The screening and further processing suggested that majority of the genes (approximately 35% ESTs) showed homology with the genes encoding chloroplast proteins and 16% genes involved in the biotic and abiotic stress response. Additionally, we identified several genes, functionally known to be involved in metabolic processes, protein synthesis and degradation, ribosomal proteins, energy production, DNA replication and transcription, and transporters. We also found 3% transcripts which did not show homology with any known genes. The redundancy analysis revealed the maximum percentage of chlorophyll a-b binding protein (15/96) and auxin-binding proteins (13/96). We developed a protein interactome network to characterise the relationships between proteins and pathway involved during the ChiLCV infection. We identified that the most of the interaction occurs either among the chloroplast proteins (Arabidopsis proteins interactive map) or biotic and abiotic stress responsive proteins (Solanum lycopersicum interactome). Taken together, our study provides the first transcriptome and protein interactome of the down-regulated genes during C. annuum-ChiLCV interaction. These resources could be exploited in deciphering the steps involved in the process of virus infection.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mansi
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pranav Pankaj Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Supriya Chakrabroty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
6
|
Betterle N, Poudyal RS, Rosa A, Wu G, Bassi R, Lee CH. The STN8 kinase-PBCP phosphatase system is responsible for high-light-induced reversible phosphorylation of the PSII inner antenna subunit CP29 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:681-691. [PMID: 27813190 DOI: 10.1111/tpj.13412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 05/22/2023]
Abstract
Reversible phosphorylation of thylakoid light-harvesting proteins is a mechanism to compensate for unbalanced excitation of photosystem I (PSI) versus photosystem II (PSII) under limiting light. In monocots, an additional phosphorylation event on the PSII antenna CP29 occurs upon exposure to excess light, enhancing resistance to light stress. Different from the case of the major LHCII antenna complex, the STN7 kinase and its related PPH1 phosphatase were proven not to be involved in CP29 phosphorylation, indicating that a different set of enzymes act in the high-light (HL) response. Here, we analyze a rice stn8 mutant in which both PSII core proteins and CP29 phosphorylation are suppressed in HL, implying that STN8 is the kinase catalyzing this reaction. In order to identify the phosphatase involved, we produced a recombinant enzyme encoded by the rice ortholog of AtPBCP, antagonist of AtSTN8, which catalyzes the dephosphorylation of PSII core proteins. The recombinant protein was active in dephosphorylating P-CP29. Based on these data, we propose that the activities of the OsSTN8 kinase and the antagonistic OsPBCP phosphatase, in addition to being involved in the repair of photo-damaged PSII, are also responsible for the HL-dependent reversible phosphorylation of the inner antenna CP29.
Collapse
Affiliation(s)
- Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, Ca' Vignal 1, Strada le Grazie 15, Verona, 37134, Italy
| | | | - Anthony Rosa
- Dipartimento di Biotecnologie, Università di Verona, Ca' Vignal 1, Strada le Grazie 15, Verona, 37134, Italy
| | - Guangxi Wu
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Ca' Vignal 1, Strada le Grazie 15, Verona, 37134, Italy
| | - Choon-Hwan Lee
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| |
Collapse
|
7
|
Grieco M, Jain A, Ebersberger I, Teige M. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3883-96. [PMID: 27117338 DOI: 10.1093/jxb/erw164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.
Collapse
Affiliation(s)
- Michele Grieco
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Arpit Jain
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| |
Collapse
|
8
|
Betterle N, Ballottari M, Baginsky S, Bassi R. High light-dependent phosphorylation of photosystem II inner antenna CP29 in monocots is STN7 independent and enhances nonphotochemical quenching. PLANT PHYSIOLOGY 2015; 167:457-71. [PMID: 25501945 PMCID: PMC4326754 DOI: 10.1104/pp.114.252379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phosphorylation of the photosystem II antenna protein CP29 has been reported to be induced by excess light and further enhanced by low temperature, increasing resistance to these stressing factors. Moreover, high light-induced CP29 phosphorylation was specifically found in monocots, both C3 and C4, which include the large majority of food crops. Recently, knockout collections have become available in rice (Oryza sativa), a model organism for monocots. In this work, we have used reverse genetics coupled to biochemical and physiological analysis to elucidate the molecular basis of high light-induced phosphorylation of CP29 and the mechanisms by which it exerts a photoprotective effect. We found that kinases and phosphatases involved in CP29 phosphorylation are distinct from those reported to act in State 1-State 2 transitions. In addition, we elucidated the photoprotective role of CP29 phosphorylation in reducing singlet oxygen production and enhancing excess energy dissipation. We thus established, in monocots, a mechanistic connection between phosphorylation of CP29 and nonphotochemical quenching, two processes so far considered independent from one another.
Collapse
Affiliation(s)
- Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy (N.B., M.B., R.B.); andInstitute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany (S.B.)
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy (N.B., M.B., R.B.); andInstitute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany (S.B.)
| | - Sacha Baginsky
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy (N.B., M.B., R.B.); andInstitute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany (S.B.)
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy (N.B., M.B., R.B.); andInstitute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany (S.B.)
| |
Collapse
|
9
|
Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 2014; 13:2337-53. [PMID: 24917610 DOI: 10.1074/mcp.m114.038281] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlamydomonas reinhardtii is the most intensively-studied and well-developed model for investigation of a wide-range of microalgal processes ranging from basic development through understanding triacylglycerol production. Although proteomic technologies permit interrogation of these processes at the protein level and efforts to date indicate phosphorylation-based regulation of proteins in C. reinhardtii is essential for its underlying biology, characterization of the C. reinhardtii phosphoproteome has been limited. Herein, we report the richest exploration of the C. reinhardtii proteome to date. Complementary enrichment strategies were used to detect 4588 phosphoproteins distributed among every cellular component in C. reinhardtii. Additionally, we report 18,160 unique phosphopeptides at <1% false discovery rate, which comprise 15,862 unique phosphosites - 98% of which are novel. Given that an estimated 30% of proteins in a eukaryotic cell are subject to phosphorylation, we report the majority of the phosphoproteome (23%) of C. reinhardtii. Proteins in key biological pathways were phosphorylated, including photosynthesis, pigment production, carbon assimilation, glycolysis, and protein and carbohydrate metabolism, and it is noteworthy that hyperphosphorylation was observed in flagellar proteins. This rich data set is available via ProteomeXchange (ID: PXD000783) and will significantly enhance understanding of a range of regulatory mechanisms controlling a variety of cellular process and will serve as a critical resource for the microalgal community.
Collapse
Affiliation(s)
- Hongxia Wang
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Brian Gau
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ¶Sigma-Aldrich, 2909 Laclede Ave., St. Louis, Missouri 63103
| | - William O Slade
- ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599
| | - Matthew Juergens
- **Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, Missouri 48824
| | - Ping Li
- §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Leslie M Hicks
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599;
| |
Collapse
|
10
|
Chen X, Chan WL, Zhu FY, Lo C. Phosphoproteomic analysis of the non-seed vascular plant model Selaginella moellendorffii. Proteome Sci 2014; 12:16. [PMID: 24628833 PMCID: PMC4022089 DOI: 10.1186/1477-5956-12-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Selaginella (Selaginella moellendorffii) is a lycophyte which diverged from other vascular plants approximately 410 million years ago. As the first reported non-seed vascular plant genome, Selaginella genome data allow comparative analysis of genetic changes that may be associated with land plant evolution. Proteomics investigations on this lycophyte model have not been extensively reported. Phosphorylation represents the most common post-translational modifications and it is a ubiquitous regulatory mechanism controlling the functional expression of proteins inside living organisms. RESULTS In this study, polyethylene glycol fractionation and immobilized metal ion affinity chromatography were employed to isolate phosphopeptides from wild-growing Selaginella. Using liquid chromatography-tandem mass spectrometry analysis, 1593 unique phosphopeptides spanning 1104 non-redundant phosphosites with confirmed localization on 716 phosphoproteins were identified. Analysis of the Selaginella dataset revealed features that are consistent with other plant phosphoproteomes, such as the relative proportions of phosphorylated Ser, Thr, and Tyr residues, the highest occurrence of phosphosites in the C-terminal regions of proteins, and the localization of phosphorylation events outside protein domains. In addition, a total of 97 highly conserved phosphosites in evolutionary conserved proteins were identified, indicating the conservation of phosphorylation-dependent regulatory mechanisms in phylogenetically distinct plant species. On the other hand, close examination of proteins involved in photosynthesis revealed phosphorylation events which may be unique to Selaginella evolution. Furthermore, phosphorylation motif analyses identified Pro-directed, acidic, and basic signatures which are recognized by typical protein kinases in plants. A group of Selaginella-specific phosphoproteins were found to be enriched in the Pro-directed motif class. CONCLUSIONS Our work provides the first large-scale atlas of phosphoproteins in Selaginella which occupies a unique position in the evolution of terrestrial plants. Future research into the functional roles of Selaginella-specific phosphorylation events in photosynthesis and other processes may offer insight into the molecular mechanisms leading to the distinct evolution of lycophytes.
