1
|
Li J, He X, Guo H, Lin D, Wu X, Chen B. Complete genome identified of clinical isolate Prototheca. J Med Microbiol 2024; 73. [PMID: 39387684 DOI: 10.1099/jmm.0.001914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Introduction. Prototheca is an opportunistic pathogen that can infect both humans and animals, of which Prototheca wickerhamii (P. wickerhamii) being the most significant pathogenic green algae.Gap statement. The incidence of human diseases caused by Prototheca has been on the rise, yet there is a significant gap in genetic research pertaining to the pathophysiological aspects of these infections.Aim. The aim of this study is to present the whole genome data from the clinical isolate InPu-22_FZ strain and to understand its genomic characteristics through comparative genomic analysis and phylogenetic tree analysis. Functional annotation of protein-coding genes and analysis of their pathogenicity are also conducted.Methodology. We described the high-quality de novo genome assembly of the clinical isolate InPu-22_FZ strain, achieved by combining Nanopore ONT and Illumina NovaSeq sequencing technologies. Phylogenetic tree was constructed to study the evolutionary relationship between the InPu-22_FZ strain and other species. The average nucleotide identity (ANI) analysis was used to assess the similarity between different species. Additionally, the size, distribution and composition of synteny blocks were also analysed to infer the evolutionary relationships of the genomes.Results. The size of the assembled nuclear genome was 18.47 Mb with 48 contigs. Key features of the genome include high overall GC content (63.31%), high number (5478) and proportion (62.24%) of protein-coding genes and more than 96.71% of genes annotated for gene function. Phylogenetic analyses showed that the InPu-22_FZ strain and other P. wickerhamii clustered into one clade with a bootstrap value of 99% and collinearity analysis revealed high levels of collinearity with ATCC 16529. The ANI analysis revealed only a relatively high similarity (89-93%) to available P. wickerhamii genomes, suggesting the overall genomic novelty of InPu-22_FZ strain. Interestingly, the analysis of the pathogen-host interaction database unveiled and demonstrated reduced virulence of this strain, albeit it was isolated from a chronic upper-limb cutaneous infection.Conclusion. The study provides an in-depth insight into the genomic structure and biological function of the InPu-22_FZ strain, revealing the genetic basis of its pathogenicity and virulence.
Collapse
Affiliation(s)
- Juanjuan Li
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
| | - Xiaorong He
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
| | - Hongen Guo
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
| | - Damin Lin
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
| | - Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
- Department of Biomedicine, University of Basel, Basel CH-4056, Switzerland
| | - Borui Chen
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
- Department of Dermatology, Peking University First Hospital and Research Center for Medical Mycology, Peking University, Beijing 100034, PR China
| |
Collapse
|
2
|
Khurshid Y, Syed B, Simjee SU, Beg O, Ahmed A. Antiproliferative and apoptotic effects of proteins from black seeds (Nigella sativa) on human breast MCF-7 cancer cell line. BMC Complement Med Ther 2020; 20:5. [PMID: 32020890 PMCID: PMC7076859 DOI: 10.1186/s12906-019-2804-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background Nigella sativa (NS), a member of family Ranunculaceae is commonly known as black seed or kalonji. It has been well studied for its therapeutic role in various diseases, particularly cancer. Literature is full of bioactive compounds from NS seed. However, fewer studies have been reported on the pharmacological activity of proteins. The current study was designed to evaluate the anticancer property of NS seed proteins on the MCF-7 cell line. Methods NS seed extract was prepared in phosphate-buffered saline (PBS), and proteins were precipitated using 80% ammonium sulfate. The crude seed proteins were partially purified using gel filtration chromatography, and peaks were resolved by SDS-PAGE. MTT assay was used to screen the crude proteins and peaks for their cytotoxic effects on MCF-7 cell line. Active Peaks (P1 and P4) were further studied for their role in modulating the expression of genes associated with apoptosis by real-time reverse transcription PCR. For protein identification, proteins were digested, separated, and analyzed with LC-MS/MS. Data analysis was performed using online Mascot, ExPASy ProtParam, and UniProt Knowledgebase (UniProtKB) gene ontology (GO) bioinformatics tools. Results Gel filtration chromatography separated seed proteins into seven peaks, and SDS-PAGE profile revealed the presence of multiple protein bands. Among all test samples, P1 and P4 depicted potent dose-dependent inhibitory effect on MCF-7 cells exhibiting IC50 values of 14.25 ± 0.84 and 8.05 ± 0.22 μg/ml, respectively. Gene expression analysis demonstrated apoptosis as a possible cell killing mechanism. A total of 11 and 24 proteins were identified in P1 and P4, respectively. The majority of the proteins identified are located in the cytosol, associate with biological metabolic processes, and their molecular functions are binding and catalysis. Hydropathicity values were mostly in the hydrophilic range. Conclusion Our findings suggest NS seed proteins as a potential therapeutic agent for cancer. To our knowledge, it is the first study to report the anticancer property of NS seed proteins.
