1
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
2
|
Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JWM. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr Rev 2016; 37:347-71. [PMID: 27187081 DOI: 10.1210/er.2015-1117] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.
Collapse
Affiliation(s)
- Pieter Stijnen
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
3
|
|
4
|
Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011; 768:59-106. [PMID: 21805238 DOI: 10.1007/978-1-61779-204-5_4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway.
Collapse
Affiliation(s)
- Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97229, USA.
| | | |
Collapse
|
5
|
Kozlov SA, Grishin EV. The universal algorithm of maturation for secretory and excretory protein precursors. Toxicon 2006; 49:721-6. [PMID: 17196238 DOI: 10.1016/j.toxicon.2006.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 10/30/2006] [Accepted: 11/15/2006] [Indexed: 11/18/2022]
Abstract
During maturation, most proteins undergo different posttranslational modifications. In most simple cases, signal peptidases remove the signal or leader peptide from the precursors of the secretory proteins during their translocation across the ER membrane. For biologically active proteins, such as enzymes, regulatory and defense proteins, toxins, etc., additional maturation-regulating mechanisms were shown to proceed with limited proteolysis of inactive precursors by specific enzymes. A number of specific enzymes from different cell types selectively cleave proproteins at specific processing sites. In this work, we analyzed the sequences of protein precursors synthesized in the excretory glands of different animals and identified new, non-traditional processing sites. They differ from the motifs previously identified in secreted proteins' precursors and enabled us to reconstruct the sequence of events leading to the conversion of protein precursors into the final products (mature proteins). We also found that in animals, the maturation mechanism of secretory and excretory proteins and the set of enzymes involved are species specific. The processing sites identified in protein precursors in this study are useful for a more detailed genome analysis and more accurate mature protein sequence prediction.
Collapse
Affiliation(s)
- Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | | |
Collapse
|
6
|
Dey A, Lipkind GM, Rouillé Y, Norrbom C, Stein J, Zhang C, Carroll R, Steiner DF. Significance of prohormone convertase 2, PC2, mediated initial cleavage at the proglucagon interdomain site, Lys70-Arg71, to generate glucagon. Endocrinology 2005; 146:713-27. [PMID: 15528303 DOI: 10.1210/en.2004-1118] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To define the biological significance of the initial cleavage at the proglucagon (PG) interdomain site, K70-R71 downward arrow, we created two interdomain mutants, K70Q-R71Q and R71A. Cotransfection studies in GH4C1 cells show significant amounts of glucagon production by PC2 along with some glicentin, glicentin-related polypeptide-glucagon (GRPP-glucagon) and oxyntomodulin from wild-type PG. In contrast, a larger peptide, PG 33-158, and low amounts of GRPP-glucagon are predominantly generated from interdomain mutants. HPLC analysis shows a 5-fold increase in glucagon production by PC2 from wild-type PG and a corresponding 4-fold lower accumulation and secretion of unprocessed precursor relative to interdomain mutants. PC2 generates significant levels of glucagon from a glicentin (PG 1-69) expression plasmid, whereas PC1/3 produces only modest amounts of oxyntomodulin. Employing a major PG fragment (PG 72-158) expression plasmid, we show that PC1/3 predominantly generates glucagon-like peptide (GLP)-1, whereas PC2 produces only N-terminally extended GLP-1. Surprisingly, production of GLP-1 and GLP-2 by PC1/3 from interdomain mutants, compared with wild-type PG, is not significantly impaired. In addition to PC2 and PC1/3, PC5/6A and furin are also able to cleave the sites, K70-R71 downward arrow and R107-X-R-R110 downward arrow in PG. We show a much greater ability of furin to cleave the monobasic site, R77 downward arrow, than at the dibasic site, R124-R125 downward arrow, which is also weakly processed by PC5/6A, indicating overlapping specificities of these two convertases mainly with PC1/3. We propose here a trimer-like model of the spatial organization of the hormonal sequences within the PG molecule in which the accessibility to prohormone convertase action of most cleavage sites is restricted with the exception of the interdomain site, K70-R71, which is maximally accessible.
Collapse
Affiliation(s)
- Arunangsu Dey
- Department of Biochemistry and Molecular Biology, Uni-versity of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Henrich S, Lindberg I, Bode W, Than ME. Proprotein Convertase Models based on the Crystal Structures of Furin and Kexin: Explanation of their Specificity. J Mol Biol 2005; 345:211-27. [PMID: 15571716 DOI: 10.1016/j.jmb.2004.10.050] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 10/14/2004] [Accepted: 10/15/2004] [Indexed: 11/17/2022]
Abstract
In eukaryotes, many secreted proteins and peptide hormones are excised from larger precursors by calcium-dependent serine proteinases, the proprotein/prohormone convertases (PCs). These PCs cleave their protein substrates very specifically following multiple basic residues. The seven mammalian PCs and their yeast orthologue kexin are multi-domain proteinases consisting of a subtilisin-related catalytic domain, a conserved P-domain and a variable, often cysteine-rich domain, which in some PCs is followed by an additional C-terminal trans-membrane domain and a short cytoplasmic domain. The recently published crystal structures of the soluble mouse furin and yeast kexin ectodomains have revealed the relative arrangement of catalytic and P domains, the exact domain fold and the detailed architecture of the substrate binding clefts. Based on these experimental structures, we now have modelled the structures of the other human/mouse PCs. According to topology and to structure-based sequence comparisons, these other PCs closely resemble furin, with PC4, PACE4 and PC5/6 being more similar, and PC1/3, PC2 and PC7 being less similar to furin. Except for PC1 and PC2, this order of similarity is valid for the catalytic as well as for the P domains, and is almost reversed using kexin as a reference molecule. A similar order results from the number and clustering of negative charges lining the non-prime subsites, explaining the gradually decreasing requirement for basic residues N-terminal to substrate cleavage sites. The preference of the different PCs for distinct substrates seems to be governed by overall charge compensation and matching of the detailed charge distribution pattern.