Collapse
Affiliation(s)
- Xi Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China.,Wuhan Institute of Biotechnology, Wuhan, Hubei, China
| | - Wai Lung Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Fu-Yuan Zhu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| |
Collapse
|
11
|
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 2014; 15:351-62. [PMID: 24678670 PMCID: PMC4030316 DOI: 10.2174/1389203715666140327105143] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/30/2023]
Abstract
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.
Collapse
|
12
|
Chen YE, Zhao ZY, Zhang HY, Zeng XY, Yuan S. The significance of CP29 reversible phosphorylation in thylakoids of higher plants under environmental stresses. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1167-78. [PMID: 23349136 DOI: 10.1093/jxb/ert002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reversible phosphorylation of proteins is a key event in many fundamental cellular processes. Under stressful conditions, many thylakoid membrane proteins in photosynthetic apparatus of higher plants undergo rapid phosphorylation and dephosphorylation in response to environmental changes. CP29 is the most frequently phosphorylated protein among three minor antennae complexes in higher plants. CP29 phosphorylation in dicotyledons has been known for several decades and is well characterized. However, CP29 phosphorylation in monocotyledons is less studied and appears to have a different phosphorylation pattern. In this review, we discuss recent advancements in CP29 phosphorylation and dephosphorylation studies and its physiological significance under environmental stresses in higher plants, especially in the monocotyledonous crops. Physiologically, the phosphorylation of CP29 is likely to be a prerequisite for state transitions and the disassembly of photosystem II supercomplexes, but not involved in non-photochemical quenching (NPQ). CP29 is phosphorylated in monocots exposed to environmental cues, with its subsequent lateral migration from grana stacks to stroma lamellae. However, neither CP29 phosphorylation nor its lateral migration occurs in dicotyledonous plants after drought, cold, or salt stress. Since the molecular mechanisms of differential CP29 phosphorylation under stresses are not fully understood, this review provides insights for future studies regarding the physiological function of CP29 reversible phosphorylation.
Collapse
Affiliation(s)
- Yang-Er Chen
- Isotope Research Laboratory, College of Life and Basic Sciences, Sichuan Agriculture University, Ya'an 625014, China.
| | | | | | | | | |
Collapse
|
13
|
Theocharis A, Clément C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. PLANTA 2012; 235:1091-105. [PMID: 22526498 DOI: 10.1007/s00425-012-1641-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/13/2012] [Indexed: 05/18/2023]
Abstract
Apart from water availability, low temperature is the most important environmental factor limiting the productivity and geographical distribution of plants across the world. To cope with cold stress, plant species have evolved several physiological and molecular adaptations to maximize cold tolerance by adjusting their metabolism. The regulation of some gene products represents an additional mechanism of cold tolerance. A consequence of these mechanisms is that plants are able to survive exposure to low temperature via a process known as cold acclimation. In this review, we briefly summarize recent progress in research and hypotheses on how sensitive plants perceive cold. We also explore how this perception is translated into changes within plants following exposure to low temperatures. Particular emphasis is placed on physiological parameters as well as transcriptional, post-transcriptional and post-translational regulation of cold-induced gene products that occur after exposure to low temperatures, leading to cold acclimation.
Collapse
Affiliation(s)
- Andreas Theocharis
- Laboratoire de Stress, Défense et Reproduction des Plantes, URVVC, UPRES EA 2069, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | | | | |
Collapse
|
14
|
Nellaepalli S, Kodru S, Subramanyam R. Effect of cold temperature on regulation of state transitions in Arabidopsis thaliana. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 112:23-30. [PMID: 22575347 DOI: 10.1016/j.jphotobiol.2012.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 11/29/2022]
Abstract
Low temperature is one of the most important abiotic factors limiting growth, development and distribution of plants. The effect of cold temperature on phosphorylation and migration of LHCII has been studied by 77K fluorescence emission spectroscopy and immuno-blotting in Arabidopsis thaliana. It has been reported that the mechanism of state transitions has been well operated at optimum growth temperatures. In this study, exposure of leaves to cold conditions (10 °C for 180 min) along with low light treatment (for 3h) did not show any increase in F726 which corresponds to fluorescence from PSI supercomplex, whereas low light at optimal temperature (26±2 °C) could enhanced F726. Therefore these results conclude that low light at cold condition did not enhance PSI absorption cross-section. We have also observed low levels of LHCII phosphorylation in cold exposed leaves in dark or low light. Though LHCII phosphorylation was detectable, the lateral movement of phosphorylated LHCII is reduced due to high granal stacking in cold treated leaves either in light or dark. Apart from these results, it is suggested that increased OJ phase and decreased JI and IP phases of Chl a fluorescence transients were due to reduced electron transport processes in cold treated samples.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | | | | |
Collapse
|
15
|
Fristedt R, Vener AV. High light induced disassembly of photosystem II supercomplexes in Arabidopsis requires STN7-dependent phosphorylation of CP29. PLoS One 2011; 6:e24565. [PMID: 21915352 PMCID: PMC3168523 DOI: 10.1371/journal.pone.0024565] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 08/14/2011] [Indexed: 11/19/2022] Open
Abstract
Photosynthetic oxidation of water and production of oxygen by photosystem II (PSII) in thylakoid membranes of plant chloroplasts is highly affected by changes in light intensities. To minimize damage imposed by excessive sunlight and sustain the photosynthetic activity PSII, organized in supercomplexes with its light harvesting antenna, undergoes conformational changes, disassembly and repair via not clearly understood mechanisms. We characterized the phosphoproteome of the thylakoid membranes from Arabidopsis thaliana wild type, stn7, stn8 and stn7stn8 mutant plants exposed to high light. The high light treatment of the wild type and stn8 caused specific increase in phosphorylation of Lhcb4.1 and Lhcb4.2 isoforms of the PSII linker protein CP29 at five different threonine residues. Phosphorylation of CP29 at four of these residues was not found in stn7 and stn7stn8 plants lacking the STN7 protein kinase. Blue native gel electrophoresis followed by immunological and mass spectrometric analyses of the membrane protein complexes revealed that the high light treatment of the wild type caused redistribution of CP29 from PSII supercomplexes to PSII dimers and monomers. A similar high-light-induced disassembly of the PSII supercomplexes occurred in stn8, but not in stn7 and stn7stn8. Transfer of the high-light-treated wild type plants to normal light relocated CP29 back to PSII supercomplexes. We postulate that disassembly of PSII supercomplexes in plants exposed to high light involves STN7-kinase-dependent phosphorylation of the linker protein CP29. Disruption of this adaptive mechanism can explain dramatically retarded growth of the stn7 and stn7stn8 mutants under fluctuating normal/high light conditions, as previously reported.