Collapse
Affiliation(s)
- Yamna Khurshid
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Basir Syed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Shabana U Simjee
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Obaid Beg
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Aftab Ahmed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
3
|
Zhigalova E, Mittenberg A. HuR prevents c-fos mRNA degradation by proteasome-associated ribonuclease in vitro. Porto Biomed J 2017; 2:217-218. [DOI: 10.1016/j.pbj.2017.07.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep 2016; 6:27078. [PMID: 27252084 PMCID: PMC4890432 DOI: 10.1038/srep27078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023] Open
Abstract
Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Swati Puranik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Supriya Chakraborty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
5
|
Mittenberg AG, Moiseeva TN, Kuzyk VO, Podolskaya EP, Evteeva IN, Barlev NA. Mass-spectrometric analysis of proteasome subunits exhibiting endoribonuclease activity. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14050058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Livinskaya VA, Barlev NA, Nikiforov AA. Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits. Protein Expr Purif 2014; 97:37-43. [PMID: 24583181 DOI: 10.1016/j.pep.2014.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 01/11/2023]
Abstract
The proteasome is a multi-subunit proteolytic complex that plays a central role in protein degradation in all eukaryotic cells. It regulates many vital cellular processes therefore its dysfunction can lead to various pathologies including cancer and neurodegeneration. Isolation of enzymatically active proteasomes is a key step to the successful study of the proteasome regulation and functions. Here we describe a simple and efficient protocol for immunoaffinity purification of the functional 20S proteasomes from human HEK 293T cells after transient overexpression of specific proteasome subunits tagged with 3xFLAG. To construct 3xFLAG-fusion proteins, DNA sequences encoding the 20S proteasome subunits PSMB5, PSMA5, and PSMA3 were cloned into mammalian expression vector pIRES-hrGFP-1a. The corresponding recombinant proteins PSMB5-3xFLAG, PSMA5-3xFLAG, or PSMA3-3xFLAG were transiently overexpressed in human HEK 293T cells and were shown to be partially incorporated into the intact proteasome complexes. 20S proteasomes were immunoprecipitated from HEK 293T cell extracts under mild conditions using antibodies against FLAG peptide. Isolation of highly purified 20S proteasomes were confirmed by SDS-PAGE and Western blotting using antibodies against different proteasome subunits. Affinity purified 20S proteasomes were shown to possess chymotrypsin- and trypsin-like peptidase activities confirming their functionality. This simple single-step affinity method of the 20S proteasome purification can be instrumental to subsequent functional studies of proteasomes in human cells.
Collapse
Affiliation(s)
- Veronika A Livinskaya
- Institute of Cytology, Russian Academy of Science, Tikhoretsky ave. 4, 194064 Saint Petersburg, Russia; Institute of Nanobiotechnologies, Saint Petersburg State Polytechnical University, Polytechnicheskaya 29, 195251 Saint Petersburg, Russia
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Science, Tikhoretsky ave. 4, 194064 Saint Petersburg, Russia; Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Andrey A Nikiforov
- Institute of Cytology, Russian Academy of Science, Tikhoretsky ave. 4, 194064 Saint Petersburg, Russia; Institute of Nanobiotechnologies, Saint Petersburg State Polytechnical University, Polytechnicheskaya 29, 195251 Saint Petersburg, Russia.
| |
Collapse
|
7
|
Kutluay SB, Perez-Caballero D, Bieniasz PD. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLoS Pathog 2013; 9:e1003214. [PMID: 23505372 PMCID: PMC3591316 DOI: 10.1371/journal.ppat.1003214] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 11/22/2022] Open
Abstract
TRIM5 proteins can restrict retroviral infection soon after delivery of the viral core into the cytoplasm. However, the molecular mechanisms by which TRIM5α inhibits infection have been elusive, in part due to the difficulty of developing and executing biochemical assays that examine this stage of the retroviral life cycle. Prevailing models suggest that TRIM5α causes premature disassembly of retroviral capsids and/or degradation of capsids by proteasomes, but whether one of these events leads to the other is unclear. Furthermore, how TRIM5α affects the essential components of the viral core, other than capsid, is unknown. To address these questions, we devised a biochemical assay in which the fate of multiple components of retroviral cores during infection can be determined. We utilized cells that can be efficiently infected by VSV-G-pseudotyped retroviruses, and fractionated the cytosolic proteins on linear gradients following synchronized infection. The fates of capsid and integrase proteins, as well as viral genomic RNA and reverse transcription products were then monitored. We found that components of MLV and HIV-1 cores formed a large complex under non-restrictive conditions. In contrast, when MLV infection was restricted by human TRIM5α, the integrase protein and reverse transcription products were lost from infected cells, while capsid and viral RNA were both solubilized. Similarly, when HIV-1 infection was restricted by rhesus TRIM5α or owl monkey TRIMCyp, the integrase protein and reverse transcription products were lost. However, viral RNA was also lost, and high levels of preexisting soluble CA prevented the determination of whether CA was solubilized. Notably, proteasome inhibition blocked all of the aforementioned biochemical consequences of TRIM5α-mediated restriction but had no effect on its antiviral potency. Together, our results show how TRIM5α affects various retroviral core components and indicate that proteasomes are required for TRIM5α-induced core disruption but not for TRIM5α-induced restriction. The TRIM5 proteins found in primates are inhibitors of retroviral infection that act soon after delivery of the viral core into the cytoplasm. It has been difficult to elucidate how TRIM5 proteins work, because techniques that can be applied to this step of the viral life cycle are cumbersome. We developed an experimental approach in which we can monitor TRIM5-induced changes in the viral core at early times after infection, when TRIM5 exerts its effects. Specifically, we monitored the fate of the viral capsid protein, the integrase enzyme and the viral genome. We show that TRIM5 induces disassembly of each of these core components, and while some core components simply dissociate, others are degraded. These dissociation and degradation events all appear to be dependent on the activity of the proteasome. However, we also find that each of these TRIM5-induced effects events are not necessary for inhibition. The assay developed herein provides important insight into the mechanism of TRIM5α restriction and can, in principle, be applied to other important processes that occur at this point in the retrovirus life cycle.
