1
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
2
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25:155-166. [PMID: 36881278 PMCID: PMC10027838 DOI: 10.1007/s11883-023-01087-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
3
|
Yokoyama S. HDL Receptor in Schistosoma japonicum Mediating Egg Embryonation: Potential Molecular Basis for High Prevalence of Cholesteryl Ester Transfer Protein Deficiency in East Asia. Front Cell Dev Biol 2022; 10:807289. [PMID: 35372338 PMCID: PMC8968628 DOI: 10.3389/fcell.2022.807289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Schistosomiasis is a life-threatening parasitic disease caused by blood flukes, Schistosomes. In its intestinal type, the parasites reside in visceral/portal veins of the human hosts and lay eggs to excrete in feces via intestinal tracts, and some of the aberrant eggs plug into the liver via the portal blood flow. Ectopic growth of these eggs causes fatal granulomatosis and cirrhosis of the liver. The parasites ingest nutrients from the host blood plasma by using nonspecific and specific transport via their body surface and alimentary tracts. It is especially important for the female adults to obtain lipid molecules because they synthesize neither fatty acids nor sterols and yet produce egg yolk. Low-density lipoprotein receptors have been identified in the body of the Schistosomes but their functions in the parasite life cycle have not clearly been characterized. On the other hand, CD36-related protein was identified in the body and the eggs of Asian blood fluke, Schistosoma japonicum, and characterized as a molecule that mediates selective uptake of cholesteryl ester from the host plasma high-density lipoproteins (HDLs). This reaction was shown crucial for their eggs to grow to miracidia. Interestingly, abnormal large HDL generated in lack of cholesteryl ester transfer protein (CETP) is a poor substrate for this reaction, and, therefore, CETP deficiency resists pathogenic ectopic growth of the aberrant parasite eggs in the liver. This genetic mutation is exclusively found in East Asia, overlapping with the current and historic regions of Schistosoma japonicum epidemic, so that this infection could be related to high prevalence of CETP deficiency in East Asia.
Collapse
Affiliation(s)
- Shinji Yokoyama
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
4
|
Izem L, Liu Y, Morton RE. Exon 9-deleted CETP inhibits full length-CETP synthesis and promotes cellular triglyceride storage. J Lipid Res 2020; 61:422-431. [PMID: 31988147 DOI: 10.1194/jlr.ra120000583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) exists as full-length (FL) and exon 9 (E9)-deleted isoforms. The function of E9-deleted CETP is poorly understood. Here, we investigated the role of E9-deleted CETP in regulating the secretion of FL-CETP by cells and explored its possible role in intracellular lipid metabolism. CETP overexpression in cells that naturally express CETP confirmed that E9-deleted CETP is not secreted, and showed that cellular FL- and E9-deleted CETP form an isolatable complex. Coexpression of CETP isoforms lowered cellular levels of both proteins and impaired FL-CETP secretion. These effects were due to reduced synthesis of both isoforms; however, the predominate consequence of FL- and E9-deleted CETP coexpression is impaired FL-CETP synthesis. We reported previously that reducing both CETP isoforms or overexpressing FL-CETP impairs cellular triglyceride (TG) storage. To investigate this further, E9-deleted CETP was expressed in SW872 cells that naturally synthesize CETP and in mouse 3T3-L1 cells that do not. E9-deleted CETP overexpression stimulated SW872 triglyceride synthesis and increased stored TG 2-fold. Expression of E9-deleted CETP in mouse 3T3-L1 cells produced a similar lipid phenotype. In vitro, FL-CETP promotes the transfer of TG from ER-enriched membranes to lipid droplets. E9-deleted CETP also promoted this transfer, although less effectively, and it inhibited the transfer driven by FL-CETP. We conclude that FL- and E9-deleted CETP isoforms interact to mutually decrease their intracellular levels and impair FL-CETP secretion by reducing CETP biosynthesis. E9-deleted CETP, like FL-CETP, alters cellular TG metabolism and storage but in a contrary manner.
Collapse
Affiliation(s)
- Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yan Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
5
|
Yokoyama S, Okumura-Noji K, Lu R. Prevention of fatal hepatic complication in schistosomiasis by inhibition of CETP. J Biomed Res 2015; 29:176-88. [PMID: 26060442 PMCID: PMC4449486 DOI: 10.7555/jbr.29.20150005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/26/2015] [Indexed: 11/04/2022] Open
Abstract
Schistosoma japonicum, once endemic all the East Asia, remains as a serious public health problem in certain regions. Ectopic egg embryonation in the liver causes granulomatosis and eventually fatal cirrhosis, so that prevention of this process is one of the keys to reduce its mortality. The embryonation requires cholesteryl ester from HDL of the host blood for egg yolk formation, and this reaction is impaired from the abnormal large HDL in genetic cholesteryl ester transfer protein (CETP) deficiency. When CETP was expressed in mice that otherwise lack this protein, granulomatosis of the liver was shown increased compared to the wild type upon infection of Schistosoma japonicum. The CETP deficiencies accumulated exclusively in East Asia, from Indochina to Siberia, so that Shistosomiasis can be a screening factor for this accumulation. CD36 related protein (CD36RP) was identified as a protein for this reaction, cloned from the cDNA library of Schistosoma japonicum with 1880-bp encoding 506 amino acids. The antibody against the extracellular loop of CD36RP inhibited cholesteryl ester uptake from HDL and suppressed egg embryonation in culture. Therefore, inhibition of CETP is a potential approach to prevent liver granulomatosis and thereby fatal liver cirrhosis in the infection of Schistosoma japonicum.
Collapse
Affiliation(s)
- Shinji Yokoyama
- Nutritional Health Science Research Center, Chubu University, Kasugai 487-8501, Japan.
| | - Kuniko Okumura-Noji
- Nutritional Health Science Research Center, Chubu University, Kasugai 487-8501, Japan.
| | - Rui Lu
- Nutritional Health Science Research Center, Chubu University, Kasugai 487-8501, Japan.