Collapse
Affiliation(s)
- Rikard Fristedt
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alexander V. Vener
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
16
|
Tikkanen M, Aro EM. Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:232-8. [PMID: 21605541 DOI: 10.1016/j.bbabio.2011.05.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 01/22/2023]
Abstract
In higher plants, the photosystem (PS) II core and its several light harvesting antenna (LHCII) proteins undergo reversible phosphorylation cycles according to the light intensity. High light intensity induces strong phosphorylation of the PSII core proteins and suppresses the phosphorylation level of the LHCII proteins. Decrease in light intensity, in turn, suppresses the phosphorylation of PSII core, but strongly induces the phosphorylation of LHCII. Reversible and differential phosphorylation of the PSII-LHCII proteins is dependent on the interplay between the STN7 and STN8 kinases, and the respective phosphatases. The STN7 kinase phosphorylates the LHCII proteins and to a lesser extent also the PSII core proteins D1, D2 and CP43. The STN8 kinase, on the contrary, is rather specific for the PSII core proteins. Mechanistically, the PSII-LHCII protein phosphorylation is required for optimal mobility of the PSII-LHCII protein complexes along the thylakoid membrane. Physiologically, the phosphorylation of LHCII is a prerequisite for sufficient excitation of PSI, enabling the excitation and redox balance between PSII and PSI under low irradiance, when excitation energy transfer from the LHCII antenna to the two photosystems is efficient and thermal dissipation of excitation energy (NPQ) is minimised. The importance of PSII core protein phosphorylation is manifested under highlight when the photodamage of PSII is rapid and phosphorylation is required to facilitate the migration of damaged PSII from grana stacks to stroma lamellae for repair. The importance of thylakoid protein phosphorylation is highlighted under fluctuating intensity of light where the STN7 kinase dependent balancing of electron transfer is a prerequisite for optimal growth and development of the plant. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Department of Biochemistry and Food Chemistry, University of Turku, Finland
| | | |
Collapse
|
17
|
Abstract
Redox-dependent thylakoid protein phosphorylation regulates both the short- and long-term acclimation of the photosynthetic apparatus to changes in environmental conditions. The major thylakoid phosphoproteins belong to photosystem II (D1, D2, CP43, PsbH) and its light-harvesting antenna (Lhcb1, Lhcb2, CP29), but a number of minor phosphoproteins have also been identified. The detection methods traditionally include the radiolabeling techniques, electrophoretic separation of the phosphorylated and unphosphorylated forms of the protein, and the use of phosphoamino acid antibodies or phosphoprotein-specific dyes. The recent progress in mass spectrometry techniques and methods of proteomics allow for the successful identification and analyses of protein phosphorylation. In mass spectrometry approaches no exogenous tracer is needed and natural phosphorylation of proteins can be characterized with high sensitivity yielding the mapping of exact phosphorylation sites in the proteins as well. Various methods for the detection of thylakoid phosphoproteins, including the preparation of phosphopeptides for mass spectrometric analyses and techniques for phosphopeptide identification by electrospray ionization mass spectrometry (ESI-MS) are described. The experimental protocols for simultaneous identification of multiple phosphopeptides in complex peptide mixtures, enrichment of phosphopeptides by immobilized metal affinity chromatography (IMAC), and for their sequencing by tandem spectrometry are outlined.
Collapse
|
18
|
Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 2011; 9:e1000577. [PMID: 21267060 PMCID: PMC3022525 DOI: 10.1371/journal.pbio.1000577] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022] Open
Abstract
In photosynthetic organisms, feedback dissipation of excess absorbed light energy balances harvesting of light with metabolic energy consumption. This mechanism prevents photodamage caused by reactive oxygen species produced by the reaction of chlorophyll (Chl) triplet states with O₂. Plants have been found to perform the heat dissipation in specific proteins, binding Chls and carotenoids (Cars), that belong to the Lhc family, while triggering of the process is performed by the PsbS subunit, needed for lumenal pH detection. PsbS is not found in algae, suggesting important differences in energy-dependent quenching (qE) machinery. Consistent with this suggestion, a different Lhc-like gene product, called LhcSR3 (formerly known as LI818) has been found to be essential for qE in Chlamydomonas reinhardtii. In this work, we report the production of two recombinant LhcSR isoforms from C. reinhardtii and their biochemical and spectroscopic characterization. We found the following: (i) LhcSR isoforms are Chl a/b- and xanthophyll-binding proteins, contrary to higher plant PsbS; (ii) the LhcSR3 isoform, accumulating in high light, is a strong quencher of Chl excited states, exhibiting a very fast fluorescence decay, with lifetimes below 100 ps, capable of dissipating excitation energy from neighbor antenna proteins; (iii) the LhcSR3 isoform is highly active in the transient formation of Car radical cation, a species proposed to act as a quencher in the heat dissipation process. Remarkably, the radical cation signal is detected at wavelengths corresponding to the Car lutein, rather than to zeaxanthin, implying that the latter, predominant in plants, is not essential; (iv) LhcSR3 is responsive to low pH, the trigger of non-photochemical quenching, since it binds the non-photochemical quenching inhibitor dicyclohexylcarbodiimide, and increases its energy dissipation properties upon acidification. This is the first report of an isolated Lhc protein constitutively active in energy dissipation in its purified form, opening the way to detailed molecular analysis. Owing to its protonatable residues and constitutive excitation energy dissipation, this protein appears to merge both pH-sensing and energy-quenching functions, accomplished respectively by PsbS and monomeric Lhcb proteins in plants.
Collapse
Affiliation(s)
- Giulia Bonente
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | | | - Thuy B. Truong
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | | | - Tae K. Ahn
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Graham R. Fleming
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| |
Collapse
|
19
|
Ruelland E, Zachowski A. How plants sense temperature. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2010. [PMID: 0 DOI: 10.1016/j.envexpbot.2010.05.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
20
|
Yu LJ, Kato S, Wang ZY. Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2010; 106:215-220. [PMID: 20886371 DOI: 10.1007/s11120-010-9596-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/10/2010] [Indexed: 05/29/2023]
Abstract
The core light-harvesting complex (LH1) of purple sulfur photosynthetic bacterium Thermochromatium tepidum exhibits an unusual absorption maximum at 915 nm for the Q (y) transition, and is highly stable when copurified with reaction center (RC) in a LH1-RC complex form. In previous studies, we demonstrated that the calcium ions are involved in both the large red shift and the enhanced thermal stability, and possible Ca(2+)-binding sites were proposed. In this study, we further examine the putative binding sites in the LH1 polypeptides using purified chromatophores. Incubation of the chromatophores in the presence of EDTA revealed no substantial change in the absorption maximum of LH1 Q (y) transition, whereas further addition of detergents to the chromatophores-EDTA solution resulted in a blue-shift for the LH1 Q (y) peak with the final position at 892 nm. The change of the LH1 Q (y) peak to shorter wavelengths was relatively slow compared to that of the purified LH1-RC complex. The blue-shifted LH1 Q (y) transition in chromatophores can be restored to its original position by addition of Ca(2+) ions. The results suggest that the Ca(2+)-binding site is exposed on the inner surface of chromatophores, corresponding to the C-terminal region of LH1. An Asp-rich fragment in the LH1 α-polypeptide is considered to form a crucial part of the binding network. The slow response of LH1 Q (y) transition upon exposure to EDTA is discussed in terms of the membrane environment in the chromatophores.