Collapse
Affiliation(s)
- Stefan Henrich
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
8
|
Jackson RS, Creemers JW, Farooqi IS, Raffin-Sanson ML, Varro A, Dockray GJ, Holst JJ, Brubaker PL, Corvol P, Polonsky KS, Ostrega D, Becker KL, Bertagna X, Hutton JC, White A, Dattani MT, Hussain K, Middleton SJ, Nicole TM, Milla PJ, Lindley KJ, O’Rahilly S. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest 2003. [DOI: 10.1172/jci200318784] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Jackson RS, Creemers JWM, Farooqi IS, Raffin-Sanson ML, Varro A, Dockray GJ, Holst JJ, Brubaker PL, Corvol P, Polonsky KS, Ostrega D, Becker KL, Bertagna X, Hutton JC, White A, Dattani MT, Hussain K, Middleton SJ, Nicole TM, Milla PJ, Lindley KJ, O'Rahilly S. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest 2003; 112:1550-60. [PMID: 14617756 PMCID: PMC259128 DOI: 10.1172/jci18784] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 09/09/2003] [Indexed: 12/16/2022] Open
Abstract
We have previously described the only reported case of human proprotein convertase 1 (PC1) deficiency, in a female (Subject A) with obesity, hypogonadism, hypoadrenalism, and reactive hypoglycemia. We now report the second case of human PC1 deficiency (Subject B), also due to compound heterozygosity for novel missense and nonsense mutations. While both subjects shared the phenotypes of obesity, hypoadrenalism, reactive hypoglycemia, and elevated circulating levels of certain prohormones, the clinical presentation of Subject B was dominated by severe refractory neonatal diarrhea, malabsorptive in type. Subsequent investigation of Subject A revealed marked small-intestinal absorptive dysfunction, which was not previously clinically suspected. We postulate that PC1, presumably in the enteroendocrine cells, is essential for the normal absorptive function of the human small intestine. The differences in the nature and severity of presentation between the two cases cannot readily be explained on the basis of allelic heterogeneity, as the nonsense and missense mutations from both subjects had comparably severe effects on the catalytic activity of PC1. Despite Subject A's negligible PC1 activity, some mature ACTH and glucagon-like peptide 17-36(amide) were detectable in her plasma, suggesting that the production of these hormones, at least in humans, does not have an absolute dependence on PC1. The presence of severe obesity and the absence of growth retardation in both subjects contrast markedly with the phenotype of mice lacking PC1 and suggest that the precise physiological repertoire of this enzyme may vary between mammalian species.
Collapse
Affiliation(s)
- Robert S Jackson
- Chemical Pathology Department, East Surrey Hospital, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Basak A, Lazure C. Synthetic peptides derived from the prosegments of proprotein convertase 1/3 and furin are potent inhibitors of both enzymes. Biochem J 2003; 373:231-9. [PMID: 12662153 PMCID: PMC1223467 DOI: 10.1042/bj20030120] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Revised: 03/25/2003] [Accepted: 03/28/2003] [Indexed: 11/17/2022]
Abstract
Proprotein convertases (PCs) are Ca(2+)-dependent serine proteases of the subtilisin/kexin family which are known specifically to cleave propeptide and proprotein substrates at the C-terminal of R-X-(K/R)-R/ to generate the relevant biologically active peptides. PCs are initially synthesized as enzymically inactive proenzyme forms where the prosegments play an important inhibitory role to the respective enzymes. Here we investigated whether synthetic peptides derived from the pro-region could also represent specific and potent inhibitors. Based upon sequence alignment, secondary structure analysis and hydrophilicity plot, a number of peptides ranging from 8 to 33 residues were selected. These included segments encompassing residues 55-62, 50-62, 39-62, 50-83, 55-83, 64-83 and 74-83 in the pro-mouse PC1/3 sequence and residues 54-62, 48-62 and 39-62 of the pro-human furin sequence. All peptides were prepared by solid-phase FastMoc chemistry, purified by reversed-phase HPLC and characterized by MS and amino acid analysis. These peptides were tested in vitro for inhibitory activity towards recombinant mouse PC1/3 and human furin. Progress-curve and end-time kinetic analysis demonstrated that a number of these peptides, particularly those containing both the primary and the secondary processing sites, displayed strong inhibition of both enzymes with inhibition constants (K (i)) in the high nanomolar range. Unlike the whole propeptide, these small synthetic peptide inhibitors exhibited either true competitive or mixed competitive inhibition, depending on the sequence. Our data revealed further the critical role of the last two basic amino acid residues (e.g. Lys(82)-Arg(83) for the mouse PC1/3 sequence) of the prodomain in imparting a strong anti-convertase activity. The study also establishes the inhibitory potential of certain regions contained within the prosegment of the two convertases.
Collapse
Affiliation(s)
- Ajoy Basak
- Laboratory of Regional Protein Chemistry Center, Diseases of Ageing, Ottawa Health Research Institute, University of Ottawa, Loeb Building, 725 Parkdale Avenue, Ottawa, ON, Canada K1Y 4E9.
| | | |
Collapse
|
11
|
Taylor NA, Van De Ven WJM, Creemers JWM. Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J 2003; 17:1215-27. [PMID: 12832286 DOI: 10.1096/fj.02-0831rev] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proprotein convertases (PCs) are a seven-member family of endoproteases that activate proproteins by cleavage at basic motifs. Expression patterns for individual PCs vary widely, and all cells express several members. The list of substrates activated by PCs has grown to include neuropeptides, peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules, blood coagulation factors, plasma proteins, viral coat proteins, and bacterial toxins. It has become clear that the PC family plays a crucial role in a variety of physiological processes and is involved in the pathology of diseases such as cancer, viral infection, and Alzheimer's disease. Recent studies using PC inhibitors have demonstrated their potential as therapeutic targets. Despite the avalanche of in vitro data, the physiological role of individual PCs has remained largely elusive. Recently, however, knockout mouse models have been developed for furin, PC1, PC2, PC4, PC6B, LPC, and PACE4, and human patients with PC1 deficiency have been identified. The phenotypes range from undetectable to early embryonic lethality. The major lesson learned from these studies is that specific PC-substrate pairs do exist, but that there is substantial redundancy for the majority of substrates. To some extent, redundancy may be cell type and even species dependent.