Collapse
Affiliation(s)
- Sebla B. Kutluay
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - David Perez-Caballero
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dielen AS, Sassaki FT, Walter J, Michon T, Ménard G, Pagny G, Krause-Sakate R, Maia IDG, Badaoui S, Le Gall O, Candresse T, German-Retana S. The 20S proteasome α5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the lettuce mosaic potyvirus HcPro protein. MOLECULAR PLANT PATHOLOGY 2011; 12:137-50. [PMID: 21199564 PMCID: PMC6640220 DOI: 10.1111/j.1364-3703.2010.00654.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In plants, the ubiquitin/26S proteasome system (UPS) plays a central role in protein degradation and is involved in many steps of defence mechanisms, regardless of the types of pathogen targeted. In addition to its proteolytic activities, the UPS ribonuclease (RNase) activity, previously detected in 20S proteasome preparations from cauliflower and sunflower (Helianthus annuus), has been shown to specifically target plant viral RNAs in vitro. In this study, we show that recombinant Arabidopsis thaliana proteasomal α(5) subunit expressed in Escherichia coli harbours an RNase activity that degrades Tobacco mosaic virus (TMV, Tobamovirus)- and Lettuce mosaic virus (LMV, Potyvirus)-derived RNAs in vitro. The analysis of mutated forms of the α(5) subunit demonstrated that mutation of a glutamic acid at position 110 affects RNase activity. Furthermore, it was demonstrated, using a bimolecular fluorescence complement assay, that the multifunctional helper component proteinase (HcPro) of LMV, already known to interfere with the 20S proteasome RNase activity in vitro, can interact in vivo with the recombinant α(5) subunit. Further experiments demonstrated that, in LMV-infected lettuce cells, α(5) is partially relocalized to HcPro-containing infection-specific inclusions. Susceptibility analyses of Arabidopsis mutants, knocked out for each At-PAE gene encoding α(5) , showed that one (KO-pae1) of the two mutants exhibited a significantly increased susceptibility to LMV infection. Taken together, these results extend to A. thaliana α(5) the range of HcPro-interacting proteasomal subunits, and suggest that HcPro may modulate its associated RNase activity which may contribute to an antiviral response.
Collapse
Affiliation(s)
- Anne-Sophie Dielen
- Interactions Plante-Virus, UMR GDPP 1090, INRA Université de Bordeaux 2, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brooks SA. Functional interactions between mRNA turnover and surveillance and the ubiquitin proteasome system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:240-52. [PMID: 21935888 DOI: 10.1002/wrna.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome is a critical regulator of protein levels within the cell and is essential for maintaining homeostasis. A functional proteasome is required for effective mRNA surveillance and turnover. During transcription, the proteasome localizes to sites of DNA breaks, degrading RNA polymerase II and terminating transcription. For fully transcribed and processed messages, cytoplasmic surveillance is initiated with the pioneer round of translation. The proteasome is recruited to messages bearing premature termination codons, which trigger nonsense-mediated decay (NMD), as well as messages lacking a termination codon, which trigger nonstop decay, to degrade the aberrant protein produced from these messages. A number of proteins involved in mRNA translation are regulated in part by proteasome-mediated decay, including the initiation factors eIF4G, eIF4E, and eIF3a, and the poly(A)-binding protein (PABP) interacting protein, Paip2. eIF4E-BP (4E-BP) is differentially regulated by the proteasome: truncated to generate a protein with higher eIF4B binding or completely degraded, depending on its phosphorylation status. Finally, a functional proteasome is required for AU-rich-element (ARE)-mediated decay but the specific role the proteasome plays is unclear. There is data indicating the proteasome can bind to AREs, act as an endonuclease, and degrade ARE-binding proteins. How these events interact with the 5'-to-3' and 3'-to-5' decay pathways is unclear at this time; however, data is provided indicating that proteasomes colocalize with Xrn1 and the exosome RNases Rrp44 and Rrp6 in untreated HeLa cells.
Collapse
Affiliation(s)
- Seth A Brooks
- Veterans Administration Medical Center Research, White River Junction, VT 05009, USA.
| |
Collapse
|
10
|
Dielen AS, Badaoui S, Candresse T, German-Retana S. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. MOLECULAR PLANT PATHOLOGY 2010; 11:293-308. [PMID: 20447278 PMCID: PMC6640532 DOI: 10.1111/j.1364-3703.2009.00596.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ubiquitin/26S proteasome system (UPS) plays a central role in plant protein degradation. Over the past few years, the importance of this pathway in plant-pathogen interactions has been increasingly highlighted. UPS is involved in almost every step of the defence mechanisms in plants, regardless of the type of pathogen. In addition to its proteolytic activities, UPS, through its 20S RNase activity, may be part of a still unknown antiviral defence pathway. Strikingly, UPS is not only a weapon used by plants to defend themselves, but also a target for some pathogens that have evolved mechanisms to inhibit and/or use this system for their own purposes. This article attempts to summarize the current knowledge on UPS involvement in plant-microbe interactions, a complex scheme that illustrates the never-ending arms race between hosts and microbes.
Collapse
Affiliation(s)
- Anne-Sophie Dielen
- Interactions Plante-Virus, UMR GDPP 1090, INRA Université de Bordeaux 2, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
11
|
Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW. Proteomic Analysis of Cytoskeleton-Associated RNA Binding Proteins in Developing Rice Seed. J Proteome Res 2009; 8:4641-53. [DOI: 10.1021/pr900537p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kelly A. Doroshenk
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Andrew J. Crofts
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Robert T. Morris
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - John J. Wyrick
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Thomas W. Okita
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| |
Collapse
|
12
|
Kurepa J, Smalle JA. Structure, function and regulation of plant proteasomes. Biochimie 2008; 90:324-35. [PMID: 17825468 DOI: 10.1016/j.biochi.2007.07.019] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 07/20/2007] [Indexed: 11/24/2022]
Abstract
Proteasomes are large multisubunit, multicatalytic proteases responsible for most of the cytosolic and nuclear protein degradation, and their structure and functions are conserved in eukaryotes. Proteasomes were originally identified as the proteolytic module of the ubiquitin-dependent proteolysis pathway. Today we know that proteasomes also mediate ubiquitin-independent proteolysis, that they have RNAse activity, and play a non-proteolytic role in transcriptional regulation. Here we present an overview of the current knowledge of proteasome function and regulation in plants and highlight the role of proteasome-dependent protein degradation in the control of plant development and responses to the environment.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry and Molecular Biology Program, Department of Plant and Soil Sciences, KTRDC, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
13
|
Lu JY, Bergman N, Sadri N, Schneider RJ. Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA (NEW YORK, N.Y.) 2006; 12:883-93. [PMID: 16556936 PMCID: PMC1440908 DOI: 10.1261/rna.2308106] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An AU-rich element (ARE) located in the 3'-untranslated region of many short-lived mRNAs functions as an instability determinant for these transcripts. AUF1/hnRNP D, an ARE-binding protein family consisting of four isoforms, promotes rapid decay of ARE-mRNAs. The mechanism by which AUF1 promotes rapid decay of ARE-mRNA is unclear. AUF1 has been shown to form an RNase-resistant complex in cells with the cap-initiation complex and heat shock proteins Hsp70 and Hsc70, as well as other unidentified factors. To understand the function of the AUF1 complex, we have biochemically investigated the association of AUF1 with the components of the translation initiation complex. We used purified recombinant proteins and a synthetic ARE RNA oligonucleotide to determine the hierarchy of protein interactions in vitro and the effect of AUF1 binding to the ARE on the formation of protein complexes. We demonstrate that all four AUF1 protein isoforms bind directly and strongly to initiation factor eIF4G at a C-terminal site regardless of AUF1 interaction with the ARE. AUF1 is shown to directly interact with poly(A) binding protein (PABP), both independently of eIF4G and in a complex with eIF4G. AUF1-PABP interaction is opposed by AUF1 binding to the ARE or Hsp70 heat shock protein. In vivo, AUF1 interaction with PABP does not alter PABP stability. Based on these and other data, we propose a model for the molecular interactions of AUF1 that involves translation-dependent displacement of AUF1-PABP complexes from ARE-mRNAs with possible unmasking of the poly(A) tail.