Collapse
Affiliation(s)
- Long-Jiang Yu
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | | | | |
Collapse
|
21
|
Pesaresi P, Pribil M, Wunder T, Leister D. Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:887-96. [PMID: 20728426 DOI: 10.1016/j.bbabio.2010.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/02/2010] [Accepted: 08/14/2010] [Indexed: 11/28/2022]
Abstract
Phosphorylation is the most common post-translational modification found in thylakoid membrane proteins of flowering plants, targeting more than two dozen subunits of all multiprotein complexes, including some light-harvesting proteins. Recent progress in mass spectrometry-based technologies has led to the detection of novel low-abundance thylakoid phosphoproteins and localised their phosphorylation sites. Three of the enzymes involved in phosphorylation/dephosphorylation cycles in thylakoids, the protein kinases STN7 and STN8 and the phosphatase TAP38/PPH1, have been characterised in the model species Arabidopsis thaliana. Differential protein phosphorylation is associated with changes in illumination and various other environmental parameters, and has been implicated in several acclimation responses, the molecular mechanisms of which are only partly understood. The phenomenon of State Transitions, which enables rapid adaptation to short-term changes in illumination, has recently been shown to depend on reversible phosphorylation of LHCII by STN7-TAP38/PPH1. STN7 is also necessary for long-term acclimation responses that counteract imbalances in energy distribution between PSII and PSI by changing the rates of accumulation of their reaction-centre and light-harvesting proteins. Another aspect of photosynthetic acclimation, the modulation of thylakoid ultrastructure, depends on phosphorylation of PSII core proteins, mainly executed by STN8. Here we review recent advances in the characterisation of STN7, STN8 and TAP38/PPH1, and discuss their physiological significance within the overall network of thylakoid protein phosphorylation. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli studi di Milano, I-20133 Milano, Italy
| | | | | | | |
Collapse
|
22
|
JIANG JH, WANG D, HU Y, GAO X, DU LF. Effects of Light and Temperature on The Expression of tak Gene and Phosphorylation of LHC in <I>Arabidopsis thaliana</I>*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Chen YE, Yuan S, Du JB, Xu MY, Zhang ZW, Lin HH. Phosphorylation of photosynthetic antenna protein CP29 and photosystem II structure changes in monocotyledonous plants under environmental stresses. Biochemistry 2009; 48:9757-63. [PMID: 19764773 DOI: 10.1021/bi901308x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetic studies of protein dephosphorylation in thylakoid membranes showed that the minor light-harvesting antenna protein CP29 could be phosphorylated in barley (C3) and maize (C4) seedlings, but not in spinach under water [Liu, W. J., et al. (2009) Biochim. Biophys. Acta 1787, 1238-1245], salt, or cold stress [Pursiheimo, S., et al. (2003) Plant Cell Environ. 26, 1995-2003], suggesting that phosphorylation of CP29 is a general phenomenon in monocots, but not in dicots under environmental stresses. Abscisic acid (ABA), reactive oxygen species (ROS), salicylic acid (SA), jasmonic acid (JA), ethylene (ET), NO, and the scavenger of H(2)O(2) had weak effects on CP29 phosphorylation. However, three protein kinase inhibitors, U0126, W7, and K252a (for mitogen-activated protein kinase, Ca(2+)-dependent protein kinase, and Ser/Thr protein kinases, respectively), decrease the level of CP29 phosphorylation in barley apparently under environmental stresses. Therefore, these three protein kinases are involved in CP29 phosphorylation. We also found that most CP29 phosphorylation was accompanied by its lateral migration from granum membranes to stroma-exposed thylakoid regions, and the instability of PSII supercomplexes and LHCII trimers under environmental stresses.
Collapse
Affiliation(s)
- Yang-Er Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.
Collapse
Affiliation(s)
- Stephan Eberhard
- Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
25
|
Vainonen JP, Vener AV, Aro EM. Determination of in vivo protein phosphorylation in photosynthetic membranes. Methods Mol Biol 2009; 479:133-146. [PMID: 19083170 DOI: 10.1007/978-1-59745-289-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Light- and redox-controlled reversible phosphorylation of thylakoid proteins regulates short- and long-term acclimation of plants to environmental cues. The major phosphoproteins in thylakoids belong to photosystem II and its light-harvesting antenna but phosphorylation of subunits of other thylakoid protein complexes has been detected as well. The detection methods include electrophoretic separation of proteins and detection of phosphoproteins with a phosphoaminoacid-specific antibody or phosphoprotein-specific dye. The use of mass spectrometry allows the identification of exact phosphorylation site(s) in the proteins. Various methods for detection of phosphoproteins in thylakoids are outlined including phosphopeptide preparation for mass spectrometric analyses and quantitative analysis of protein phosphorylation.
Collapse
Affiliation(s)
- Julia P Vainonen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, Turku, Finland
| | | | | |
Collapse
|
26
|
Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:425-32. [PMID: 18331820 DOI: 10.1016/j.bbabio.2008.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 11/20/2022]
Abstract
Phosphorylation-dependent movement of the light-harvesting complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) takes place in order to balance the function of the two photosystems. Traditionally, the phosphorylatable fraction of LHCII has been considered as the functional unit of this dynamic regulation. Here, a mechanical fractionation of the thylakoid membrane of Spinacia oleracea was performed from leaves both in the phosphorylated state (low light, LL) and in the dephosphorylated state (dark, D) in order to compare the phosphorylation-dependent protein movements with the excitation changes occurring in the two photosystems upon LHCII phosphorylation. Despite the fact that several LHCII proteins migrate to stroma lamellae when LHCII is phosphorylated, no increase occurs in the 77 K fluorescence emitted from PSI in this membrane fraction. On the contrary, such an increase in fluorescence occurs in the grana margin fraction, and the functionally important mobile unit is the PSI-LHCI complex. A new model for LHCII phosphorylation driven regulation of relative PSII/PSI excitation thus emphasises an increase in PSI absorption cross-section occurring in grana margins upon LHCII phosphorylation and resulting from the movement of PSI-LHCI complexes from stroma lamellae and subsequent co-operation with the P-LHCII antenna from the grana. The grana margins probably give a flexibility for regulation of linear and cyclic electron flow in plant chloroplasts.
Collapse
|
27
|
Ihnatowicz A, Pesaresi P, Lohrig K, Wolters D, Müller B, Leister D. Impaired photosystem I oxidation induces STN7-dependent phosphorylation of the light-harvesting complex I protein Lhca4 in Arabidopsis thaliana. PLANTA 2008; 227:717-22. [PMID: 17968587 PMCID: PMC2756396 DOI: 10.1007/s00425-007-0650-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/12/2007] [Indexed: 05/20/2023]
Abstract
Reduction of the plastoquinone (PQ) pool is known to activate phosphorylation of thylakoid proteins. In the Arabidopsis thaliana mutants psad1-1 and psae1-3, oxidation of photosystem I (PSI) is impaired, and the PQ pool is correspondingly over-reduced. We show here that, under these conditions, the antenna protein Lhca4 of PSI becomes a target for phosphorylation. Phosphorylation of the mature Lhca4 protein at Thr16 is suppressed in stn7 psad1 and stn7 psae1 double mutants. Thus, under extreme redox conditions, hyperactivation of thylakoid protein kinases and/or reorganization of thylakoid protein complex distribution increase the susceptibility of PSI to phosphorylation.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Abteilung für Pflanzenzüchtung und Genetik, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50829 cologne, Germany
| | - Paolo Pesaresi
- Dipartimento di Produzione Vegetale, Università Statale di Milano c/o Parco Tecnologico Padano Via Einstein, Loc. Cascina Codazza, 26900 Lodi, Italy
| | - Katharina Lohrig
- Abteilung für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Dirk Wolters
- Abteilung für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Bernd Müller
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 Munich, Germany
| | - Dario Leister
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 Munich, Germany
| |
Collapse
|
28
|
Chintalapati S, Prakash JSS, Singh AK, Ohtani S, Suzuki I, Murata N, Shivaji S. Desaturase genes in a psychrotolerant Nostoc sp. are constitutively expressed at low temperature. Biochem Biophys Res Commun 2007; 362:81-87. [PMID: 17697671 DOI: 10.1016/j.bbrc.2007.07.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/29/2022]
Abstract
Antarctic psychrotolerant, Nostoc sp. (SO-36), when grown at 25 degrees C and then shifted to 10 degrees C, showed an increase in the tri-unsaturated fatty acid [C(18:3(9,12,15))] at the expense of mono- [C(18:1(9))] and di-unsaturated [C(18:2(9,12))] fatty acids. These results indicate that the activities of the enzymes DesA and DesB are up-regulated, when cultures were grown at 10 degrees C or shifted to 10 degrees C from 25 degrees C. However, RT-PCR studies indicated a constitutive expression of desA, desB, desC, and desC2 genes when cultures grown at 25 degrees C were shifted to 10 degrees C. This constitutive expression of des genes is in contrast to that observed in mesophilic cyanobacteria, in which desA and desB are transcriptionally up-regulated in response to lowering of growth temperature.
Collapse
Affiliation(s)
- Suresh Chintalapati
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - J S S Prakash
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ashish K Singh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shuji Ohtani
- Department of Biology, Faculty of Education, Shimane University, Nishikawatsu, Matsue 690, Japan
| | - Iwane Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Norio Murata
- National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| | - Sisinthy Shivaji
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
29
|
Vener AV. Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:449-57. [PMID: 17184728 DOI: 10.1016/j.bbabio.2006.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/01/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Recent advances in vectorial proteomics of protein domains exposed to the surface of photosynthetic thylakoid membranes of plants and the green alga Chlamydomonas reinhardtii allowed mapping of in vivo phosphorylation sites in integral and peripheral membrane proteins. In plants, significant changes of thylakoid protein phosphorylation are observed in response to stress, particularly in photosystem II under high light or high temperature stress. Thylakoid protein phosphorylation in the algae is much more responsive to the ambient redox and light conditions, as well as to CO(2) availability. The light-dependent multiple and differential phosphorylation of CP29 linker protein in the green algae is suggested to control photosynthetic state transitions and uncoupling of light harvesting proteins from photosystem II under high light. The similar role for regulation of the dynamic distribution of light harvesting proteins in plants is proposed for the TSP9 protein, which together with other recently discovered peripheral proteins undergoes specific environment- and redox-dependent phosphorylation at the thylakoid surface. This review focuses on the environmentally modulated reversible phosphorylation of thylakoid proteins related to their membrane dynamics and affinity towards particular photosynthetic protein complexes.