Collapse
Affiliation(s)
- Neil A Taylor
- Laboratory of Molecular Oncology, Department for Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Gasthuisberg O/N 6, Herestraat 49, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
12
|
Holyoak T, Wilson MA, Fenn TD, Kettner CA, Petsko GA, Fuller RS, Ringe D. 2.4 A resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry 2003; 42:6709-18. [PMID: 12779325 DOI: 10.1021/bi034434t] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports the first structure of a member of the Kex2/furin family of eukaryotic pro-protein processing proteases, which cleave sites consisting of pairs or clusters of basic residues. Reported is the 2.4 A resolution crystal structure of the two-domain protein ssKex2 in complex with an Ac-Ala-Lys-boroArg inhibitor (R = 20.9%, R(free) = 24.5%). The Kex2 proteolytic domain is similar in its global fold to the subtilisin-like superfamily of degradative proteases. Analysis of the complex provides a structural basis for the extreme selectivity of this enzyme family that has evolved from a nonspecific subtilisin-like ancestor. The P-domain of ssKex2 has a novel jelly roll like fold consisting of nine beta strands and may potentially be involved, along with the buried Ca(2+) ion, in creating the highly determined binding site for P(1) arginine.
Collapse
Affiliation(s)
- Todd Holyoak
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Ueda K, Lipkind GM, Zhou A, Zhu X, Kuznetsov A, Philipson L, Gardner P, Zhang C, Steiner DF. Mutational analysis of predicted interactions between the catalytic and P domains of prohormone convertase 3 (PC3/PC1). Proc Natl Acad Sci U S A 2003; 100:5622-7. [PMID: 12721373 PMCID: PMC156251 DOI: 10.1073/pnas.0631617100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subtilisin-like prohormone convertases (PCs) contain an essential downstream domain (P domain), which has been predicted to have a beta-barrel structure that interacts with and stabilizes the catalytic domain (CAT). To assess possible sites of hydrophobic interaction, a series of mutant PC3-enhanced GFP constructs were prepared in which selected nonpolar residues on the surface of CAT were substituted by the corresponding polar residues in subtilisin Carlsberg. To investigate the folding potential of the isolated P domain, signal peptide-P domain-enhanced GFP constructs with mutated andor truncated P domains were also made. All mutants were expressed in betaTC3 cells, and their subcellular localization and secretion were determined. The mutants fell into three main groups: (i) Golgisecreted, (ii) ERnonsecreted, and (iii) apoptosis inducing. The destabilizing CAT mutations indicate that the side chains of V292, T328, L351, Q408, H409, V412, and F441 and nonpolar fragments of the side chains of R405 and W413 form a hydrophobic patch on CAT that interacts with the P domain. We also have found that the P domain can fold independently, as indicated by its secretion. Interestingly, T594, which is near the P domain C terminus, was not essential for P domain secretion but is crucial for the stability of intact PC3. T594V produced a stable enzyme, but T594D did not, which suggests that T594 participates in important hydrophobic interactions within PC3. These findings support our conclusion that the catalytic and P domains contribute to the folding and thermodynamic stability of the convertases through reciprocal hydrophobic interactions.
Collapse
Affiliation(s)
- Kazuya Ueda
- Howard Hughes Medical Institute, Department of Biochemistry, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rockwell NC, Krysan DJ, Komiyama T, Fuller RS. Precursor processing by kex2/furin proteases. Chem Rev 2002; 102:4525-48. [PMID: 12475200 DOI: 10.1021/cr010168i] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan C Rockwell
- Department of Biological Chemistry, University of Michigan Medical Center, Room 5413 Med Sci I, 1301 East Catherine, Ann Arbor Michigan 48109, USA
| | | | | | | |
Collapse
|
15
|
Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci U S A 2002; 99:10299-304. [PMID: 12136131 PMCID: PMC124908 DOI: 10.1073/pnas.162352799] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuroendocrine processing endoproteases PC2 and PC1/3 are expressed in the beta cells of the islets of Langerhans and participate in the processing of proinsulin to insulin and C-peptide. We have previously shown that disruption of PC2 (SPC2) expression significantly impairs proinsulin processing. Here we report that disruption of the expression of PC1/3 (SPC3) produces a much more severe block in proinsulin conversion. In nulls, pancreatic and circulating proinsulin-like components comprise 87% and 91%, respectively, of total insulin-related immunoreactivity. Heterozygotes also show a more than 2-fold elevation in proinsulin levels to approximately 12%. Immunocytochemical and ultrastructural studies of the beta cells reveal the nearly complete absence of mature insulin immunoreactivity and its replacement by that of proinsulin in abundant immature-appearing secretory granules. In contrast, alpha cell morphology and glucagon processing are normal, and there is also no defect in somatostatin-14 generation. Pulse-chase labeling studies confirm the existence of a major block in proinsulin processing in PC1/3 nulls with prolongation of half-times of conversion by 7- and 10-fold for proinsulins I and II, respectively. Lack of PC1/3 also results in increased levels of des-64,65 proinsulin intermediates generated by PC2, in contrast to PC2 nulls, in which des- 31,32 proinsulin intermediates predominate. These results confirm that PC1/3 plays a major role in processing proinsulin, but that its coordinated action with PC2 is necessary for the most efficient and complete processing of this prohormone.
Collapse
Affiliation(s)
- Xiaorong Zhu
- Department of Biochemistry and Molecular Biology and Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
16
|
Tangrea MA, Bryan PN, Sari N, Orban J. Solution structure of the pro-hormone convertase 1 pro-domain from Mus musculus. J Mol Biol 2002; 320:801-12. [PMID: 12095256 DOI: 10.1016/s0022-2836(02)00543-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solution structure of the mouse pro-hormone convertase (PC) 1 pro-domain was determined using heteronuclear NMR spectroscopy and is the first structure to be obtained for any of the domains in the convertase family. The ensemble of NMR-derived structures shows a well-ordered core consisting of a four-stranded antiparallel beta-sheet with two alpha-helices packed against one side of this sheet. Sequence homology suggests that the other eukaryotic PC pro-domains will have the same overall fold and most of the residues forming the hydrophobic core of PC1 are highly conserved within the PC family. However, some of the core residues are predicted by homology to be replaced by polar amino acid residues in other PC pro-domains and this may help to explain their marginal stability. Interestingly, the folding topology observed here is also seen for the pro-domain of bacterial subtilisin despite little or no sequence homology. Both the prokaryotic and eukaryotic structures have hydrophobic residues clustered on the solvent-accessible surface of their beta-sheets although the individual residue types differ. In the bacterial case this region is buried at the binding interface with the catalytic domain and, in the eukaryotic PC family, these surface residues are conserved. We therefore propose that the hydrophobic patch in the PC1 pro-domain is involved in the binding interface with its cognate catalytic domain in a similar manner to that seen for the bacterial system. The PC1 pro-domain structure also reveals potential mechanisms for the acid-induced dissociation of the complex between pro- and catalytic domains.