| |
Collapse
|
6
|
Zhang M, Charles R, Tong H, Zhang L, Patel M, Wang F, Rames MJ, Ren A, Rye KA, Qiu X, Johns DG, Charles MA, Ren G. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation. Sci Rep 2015; 5:8741. [PMID: 25737239 PMCID: PMC4348656 DOI: 10.1038/srep08741] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/29/2015] [Indexed: 02/07/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - River Charles
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Huimin Tong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Lei Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Mili Patel
- Centre for Vascular Research, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Francis Wang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Matthew J Rames
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Amy Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kerry-Anne Rye
- Centre for Vascular Research, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | | | | | - M Arthur Charles
- School of Medicine, University of California, San Francisco, California 94115, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
7
|
Dergunov AD. Prediction of the influences of missense mutations on cholesteryl ester transfer protein structure. Arch Biochem Biophys 2014; 564:67-73. [PMID: 25201589 DOI: 10.1016/j.abb.2014.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 11/16/2022]
Abstract
The structure of human plasma cholesteryl ester transfer protein (CETP) was mapped in silico by a search of the structural effects of missense mutations in the CETP gene. Sixteen deleterious substitutions were chosen among 54 known missense mutations and further ranked by stability change score into six structural and ten functional mutations with large and small stability changes, respectively. A cluster of eight mutations in a central region spanning residues 184-296 with exclusively destabilizing effects was evident. Moreover, the mutations were differently distributed between ordered and highly fluctuating regions. Putative cholesterol-binding regions, mostly unique for CETP in a whole CETP-including protein family, were identified. Three of six structural mutations influence cholesteryl ester and phosphatidylcholine binding by CETP. The local partially disordered structure of some putative cholesterol-binding regions is suggested to be differently influenced by cholesterol binding. This may underlie the impairment of the local ordering effect of cholesterol by the L261R substitution. Also, cholesterol may competitively inhibit cholesteryl ester binding to the CETP molecule, with triglyceride binding being largely undisturbed. This analysis may contribute to the ongoing design and mechanistic studies of new CETP inhibitors.
Collapse
Affiliation(s)
- Alexander D Dergunov
- National Research Centre for Preventive Medicine, 10, Petroverigsky Street, 101990 Moscow, Russia.
| |
Collapse
|
8
|
Dergunov AD, Shabrova EV, Dobretsov GE. Cholesteryl ester diffusion, location and self-association constraints determine CETP activity with discoidal HDL: Excimer probe study. Arch Biochem Biophys 2014; 564:211-8. [DOI: 10.1016/j.abb.2014.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 11/26/2022]
|
9
|
Cilpa-Karhu G, Jauhiainen M, Riekkola ML. Atomistic MD simulation reveals the mechanism by which CETP penetrates into HDL enabling lipid transfer from HDL to CETP. J Lipid Res 2014; 56:98-108. [PMID: 25424006 DOI: 10.1194/jlr.m054288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inhibition of cholesterol ester transfer protein (CETP), a protein mediating transfer of neutral lipids between lipoproteins, has been proposed as a means to elevate atheroprotective HDL subpopulations and thereby reduce atherosclerosis. However, off-target and adverse effects of the inhibition have raised doubts about the molecular mechanism of CETP-HDL interaction. Recent experimental findings have demonstrated the penetration of CETP into HDL. However, atomic level resolution of CETP penetration into HDL, a prerequisite for a better understanding of CETP functionality and HDL atheroprotection, is missing. We constructed an HDL particle that mimics the actual human HDL mass composition and investigated for the first time, by large-scale atomistic molecular dynamics, the interaction of an upright CETP with a human HDL-mimicking model. The results demonstrated how CETP can penetrate the HDL particle surface, with the formation of an opening in the N barrel domain end of CETP, put in evidence the major anchoring role of a tryptophan-rich region of this domain, and unveiled the presence of a phenylalanine barrier controlling further access of HDL-derived lipids to the tunnel of CETP. The findings reveal novel atomistic details of the CETP-HDL interaction mechanism and can provide new insight into therapeutic strategies.
Collapse
Affiliation(s)
- Geraldine Cilpa-Karhu
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, FIN-00251 Helsinki, Finland
| | - Marja-Liisa Riekkola
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
10
|
Jin Y, Bu S, Zhang J, Yuan Q, Manabe T, Tan W. Native protein mapping and visualization of protein interactions in the area of human plasma high-density lipoprotein by combining nondenaturing micro 2DE and quantitative LC-MS/MS. Electrophoresis 2014; 35:2055-64. [PMID: 24668886 DOI: 10.1002/elps.201300628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 02/02/2023]
Abstract
A human plasma sample was subjected to nondenaturing micro 2DE and a gel area (5 mm × 18 mm) that includes high-density lipoprotein (HDL) was cut into 1 mm × 1 mm squares, then the proteins in the 90 gel pieces were analyzed by quantitative LC-MS/MS. Grid-cutting of the gel was employed to; (i) ensure the total analysis of the proteins in the area, (ii) standardize the conditions of analysis by LC-MS/MS, (iii) reconstruct the protein distribution patterns from the quantity data. Totally 154 proteins were assigned in the 90 gel pieces and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The map of apolipoprotein (Apo) A-I showed a wide apparent mass distribution characteristic to HDL and was compared with the maps of the other 153 proteins. Eleven proteins showed maps of wide distribution that overlapped with the map of Apo A-I, and all have been reported to be the components of HDL. Further, seven minor proteins associated with HDL were detected at the gel positions of high Apo A-I quantity. These results for the first time visualized the localization of HDL apolipoproteins on a nondenaturing 2DE gel and strongly suggested their interactions.
Collapse
Affiliation(s)
- Ya Jin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
11
|
Charles MA, Kane JP. New molecular insights into CETP structure and function: a review. J Lipid Res 2012; 53:1451-8. [PMID: 22679067 DOI: 10.1194/jlr.r027011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) is important clinically and is the current target for new drug development. Its structure and mechanism of action has not been well understood. We have combined current new structural and functional methods to compare with relevant prior data. These analyses have led us to propose several steps in CETP's function at the molecular level, in the context of its interactions with lipoproteins, e.g., sensing, penetration, docking, selectivity, ternary complex formation, lipid transfer, and HDL dissociation. These new molecular insights improve our understanding of CETP's mechanisms of action.
Collapse
Affiliation(s)
- M Arthur Charles
- Department of Medicine University of California, San Francisco, CA 94158, USA.