Collapse
Affiliation(s)
- Jin-Yu Lu
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
14
|
Anindya R, Savithri HS. Potyviral NIa proteinase, a proteinase with novel deoxyribonuclease activity. J Biol Chem 2004; 279:32159-69. [PMID: 15163663 DOI: 10.1074/jbc.m404135200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NIa proteinase from pepper vein banding virus (PVBV) is a sequence-specific proteinase required for processing of viral polyprotein in the cytoplasm. It accumulates in the nucleus of the infected plant cell and forms inclusion bodies. The function of this protein in the nucleus is not clear. The purified recombinant NIa proteinase was active, and the mutation of the catalytic residues His-46, Asp-81, and Cys-151 resulted in complete loss of activity. Most interesting, the PVBV NIa proteinase exhibited previously unidentified activity, namely nonspecific double-stranded DNA degradation. This DNase activity of the NIa proteinase showed an absolute requirement for Mg(2+). Site-specific mutational analysis showed that of the three catalytic residues, Asp-81 was the crucial residue for DNase activity. Mutation of His-46 and Cys-151 had no effect on the DNase activity, whereas mutant D81N was partially active, and D81G was completely inactive. Based on kinetic analysis and molecular modeling, a metal ion-dependent catalysis similar to that observed in other nonspecific DNases is proposed. Similar results were obtained with glutathione S-transferase-fused PVBV NIa proteinase and tobacco etch virus NIa proteinase, confirming that the DNase function is an intrinsic property of potyviral NIa proteinase. The NIa protein present in the infected plant nuclear extract also showed the proteinase and the DNase activities, suggesting that the PVBV NIa protein that accumulates in the nucleus late in the infection cycle might serve to degrade the host DNA. Thus the dual function of the NIa proteinase could play an important role in the life cycle of the virus.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
15
|
Sutovsky P, Van Leyen K, McCauley T, Day BN, Sutovsky M. Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod Biomed Online 2004; 8:24-33. [PMID: 14759284 DOI: 10.1016/s1472-6483(10)60495-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Maternal inheritance of mitochondrial DNA has long been regarded as a major paradox in developmental biology. While some confusion may still persist in popular science, research data clearly document that the paternal sperm-borne mitochondria of most mammalian species enter the ooplasm at fertilization and are specifically targeted for degradation by the resident ubiquitin system. Ubiquitin is a proteolytic chaperone that forms covalently linked polyubiquitin chains on the targeted proteinaceous substrates. The polyubiquitin tag redirects the substrate proteins to a 26-S proteasome, a multi-subunit proteolytic organelle. Thus, specific proteasomal inhibitors reversibly block sperm mitochondrial degradation in ooplasm. Lysosomal degradation and the activity of membrane-lipoperoxidating enzyme 15-lipoxygenase (15-LOX) may also contribute to sperm mitochondrial degradation in the ooplasm, but probably is not crucial. Prohibitin, the major protein of the inner mitochondrial membrane, appears to be ubiquitinated in the sperm mitochondria. Occasional occurrence of paternal inheritance of mtDNA has been suggested in mammals including humans. While most such evidence has been widely disputed, it warrants further examination. Of particular concern is the documented heteroplasmy, i.e. mixed mtDNA inheritance after ooplasmic transplantation. Intracytoplasmic sperm injection (ICSI) has inherent potential for delaying the degradation of sperm mitochondria. However, paternal mtDNA inheritance after ICSI has not been documented so far.
Collapse
Affiliation(s)
- Peter Sutovsky
- Department of Animal Science, University of Missouri-Columbia, MO, USA.
| | | | | | | | | |
Collapse
|
16
|
Gautier-Bert K, Murol B, Jarrousse AS, Ballut L, Badaoui S, Petit F, Schmid HP. Substrate affinity and substrate specificity of proteasomes with RNase activity. Mol Biol Rep 2003; 30:1-7. [PMID: 12688529 DOI: 10.1023/a:1022261925117] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have partially reconstituted 20S proteasome/RNA complexes using oligonucleotides corresponding to ARE (adenosine- and uridine-rich element) (AUUUA)4 and HIV-TAR (human immunodeficiency virus-Tat transactivation response element), a stem-loop structure in the 5' UTR (untranslated region) of HIV-mRNAs. We demonstrate that these RNAs which associate with proteasomes are degraded by proteasomal endonuclease activity. The formation of these 20S proteasome/RNA substrate complexes is rather specific since 20S proteasomes do not interfere with truncated TAR that is not cleaved by proteasomal endonuclease. In addition, affinity of proteasomes for (AUUUA)4 is much stronger as it is for HIV-TAR. These results provide further arguments for our hypothesis that proteasomes could be involved in the destabilisation of cytokines mRNAs containing AUUUA sequences as well as viral mRNAs.