Collapse
Affiliation(s)
- Alexander V Vener
- Division of Cell Biology, Linköping University, Linköping SE-58185, Sweden.
| |
Collapse
|
30
|
Pieper J, Irrgang KD, Rätsep M, Voigt J, Renger G, Small GJ. Assignment of the Lowest QY-state and Spectral Dynamics of the CP29 Chlorophyll a/b Antenna Complex of Green Plants: A Hole-burning Study ‡. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710574aotlqy2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
|
32
|
Tikkanen M, Mikko T, Piippo M, Mirva P, Suorsa M, Marjaana S, Sirpiö S, Sari S, Mulo P, Paula M, Vainonen J, Julia V, Vener AV, Alexander V, Allahverdiyeva Y, Yagut A, Aro EM, Eva-Mari A. State transitions revisited-a buffering system for dynamic low light acclimation of Arabidopsis. PLANT MOLECULAR BIOLOGY 2006; 62:779-93. [PMID: 16897465 DOI: 10.1007/s11103-006-9044-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 06/30/2006] [Indexed: 05/11/2023]
Abstract
The mobile part of the light-harvesting chlorophyll (chl) a/b protein complex (LHCII), composed of the Lhcb1 and Lhcb2 proteins, is the basic unit of chloroplast state transitions--the short term tuning system in balancing the excitation energy between Photosystem (PS) II and PSI. State transitions are catalysed by the thylakoid associated STN7 kinase, and we show here that besides the phosphorylation of the Lhcb1 and Lhcb2 proteins, also the phosphorylation of Lhcb4.2 (CP29) is under the control of the STN7 kinase. Upon growth of Arabidopsis WT and stn7 mutant plants under low and moderate light conditions, the WT plants favoured state 2 whereas stn7 was locked in state 1. The lack of the STN7 kinase and state transitions in stn7 also modified the thylakoid protein contents upon long-term low light acclimation resulting, for example, in low Lhcb1 and in elevated Lhca1 and Lhca2 protein amounts as compared to WT. Adjustments of thylakoid protein contents probably occurred at post-transcriptional level since the DNA microarray experiments from each growth condition did not reveal any significant differences between stn7 and WT transcriptomes. The resulting high Lhcb2/Lhcb1 ratio in stn7 upon growth at low light was accompanied by lower capacity for NPQ than in WT. On the contrary, higher amounts of PsbS in stn7 under moderate and high light growth conditions resulted in higher NPQ compared to WT and consequently also in a protection of PSII against photoinhibition. STN7 kinase and the state transitions are suggested to have a physiological significance for dynamic acclimation to low but fluctuating growth light conditions. They are shown to function as a buffering system upon short high light illumination peaks by shifting the thylakoids from state 2 to state 1 and thereby down regulating the induction of stress-responsive genes, a likely result from transient over-reduction of PSI acceptors.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Forti G, Agostiano A, Barbato R, Bassi R, Brugnoli E, Finazzi G, Garlaschi FM, Jennings RC, Melandri BA, Trotta M, Venturoli G, Zanetti G, Zannoni D, Zucchelli G. Photosynthesis research in Italy: a review. PHOTOSYNTHESIS RESEARCH 2006; 88:211-40. [PMID: 16755326 DOI: 10.1007/s11120-006-9054-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/24/2006] [Indexed: 05/10/2023]
Abstract
This historical review was compiled and edited by Giorgio Forti, whereas the other authors of the different sections are listed alphabetically after his name, below the title of the paper; they are also listed in the individual sections. This review deals with the research on photosynthesis performed in several Italian laboratories during the last 50 years; it includes research done, in collaboration, at several international laboratories, particularly USA, UK, Switzerland, Hungary, Germany, France, Finland, Denmark, and Austria. Wherever pertinent, references are provided, especially to other historical papers in Govindjee et al. [Govindjee, Beatty JT, Gest H, Allen JF (eds) (2005) Discoveries in Photosynthesis. Springer, Dordrecht]. This paper covers the physical and chemical events starting with the absorption of a quantum of light by a pigment molecule to the conversion of the radiation energy into the stable chemical forms of the reducing power and of ATP. It describes the work done on the structure, function and regulation of the photosynthetic apparatus in higher plants, unicellular algae and in photosynthetic bacteria. Phenomena such as photoinhibition and the protection from it are also included. Research in biophysics of photosynthesis in Padova (Italy) is discussed by G.M. Giacometti and G. Giacometti (2006).
Collapse
Affiliation(s)
- Giorgio Forti
- Istituto di Biofisica del CNR, Sezione di Milano e Dipartimento di Biologia dell'Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, Vener AV. Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 2006; 5:1412-25. [PMID: 16670252 DOI: 10.1074/mcp.m600066-mcp200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four distinct environmental conditions affecting photosynthesis: (i) dark aerobic, corresponding to photosynthetic State 1; (ii) dark under nitrogen atmosphere, corresponding to photosynthetic State 2; (iii) moderate light; and (iv) high light. The surface-exposed phosphorylated peptides were cleaved from the membrane by trypsin, methyl-esterified, enriched by immobilized metal affinity chromatography, and sequenced by nanospray-quadrupole time-of-flight mass spectrometry. A total of 19 in vivo phosphorylation sites were mapped in the proteins corresponding to 15 genes in C. reinhardtii. Amino-terminal acetylation of seven proteins was concomitantly determined. Sequenced amino termini of six mature LHCII proteins differed from the predicted ones. The State 1-to-State 2 transition induced phosphorylation of the PSII core components D2 and PsbR and quadruple phosphorylation of a minor LHCII antennae subunit, CP29, as well as phosphorylation of constituents of a major LHCII complex, Lhcbm1 and Lhcbm10. Exposure of the algal cells to either moderate or high light caused additional phosphorylation of the D1 and CP43 proteins of the PSII core. The high light treatment led to specific hyperphosphorylation of CP29 at seven distinct residues, phosphorylation of another minor LHCII constituent, CP26, at a single threonine, and double phosphorylation of additional subunits of a major LHCII complex including Lhcbm4, Lhcbm6, Lhcbm9, and Lhcbm11. Environmentally induced protein phosphorylation at the interface of PSII core and the associated antenna proteins, particularly multiple differential phosphorylations of CP29 linker protein, suggests the mechanisms for control of photosynthetic state transitions and for LHCII uncoupling from PSII under high light stress to allow thermal energy dissipation.
Collapse
Affiliation(s)
- Maria V Turkina
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Rinalducci S, Larsen MR, Mohammed S, Zolla L. Novel Protein Phosphorylation Site Identification in Spinach Stroma Membranes by Titanium Dioxide Microcolumns and Tandem Mass Spectrometry. J Proteome Res 2006; 5:973-82. [PMID: 16602705 DOI: 10.1021/pr050476n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, spinach stroma membrane, instead of thylakoid, has been investigated for the presence of phosphorylated proteins. We identified seven previously unknown phosphorylation sites by taking advantage of TiO(2) phosphopeptides enrichment coupled to mass spectrometric analysis. Upon illumination at 100 micromol m(-2) s(-1), two novel phosphopeptides belonging to the N-terminal region of Lhcb1 light-harvesting protein were detected: NVSSGS(p)PWYGPDR and T(p)VQSSSPWYGPDR. Moreover, three new threonine residues in CP43 (Thr-6, Thr-8, and Thr-346) and, for the first time, two amino acid residues of the N-terminus of Rieske Fe-S protein of the cytochrome b(6)f complex (Thr-2 and Ser-3) were revealed to be phosphorylated. Since Lhcb1 and CP43 have been reported as mobile proteins, it may be suggested that illumination derived phosphorylation, and consequently the addition of negatively charged groups to the protein, is a necessary condition to induce a significant protein structural change.