| | | |
Collapse
|
12
|
Niesor EJ. Different effects of compounds decreasing cholesteryl ester transfer protein activity on lipoprotein metabolism. Curr Opin Lipidol 2011; 22:288-95. [PMID: 21587074 DOI: 10.1097/mol.0b013e3283475e00] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Review literature on the effect of decreasing cholesteryl ester transfer protein (CETP) activity through pharmacological inhibition or modulation in preclinical and clinical settings compared to human CETP deficiency on lipoprotein characteristics, HDL remodelling and function. RECENT FINDINGS Torcetrapib, anacetrapib and dalcetrapib inhibited the heterotypic transfer of cholesteryl ester from HDL to LDL and/or VLDL with similar potency, although the potency of dalcetrapib was time dependent. Homotypic transfer of cholesteryl ester from HDL3 to HDL2 via recombinant human CETP was inhibited by torcetrapib and anacetrapib (CETP inhibitors, CETPi) but not by dalcetrapib (CETP modulator, CETPm). In a hamster model of reverse cholesterol transport, only dalcetrapib increased efflux of fecal sterols from macrophages to feces. In clinical studies, dose-responses of CETPi and CETPm demonstrate qualitative and quantitative changes in HDL and LDL particle composition and distribution. SUMMARY Recent studies of the CETPi torcetrapib and anacetrapib and the CETPm dalcetrapib have shown differences in the resulting increase in HDL-cholesterol and in the level of HDL remodelling and potential for effective reverse cholesterol transport. Results from ongoing clinical outcomes studies with anacetrapib and dalcetrapib will clarify the relevance of CETP inhibition versus modulation towards HDL remodelling in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Eric J Niesor
- Pharmaceuticals Division, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
13
|
Dullaart RPF, Constantinides A, Perton FG, van Leeuwen JJJ, van Pelt JL, de Vries R, van Tol A. Plasma cholesteryl ester transfer, but not cholesterol esterification, is related to lipoprotein-associated phospholipase A2: possible contribution to an atherogenic lipoprotein profile. J Clin Endocrinol Metab 2011; 96:1077-84. [PMID: 21252249 DOI: 10.1210/jc.2010-2139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Plasma lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) predicts incident cardiovascular disease and is associated preferentially with negatively charged apolipoprotein B-containing lipoproteins. The plasma cholesteryl ester transfer (CET) process, which contributes to low high-density lipoprotein cholesterol and small, dense low-density lipoproteins, is affected by the composition and concentration of apolipoprotein B-containing cholesteryl ester acceptor lipoproteins. OBJECTIVE We tested relationships of CET with Lp-PLA(2) in subjects with and without metabolic syndrome (MetS). DESIGN AND SETTING In 68 subjects with MetS and 74 subjects without MetS, plasma Lp-PLA(2) mass, cholesterol esterification (EST), lecithin:cholesterol acyltransferase (LCAT) activity level, CET, CET protein (CETP) mass, and lipoproteins were measured. RESULTS EST, LCAT activity, CET (P < 0.001 for all), and CETP (P = 0.030) were increased, and Lp-PLA(2) was decreased (P = 0.043) in MetS. CET was correlated positively with Lp-PLA(2) in subjects with and without MetS (P < 0.05 for both). EST and LCAT activity were unrelated to Lp-PLA(2), despite a positive correlation between EST and CET (P < 0.001). After controlling for age, sex, and diabetes status, CET was determined by Lp-PLA(2) in the whole group (β = 0.245; P < 0.001), and in subjects with (β = 0.304; P = 0.001) and without MetS (β = 0.244; P = 0.006) separately, independently of triglycerides and CETP. CONCLUSIONS Plasma CET is related to Lp-PLA(2) in subjects with and without MetS. The process of CET, but not EST, may be influenced by Lp-PLA(2). These findings provide a rationale to evaluate whether maneuvers that inhibit Lp-PLA(2) will reduce CET, and vice versa to document effects of CETP inhibition on Lp-PLA(2).
Collapse
Affiliation(s)
- Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
14
|
Weber O, Bischoff H, Schmeck C, Böttcher MF. Cholesteryl ester transfer protein and its inhibition. Cell Mol Life Sci 2010; 67:3139-49. [PMID: 20556633 PMCID: PMC11115880 DOI: 10.1007/s00018-010-0418-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/21/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
Cholesteryl ester transfer protein (CETP) is a plasma glycoprotein that facilitates the transfer of cholesteryl esters from the atheroprotective high density lipoprotein (HDL) to the proatherogenic low density lipoprotein cholesterol (LDL) and very low density lipoprotein cholesterol (VLDL) leading to lower levels of HDL but raising the levels of proatherogenic LDL and VLDL. Inhibition of CETP is considered a potential approach to treat dyslipidemia. However, discussions regarding the role of CETP-mediated lipid transfer in the development of atherosclerosis and CETP inhibition as a potential strategy for prevention of atherosclerosis have been controversial. Although many animal studies support the hypothesis that inhibition of CETP activity may be beneficial, negative phase III studies on clinical endpoints with the CETP inhibitor torcetrapib challenged the future perspectives of CETP inhibitors as potential therapeutic agents. The review provides an update on current understanding of the molecular mechanisms involved in CETP activity and its inhibition.
Collapse
Affiliation(s)
- Olaf Weber
- Bayer Healthcare AG/Bayer Schering Pharma, 42096, Wuppertal, Germany.
| | | | | | | |
Collapse
|
15
|
Dergunov AD, Shabrova EV, Dobretsov GE. Composition, structure and substrate properties of reconstituted discoidal HDL with apolipoprotein A-I and cholesteryl ester. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:1100-1107. [PMID: 20079684 DOI: 10.1016/j.saa.2009.12.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
To investigate the influence of lipid unsaturation and neutral lipid on the maturation of high density lipoproteins, the discoidal complexes of apoA-I, phosphatidylcholine and cholesteryl ester (CE) were prepared. Saturated dipalmitoylphosphatidylcholine (DPPC) and unsaturated palmitoyllinoleoylphosphatidylcholine (PLPC), palmitoyloleoylphosphatidylcholine (POPC), and fluorescent probe cholesteryl 1-pyrenedecanoate (CPD) that forms in a diffusion- and concentration-dependent manner short-lived dimer of unexcited and excited molecules (excimer) were used. The apoA-I/DPPC/CPD complexes were heterogeneous by size, composition and probe location. CPD molecules incorporated more efficiently into larger complexes and accumulated in a central part of the discs. The apoA-I/POPC(PLPC)/CPD were also heterogeneous, however, probe molecules distributed preferentially into smaller complexes and accumulated at disc periphery. The kinetics of CPD transfer by recombinant cholesteryl ester transfer protein (CETP) to human plasma LDL is well described by two-exponential decay, the fast component with a shorter transfer time being more populated in PLPC compared to DPPC complexes. The presence of CE molecules in discoidal HDL results in particle heterogeneity. ApoA-I influences the CETP activity modulating the properties of apolipoprotein-phospholipid interface. This may include CE molecules accumulation in the boundary lipid in unsaturated phosphatidylcholine and cluster formation in the bulk bilayer in saturated phosphatidylcholine.
Collapse
|
16
|
Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc Natl Acad Sci U S A 2008; 105:12176-81. [PMID: 18719128 DOI: 10.1073/pnas.0803626105] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spherical high density lipoproteins (HDL) predominate in human plasma. However, little information exists on the structure of the most common HDL protein, apolipoprotein (apo) A-I, in spheres vs. better studied discoidal forms. We produced spherical HDL by incubating reconstituted discoidal HDL with physiological plasma-remodeling enzymes and compared apoA-I structure in discs and spheres of comparable diameter (79-80 and 93-96 A). Using cross-linking chemistry and mass spectrometry, we determined that the general structural organization of apoA-I was overall similar between discs and spheres, regardless of diameter. This was the case despite the fact that the 93 A spheres contained three molecules of apoA-I per particle compared with only two in the discs. Thus, apoA-I adopts a consistent general structural framework in HDL particles-irrespective of shape, size and the number of apoA-Is present. Furthermore, a similar cross-linking pattern was demonstrated in HDL particles isolated from human serum. We propose the first experiment-based molecular model of apoA-I in spherical HDL particles. This model provides a new foundation for understanding how apoA-I structure modulates HDL function and metabolism.