Collapse
Affiliation(s)
- Karine Gautier-Bert
- ERTAC, Université Blaise Pascal, Clermont-Ferrand II, 24 avenue des Landais, 63177 Aubière, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Ballut L, Petit F, Mouzeyar S, Le Gall O, Candresse T, Schmid P, Nicolas P, Badaoui S. Biochemical identification of proteasome-associated endonuclease activity in sunflower. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1645:30-9. [PMID: 12535608 DOI: 10.1016/s1570-9639(02)00500-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteasomes have been purified from sunflower hypocotyles. They elute with a molecular mass of 600 kDa from gel filtration columns and two-dimensional gel electrophoresis indicates that the complex contains at least 20 different protein subunits. Peptide microsequencing revealed the presence of four subunits homologous to subunits Beta2, Beta6, Alpha5 and Alpha6 of plant proteasomes. These proteasomes have chymotrypsin-like activity and the highly purified fraction of this complex is associated with an endonuclease activity hydrolyzing Tobacco mosaic virus RNA and Lettuce mosaic virus RNA with a cleavage pattern showing fragments of well-defined size. This is the first evidence of a RNA endonuclease activity associated with plant proteasomes.
Collapse
Affiliation(s)
- Lionel Ballut
- UMR 1095, INRA Amélioration et Santé des Plantes, Université Blaise Pascal, Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Laroia G, Schneider RJ. Alternate exon insertion controls selective ubiquitination and degradation of different AUF1 protein isoforms. Nucleic Acids Res 2002; 30:3052-8. [PMID: 12136087 PMCID: PMC135764 DOI: 10.1093/nar/gkf444] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The A+U-rich element (ARE) in the 3' non-coding region (3' NCR) of short-lived cytokine mRNAs binds several regulatory proteins, including hnRNP D/AUF1, which comprises four isoforms of 37, 40, 42 and 45 kDa. ARE-mRNA degradation involves ubiquitin-proteasome activity, and one or more AUF1 proteins are thought to be ubiquitinated. Here we have characterized the mechanism for differential ubiquitination and degradation of the different AUF1 protein isoforms. We demonstrate in an in vitro ubiquitination system that the p37, followed by the p40 protein, are strongly ubiquitinated, whereas the p42 and p45 forms are not. Over expression in cells of enzymes that control the ubiquitin cycle were found to control p37 and p40 AUF1 protein levels through ubiquitination and proteasome activity, but not p42 and p45 forms. The p42 and p45 AUF1 proteins share a C-terminal exon 7 that is not found in the p37/p40 isoforms. Our studies show that exon 7 blocks ubiquitination and rapid degradation of AUF1 proteins, whereas its deletion permits ubiquitination to occur and promotes rapid turnover of AUF1 proteins. Thus, the stabilities of AUF1 isoforms are differentially controlled by insertion of an alternate exon that regulates ubiquitin targeting activity.
Collapse
Affiliation(s)
- Gaurav Laroia
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
19
|
Foucrier J, Bassaglia Y, Grand MC, Rothen B, Perriard JC, Scherrer K. Prosomes form sarcomere-like banding patterns in skeletal, cardiac, and smooth muscle cells. Exp Cell Res 2001; 266:193-200. [PMID: 11339838 DOI: 10.1006/excr.2001.5212] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prosomes (20S proteasomes) constitute the catalytic core of the 26S proteasomes, but were first observed as factors associated with unstranslated mRNA. Recently, their RNase activity was discovered together with the fact that their proteolytic function is dispensable in adapted human cells. By indirect immunofluorescence using monoclonal antibodies, we demonstrate as a general phenomenon, regular intercalation of specific types of prosomes into the sarcomeric structure of all types of striated muscle. Surprisingly, in cultured smooth muscle cells without sarcomeric organization, some prosomes also form regular striations in extended projections of cytoplasmic regions. The significance of their sarcomeric distribution is not understood as yet, but the pattern we observe is very similar to that shown by others for muscle-specific mRNAs, identified by in situ hybridization, and that of the cognate proteins. A role of prosomes in the cotranslational assembly of the myofibrillar proteins is suggested, since prosomes organize into pseudo-sarcomeric patterns prior to formation de novo of the actin-myosin arrangement.
Collapse
MESH Headings
- Animals
- Body Patterning/physiology
- Cell Differentiation/physiology
- Cells, Cultured/cytology
- Cells, Cultured/metabolism
- Cysteine Endopeptidases/metabolism
- Cysteine Endopeptidases/ultrastructure
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Gene Expression Regulation, Developmental/physiology
- Heart/embryology
- Male
- Multienzyme Complexes/metabolism
- Multienzyme Complexes/ultrastructure
- Muscle Proteins/metabolism
- Muscle Proteins/ultrastructure
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscle, Smooth/cytology
- Muscle, Smooth/embryology
- Muscle, Smooth/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Proteasome Endopeptidase Complex
- Rats
- Rats, Wistar
- Sarcomeres/metabolism
- Sarcomeres/ultrastructure
Collapse
Affiliation(s)
- J Foucrier
- CRRET-UPRESA 7053, Université Paris 12, Av. Général de Gaulle, F-94010 Créteil Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
De Conto F, Pilotti E, Razin SV, Ferraglia F, Géraud G, Arcangeletti C, Scherrer K. In mouse myoblasts nuclear prosomes are associated with the nuclear matrix and accumulate preferentially in the perinucleolar areas. J Cell Sci 2000; 113 ( Pt 13):2399-407. [PMID: 10852819 DOI: 10.1242/jcs.113.13.2399] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prosomes are the core of 26S proteasomes, although they were originally observed as 20S particles associated with cytoplasmic mRNPs. Here we show for the first time that prosomes are also genuine constituents of the nuclear matrix, chromatin and the nuclear RNP networks. Using mouse myoblasts we tested three monoclonal antibodies recognising the prosomal subunits p23K, p27K and p30K, and found that the corresponding prosome subclasses are characterised by a variable distribution pattern within the nuclei. Their presence on the nuclear matrix, and most abundantly in the perinucleolar area, is of particular importance. When myoblasts fuse into myotubes, the distribution pattern of certain types of prosomes on the nuclear matrix changes drastically. Surprisingly, DNA strongly interferes with the detection of prosomal antigens by immunofluorescence methods, whereas RNA, histones and other proteins soluble in 2 M NaCl have no such effect. This ‘masking’ of prosomes can be completely overcome by extensive or even mild digestion with DNase I or restriction enzymes. Many nuclear prosomes can be solubilized by combined treatment with 0.5% Triton X-100 and 2 M NaCl, and others can be released by digestion of DNA and/or RNA, and about 10–20% of nuclear prosomes remain tightly bound to the protein-based nuclear matrix.