Collapse
Affiliation(s)
- Michael A Tangrea
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
17
|
Tsuji A, Ikoma T, Hashimoto E, Matsuda Y. Development of selectivity of alpha1-antitrypsin variant by mutagenesis in its reactive site loop against proprotein convertase. A crucial role of the P4 arginine in PACE4 inhibition. Protein Eng Des Sel 2002; 15:123-30. [PMID: 11917148 DOI: 10.1093/protein/15.2.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PACE4, furin and PC6 are Ca2+-dependent serine endoproteases that belong to the subtilisin-like proprotein convertase (SPC) family. Recent reports have supported the involvement of these enzymes in processing of growth/differentiation factors, viral replication, activation of bacterial toxins and tumorigenesis, indicating that these enzymes are a fascinating target for therapeutic agents. In this work, we evaluated the sensitivity and selectivity of three rat alpha1-antitrypsin variants which contained RVPR352, AVRR352 and RVRR352, respectively, within their reactive site loop using both inhibition of enzyme activity toward a fluorogenic substrate in vitro and formation of a SDS-stable protease/inhibitor complex ex vivo. The RVPR variant showed relatively broad selectivity, whereas the AVRR and RVRR variants were more selective than the RVPR variant. The AVRR variant inhibited furin and PC6 but not PACE4. This selectivity was further confirmed by complex formation and inhibition of pro-complement C3 processing. On the other hand, although the RVRR variant inhibited both PACE4 and furin effectively, it needed a 600-fold higher concentration than the RVPR variant to inhibit PC6 in vitro. These inhibitors will be useful tools in helping us to understand the roles of PACE4, furin and PC6.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | | | |
Collapse
|
18
|
Steiner DF. The Prohormone Convertases and Precursor Processing in Protein Biosynthesis. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-6047(02)80008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Basak A, Koch P, Dupelle M, Fricker LD, Devi LA, Chrétien M, Seidah NG. Inhibitory specificity and potency of proSAAS-derived peptides toward proprotein convertase 1. J Biol Chem 2001; 276:32720-8. [PMID: 11435430 DOI: 10.1074/jbc.m104064200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prohormone convertase 1 (PC1), mediating the proteolytic processing of neural and endocrine precursors, is thought to be regulated by the neuroendocrine protein proSAAS. The PC1 inhibitory sequence is mostly confined within a 10-12-amino acid segment near the C terminus of the conserved human proSAAS and contains the critical KR(244) dibasic motif. Our results show that the decapeptide proSAAS-(235-244)( 235)VLGALLRVKR(244) is the most potent reversible competitive PC1-inhibitor (K(i) approximately 9 nm). The C-terminally extended proSAAS-(235-246) exhibits a 5-6-fold higher K(i) ( approximately 51 nm). The additional LE sequence at P1'-P2', resulted in a competitive substrate cleaved by PC1 at KR(244) downward arrowLE(246). Systematic alanine scanning and in some cases lysine scanning tested the contribution of each residue within proSAAS-(235-246) toward the PC1-inhibition's specificity and potency. The amino acids P1 Arg, P2 Lys, and P4 Arg are all critical for inhibition. Moreover, the aliphatic P3 Val and P5, P6, and P1' Leu significantly affect the degree of enzyme inactivation and PC1 specificity. Interestingly, a much longer N- and C-terminally extended endogenous rat proSAAS-(221-254) called little PenLen, was found to be a 3-fold less potent PC1 inhibitor with reduced selectivity but a much better substrate than proSAAS-(235-246). Molecular modeling studies and circular dichroism analysis indicate an extended and poly-l-proline II type structural conformation for proSAAS-(235-244), the most potent PC1 inhibitor, a feature not present in poor PC1 inhibitors.
Collapse
Affiliation(s)
- A Basak
- Laboratories of Molecular Medicine and Diseases of Ageing Center, Loeb Health Research Institute, The Ottawa Hospital, Ottawa, Ontario K1Y 4K9, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhukova E, Afshar A, Ko J, Popper P, Pham T, Sternini C, Walsh JH. Expression of the human insulin gene in the gastric G cells of transgenic mice. Transgenic Res 2001; 10:329-41. [PMID: 11592712 DOI: 10.1023/a:1016641530206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The goal of this study was to engineer gastrin-producing G cells of the gastric antrum to produce insulin. A pGas-Ins chimeric gene in which the gastrin promoter drives expression of the human insulin gene was constructed and was validated by transient transfection of GH4 and AGS cells. RT-PCR analysis and sequencing revealed three forms of differentially spliced insulin mRNA in GH4 cells transiently transfected by pGas-Ins. Gas-Ins transgenic mice were generated utilizing this chimeric gene. Northern blot analysis, in situ hybridization, and immunohistochemistry demonstrated expression of the human insulin gene specifically in antral G cells. Northern blot analysis demonstrated that the shortest of the insulin mRNA three forms is predominantly expressed in stomach tissue. RT-PCR analysis also showed expression of the transgene in colon, pancreas, and brain tissues that was undetectable by northern analysis. We conclude that gastrin promoter can be used for targeting expression of human insulin to antral G cells and that antral G cells can express human insulin. Further refining of the chimeric gene design is required to enhance expression.
Collapse
Affiliation(s)
- E Zhukova
- CURE: Digestive Diseases Research Center, UCLA School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ladds G, Davis K, Powner D, Davey J. A temperature-sensitive Krp1 allows in vivo characterization of kexin activation. Mol Microbiol 2000; 37:606-18. [PMID: 10931354 DOI: 10.1046/j.1365-2958.2000.02028.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the kexin family of processing enzymes are responsible for the cleavage of many proproteins during their transport through the secretory pathway. The enzymes are themselves made as inactive precursors and we have investigated the activation of Krp1, a kexin from the fission yeast Schizosaccharomyces pombe. As Krp1 is essential for cell growth, we have used a krp1ts strain to investigate the role of the prosequence in the activation process. Mutations that reduce either the efficiency with which the prosequence is released or the rate at which the released prosegment is subsequently cleaved at an internal site are less active when assayed in vivo. We also show that prosegments lacking an internal dibasic motif can act as autoinhibitors and prevent activation of the catalytic fragment. Krp1 constructs containing prosequences based on these inhibitors do not become active in vitro. Surprisingly, the same constructs do become active in the intact cell and appear to suggest that alternative activation processes can be used by these enzymes.