Collapse
|
17
|
Lee-Rueckert M, Vikstedt R, Metso J, Jauhiainen M, Kovanen PT. Association of cholesteryl ester transfer protein with HDL particles reduces its proteolytic inactivation by mast cell chymase. J Lipid Res 2008; 49:358-68. [DOI: 10.1194/jlr.m700392-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Qiu X, Mistry A, Ammirati MJ, Chrunyk BA, Clark RW, Cong Y, Culp JS, Danley DE, Freeman TB, Geoghegan KF, Griffor MC, Hawrylik SJ, Hayward CM, Hensley P, Hoth LR, Karam GA, Lira ME, Lloyd DB, McGrath KM, Stutzman-Engwall KJ, Subashi AK, Subashi TA, Thompson JF, Wang IK, Zhao H, Seddon AP. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol 2007; 14:106-13. [PMID: 17237796 DOI: 10.1038/nsmb1197] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 12/29/2006] [Indexed: 11/08/2022]
Abstract
Cholesteryl ester transfer protein (CETP) shuttles various lipids between lipoproteins, resulting in the net transfer of cholesteryl esters from atheroprotective, high-density lipoproteins (HDL) to atherogenic, lower-density species. Inhibition of CETP raises HDL cholesterol and may potentially be used to treat cardiovascular disease. Here we describe the structure of CETP at 2.2-A resolution, revealing a 60-A-long tunnel filled with two hydrophobic cholesteryl esters and plugged by an amphiphilic phosphatidylcholine at each end. The two tunnel openings are large enough to allow lipid access, which is aided by a flexible helix and possibly also by a mobile flap. The curvature of the concave surface of CETP matches the radius of curvature of HDL particles, and potential conformational changes may occur to accommodate larger lipoprotein particles. Point mutations blocking the middle of the tunnel abolish lipid-transfer activities, suggesting that neutral lipids pass through this continuous tunnel.
Collapse
Affiliation(s)
- Xiayang Qiu
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06430, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Terán-García M, Després JP, Tremblay A, Bouchard C. Effects of cholesterol ester transfer protein (CETP) gene on adiposity in response to long-term overfeeding. Atherosclerosis 2006; 196:455-460. [PMID: 17196207 PMCID: PMC2267371 DOI: 10.1016/j.atherosclerosis.2006.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 08/25/2006] [Accepted: 12/01/2006] [Indexed: 11/17/2022]
Abstract
Cholesterol ester transfer protein (CETP) plays a key role in remodeling triglyceride-rich particles and high-density lipoproteins (HDL). We investigated CETP sequence variants in response to long-term overfeeding (100 days) in 12 pairs of male monozygotic twins (mean age+/-S.D.: 21+/-2 years). Body fat mass (FM), abdominal subcutaneous (ASF) and visceral fat (AVF), and plasma lipoproteins were determined. The CETP variants C>T/In9 (rs289714) and G>A/Ex14 (rs5882, or I405V) were investigated by RFLP-PCR methodologies. Before overfeeding, the CETP CC/In9 (n=18) genotype was associated with lower FM compared to the C>T/In9 heterozygotes. Overfeeding induced more FM and ASF accretion in C>T/In9 carriers (P<or=0.05). CETP V405V homozygotes (n=8) had lower BMI, FM, and ASF before overfeeding than those with the I405I (n=6) or I405V (n=10) genotypes. However, V405V subjects had the largest gain in AVF with overfeeding (P=0.02). Decreases from baseline were significantly different across the I405V genotypes for HDL-C, HDL-Apo AI, HDL(2), and HDL(3) (P<or=0.05). Our data suggests that CETP sequence variation contributes to the undesirable changes in adiposity and HDL-C levels when exposed to excessive calorie consumption and may be potentially helpful to identify individuals with the metabolic syndrome who are at higher risk of cardiovascular disease.
Collapse
Affiliation(s)
- Margarita Terán-García
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, United States
| | - Jean-Pierre Després
- Quebec Heart Institute, Laval Hospital Research Center, Ste-Foy (Québec), G1V 4G5, Canada; Physical Activity Sciences Laboratory, Division of Kinesiology, PEPS, Laval University, Ste-Foy (Québec), G1K 7P4, Canada
| | - Angelo Tremblay
- Physical Activity Sciences Laboratory, Division of Kinesiology, PEPS, Laval University, Ste-Foy (Québec), G1K 7P4, Canada
| | - Claude Bouchard
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, United States.
| |
Collapse
|
20
|
Clark RW, Ruggeri RB, Cunningham D, Bamberger MJ. Description of the torcetrapib series of cholesteryl ester transfer protein inhibitors, including mechanism of action. J Lipid Res 2006; 47:537-52. [PMID: 16326978 DOI: 10.1194/jlr.m500349-jlr200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a series of potent cholesteryl ester transfer protein (CETP) inhibitors, one member of which, torcetrapib, is undergoing phase 3 clinical trials. In this report, we demonstrate that these inhibitors bind specifically to CETP with 1:1 stoichiometry and block both neutral lipid and phospholipid (PL) transfer activities. CETP preincubated with inhibitor subsequently bound both cholesteryl ester and PL normally; however, binding of triglyceride (TG) appeared partially reduced. Inhibition by torcetrapib could be reversed by titration with both native and synthetic lipid substrates, especially TG-rich substrates, and occurred to an equal extent after long or short preincubations. The reversal of TG transfer inhibition using substrates containing TG as the only neutral lipid was noncompetitive, suggesting that the effect on TG binding was indirect. Analysis of the CETP distribution in plasma demonstrated increased binding to HDL in the presence of inhibitor. Furthermore, the degree to which plasma CETP shifted from a free to an HDL-bound state was tightly correlated to the percentage inhibition of CE transfer activity. The finding by surface plasmon resonance that torcetrapib increases the affinity of CETP for HDL by approximately 5-fold likely represents a shift to a binding state that is nonpermissive for lipid transfer. In summary, these data are consistent with a mechanism whereby this series of inhibitors block all of the major lipid transfer functions of plasma CETP by inducing a nonproductive complex between the transfer protein and HDL.