Collapse
Affiliation(s)
- Sara Rinalducci
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy
| | | | | | | |
Collapse
|
36
|
Ducruet JM, Roman M, Havaux M, Janda T, Gallais A. Cyclic electron flow around PSI monitored by afterglow luminescence in leaves of maize inbred lines (Zea mays L.): correlation with chilling tolerance. PLANTA 2005; 221:567-79. [PMID: 15688225 DOI: 10.1007/s00425-004-1464-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 11/02/2004] [Indexed: 05/13/2023]
Abstract
Maize (Zea mays L.) inbred lines of contrasting chilling sensitivity (three tolerant, three sensitive lines) were acclimated to 280 mumol photons m(-2) s(-1) white light at a 17 degrees C sub-optimal temperature. They showed no symptoms of photoinhibition, despite slight changes in photosystem II (PSII) fluorescence and thermoluminescence properties in two tolerant lines. A luminescence "afterglow" emission [Bertsch and Azzi (1965) Biochim Biophys Acta 94:15-26], inducible by a far-red (FR) illumination of unfrozen leaf discs, was detected either as a bounce in decay kinetics at constant temperatures or as a sharp thermoluminescence afterglow band at about 45 degrees C, in dark-adapted leaves. This band reflects the induction by warming of an electron pathway from stromal reductants to plastoquinones and to the Q(B) secondary acceptor of PSII, resulting in a luminescence-emitting charge recombination in the fraction of centres that were initially in the S(2/3)Q(B) non-luminescent state. A 5-h exposure of plants to growth chamber light shifted this luminescence emission towards shorter times and lower temperatures for several hours in the three chilling-tolerant lines. This downshift was not observed, or only transiently, in the three sensitive lines. In darkness, the downshifted afterglow band relaxed within hours to resume its dark-adapted location, similar for all maize lines. A faster dark re-reduction of P700(+) oxidized by FR light (monitored by 820-nm absorbance) and an increase of photochemical energy storage under FR excitation (determined by photoacoustic spectroscopy) confirmed that a cyclic pathway induced by white actinic light remained activated for several hours in the tolerant maize lines.
Collapse
Affiliation(s)
- Jean-Marc Ducruet
- Service de Bioénergétique, INRA/CEA-Saclay, 91191 Gif-sur-Yvette cedex, France.
| | | | | | | | | |
Collapse
|
37
|
Dall'Osto L, Caffarri S, Bassi R. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. THE PLANT CELL 2005; 17:1217-32. [PMID: 15749754 PMCID: PMC1087998 DOI: 10.1105/tpc.104.030601] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 02/09/2005] [Indexed: 05/18/2023]
Abstract
The regulation of light harvesting in higher plant photosynthesis, defined as stress-dependent modulation of the ratio of energy transfer to the reaction centers versus heat dissipation, was studied by means of carotenoid biosynthesis mutants and recombinant light harvesting complexes (LHCs) with modified chromophore binding. The npq2 mutant of Arabidopsis thaliana, blocked in the biosynthesis of violaxanthin and thus accumulating zeaxanthin, was shown to have a lower fluorescence yield of chlorophyll in vivo and, correspondingly, a higher level of energy dissipation, with respect to the wild-type strain and npq1 mutant, the latter of which is incapable of zeaxanthin accumulation. Experiments on purified thylakoid membranes from all three mutants showed that the major source of the difference between the npq2 and wild-type preparations was a change in pigment to protein interactions, which can explain the lower chlorophyll fluorescence yield in the npq2 samples. Analysis of the xanthophyll binding LHC proteins showed that the Lhcb5 photosystem II subunit (also called CP26) undergoes a change in its pI upon binding of zeaxanthin. The same effect was observed in wild-type CP26 upon treatment that leads to the accumulation of zeaxanthin in the membrane and was interpreted as the consequence of a conformational change. This hypothesis was confirmed by the analysis of two recombinant proteins obtained by overexpression of the Lhcb5 apoprotein in Escherichia coli and reconstitution in vitro with either violaxanthin or zeaxanthin. The V and Z containing pigment-protein complexes obtained by this procedure showed different pIs and high and low fluorescence yields, respectively. These results confirm that LHC proteins exist in multiple conformations, an idea suggested by previous spectroscopic measurements (Moya et al., 2001), and imply that the switch between the different LHC protein conformations is activated by the binding of zeaxanthin to the allosteric site L2. The results suggest that the quenching process induced by the accumulation of zeaxanthin contributes to qI, a component of NPQ whose origin was previously poorly understood.
Collapse
Affiliation(s)
- Luca Dall'Osto
- Dipartimento Scientifico e Tecnologico, Università di Verona, 37134, Verona, Italy
| | | | | |
Collapse
|
38
|
Turkina MV, Villarejo A, Vener AV. The transit peptide of CP29 thylakoid protein in Chlamydomonas reinhardtii is not removed but undergoes acetylation and phosphorylation. FEBS Lett 2004; 564:104-8. [PMID: 15094049 DOI: 10.1016/s0014-5793(04)00323-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 02/19/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
The surface-exposed peptides were cleaved by trypsin from the photosynthetic thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. Two phosphorylated peptides, enriched from the peptide mixture and sequenced by nanospray quadrupole time-of-flight mass spectrometry, revealed overlapping sequences corresponding to the N-terminus of a nuclear-encoded chlorophyll a/b-binding protein CP29. In contrast to all known nuclear-encoded thylakoid proteins, the transit peptide in the mature algal CP29 was not removed but processed by methionine excision, N-terminal acetylation and phosphorylation on threonine 6. The importance of this phosphorylation site is proposed as the reason of the unique transit peptide retention.
Collapse
Affiliation(s)
- Maria V Turkina
- Division of Cell Biology, University of Linköping, 581 85 Linköping, Sweden
| | | | | |
Collapse
|
39
|
Dal Bosco C, Busconi M, Govoni C, Baldi P, Stanca AM, Crosatti C, Bassi R, Cattivelli L. cor Gene expression in barley mutants affected in chloroplast development and photosynthetic electron transport. PLANT PHYSIOLOGY 2003; 131:793-802. [PMID: 12586903 PMCID: PMC166855 DOI: 10.1104/pp.014530] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 10/17/2002] [Accepted: 11/05/2002] [Indexed: 05/18/2023]
Abstract
The expression of several barley (Hordeum vulgare) cold-regulated (cor) genes during cold acclimation was blocked in the albino mutant a(n), implying a chloroplast control on mRNAs accumulation. By using albino and xantha mutants ordered according to the step in chloroplast biogenesis affected, we show that the cold-dependent accumulation of cor14b, tmc-ap3, and blt14 mRNAs depends on plastid developmental stage. Plants acquire the ability to fully express cor genes only after the development of primary thylakoid membranes in their chloroplasts. To investigate the chloroplast-dependent mechanism involved in cor gene expression, the activity of a 643-bp cor14b promoter fragment was assayed in wild-type and albino mutant a(n) leaf explants using transient beta-glucuronidase reporter expression assay. Deletion analysis identified a 27-bp region between nucleotides -274 and -247 with respect to the transcription start point, encompassing a boundary of some element that contributes to the cold-induced expression of cor14b. However, cor14b promoter was equally active in green and in albino a(n) leaves, suggesting that chloroplast controls cor14b expression by posttranscriptional mechanisms. Barley mutants lacking either photosystem I or II reaction center complexes were then used to evaluate the effects of redox state of electron transport chain components on COR14b accumulation. In the mutants analyzed, the amount of COR14b protein, but not the steady-state level of the corresponding mRNA, was dependent on the redox state of the electron transport chain. Treatments of the vir-zb63 mutant with electron transport chain inhibitors showed that oxidized plastoquinone promotes COR14b accumulation, thus suggesting a molecular relationship between plastoquinone/plastoquinol pool and COR14b.