Collapse
Affiliation(s)
- G Ladds
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
22
|
Apletalina EV, Muller L, Lindberg I. Mutations in the catalytic domain of prohormone convertase 2 result in decreased binding to 7B2 and loss of inhibition with 7B2 C-terminal peptide. J Biol Chem 2000; 275:14667-77. [PMID: 10799554 DOI: 10.1074/jbc.275.19.14667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prohormone convertases 1 (PC1) and 2 (PC2) are members of a family of subtilisin-like proprotein convertases responsible for proteolytic maturation of a number of different prohormones and proneuropeptides. Although sharing more than 50% homology in their catalytic domains, PC1 and PC2 exhibit differences in substrate specificity and susceptibility to inhibitors. In addition to these differences, PC2, unlike PC1 and other members of the family, specifically binds the neuroendocrine protein 7B2. In order to identify determinants responsible for the specific properties of the PC2 catalytic domain, we compared its primary sequence with that of other PCs. This allowed us to distinguish a PC2-specific sequence at positions 242-248. We constructed two PC2 mutants in which residues 242 and 243 and residues 242-248 were replaced with the corresponding residues of PC1. Studies of in vivo cleavage of proenkephalin, in vivo production of alpha-MSH from proopiomelanocortin, and in vitro cleavage of a PC2-specific artificial substrate by mutant PC2s did not reveal profound alterations. On the other hand, both mutant pro-PC2s exhibited a considerably reduced ability to bind to 21-kDa 7B2. In addition, inhibition of mutant PC2-(242-248) by the potent natural inhibitor 7B2 CT peptide was almost completely abolished. Taken together, our results show that residues 242-248 do not play a significant role in defining the substrate specificity of PC2 but do contribute greatly to binding 7B2 and are critical for inhibition with the 7B2 CT peptide.
Collapse
Affiliation(s)
- E V Apletalina
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
23
|
Veenstra JA. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 43:49-63. [PMID: 10644969 DOI: 10.1002/(sici)1520-6327(200002)43:2<49::aid-arch1>3.0.co;2-m] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Regulatory peptides are synthesized as part of larger precursors that are subsequently processed into the active substances. After cleavage of the signal peptide, further proteolytic processing occurs predominantly at basic amino acid residues. Rules have been proposed in order to predict which putative proteolytic processing sites are actually used, but these rules have been established for vertebrate peptide precursors and it is unclear whether they are also valid for insects. The aim of this paper is to establish the validity of these rules to predict proteolytic cleavage sites at basic amino acids in insect neuropeptide precursors. Rules describing the cleavage of mono- and dibasic potential processing sites in insect neuropeptide precursors are summarized below. Lys-Arg pairs not followed by an aliphatic or basic amino acid residue are virtually always cleaved in insect regulatory peptide precursors, but cleavages of Lys-Arg pairs followed by either an aliphatic or a basic amino acid residue are ambiguous, as is processing at Arg-Arg pairs. Processing at Arg-Lys pairs has so far not been demonstrated in insects and processing at Lys-Lys pairs appears very rare. Processing at single Arg residues occurs only when there is a basic amino acid residue in position -4, -6, or -8, usually an Arg, but Lys or His residues work also. Although the current number of such sites is too limited to draw definitive conclusions, it seems plausible that cleavage at these sites is inhibited by the presence of aliphatic residues in the +1 position. However, cleavage at single Arg residues is ambiguous. When several potential cleavage sites overlap the one most easily cleaved appears to be processed. It cannot be excluded that some of the rules formulated here will prove less than universal, as only a limited number of cleavage sites have so far been identified. It is likely that, as in vertebrates, ambiguous processing sites exist to allow differential cleavage of the same precursor by different convertases and it seems possible that the precursors of allatostatins and PBAN are differentially cleaved in different cell types. Arch. Insect Biochem. Physiol. 43:49-63, 2000.
Collapse
Affiliation(s)
- J A Veenstra
- Laboratoire de Neuroendocrinologie, Université Bordeaux I, Talence, France.
| |
Collapse
|
24
|
Muller L, Lindberg I. The cell biology of the prohormone convertases PC1 and PC2. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:69-108. [PMID: 10506829 DOI: 10.1016/s0079-6603(08)60720-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mature peptide hormones and neuropeptides are typically synthesized from much larger precursors and require several posttranslational processing steps--including proteolytic cleavage--for the formation of the bioactive species. The subtilisin-related proteolytic enzymes that accomplish neuroendocrine-specific cleavages are known as prohormone convertases 1 and 2 (PC1 and PC2). The cell biology of these proteases within the regulated secretory pathway of neuroendocrine cells is complex, and they are themselves initially synthesized as inactive precursor molecules. ProPC1 propeptide cleavage occurs rapidly in the endoplasmic reticulum, yet its major site of action on prohormones takes place later in the secretory pathway. PC1 undergoes an interesting carboxyl terminal processing event whose function appears to be to activate the enzyme. ProPC2, on the other hand, exhibits comparatively long initial folding times and exits the endoplasmic reticulum without propeptide cleavage, in association with the neuroendocrine-specific protein 7B2. Once the proPC2/7B2 complex arrives at the trans-Golgi network, 7B2 is internally cleaved into two domains, the 21-kDa fragment and a carboxy-terminal 31 residue peptide. PC2 propeptide removal occurs in the maturing secretory granule, most likely through autocatalysis, and 7B2 association does not appear to be directly required for this cleavage event. However, if proPC2 has not encountered 7B2 intracellularly, it cannot generate a catalytically active mature species. The molecular mechanism behind the intriguing intracellular association of 7B2 and proPC2 is still unknown, but may involve conformational rearrangement or stabilization of a proPC2 conformer mediated by a 36-residue internal segment of 21-kDa 7B2.