Collapse
Affiliation(s)
- Ronald W Clark
- Department of Metabolic Diseases, Pfizer Global Research and Development, Groton, CT, USA.
| | | | | | | |
Collapse
|
21
|
Liinamaa MJ, Hannuksela ML, Rämet ME, Savolainen MJ. DEFECTIVE GLYCOSYLATION OF CHOLESTERYL ESTER TRANSFER PROTEIN IN PLASMA FROM ALCOHOL ABUSERS. Alcohol Alcohol 2005; 41:18-23. [PMID: 16203750 DOI: 10.1093/alcalc/agh216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Alcohol consumption reduces the carbohydrate content of some glycoproteins, e.g. carbohydrate-deficient transferrin. The aim of this study was to investigate if there is such an alcohol-induced glycosylation defect in plasma cholesteryl ester transfer protein (CETP). A defect in the posttranslational glycosylation of CETP may affect its structure and electrical charge and may therefore affect its function. CETP activity is low in alcohol abusers. METHODS We studied the effect of alcohol consumption on CETP properties in 10 alcohol abusers and 10 control subjects. CETP was partially purified from lipoprotein-free plasma by FPLC using a Phenyl-Sepharose column. Isoelectric focusing, polyacrylamide gel electrophoresis, and western blotting were performed for partially purified CETP. RESULTS CETP had a lower molecular weight in the alcohol abusers than in the controls (range 50.6-84.0 kDa in the alcohol abusers vs 51.3-85.0 kDa in the controls). CETP purified from alcohol abusers had a higher isoelectric point, indicating a lower negative charge on the surface of the protein than in the controls' CETP. A similar effect was observed when control CETP was incubated with neuraminidase, an enzyme which is known to remove sialic acid from glycoproteins. CONCLUSIONS We conclude that CETP from alcohol abusers may have a glycosylation defect due to defective sialylation caused posttranslationally by alcohol itself or its metabolite acetaldehyde. The defective glycosylation of CETP associated with altered binding to lipoproteins may lead to the low CETP activity observed previously in alcoholic subjects.
Collapse
Affiliation(s)
- M Johanna Liinamaa
- Department of Internal Medicine, University of Oulu, PO Box 5000, 90014 Oulu, Finland.
| | | | | | | |
Collapse
|
22
|
James RW, Deakin SP. The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. Free Radic Biol Med 2004; 37:1986-94. [PMID: 15544917 DOI: 10.1016/j.freeradbiomed.2004.08.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 11/30/2022]
Abstract
The association of paraoxonase-1 (PON1) with high-density lipoproteins (HDL) is a prerequisite for maintaining normal serum activity of the enzyme. The lipoprotein furnishes an amphipathic environment to shield the hydrophobic, N-terminal region of the enzyme, and such an environment may also be necessary for interaction of PON1 with its substrates. HDL provides the optimal physiological acceptor complex, in terms of both stimulating PON1 secretion and stabilizing the secreted peptide. Lipid and peptide components of HDL contribute to these effects, such that modulating HDL composition influences PON1 activity and function. In this context, understanding how PON1 associates with HDL, what governs the association, and the mechanism by which the PON1-HDL complex exerts its antioxidant function is of particular physiological relevance. Moreover, HDL is subject to substantial compositional variations under both normal and pathological metabolic conditions. It has implications for the influence of the enzyme on cardiovascular risk, as normal enzyme activity may not correlate with optimal functional (antioxidant) efficiency. We review evidence that HDL lipid and protein components interact to promote PON1 secretion and maintain serum enzyme activity. Emerging data on how the enzyme associates with HDL are discussed, and the consequences for PON1 function of modifications to HDL are outlined. Finally, we highlight questions concerning the HDL-PON1 association that remain unanswered but are of particular importance in defining PON1 efficiency.
Collapse
Affiliation(s)
- Richard W James
- Clinical Diabetes Unit, Division of Endocrinology, Diabetes, and Nutrition, Faculty of Medicine, University Hospital, 24 Rue Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | |
Collapse
|
23
|
Morton RE, Greene DJ. The surface cholesteryl ester content of donor and acceptor particles regulates CETP: a liposome-based approach to assess the substrate properties of lipoproteins. J Lipid Res 2003; 44:1364-72. [PMID: 12730298 DOI: 10.1194/jlr.m300063-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) activity is regulated, in part, by lipoprotein composition. We previously demonstrated that CETP activity follows saturation kinetics as cholesteryl ester (CE) levels in the phospholipid surface of donor particles are increased. We propose here that the plateau of CETP activity occurs because the surface concentration of CE in the acceptor becomes rate limiting. This hypothesis was tested in CETP assays between synthetic liposomes whose CE content was varied independently. As donor CE increased, CETP activity followed saturable kinetics, but the slope of the first-order portion of the curve and the maximum achievable CE transfer rate were linearly related to the acceptor's surface CE concentration. These findings, plus studies with free cholesterol-modified LDL, strongly suggest that CE-rich donor liposomes can measure the CETP-accessible CE in acceptor lipoproteins. CETP activity from CE-rich liposomes to multiple control LDLs ranged 1.8-fold despite equivalent CETP binding capacity, suggesting that LDLs vary widely in their capacity to present CE to CETP. Thus, CETP activity depends on the surface availability of substrate lipids in the donor and acceptor. Donor liposomes with high CE content can be used to assess how subtle changes in composition alter the substrate potential of plasma lipoproteins.
Collapse
Affiliation(s)
- Richard E Morton
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | |
Collapse
|
24
|
Blankenberg S, Rupprecht HJ, Bickel C, Jiang XC, Poirier O, Lackner KJ, Meyer J, Cambien F, Tiret L. Common genetic variation of the cholesteryl ester transfer protein gene strongly predicts future cardiovascular death in patients with coronary artery disease. J Am Coll Cardiol 2003; 41:1983-9. [PMID: 12798569 DOI: 10.1016/s0735-1097(03)00408-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES We sought to evaluate the association between cholesteryl ester transfer protein (CETP) genotypes and the risk of future cardiovascular mortality in patients with coronary artery disease (CAD). BACKGROUND Polymorphisms of the CETP gene influence CETP activity and high-density lipoprotein (HDL) cholesterol concentration and might affect the long-term prognosis and response to statin therapy in patients with CAD. METHODS We used serum samples and deoxyribonucleic acid collected at baseline from a prospective cohort of 1,211 patients with CAD prospectively followed up (median follow-up of 4.1 years), 82 of whom experienced a fatal cardiovascular event. The CETP/C-629A and I405V polymorphisms, CETP activity, and HDL cholesterol were determined. RESULTS Patients carrying the -629A allele had significantly lower CETP activity and higher HDL cholesterol levels. There was a significant association between this polymorphism and the risk of future cardiovascular death. Mortality decreased from 10.8% in CC homozygotes to 4.6% in CA heterozygotes and 4.0% in AA homozygotes (p < 0.0001). This association was independent of potential confounders, particularly HDL cholesterol and CETP activity levels. The clinical benefit of statin therapy was restricted to CC homozygotes, in whom cardiovascular mortality was divided by half (p = 0.01 for treatment x genotype interaction). Similar trends were observed with the CETP/I405V polymorphism, but these effects seemed to be mainly the consequence of linkage disequilibrium with the CETP/C-629A polymorphism. CONCLUSIONS In patients with CAD, the CETP/-629A allele had a strong protective effect on future mortality from cardiovascular causes, independent of its role on HDL cholesterol and CETP activity levels. Additionally, this common polymorphism appeared to predict which patients with CAD will experience a survival benefit from statin therapy.