Collapse
Affiliation(s)
- F De Conto
- Institut Jacques Monod - Université Paris 7, Tour 43, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Arcangeletti C, De Conto F, Sütterlin R, Pinardi F, Missorini S, Géraud G, Aebi U, Chezzi C, Scherrer K. Specific types of prosomes distribute differentially between intermediate and actin filaments in epithelial, fibroblastic and muscle cells. Eur J Cell Biol 2000; 79:423-37. [PMID: 10928458 DOI: 10.1078/0171-9335-00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
First observed as components of non-translated mRNP complexes, prosomes harbour RNase and several proteinase activities; they are also the central constituent of the "Multicatalytic Proteinase (MCP) complexes" or "26S-proteasomes". In two recent publications (Arcangeletti et al., 1997b; De Conto et al., 1997) we have shown, by applying a new fixation technique, that these particles distribute differentially between the cytoskeletal networks of intermediate filament (IF) and actin types; previously they had been observed exclusively on the intermediate filaments. Here we further investigate the distribution of prosomes of several types, distinct by their subunit composition, between the IF of vimentin type and the actin network, as well as in the 3D space of the cell. It is shown that subtypes of prosomes occupy specific networks of the cytoskeleton, and that this pattern is specific for a given cell type. Confocal microscopy shows that prosome cytodistribution is not homogeneous in the 3D space: in the perinuclear area they colocalize most strongly with the IF, and more peripherally with the microfilament/stress fiber system; connections may exist between the two networks. Furthermore, new data indicate that the prosome-actin interaction may participate in the molecular structure of the stress fibers.
Collapse
|
22
|
Ta M, Vrati S. Mov34 protein from mouse brain interacts with the 3' noncoding region of Japanese encephalitis virus. J Virol 2000; 74:5108-15. [PMID: 10799585 PMCID: PMC110863 DOI: 10.1128/jvi.74.11.5108-5115.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The plus-sense RNA genome of Japanese encephalitis virus (JEV) contains noncoding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. The last 83 nucleotides of the 3'-NCR are predicted to form stable stem-loop (SL) structures. The shape of this 3'-SL structure is highly conserved among divergent flaviviruses even though only small stretches of nucleotide sequence contained within these structures are conserved. These SL structures have been predicted to function as cis-acting signals for RNA replication and as such may bind to viral and cellular proteins that may be involved in viral replication. We have studied the interaction of the JEV 3'-NCR RNA with host proteins using gel retardation assays. We show that the JEV 3'-SL structure RNA forms three complexes with proteins from the S100 cytoplasmic extract prepared from the neonatal mouse brain. These complexes could be obtained in the presence of 200 mM KCl, indicating that the RNA-protein interaction may be physiologically relevant. UV-induced cross-linking and Northwestern blotting analyses detected three proteins with apparent molecular masses of 32, 35, and 50 kDa that bound to the JEV 3'-SL structure RNA. Screening of the neonatal mouse brain cDNA library with the JEV 3'-SL structure RNA identified a 36-kDa Mov34 protein interacting with it. Competition experiments using the RNA extracted from JEV virions established that the 36-kDa Mov34 protein indeed bound to the JEV genome. Murine Mov34 belongs to a family of proteins whose members have been shown to be involved in RNA transcription and translation. It is, therefore, likely that the murine Mov34 interaction with JEV 3'-NCR has a role in RNA replication.
Collapse
Affiliation(s)
- M Ta
- National Institute of Immunology, New Delhi-110 067, India
| | | |
Collapse
|
23
|
Konstantinova IM, Kulichkova VA, Evteeva IN, Mittenberg AG, Volkova IV, Ermolaeva JB, Gause LN. The specific endoribonuclease activity of small nuclear and cytoplasmic alpha-RNPs. FEBS Lett 1999; 462:407-10. [PMID: 10622735 DOI: 10.1016/s0014-5793(99)01565-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
For the first time small nuclear ribonucleoprotein particles (alpha-RNP) tightly bound to chromatin as well as cytoplasmic alpha-RNP are shown to possess strong and regulated endonuclease activity specific for mRNAs and hnRNAs. The enzymatic nature of this activity is confirmed, and the optimal conditions detected. This RNase activity is controlled by the action of a differentiating stimulus, dimethylsulfoxide, in human K562 cells. Small alpha-RNP involvement in the coordinated control of stability of pre-messenger RNA and messenger RNA molecules is suggested.