Collapse
Affiliation(s)
- L Muller
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
25
|
A role for amontillado, the Drosophila homolog of the neuropeptide precursor processing protease PC2, in triggering hatching behavior. J Neurosci 1999. [PMID: 10436051 DOI: 10.1523/jneurosci.19-16-06942.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accurate proteolytic processing of neuropeptide and peptide hormone precursors by members of the kexin/furin family of proteases is key to determining both the identities and activities of signaling peptides. Here we identify amontillado (amon), the Drosophila melanogaster homolog of the mammalian neuropeptide processing protease PC2, and show that in contrast to vertebrate PC2, amontillado expression undergoes extensive regulation in the nervous system during development. In situ hybridization reveals that expression of amontillado is restricted to the final stages of embryogenesis when it is found in anterior sensory structures and in only 168 cells in the brain and ventral nerve cord. After larvae hatch from their egg shells, the sensory structures and most cells in the CNS turn off or substantially reduce amontillado expression, suggesting that amontillado plays a specific role late in embryogenesis. Larvae lacking the chromosomal region containing amontillado show no gross anatomical defects and respond to touch. However, such larvae show a greatly reduced frequency of a hatching behavior of wild-type Drosophila in which larvae swing their heads, scraping through the eggshell with their mouth hooks. Ubiquitous expression of amontillado can restore near wild-type levels of this behavior, whereas expression of amontillado with an alanine substitution for the catalytic histidine cannot. These results suggest that amontillado expression is regulated as part of a programmed modulation of neural signaling that controls hatching behavior by producing specific neuropeptides in particular neurons at an appropriate developmental time.
Collapse
|
26
|
Muller L, Zhu P, Juliano MA, Juliano L, Lindberg I. A 36-residue peptide contains all of the information required for 7B2-mediated activation of prohormone convertase 2. J Biol Chem 1999; 274:21471-7. [PMID: 10409712 DOI: 10.1074/jbc.274.30.21471] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prohormone convertases (PCs) are serine proteinases responsible for the processing of secretory protein precursors. PC2 is the only member of this family whose activation requires intracellular interaction with a helper protein, the neuroendocrine protein 7B2. In order to gain a better understanding of the mechanism of proPC2 activation, we have characterized the structural determinants of 7B2 required for proPC2 activation. We had already identified a proline-rich binding determinant in the 21-kDa domain, the portion of 7B2 responsible for proPC2 activation. We have now investigated the function of the weakly conserved amino-terminal portion of 21-kDa 7B2 by sequential deletions. Mutant proteins were analyzed in four assays: binding to proPC2, facilitation of proPC2 maturation, and activation of proPC2 in vivo and in vitro. We found that the amino-terminal half of 7B2 is not involved in proPC2 activation, and we identified an active 36-residue peptide that contains the previously characterized proline-rich sequence as well as an alpha-helix and the only disulfide bond of 7B2. Mutation of the alpha-helix and of the cysteines demonstrated that these determinants are absolutely required for PC2 activation. Thus, the 186-residue full-length 7B2 rat protein can be functionally reduced to an internal segment of only 36 residues.
Collapse
Affiliation(s)
- L Muller
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- A Zhou
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
28
|
Lipkind G, Steiner DF. Predicted structural alterations in proinsulin during its interactions with prohormone convertases. Biochemistry 1999; 38:890-6. [PMID: 9893983 DOI: 10.1021/bi981556q] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intracellular conversion of proinsulin to insulin occurs via cleavage at the two dibasic sites: Arg31-Arg32, B chain-C-peptide (BC) junction; and Lys64-Arg65, A chain-C-peptide (CA) junction, catalyzed by the subtilisin-like prohormone convertases SPC3 (PC1/PC3) and SPC2 (PC2), respectively. In this report we propose a possible conformational variant of proinsulin that would facilitate the formation of enzyme-substrate complexes at the BC and AC junctions of proinsulin with the substrate binding groove of the two closely related convertases. Productive convertase interaction requires extended peptide conformations in both the CA junction (residues 62-67, LQKRGI) and the BC junction (residues 29-34, KTRREA) and leads to significant perturbations in the normally alpha-helical N-terminal region of the A chain and the extended C-terminal region of the B chain of the insulin moiety of proinsulin. In this model of the reactive conformation of human proinsulin, both processing sites assume positions that are relatively far apart. The C-peptide was then modeled in an unobtrusive conformation relative to the convertases and the remainder of the substrate, forming an extended loop of length approximately 40 A with a short alpha-helical segment rather than a random coil. A model of the stereochemical transformations that occur during the processing of proinsulin by SPC2 is presented.
Collapse
Affiliation(s)
- G Lipkind
- Department of Biochemistry and Molecular Biology, The Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
29
|
Lipkind GM, Zhou A, Steiner DF. A model for the structure of the P domains in the subtilisin-like prohormone convertases. Proc Natl Acad Sci U S A 1998; 95:7310-5. [PMID: 9636145 PMCID: PMC22600 DOI: 10.1073/pnas.95.13.7310] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/1998] [Indexed: 02/07/2023] Open
Abstract
The proprotein convertases are a family of at least seven calcium-dependent endoproteases that process a wide variety of precursor proteins in the secretory pathway. All members of this family possess an N-terminal proregion, a subtilisin-like catalytic module, and an additional downstream well-conserved region of approximately 150 amino acid residues, the P domain, which is not found in any other subtilase. The pro and catalytic domains cannot be expressed in the absence of the P domains; their thermodynamic instability may be attributable to the presence of large numbers of negatively charged Glu and Asp side chains in the substrate binding region for recognition of multibasic residue cleavage sites. Based on secondary structure predictions, we here propose that the P domains consist of 8-stranded beta-barrels with well-organized inner hydrophobic cores, and therefore are independently folded components of the proprotein convertases. We hypothesize further that the P domains are integrated through strong hydrophobic interactions with the catalytic domains, conferring structural stability and regulating the properties and activity of the convertases. A molecular model of these interdomain interactions is proposed in this report.