Collapse
Affiliation(s)
- Cristina Dal Bosco
- Istituto Sperimentale per la Cerealicoltura, Via S. Protaso 302, I-29017, Fiorenzuola d'Arda (PC), Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The photosystem II of chloroplast thylakoid membranes contains several proteins phosphorylated by redox-activated protein kinases. The mechanism of the reversible activation of the light-harvesting antenna complex II (LHCII) kinase(s) is one of the best understood and related to the regulation of energy transfer to photosystem II or I, thereby optimizing their relative excitation (state transition). The deactivated LHCII protein kinase(s) is associated with cytochrome b(6)f and dissociates from the complex upon activation. Activation of the LHCII protein kinase occurs via dynamic conformational changes in the cytochrome b(6)f complex taking place during plastoquinol oxidation. Deactivation of the kinase involves its reassociation with an oxidized cytochrome complex. A fine-tuning redox-dependent regulatory loop inhibits the activation of the kinase via reduction of protein disulfide groups, possibly involving the thioredoxin complex. Phosphorylation of LHCII is further modulated by light-induced conformational changes of the LHCII substrate. The reversible phosphorylation of LHCII and other thylakoid phosphoproteins, catalyzed by respective kinases and phosphatases, is under strict regulation in response to environmental changes.
Collapse
Affiliation(s)
- Eva-Mari Aro
- Department of Biology, University of Turku, FIN-20014 Turku, Finland.
| | | |
Collapse
|
41
|
Das SK, Frank HA. Pigment compositions, spectral properties, and energy transfer efficiencies between the xanthophylls and chlorophylls in the major and minor pigment-protein complexes of photosystem II. Biochemistry 2002; 41:13087-95. [PMID: 12390037 DOI: 10.1021/bi0204802] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Absorption, fluorescence, and fluorescence excitation spectra have been measured from CP26, CP29, and monomeric and trimeric LHCIIb light-harvesting complexes isolated from Photosystem II subchloroplast particles from spinach. The complexes were purified using a combination of isoelectric focusing and sucrose gradient ultracentrifugation. The chlorophyll (Chl) and xanthophyll pigment compositions were measured using high-performance liquid chromatography (HPLC). Using the pigment compositions from the HPLC analysis as a starting point, the absorption spectral profiles of the complexes have been reconstructed from the individual absorption spectra obtained for each of the pigments. Also, the fluorescence excitation spectra of the complexes have been deconvoluted. The data reveal the energy transfer efficiencies between Chl b and Chl a and between specific xanthophylls and Chl a in the complexes. The spectral analyses reveal the underlying features of the highly congested spectral profiles associated with the complexes and are expected to be beneficial to researchers employing spectroscopic methods to investigate the mechanisms of energy transfer between the pigments bound in these complexes.
Collapse
Affiliation(s)
- Somes Kumar Das
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | |
Collapse
|
42
|
Morosinotto T, Baronio R, Bassi R. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. J Biol Chem 2002; 277:36913-20. [PMID: 12114527 DOI: 10.1074/jbc.m205339200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three plant xanthophylls are components of the xanthophyll cycle in which, upon exposure of leaves to high light, the enzyme violaxanthin de-epoxidase (VDE) transforms violaxanthin into zeaxanthin via the intermediate antheraxanthin. Previous work () showed that xanthophylls are bound to Lhc proteins and that substitution of violaxanthin with zeaxanthin induces conformational changes and fluorescence quenching by thermal dissipation. We have analyzed the efficiency of different Lhc proteins to exchange violaxanthin with zeaxanthin both in vivo and in vitro. Light stress of Zea mays leaves activates VDE, and the newly formed zeaxanthin is found primarily in CP26 and CP24, whereas other Lhc proteins show a lower exchange capacity. The de-epoxidation system has been reconstituted in vitro by using recombinant Lhc proteins, recombinant VDE, and monogalactosyl diacylglycerol (MGDG) to determine the intrinsic capacity for violaxanthin-to-zeaxanthin exchange of individual Lhc gene products. Again, CP26 was the most efficient in xanthophyll exchange. Biochemical and spectroscopic analysis of individual Lhc proteins after de-epoxidation in vitro showed that xanthophyll exchange occurs at the L2-binding site. Xanthophyll exchange depends on low pH, implying that access to the binding site is controlled by a conformational change via lumenal pH. These findings suggest that the xanthophyll cycle participates in a signal transduction system acting in the modulation of light harvesting versus thermal dissipation in the antenna system of higher plants.
Collapse
Affiliation(s)
- Tomas Morosinotto
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| | | | | |
Collapse
|
43
|
Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 2002; 277:22750-8. [PMID: 11934892 DOI: 10.1074/jbc.m200604200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biochemical properties of PsbS protein, a nuclear-encoded Photosystem II subunit involved in the high energy quenching of chlorophyll fluorescence, have been studied using preparations purified from chloroplasts or obtained by overexpression in bacteria. Despite the homology with chlorophyll a/b/xanthophyll-binding proteins of the Lhc family, native PsbS protein does not show any detectable ability to bind chlorophylls or carotenoids in conditions in which Lhc proteins maintain full pigment binding. The recombinant protein, when refolded in vitro in the presence of purified pigments, neither binds chlorophylls nor xanthophylls, differently from the homologous proteins LHCII, CP26, and CP29 that refold into stable pigment-binding complexes. Thus, it is concluded that if PsbS is a pigment-binding protein in vivo, the binding mechanism must be different from that present in other Lhc proteins. Primary sequence analysis provides evidence for homology of PsbS helices I and III with the central 2-fold symmetric core of chlorophyll a/b-binding proteins. Moreover, a structural homology owed to the presence of acidic residues in each of the two lumen-exposed loops is found with the dicyclohexylcarbodiimide/Ca(2+)-binding domain of CP29. Consistently, both native and recombinant PsbS proteins showed [(14)C]dicyclohexylcarbodiimide binding, thus supporting a functional basis for its homology with CP29 on the lumen-exposed loops. This domain is suggested to be involved in sensing low luminal pH.
Collapse
Affiliation(s)
- Paola Dominici
- Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, 37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Huber CG, Timperio AM, Zolla L. Isoforms of photosystem II antenna proteins in different plant species revealed by liquid chromatography-electrospray ionization mass spectrometry. J Biol Chem 2001; 276:45755-61. [PMID: 11581262 DOI: 10.1074/jbc.m106700200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high selectivity offered by reversed-phase high-performance liquid chromatography on-line coupled to electrospray ionization mass spectrometry has been utilized to characterize the major and minor light-harvesting proteins of photosystem II (Lhcb). Isomeric forms of the proteins, revealed either on the basis of different hydrophobicity enabling their chromatographic separation or on the basis of different molecular masses identified within one single chromatographic peak, were readily identified in a number of monocot and dicot species. The presence of several Lhcb1 isoforms (preferably in dicots) can explain the tendency of dicot Lhcb1 to form trimeric aggregates. The Lhcb1 molecular masses ranged from 24,680 to 25,014 among different species, whereas within the same species, the isoforms differed by 14-280 mass units. All Lhcb1 proteins appear to be highly conserved among different species such that they belong to a single gene group that has several different gene family members. In all species examined, the number of isoforms corresponded more or less to the genes cloned previously. Two isoforms of Lhcb3 were found in petunia and tomato. For Lhcb6, the most divergent of all light-harvesting proteins, the greatest number of isoforms was found in petunia, tobacco, tomato, and rice. Lhcb2, Lhcb4, and Lhcb5 were present in only one form. The isoforms are assumed to play an important role in the adaptation of plants to environmental changes.
Collapse
Affiliation(s)
- C G Huber
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University, Innrain 52a, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
45
|
Pursiheimo S, Mulo P, Rintamäki E, Aro EM. Coregulation of light-harvesting complex II phosphorylation and lhcb mRNA accumulation in winter rye. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:317-327. [PMID: 11439120 DOI: 10.1046/j.1365-313x.2001.01033.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Winter rye plants grown under contrasting environmental conditions or just transiently shifted to varying light and temperature conditions, were studied to elucidate the chloroplast signal involved in regulation of photosynthesis genes in the nucleus. Photosystem II excitation pressure, reflecting the plastoquinone redox state, and the phosphorylation level of thylakoid light-harvesting proteins (LHCII and CP29) were monitored together with changes occurring in the accumulation of lhcb, rbcS and psbA mRNAs. Short-term shifts of plants to changed conditions, from 1 h to 2 d, were postulated to reveal signals crucial for the initiation of the acclimation process. Comparison of these results with those obtained from plants acclimated during several weeks' growth at contrasting temperature and in different light regimes, allow us to make the following conclusions: (1) LHCII protein phosphoylation is a sensitive tool to monitor redox changes in chloroplasts; (2) LHCII protein phosphorylation and lhcb mRNA accumulation occur under similar conditions and are possibly coregulated via an activation state of the same kinase (the LHCII kinase); (3) Maximal accumulation of lhcb mRNA during the diurnal light phase seems to require an active LHCII kinase whereas inactivation of the kinase is accompanied by dampening of the circadian oscillation in the amount of lhcb mRNA; (4) Excitation pressure of photosystem II (reduction state of the plastoquinone pool) is not directly involved in the regulation of lhcb mRNA accumulation. Instead (5) the redox status of the electron acceptors of photosystem I in the stromal compartment seems to be highly regulated and crucial for the regulation of lhcb gene expression in the nucleus.