Collapse
|
24
|
De Conto F, Razin SV, Geraud G, Arcangeletti C, Scherrer K. In the nucleus and cytoplasm of chicken erythroleukemic cells, prosomes containing the p23K subunit are found in centers of globin (pre-)mRNA processing and accumulation. Exp Cell Res 1999; 250:569-75. [PMID: 10413609 DOI: 10.1006/excr.1999.4556] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prosomes were originally identified as 20S particles associated with untranslated mRNA; they also constitute the core of the 26S proteasomes. The cellular distribution of three types of prosomes characterized by the presence of subunits with molecular masses of 23, 27, and 30 kDa was analyzed using an immunocytochemical approach on cultured chicken erythroblasts. The prosomes containing the p27K and p30K subunits were found in diffuse distribution in both nuclei and cytoplasm. In contrast, the prosomes containing the p23K subunit, although relatively rare in the nuclear space, were found concentrated in one or two large spots. Using in situ hybridization with an alpha(A)-globin gene-specific riboprobe we found that the p23K-type prosomes colocalize in the nucleus with centers of globin (pre-)mRNA processing, and of mRNA accumulation in the cytoplasm. This result suggests there is local coincidence of specific-type prosome function with processing and, possibly, transport of a particular kind of (pre-)mRNA.
Collapse
Affiliation(s)
- F De Conto
- Institut Jacques Monod, Université Paris 7, 2, Place Jussieu, Tour 43, Paris Cedex 05, 75251, France
| | | | | | | | | |
Collapse
|
25
|
Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R. The proteasome. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:295-317. [PMID: 10410804 DOI: 10.1146/annurev.biophys.28.1.295] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteasomes are large multisubunit proteases that are found in the cytosol, both free and attached to the endoplasmic reticulum, and in the nucleus of eukaryotic cells. Their ubiquitous presence and high abundance in these compartments reflects their central role in cellular protein turnover. Proteasomes recognize, unfold, and digest protein substrates that have been marked for degradation by the attachment of a ubiquitin moiety. Individual subcomplexes of the complete 26S proteasome are involved in these different tasks: The ATP-dependent 19S caps are believed to unfold substrates and feed them to the actual protease, the 20S proteasome. This core particle appears to be more ancient than the ubiquitin system. Both prokaryotic and archaebacterial ancestors have been identified. Crystal structures are now available for the E. coli proteasome homologue and the T. acidophilum and S. cerevisiae 20S proteasomes. All three enzymes are cylindrical particles that have their active sites on the inner walls of a large central cavity. They share the fold and a novel catalytic mechanism with an N-terminal nucleophilic threonine, which places them in the family of Ntn (N terminal nucleophile) hydrolases. Evolution has added complexity to the comparatively simple prokaryotic prototype. This minimal proteasome is a homododecamer made from two hexameric rings stacked head to head. Its heptameric version is the catalytic core of archaebacterial proteasomes, where it is sandwiched between two inactive antichambers that are made up from a different subunit. In eukaryotes, both subunits have diverged into seven different subunits each, which are present in the particle in unique locations such that a complex dimer is formed that has six active sites with three major specificities that can be attributed to individual subunits. Genetic, biochemical, and high-resolution electron microscopy data, but no crystal structures, are available for the 19S caps. A first step toward a mechanistic understanding of proteasome activation and regulation has been made with the elucidation of the X-ray structure of the alternative, mammalian proteasome activator PA28.
Collapse
Affiliation(s)
- M Bochtler
- Max-Planck-Institut für Biochemie, Martinsried/Planegg, Germany.
| | | | | | | | | |
Collapse
|
26
|
Jarrousse AS, Gautier K, Apcher S, Badaoui S, Boissonnet G, Dadet MH, Henry L, Bureau JP, Schmid HP, Petit F. Relationships between proteasomes and viral gene products. Mol Biol Rep 1999; 26:113-7. [PMID: 10363656 DOI: 10.1023/a:1006982023524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The interrelationships between proteasomes and viral gene products are very complex. 20S proteasomes associate with a number of viral mRNAs which are cleaved by proteasome's associated endonuclease activity. In addition proteasome's endopeptidase activities are involved in the presentation of viral antigens. Viral proteins of different origin associate with the 20S and 26S complexes and interfere with their enzymatic activities. A major part of this review deals with the interactions between 20S proteasomes and the gene products of the human immunodeficiency virus (HIV) which has been studied in detail by our group.
Collapse
Affiliation(s)
- A S Jarrousse
- Laboratoire OVGV UA INRA 987, equipe Protéasome & Auto-Surveillance Cellulaire, Université Blaise Pascal Clermont-Fd, Aubière, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jørgensen L, Hendil KB. Proteasome subunit zeta, a putative ribonuclease, is also found as a free monomer. Mol Biol Rep 1999; 26:119-23. [PMID: 10363657 DOI: 10.1023/a:1006965602142] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
20 S Proteasomes are large proteinase complexes found in eukaryotic cells where they degrade cell proteins in an ATP-dependent manner. Proteasomes consist of 14 different subunits. One of them, zeta, was found in HeLa cells at a concentration of 890 microg per g of cell protein. A large proportion of zeta was found in the free state rather than incorporated into proteasomes, namely 28% in HeLa cells and 37% in BSC-1 cells. Free zeta was found in both nuclei and cytoplasm. In HeLa cells free zeta had a t1/2 of 2.8 h, compared to 5 d for proteasomes, and did not exchange with zeta in proteasomes. We confirmed (Petit F et al.: Biochem. J. 326: 93-98 (1997)) that both 20 S proteasomes and free zeta subunits possess RNase activity though the activities were very low: 4 mMoles and 0.6 mMoles of tobacco mosaic virus RNA degraded per mole of enzyme per min, respectively. The physiological function of the relatively abundant zeta monomers is not known.