Collapse
Affiliation(s)
- G M Lipkind
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
30
|
Zhou A, Martin S, Lipkind G, LaMendola J, Steiner DF. Regulatory roles of the P domain of the subtilisin-like prohormone convertases. J Biol Chem 1998; 273:11107-14. [PMID: 9556596 DOI: 10.1074/jbc.273.18.11107] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A unique feature of the eukaryotic subtilisin-like proprotein convertases (SPCs) is the presence of an additional highly conserved sequence of approximately 150 residues (P domain) located immediately downstream of the catalytic domain. To study the function of this region, which is required for the production of enzymatically active convertases, we have expressed and characterized various P domain-related mutants and chimeras in HEK293 cells and alpha-TC1-6 cells. In a series of C-terminal truncations of PC3 (also known as PC1 or SPC3), PC3-Thr594 was identified as the shortest active form, thereby defining the functional C-terminal boundary of the P domain. Substitutions at Thr594 and nearby sites indicated that residues 592-594 are crucial for activity. Chimeric SPC proteins with interchanged P domains demonstrated dramatic changes in several properties. Compared with truncated wild-type PC3 (PC3-Asp616), both PC3/PC2Pd and PC3/FurPd had elevated activity on several synthetic substrates as well as reduced calcium ion dependence, whereas Fur/PC2Pd was only slightly decreased in activity as compared with truncated furin (Fur-Glu583). Of the three active SPC chimeras tested, all had more alkaline pH optima. When PC3/PC2Pd was expressed in alpha-TC1-6 cells, it accelerated the processing of proglucagon into glicentin and major proglucagon fragment and cleaved major proglucagon fragment to release GLP-1 and tGLP-1, similar to wild-type PC3. Thus, P domain exchanges generated fully active chimeric proteases in several instances but not in all (e.g. PC2/PC3Pd was inactive). The observed property changes indicate a role for the P domain in regulating the stability, calcium dependence, and pH dependence of the convertases.
Collapse
Affiliation(s)
- A Zhou
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
31
|
Furuta M, Carroll R, Martin S, Swift HH, Ravazzola M, Orci L, Steiner DF. Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 1998; 273:3431-7. [PMID: 9452465 DOI: 10.1074/jbc.273.6.3431] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The prohormone convertases PC2 (SPC2) and PC3/PC1 (SPC3) are the major precursor processing endoproteases in a wide variety of neural and endocrine tissues. Both enzymes are normally expressed in the islet beta cells and participate in proinsulin processing. Recently we generated mice lacking active PC2 due to a disruption of the PC2 gene (Furuta, M., Yano, H., Zhou, A., Rouillé, Y., Holst, J. J., Carroll, R. J., Ravazzola, M., Orci, L., Furuta, H., and Steiner, D. F. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 6646-6651). Here we report that these PC2 mutant mice have elevated circulating proinsulin, comprising 60% of immunoreactive insulin-like components. Acid ethanol extractable proinsulin from pancreas is also significantly elevated, representing about 35% of total immunoreactive insulin-like components. These increased amounts of proinsulin are mainly stored in secretory granules, giving rise to an altered appearance on electron microscopy. In pulse-chase experiments, the mutant islets incorporate lesser amounts of isotopic amino acids into insulin-related components than normal islets. In both wild-type and mutant islets, proinsulin I was processed more rapidly to insulin, reflecting the preference of both PC2 and PC3 for substrates having a basic amino acid positioned four residues upstream of the cleavage site. The overall half-time for the conversion of proinsulin to insulin is increased approximately 3-fold in the mutant islets and is associated with a 4-5-fold greater elevation of des-31,32 proinsulin, an intermediate that is formed by the preferential cleavage of proinsulin at the B chain-C-peptide junction by PC3 and is C-terminally processed to remove Arg31 and Arg32 by carboxypeptidase E. The constitutive release of newly synthesized proinsulin from both mutant and wild-type islets during the first 1-2 h of chase was normal (<2% of total). These results demonstrate that PC2 plays an essential role in proinsulin processing in vivo, but is quantitatively less important in this regard than PC3, and that its absence does not influence the efficient sorting of proinsulin into the regulated secretory pathway.
Collapse
Affiliation(s)
- M Furuta
- Department of Biochemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Gieseg MA, Swarbrick PA, Perko L, Powell RJ, Cutfield JF. Elephantfish proinsulin possesses a monobasic processing site. Gen Comp Endocrinol 1997; 108:199-208. [PMID: 9356216 DOI: 10.1006/gcen.1997.6965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Total pancreatic RNA from the holocephalan species Callorhyncus milii (elephantfish) was used to make cDNA as a template for the polymerase chain reaction. Three redundant primers based on the known amino acid sequence of elephantfish insulin were used to amplify a fragment of proinsulin comprising truncated B-chain, complete C-peptide, and complete A-chain. Whereas the C-peptide/A-chain junction contained the expected dibasic cleavage site (-Lys-Arg-), the B-chain/C-peptide junction was found to contain only a single Arg, the first such site to be unequivocally associated with the proteolytic processing of a proinsulin to insulin. Examination of the flanking sequences around this site shows that a typical endocrine/neuroendocrine PC3 conversion enzyme should still be able to cleave, as the general requirements for precursor processing at a monobasic site are satisfied, notably a basic residue (Lys) at the -4 position. An acidic residue (in this case Asp) at the +1 position, which is seen in all known proinsulins, is maintained. The corresponding genomic DNA fragment of elephantfish proinsulin was also amplified by PCR, revealing a 402-bp intron at the conserved IVS-2 position within the C7 codon.
Collapse
Affiliation(s)
- M A Gieseg
- School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
33
|
Abstract
Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling.
Collapse
Affiliation(s)
- R J Siezen
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands.
| | | |
Collapse
|
34
|
Rockwell NC, Wang GT, Krafft GA, Fuller RS. Internally consistent libraries of fluorogenic substrates demonstrate that Kex2 protease specificity is generated by multiple mechanisms. Biochemistry 1997; 36:1912-7. [PMID: 9048578 DOI: 10.1021/bi961779l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Kex2 protease from the yeast Saccharomyces cerevisiae is the prototype for a family of eukaryotic proprotein processing proteases. To clarify understanding of the interactions responsible for substrate recognition in this family of enzymes, we have carried out a systematic examination of Kex2 substrate specificity using internally consistent sets of substrates having substitutions at only one or two positions. We examined Kex2 sequence recognition for residues at P3, P2, and P1 using two types of fluorogenic peptide substrates, peptidyl-methylcoumarinamides and internally quenched substrates in which cleavage occurs at an actual peptide bond. Kinetic analysis of the two sets of substrates gave comparable data on specificity at these three positions. For the best substrate sequences, high catalytic constants (kCM/KM) of (2-5) x 10(7) M-1 s-1 were seen for cleavage of both peptidyl-methylcoumarinamides and peptide bonds. While no evidence for positive interactions with the P3 residue emerged, Kex2 was found to discriminate against at least one residue Asp. at this position. Specificity at P2 was shown to rely primarily on recognition of a positive charge, although steric constraints on the P2 side chain were also apparent. Kex2 was demonstrated to be exquisitely selective for Arg at P1. Substitutions with similar charge (Lys, ornithine) or similar hydrogen-bonding capability (citrulline) do not confer efficient catalysis. Comparison of otherwise identical substrates having either Arg or citrulline at P1 showed that the positive charge of the Arg guanidinium group stabilizes the transition state by approximately 6.8 kcal/mol.