Collapse
Affiliation(s)
- S Pursiheimo
- Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | |
Collapse
|
46
|
Dyer JM, Chapital DC, Cary JW, Pepperman AB. Chilling-Sensitive, Post-Transcriptional Regulation of a Plant Fatty Acid Desaturase Expressed in Yeast. Biochem Biophys Res Commun 2001; 282:1019-25. [PMID: 11352654 DOI: 10.1006/bbrc.2001.4667] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plants respond to chilling exposure by increasing the relative proportion of polyunsaturated fatty acids in their lipids. However, unlike the response in many other organisms, plant fatty acid desaturase genes are typically not upregulated during this process. We expressed the Brassica napus FAD3 gene, which encodes an enzyme for synthesis of linolenic acid, in Saccharomyces cerevisiae and observed a temperature-dependent increase in linolenic acid production at cooler growth temperatures. Untransformed yeast cells, however, responded to cooler temperatures primarily by shortening fatty acid chains, even when polyunsaturated fatty acids were supplied in the growth media. Measurement of the steady-state levels of Fad3 protein in transformed yeast revealed an 8.5-fold increase in steady-state amount of desaturase enzyme when cells were cultivated at cooler temperatures. The increase was not due to changes in transcriptional activity, since Northern hybridization revealed no appreciable changes in abundance of FAD3 transcripts at cooler temperatures. Taken together, the results suggest that the increase in linolenic acid content in cells containing Fad3 was not due to enhanced physiological demand for polyunsaturated fatty acids by yeast, but rather a cold-inducible, post-transcriptional increase in steady-state amount of plant desaturase enzyme. Implications for plant adaptation to chilling are discussed.
Collapse
Affiliation(s)
- J M Dyer
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, Louisianna 70124, USA.
| | | | | | | |
Collapse
|
47
|
Frank HA, Das SK, Bautista JA, Bruce D, Vasil'ev S, Crimi M, Croce R, Bassi R. Photochemical behavior of xanthophylls in the recombinant photosystem II antenna complex, CP26. Biochemistry 2001; 40:1220-5. [PMID: 11170447 DOI: 10.1021/bi001160q] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steady state absorption and fluorescence spectroscopic properties of the xanthophylls, violaxanthin, zeaxanthin, and lutein, and the efficiencies of singlet energy transfer from the individual xanthophylls to chlorophyll have been investigated in recombinant CP26 protein overexpressed in Escherichia coli and then refolded in vitro with purified pigments. Also, the effect of the different xanthophylls on the extents of static and dynamic quenching of chlorophyll fluorescence has been investigated. Absorption, fluorescence, and fluorescence excitation demonstrate that the efficiency of light harvesting from the xanthophylls to chlorophyll a is relatively high and insensitive to the particular xanthophyll that is present. A small effect of the different xanthophylls is observed on the extent of quenching of Chl fluorescence. The data provide the precise wavelengths of the absorption and fluorescence features of the bound pigments in the highly congested spectral profiles from these light-harvesting complexes. This information is important in assessing the mechanisms by which higher plants dissipate excess energy in light-harvesting proteins.
Collapse
Affiliation(s)
- H A Frank
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pieper J, Irrgang KD, Rätsep M, Voigt J, Renger G, Small GJ. Assignment of the lowest Qy-state and spectral dynamics of the CP29 chlorophyll a/b antenna complex of green plants: a hole-burning study. Photochem Photobiol 2000; 71:574-81. [PMID: 10818788 DOI: 10.1562/0031-8655(2000)071<0574:aotlqy>2.0.co;2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low-temperature absorption, fluorescence and persistent non-photochemical hole-burned spectra are reported for the CP29 chlorophyll (Chl) a/b antenna complex of photosystem II of green plants. The absorption-origin band of the lowest Qy-state lies at 678.2 nm and carries a width of approximately 130 cm-1 that is dominated by inhomogeneous broadening at low temperatures. Its absorption intensity is equivalent to that of one of the six Chl a molecules of CP29. The absence of a significant satellite hole structure produced by hole burning, within the absorption band of the lowest state, indicates that the associated Chl a molecule is weakly coupled to the other Chl and, therefore, that the lowest-energy state is highly localized on a single Chl a molecule. The electron-phonon coupling of the 678.2 nm state is weak with a Huang-Rhys factor S of 0.5 and a peak phonon frequency (omega m) of approximately 20 cm-1. These values give a Stokes shift (2S omega m) in good agreement with the measured positions of the absorption band at 678.2 nm and a fluorescence-origin band at 679.1 nm. Zero-phonon holes associated with the lowest state have a width of approximately 0.05 cm-1 at 4.2 K, corresponding to a total effective dephasing time of approximately 400 ps. The temperature dependence of the zero-phonon holewidth indicates that this time constant is dominated at temperatures below 8 K by pure dephasing/spectral diffusion due to coupling of the optical transition to the glass-like two-level systems of the protein. Zero-phonon hole-widths obtained for the Chl b bands at 638.5 and 650.0 nm, at 4.2 K, lead to lower limits of 900 +/- 150 fs and 4.2 +/- 0.3 ps, respectively, for the Chl b-->Chl a energy-transfer times. Downward energy transfer from the Chl a state(s) at 665.0 nm occurs in 5.3 +/- 0.6 ps at 4.2 K.
Collapse
Affiliation(s)
- J Pieper
- Institute of Physics, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Jegerschöld C, Rutherford AW, Mattioli TA, Crimi M, Bassi R. Calcium binding to the photosystem II subunit CP29. J Biol Chem 2000; 275:12781-8. [PMID: 10777575 DOI: 10.1074/jbc.275.17.12781] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a Ca(2+)-binding site of the 29-kDa chlorophyll a/b-binding protein CP29, a light harvesting protein of photosystem II most likely involved in photoregulation. (45)Ca(2+) binding studies and dot blot analyses of CP29 demonstrate that CP29 is a Ca(2+)-binding protein. The primary sequence of CP29 does not exhibit an obvious Ca(2+)-binding site therefore we have used Yb(3+) replacement to analyze this site. Near-infrared Yb(3+) vibronic side band fluorescence spectroscopy (Roselli, C., Boussac, A., and Mattioli, T. A. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 12897-12901) of Yb(3+)-reconstituted CP29 indicated a single population of Yb(3+)-binding sites rich in carboxylic acids, characteristic of Ca(2+)-binding sites. A structural model of CP29 presents two purported extra-membranar loops which are relatively rich in carboxylic acids, one on the stromae side and one on the lumenal side. The loop on the lumenal side is adjacent to glutamic acid 166 in helix C of CP29, which is known to be the binding site for dicyclohexylcarbodiimide (Pesaresi, P., Sandonà, D., Giuffra, E. , and Bassi, R. (1997) FEBS Lett. 402, 151-156). Dicyclohexylcarbodiimide binding prevented Ca(2+) binding, therefore we propose that the Ca(2+) in CP29 is bound in the domain including the lumenal loop between helices B and C.
Collapse
Affiliation(s)
- C Jegerschöld
- Section de Bioénergétique, Département de Biologie Cellulaire et Moléculaire, CEA/Saclay and CNRS URA 2096, 91191 Gif-sur-Yvette cedex, France
| | | | | | | | | |
Collapse
|
50
|
Walla PJ, Yom J, Krueger BP, Fleming GR. Two-Photon Excitation Spectrum of Light-Harvesting Complex II and Fluorescence Upconversion after One- and Two-Photon Excitation of the Carotenoids. J Phys Chem B 2000. [DOI: 10.1021/jp9943023] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter J. Walla
- Department of Chemistry, University of California at Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jenny Yom
- Department of Chemistry, University of California at Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Brent P. Krueger
- Department of Chemistry, University of California at Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Graham R. Fleming
- Department of Chemistry, University of California at Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|