Collapse
Affiliation(s)
- L Jørgensen
- August Krogh Institute, Copenhagen O, Denmark
| | | |
Collapse
|
28
|
Foucrier J, Grand MC, De Conto F, Bassaglia Y, Géraud G, Scherrer K, Martelly I. Dynamic distribution and formation of a para-sarcomeric banding pattern of prosomes during myogenic differentiation of satellite cells in vitro. J Cell Sci 1999; 112 ( Pt 7):989-1001. [PMID: 10198281 DOI: 10.1242/jcs.112.7.989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myogenesis proceeds by fusion of proliferating myoblasts into myotubes under the control of various transcription factors. In adult skeletal muscle, myogenic stem cells are represented by the satellite cells which can be cultured and differentiate in vitro. This system was used to investigate the subcellular distribution of a particular type of prosomes at different steps of the myogenic process. Prosomes constitute the MCP core of the 26S proteasomes but were first observed as subcomplexes of the untranslated mRNPs; recently, their RNase activity was discovered. A monoclonal antibody raised against the p27K subunit showed that the p27K subunit-specific prosomes move transiently into the nucleus prior to the onset of myoblast fusion into myotubes; this represents possibly one of the first signs of myoblast switching into the differentiation pathway. Prior to fusion, the prosomes containing the p27K subunit return to the cytoplasm, where they align with the gradually formed lengthwise-running desmin-type intermediate filaments and the microfilaments, co-localizing finally with the actin bundles. The prosomes progressively form discontinuous punctate structures which eventually develop a pseudo-sarcomeric banding pattern. In myotubes just formed in vitro, the formation of this pattern seems to preceed that produced by the muscle-specific sarcomeric (alpha)-actin. Interestingly, this pattern of prosomes of myotubes in terminal in vitro differentiation was very similar to that of prosomes observed in vivo in foetal and adult muscle. These observations are discussed in relation to molecular myogenesis and prosome/proteasome function.
Collapse
Affiliation(s)
- J Foucrier
- CRRET, UPRESA-CNRS 7053, Université Paris 12, Av. du Général de Gaulle, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Jarrousse AS, Petit F, Kreutzer-Schmid C, Gaedigk R, Schmid HP. Possible involvement of proteasomes (prosomes) in AUUUA-mediated mRNA decay. J Biol Chem 1999; 274:5925-30. [PMID: 10026217 DOI: 10.1074/jbc.274.9.5925] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a cellular target for proteasomal endonuclease activity. Thus, 20 S proteasomes interact with the 3'-untranslated region of certain cytoplasmic mRNAs in vivo, and 20 S proteasomes isolated from Friend leukemia virus-infected mouse spleen cells were found to be associated with a mRNA fragment showing great homology to the 3'-untranslated region of tumor necrosis factor-beta mRNA that contains AUUUA sequences. We furthermore demonstrate that 20 S proteasomes destabilize oligoribonucleotides corresponding to the 3'-untranslated region of tumor necrosis factor-alpha, creating a specific cleavage pattern. The cleavage reaction is accelerated with increasing number of AUUUA motifs, and major cleavage sites are localized at the 5' side of the A residues. These results strongly suggest that 20 S proteasomes could be involved in the destabilization of cytokine mRNAs such as tumor necrosis factor mRNAs and other short-lived mRNAs containing AUUUA sequences.
Collapse
Affiliation(s)
- A S Jarrousse
- Equipe "Protéasome et Auto-Surveillance Cellulaire" OVGV UA INRA 987, Université Blaise Pascal, Clermont-Ferrand II, 24 avenue des Landais 63177, Aubière cedex, France
| | | | | | | | | |
Collapse
|
30
|
Hobler SC, Tiao G, Fischer JE, Monaco J, Hasselgren PO. Sepsis-induced increase in muscle proteolysis is blocked by specific proteasome inhibitors. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R30-7. [PMID: 9458895 DOI: 10.1152/ajpregu.1998.274.1.r30] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies suggest that sepsis stimulates ubiquitin-dependent protein breakdown in skeletal muscle. The 20S proteasome is the catalytic core of the ubiquitin-dependent proteolytic pathway. We tested the effects in vitro of the proteasome inhibitors N-acetyl-L-leucinyl-L-leucinal-L-norleucinal (LLnL) and lactacystin on protein breakdown in incubated muscles from septic rats. LLnL resulted in a dose- and time-dependent inhibition of protein breakdown in muscles from septic rats. Lactacystin blocked both total and myofibrillar muscle protein breakdown. In addition to inhibiting protein breakdown, LLnL reduced muscle protein synthesis and increased ubiquitin mRNA levels, probably reflecting inhibited proteasome-associated ribonuclease activity. Inhibited muscle protein breakdown caused by LLnL or lactacystin supports the concept that the ubiquitin-proteasome pathway plays a central role in sepsis-induced muscle proteolysis. The results suggest that muscle catabolism during sepsis may be inhibited by targeting specific molecular mechanisms of muscle proteolysis.
Collapse
Affiliation(s)
- S C Hobler
- Shriners Burns Institute, Department of Surgery, University of Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
31
|
Petit F, Jarrousse AS, Dahlmann B, Sobek A, Hendil KB, Buri J, Briand Y, Schmid HP. Involvement of proteasomal subunits zeta and iota in RNA degradation. Biochem J 1997; 326 ( Pt 1):93-8. [PMID: 9337855 PMCID: PMC1218641 DOI: 10.1042/bj3260093] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism.
Collapse
Affiliation(s)
- F Petit
- Université Blaise Pascal, Clermont-Ferrand II, Aubière, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Petit F, Jarrousse AS, Boissonnet G, Dadet MH, Buri J, Briand Y, Schmid HP. Proteasome (prosome) associated endonuclease activity. Mol Biol Rep 1997; 24:113-7. [PMID: 9228291 DOI: 10.1023/a:1006886911852] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 20S proteasome (prosome) is a highly organized multiprotein complex with approximate molecular weight of about 700 kDa. Whilst the role of the proteasome in the processing and turnover of cellular proteins is becoming clearer, its relationship with RNA remains still obscure. Here we focus on the nature and function of proteasome associated endonuclease activity. Thus the involvement of a proteasome alpha-type subunit in RNA-degradation, the catalytic requirements, the interaction of proteasomes with their RNA-substrate and the identification of a well defined cleavage site in the 3'UTR of short-lived cellular mRNAs will be described in detail. All data indicate that proteasomes associated endonuclease activity could be involved in post-transcriptional gene control at the level of translation.
Collapse
Affiliation(s)
- F Petit
- Université Blaise Pascal, Clermont-Ferrand II, Aubière, France
| | | | | | | | | | | | | |
Collapse
|
33
|
|