Collapse
Affiliation(s)
- N C Rockwell
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
35
|
Murayama N, Hayashi MA, Ohi H, Ferreira LA, Hermann VV, Saito H, Fujita Y, Higuchi S, Fernandes BL, Yamane T, de Camargo AC. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc Natl Acad Sci U S A 1997; 94:1189-93. [PMID: 9037028 PMCID: PMC19766 DOI: 10.1073/pnas.94.4.1189] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A 1.8-kb cDNA clone was isolated from a Bothrops jararaca venom gland cDNA library that encodes a 256-aa precursor for bradykinin-potentiating peptides (angiotensin-converting enzyme inhibitors) and a C-type natriuretic peptide (CNP). The seven bradykinin-potentiating peptides are aligned tandemly after the hydrophobic signal peptide sequence, followed by a putative intervening sequence and a CNP at the C terminus. Northern blot analysis indicated the predominant expression of a 1.8-kb mRNA in the venom glands as well as in the spleen and the brain. Two lower intensity mRNA bands of 3.5 kb and 5.7 kb also hybridized to the cDNA clone. Radioimmunoassay for the CNP was performed using the antiserum against rat CNP. The presence of CNP immunoreactivity was detected in the low molecular weight fraction of the Bothrops jararaca venom.
Collapse
Affiliation(s)
- N Murayama
- School of Pharmaceutical Sciences, Showa University, Shinagawa, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ballinger MD, Tom J, Wells JA. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates. Biochemistry 1996; 35:13579-85. [PMID: 8885837 DOI: 10.1021/bi961543h] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The serine protease, subtilisin BPN', was engineered to cleave proteins after tribasic sequences in a manner that resembles the substrate specificity of furin, one of the mammalian subtilisin homologs that processes prohormones. As a starting point we used a double mutant of subtilisin BPN' (N62D/ G166D) that showed substantial preference for cleaving after sequences having consecutive dibasic residues (namely, at the P1 and P2 substrate positions) [Ballinger et al. (1995) Biochemistry 34, 13312-13319]. Additional specificity for basic residues was engineered at the P4 position by introducing subtilisin-to-furin substitutions at three hydrophobic residues that composed the S4 subsite (Y104, I107, and L126). Initial attempts to incorporate a Y104D or I107E mutation or the Y104D/I107E double mutation into the dibasic specific enzyme failed to generate the processed enzyme. The problem was traced to the inability of the mutant prosubtilisins to process themselves and fold correctly. Replacing the natural processing site sequence (AHAY) with a good furin substrate sequence (RHKR) resulted in expression of the triple subtilisin mutant (N62D/Y104D/G166D) we call "furilisin". Furilisin hydrolyzes synthetic tribasic substrates (succinyl-RAKR-pNA or succinyl-KAKR-pNA) with high catalytic efficiency (kcat/K(m) > 3 x 10(5) M-1 s-1) and discriminates in favor of Arg versus Ala at the P4 position by a factor of 360. The overall specificity change versus the wild-type enzyme was dramatic. For example, succinyl-RAKR-pNA was cleaved approximately 60000 times faster than succinyl-AAPF-pNA, a good substrate for wild-type subtilisin. Similarly, furilisin was inhibited (K1* = 29 nM) by a variant of the turkey ovomucoid third domain inhibitor that contained an engineered furin substrate site (RCKR decreases) [Lu et al. (1993) J. Biol. Chem. 268, 14583-14585] and not by one having a good wild-type subtilisin substrate sequence (ACTL decreases). Interestingly, the extreme changes in substrate specificity resulted from substantial synergy between the engineered subsites. These studies provide a basic example of how to manipulate substrate specificity in a modular fashion, thereby creating an engineered-enzyme that may be useful as a protein processing tool.
Collapse
Affiliation(s)
- M D Ballinger
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
37
|
Conlon JM, Cavanaugh ES, Mynarcik DC, Whittaker J. Characterization of an insulin from the three-toed amphiuma (Amphibia: Urodela) with an N-terminally extended A-chain and high receptor-binding affinity. Biochem J 1996; 313 ( Pt 1):283-7. [PMID: 8546696 PMCID: PMC1216895 DOI: 10.1042/bj3130283] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insulin was isolated from an extract of the pancreas of a urodele, the three-toed amphiuma (Amphiuma tridactylum), and its primary structure established as Ala-Arg-Gly-Ile-Val-Glu-Gln-Cys-Cys-His10-Asn-Thr-Cys- Ser-Leu-Asn-Gln-Leu-Glu-Asn20-Tyr-Cys-Asn for the A-chain and Ile-Thr-Asn-Gln-Tyr-Leu-Cys-Gly-Ser-His10-Leu-Val-Glu-Ala- Leu-Tyr-Leu-Val-Cys-Gly20-Asp-Arg-Gly-Phe-Phe-Tyr-Ser-Pro-Lys for the B-chain. The N-terminus of the A-chain is extended by two amino acids (Ala-Arg) relative to all other known insulins suggesting an anomalous pathway of post-translational processing in the region of the C-peptide/A-chain junction of proinsulin. In common with chicken and Xenopus insulins, which contain a HisA8, amphiuma insulin was more potent (approx. 5-fold) than porcine insulin in inhibiting the binding of [125I-TyrA14]insulin to the soluble human insulin receptor from transfected 293EBNA cells (an adenovirus-transformed human kidney cell line). This result is consistent with previous data showing that insulin analogues extended at GlyA1 by uncharged groups have reduced binding affinity whereas high affinity is preserved in analogues extended by basic amino acid residues.
Collapse
Affiliation(s)
- J M Conlon
- Department of Biomedical Sciences, Creighton University Medical School, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|