Collapse
Affiliation(s)
- Stefan Blankenberg
- Department of Medicine II, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Josse D, Ebel C, Stroebel D, Fontaine A, Borges F, Echalier A, Baud D, Renault F, Le Maire M, Chabrieres E, Masson P. Oligomeric states of the detergent-solubilized human serum paraoxonase (PON1). J Biol Chem 2002; 277:33386-97. [PMID: 12080042 DOI: 10.1074/jbc.m200108200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human plasma paraoxonase (HuPON1) is a high density lipoprotein (HDL)-bound enzyme exhibiting antiatherogenic properties. The molecular basis for the binding specificity of HuPON1 to HDL has not been established. Isolation of HuPON1 from HDL requires the use of detergents. We have determined the activity, dispersity, and oligomeric states of HuPON1 in solutions containing mild detergents using nondenaturing electrophoresis, size exclusion chromatography, and cross-linking. HuPON1 was active whatever its oligomeric state. In nonmicellar solutions, HuPON1 was polydisperse. In contrast, HuPON1 exhibited apparent homogeneity in micellar solutions, except with CHAPS. The enzyme apparent hydrodynamic radius varied with the type of detergent and protein concentration. In C(12)E(8) micellar solutions, from sedimentation velocity, equilibrium analytical ultracentrifugation, and radioactive detergent binding, HuPON1 was described as monomers and dimers in equilibrium. A decrease of the detergent concentration shifted this equilibrium toward the formation of dimers. About 100 detergent molecules were associated per monomer and dimer. The assembly of amphiphilic molecules, phospholipids in vivo, in sufficiently large aggregates could be a prerequisite for anchoring of HuPON1 and then allowing stabilization of the enzyme activity. Changes of HDL size and shape could strongly affect the binding affinity and stability of HuPON1 and result in reduced antioxidative capacity of the lipoprotein.
Collapse
Affiliation(s)
- Denis Josse
- Unité d'Enzymologie, Centre de Recherches du Service de Santé des Armées, 24 avenue des Maquis du Grésivaudan, BP 87, 38702 La Tronche Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ishikawa Y, Ito K, Akasaka Y, Ishii T, Masuda T, Zhang L, Akishima Y, Kiguchi H, Nakajima K, Hata Y. The distribution and production of cholesteryl ester transfer protein in the human aortic wall. Atherosclerosis 2001; 156:29-37. [PMID: 11368994 DOI: 10.1016/s0021-9150(00)00610-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholesteryl ester transfer protein (CETP) has been considered to mediate the transfer of cholesteryl ester from arterial wall, however, the distribution and production of CETP in human arterial wall remains unclear. Present study histopathologically demonstrated the distribution of CETP and CETP mRNA in the human aortic wall by immunohistochemistry and in situ hybridization. While CETP was constantly distributed in the media, the protein was recognized within the intima with fibrocellular thickening and atherosclerotic intima. Double immunostaining methods demonstrated CETP expression in smooth muscle cells in the intima and media. CETP mRNA was detected not only in intimal cells but medial smooth muscle cells. Intimal cells expressing CETP mRNA were considered to be monocyte-derived macrophages and smooth muscle cells by immunohistochemistries using two antibodies against smooth muscle actin and human macrophage on the subserial sections. Our in vivo study provides that CETP is produced by smooth muscle cells in the intima and media of human aorta, and it is suggested that arterial smooth muscle cells positively participate in the removal of excessive cholesteryl ester from the arterial wall by CETP production.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Pathology, Toho University School of Medicine, 5-21-16 Ohmori-nishi, Ohta-ku, Tokyo 143-8540, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
There are epidemiological data and experimental animal models relating the development of premature atherosclerosis with defects of the reverse cholesterol transport (RCT) system. In this regard, the plasma concentrations of the high density lipoprotein (HDL) subfractions, of cholesteryl ester transfer protein (CETP), as well as the activity of the enzyme lecithin-cholesterol acyl transferase (LCAT) play critical roles. However, there has been plenty of evidence that atherosclerosis in diabetes mellitus (DM) is ascribed to a greater arterial wall cell uptake of modified apoB-containing lipoproteins whereas a primary or predominant defect of the RCT system is still a subject of debate. In other words, in spite of the fact that in DM the composition and rates of metabolism of the HDL particles are greatly altered and display a diminished in vitro efficiency to remove cell cholesterol, definitive in vivo demonstration of the importance of this fact in atherogenesis is lacking. Furthermore, the roles played by LCAT and CETP in RCT in DM are difficult to interpret because the in vitro procedures of measurement utilized have either been inadequate, or inappropriately interpreted. Knock-out or transgenic mice are much needed models to investigate the roles of LCAT, CETP, phospholipid transfer protein (PLTP), and of a CETP inhibitor in the development of atherosclerosis of experimental DM.
Collapse
Affiliation(s)
- E C Quintão
- Lipid Metabolism Laboratory (LIM 10), Hospital das Clínicas, The University of São Paulo Medical School, São Paulo, Brazil.
| | | | | |
Collapse
|
28
|
Buton X, Mamdouh Z, Ghosh R, Du H, Kuriakose G, Beatini N, Grabowski GA, Maxfield FR, Tabas I. Unique cellular events occurring during the initial interaction of macrophages with matrix-retained or methylated aggregated low density lipoprotein (LDL). Prolonged cell-surface contact during which ldl-cholesteryl ester hydrolysis exceeds ldl protein degradation. J Biol Chem 1999; 274:32112-21. [PMID: 10542246 DOI: 10.1074/jbc.274.45.32112] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A critical event in atherogenesis is the interaction of arterial wall macrophages with subendothelial lipoproteins. Although most studies have investigated this interaction by incubating cultured macrophages with monomeric lipoproteins dissolved in media, arterial wall macrophages encounter lipoproteins that are mostly bound to subendothelial extracellular matrix, and these lipoproteins are often aggregated or fused. Herein, we utilize a specialized cell-culture system to study the initial interaction of macrophages with aggregated low density lipoprotein (LDL) bound to extracellular matrix. The aggregated LDL remains extracellular for a relatively prolonged period of time and becomes lodged in invaginations in the surface of the macrophages. As expected, the degradation of the protein moiety of the LDL was very slow. Remarkably, however, hydrolysis of the cholesteryl ester (CE) moiety of the LDL was 3-7-fold higher than that of the protein moiety, in stark contrast to the situation with receptor-mediated endocytosis of acetyl-LDL. Similar results were obtained using another experimental system in which the degradation of aggregated LDL protein was delayed by LDL methylation rather than by retention on matrix. Additional experiments indicated the following properties of this interaction: (a) LDL-CE hydrolysis is catalyzed by lysosomal acid lipase; (b) neither scavenger receptors nor the LDL receptor appear necessary for the excess LDL-CE hydrolysis; and (c) LDL-CE hydrolysis in this system is resistant to cellular potassium depletion, which further distinguishes this process from receptor-mediated endocytosis. In summary, experimental systems specifically designed to mimic the in vivo interaction of arterial wall macrophages with subendothelial lipoproteins have demonstrated an initial period of prolonged cell-surface contact in which CE hydrolysis exceeds protein degradation.
Collapse
Affiliation(s)
- X Buton
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nanjee MN, Doran JE, Lerch PG, Miller NE. Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler Thromb Vasc Biol 1999; 19:979-89. [PMID: 10195926 DOI: 10.1161/01.atv.19.4.979] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the metabolism of nascent HDLs, apoA1/phosphatidylcholine (apoA1/PC) discs were infused IV over 4 hours into 7 healthy men. Plasma total apoA1 and phospholipid (PL) concentrations increased during the infusions. The rise in plasma apoA1 was greatest in small prebeta-migrating particles not present in the infusate. Total HDL unesterified cholesterol (UC) also increased simultaneously. After stopping the infusion, the concentrations of apoA1, PL, HDL UC, and small prebeta HDLs decreased, whereas those of HDL cholesteryl ester (CE) and large alpha-migrating apoA1 containing HDLs increased. ApoB-containing lipoproteins became enriched in CEs. Addition of apoA1/PC discs to whole blood at 37 degrees C in vitro also generated small prebeta HDLs, but did not augment the transfer of UC from erythrocytes to plasma. We conclude that the disc infusions increased the intravascular production of small prebeta HDLs in vivo, and that this was associated with an increase in the efflux and esterification of UC derived from fixed tissues. The extent to which the increase in tissue cholesterol efflux was dependent on that in prebeta HDL production could not be determined. Infusion of discs also reduced the plasma apoB and apoA2 concentrations, and increased plasma triglycerides and apoC3. Thus, nascent HDL secretion may have a significant impact on prebeta HDL production, reverse cholesterol transport and lipoprotein metabolism in humans.
Collapse
Affiliation(s)
- M N Nanjee
- Department of Cardiovascular Biochemistry, St Bartholomew's and the Royal London School of Medicine and Dentistry, London, UK
| | | | | | | |
Collapse
|
30
|
Liinamaa MJ, Kesäniemi YA, Savolainen MJ. Lipoprotein composition influences cholesteryl ester transfer in alcohol abusers. Ann Med 1998; 30:316-22. [PMID: 9677019 DOI: 10.3109/07853899809005861] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alcohol use is known to increase high-density lipoprotein (HDL) cholesterol, which is at least in part mediated by the alcohol-induced reduction in plasma cholesteryl ester transfer protein (CETP) activity and mass. We have shown that the high plasma HDL concentration reduces the CETP-mediated net mass transfer of cholesteryl esters from HDL to very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL), or even reverses the direction of transfer in plasma incubations. Therefore, we studied the effect of lipoprotein composition on lipid net mass transfers in 14 male alcohol abusers and nine male control subjects by incubating plasma for up to 2 h. The cholesteryl ester net mass transfer in the alcohol abusers was mainly predicted by the VLDL and LDL lipid composition in multiple linear regression, while the HDL composition was the main factor in the controls. The observed difference in the effect of the lipoprotein composition on cholesteryl ester net mass transfer support our previous finding in rabbits that CETP binding to lipoproteins may differ during ethanol oxidation. The results suggest that ethanol oxidation induces alterations which may affect the binding of CETP to lipoproteins.
Collapse
Affiliation(s)
- M J Liinamaa
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, Finland.
| | | | | |
Collapse
|
31
|
Pussinen PJ, Jauhiainen M, Metso J, Pyle LE, Marcel YL, Fidge NH, Ehnholm C. Binding of phospholipid transfer protein (PLTP) to apolipoproteins A-I and A-II: location of a PLTP binding domain in the amino terminal region of apoA-I. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)34211-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Morton RE, Greene DJ. Suppression of lipid transfer inhibitor protein activity by oleate. A novel mechanism of cholesteryl ester transfer protein regulation by plasma free fatty acids. Arterioscler Thromb Vasc Biol 1997; 17:3041-8. [PMID: 9409291 DOI: 10.1161/01.atv.17.11.3041] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholesteryl ester transfer protein (CETP) mediates the interlipoprotein exchange of cholesteryl ester (CE) and triglyceride. A second plasma protein, lipid transfer inhibitor protein (LTIP), binds to lipoproteins and inhibits CETP activity by displacing CETP from the lipoprotein surface. Since free fatty acids (FFAs) enhance the binding of CETP to lipoproteins, we have examined the possible role of FFAs in modulating LTIP activity. Partially purified CETP, LTIP, and lipoproteins were incubated with 0 to 30 mumol/L sodium oleate, and the transfer of CE between a labeled donor lipoprotein and a given acceptor lipoprotein was measured. Without LTIP, oleate stimulated CETP-mediated CE transfer between VLDL, LDL, and HDL up to threefold. This stimulation was unique in both magnitude and oleate concentration dependence for each donor-acceptor lipoprotein pair. In contrast to CETP activity, in transfer reactions involving LDL or VLDL as donor, LTIP activity was suppressed (> 80%) by 10 to 15 mumol/L oleate. LTIP activity in transfer reactions with HDL as donor was less sensitive. Similar results to these were observed when lipid transfer reactions were measured in the total lipoprotein fraction isolated from FFA-enriched plasma. The FFA content of lipoproteins was strongly influenced by the concentration of FFA in plasma; lipoprotein FFA levels sufficient to suppress LTIP activity by 50% to 100% were achieved in plasma containing 0.8 to 1.0 mmol/L FFA. We conclude that LTIP may be functionally inactive during periods of transient elevations of plasma FFA levels, such as during postprandial lipemia or overnight fasting, or chronically suppressed in disease states in which plasma FFA levels are increased. The suppression of LTIP activity by FFA allows for maximum CETP-mediated lipid transfer between all lipoproteins, including lipid transfer reactions involving LDL that are normally preferentially suppressed by LTIP.
Collapse
Affiliation(s)
- R E Morton
- Department of Cell Biology, Cleveland Clinic Foundation, OH 44195, USA.
| | | |
Collapse
|
33
|
Masson D, Duverger N, Emmanuel F, Lagrost L. Differential interaction of the human cholesteryl ester transfer protein with plasma high density lipoproteins (HDLs) from humans, control mice, and transgenic mice to human HDL apolipoproteins. Lack of lipid transfer inhibitory activity in transgenic mice expressing human apoA-I. J Biol Chem 1997; 272:24287-93. [PMID: 9305883 DOI: 10.1074/jbc.272.39.24287] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plasma high density lipoproteins (HDLs) from humans, from transgenic mice to human apolipoprotein A-I (HuAITg mice), from transgenic mice to human apolipoprotein A-II (HuAIITg mice), from transgenic mice to human apolipoproteins A-I and A-II (HuAIAIITg mice), and from C57BL/6 control mice were isolated, and their ability to interact with the human cholesteryl ester transfer protein (CETP) was studied. Whereas cholesteryl ester transfer rates were gradually enhanced by the addition of moderate amounts of HDL from the different sources, striking differences appeared when HDL levels kept increasing beyond a maximal transfer value. Indeed, while a plateau value corresponding to maximal CETP activity was maintained when raising the concentration of HuAITg HDL and HuAIAIITg HDL, inhibitions could be observed with the highest levels of human, control mouse, and HuAIITg mouse HDL. The concentration-dependent inhibition of CETP activity could be reproduced by the addition of delipidated HDL apolipoproteins from control mice, but it was abolished by a 1-h preheating treatment at 56 degrees C. In contrast, no significant inhibition of CETP activity was observed with the delipidated protein moiety of HuAITg HDL, and cholesteryl ester transfer rates remained unchanged before and after a 1-h, 56 degrees C preheating step. Finally, the CETP-mediated transfer of radiolabeled cholesteryl esters from human low density lipoprotein to human HDL was significantly higher in the presence of lipoprotein-deficient plasma from HuAITg mice than in the presence of lipoprotein-deficient plasma from control mice. Interestingly, cholesteryl ester transfer rates measured with both control and HuAITg lipoprotein-deficient plasmas became remarkably similar following a 1-h, 56 degrees C preheating treatment. It is concluded that human, control mouse, and HuAIITg mouse HDL contain a heat-labile lipid transfer inhibitory activity that is absent from HDL of HuAITg and HuAIAIITg mice. Alterations in CETP-lipoprotein binding did not account for differential lipid transfer inhibitory activities.
Collapse
Affiliation(s)
- D Masson
- Laboratoire de Biochimie des Lipoprotéines, INSERM CJF 93-10, Faculté de Médecine, 21033 Dijon Cedex, France
| | | | | | | |
Collapse
|
34
|
Oliveira HC, Ma L, Milne R, Marcovina SM, Inazu A, Mabuchi H, Tall AR. Cholesteryl ester transfer protein activity enhances plasma cholesteryl ester formation. Studies in CETP transgenic mice and human genetic CETP deficiency. Arterioscler Thromb Vasc Biol 1997; 17:1045-52. [PMID: 9194753 DOI: 10.1161/01.atv.17.6.1045] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plasma cholesteryl ester transfer protein (CETP) promotes the removal of HDL cholesteryl esters and is thought to stimulate reverse cholesterol transport (RCT). However, mechanisms by which CETP may stimulate RCT are poorly understood. Thus, we examined the relationship between plasma CETP expression and plasma cholesteryl ester formation in CETP transgenic (Tg) mice, hamsters, and human subjects with genetic CETP deficiency. Incubation of CETP Tg mouse plasma showed a 20% to 40% increase in plasma cholesterol esterification rate (CER, P < .05) compared with control mice. Injection of a neutralizing CETP monoclonal antibody (MAb) (TP2) into natural flanking region CETP Tg mice resulted in an increase in plasma free cholesterol (FC) concentration, FC/CE ratio, FC/phosphatidylcholine ratio, and hepatic CETP mRNA. In hamsters, CETP inhibition also resulted in an increase in plasma FC/phosphatidylcholine ratio and increased CETP mRNA in adipose tissue. In humans with two common CETP gene mutations (an intron 14 splicing defect and a D442G missense mutation), mean plasma CERs were 39 and 60, respectively, compared with 89 nmol x mL-1 x h-1 in normal subjects. By contrast, lecithin:cholesterol acyltransferase (LCAT) mass was normal in CETP-deficient subjects. MAb neutralization of CETP activity in incubated human plasma did not alter the LCAT reaction, even after supplementation with discoidal HDL and VLDL. Thus, genetic alterations in CETP levels lead to secondary changes in the plasma LCAT reaction, possibly because of remodeling of HDL by CETP acting in concert with other factors in vivo. In human genetic CETP deficiency, a moderate impairment in the plasma LCAT reaction may contribute to a defect in RCT, providing a potential mechanism to explain the recently observed excess of coronary heart disease in these subjects.
Collapse
Affiliation(s)
- H C Oliveira
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Connolly DT, McIntyre J, Heuvelman D, Remsen EE, McKinnie RE, Vu L, Melton M, Monsell R, Krul ES, Glenn K. Physical and kinetic characterization of recombinant human cholesteryl ester transfer protein. Biochem J 1996; 320 ( Pt 1):39-47. [PMID: 8947465 PMCID: PMC1217895 DOI: 10.1042/bj3200039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cholesteryl ester transfer protein (CETP) mediates the exchange of triglycerides (TGs), cholesteryl esters (CEs) and phospholipids (PLs) between lipoproteins in the plasma. In order to better understand the lipid transfer process, we have used recombinant human CETP expressed in cultured mammalian cells, purified to homogeneity by immunoaffinity chromatography. Purified recombinant CETP had a weight-average relative molecular mass (MW) of 69561, determined by sedimentation equilibrium, and a specific absorption coefficient of 0.83 litre.g-1.cm-1. The corresponding hydrodynamic diameter (Dh) of the protein, determined by dynamic light scattering, was 14 nm, which is nearly twice the expected value for a spheroidal protein of this molecular mass. These data suggest that CETP has a non-spheroidal shape in solution. The secondary structure of CETP was estimated by CD to contain 32% alpha-helix, 35% beta-sheet, 17% turn and 16% random coil. Like the natural protein from plasma, the recombinant protein consisted of several glycoforms that could be only partially deglycosylated using N-glycosidase F. Organic extraction of CETP followed by TLC showed that CE, unesterified cholesterol (UC), PL, TG and fatty acids (FA) were associated with the pure protein. Quantitative analyses verified that each mol of CETP contained 1.0 mol of cholesterol, 0.5 mol of TG and 1.3 mol of PL. CETP mediated the transfer of CE, TG, PL, and UC between lipoproteins, or between protein-free liposomes. In dual-label transfer experiments, the transfer rates for CE or TG from HDL to LDL were found to be proportional to the initial concentrations of the respective ligands in the donor HDL particles. Kinetic analysis of CE transfer was consistent with a carrier mechanism, having a Km of 700 nM for LDL particles and of 2000 nM for HDL particles, and a kcat of 2 s-1. The Km values were thus in the low range of the normal physiological concentration for each substrate. The carrier mechanism was verified independently for CE, TG, PL and UC in 'half-reaction' experiments.
Collapse
Affiliation(s)
- D T Connolly
- Cardiovascular Diseases Research Department, Searie, St. Louis, Missouri 63167, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|