1
|
Catarzi D, Varano F, Vigiani E, Lambertucci C, Spinaci A, Volpini R, Colotta V. Casein Kinase 1δ Inhibitors as Promising Therapeutic Agents for Neurodegenerative Disorders. Curr Med Chem 2022; 29:4698-4737. [PMID: 35232339 DOI: 10.2174/0929867329666220301115124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/06/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Casein kinase 1 (CK1) belongs to the serine-threonine kinase family and is expressed in all eukaryotic organisms. At least six human isoforms of CK1 (termed α, γ1-3, δ and ε) have been cloned and characterized. CK1 isoform modulates several physiological processes, including DNA damage repair, circadian rhythm, cellular proliferation and apoptosis. Therefore, CK1 dysfunction may trigger diverse pathologies, such as cancer, inflammation and central nervous system disorders. Overexpression and aberrant activity of CK1 has been connected to hyperphosphorylation of key proteins implicated in the development of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases and Amyotrophic Lateral Sclerosis. Thus, CK1 inhibitors have attracted attention as potential drugs for these pathologies and several compounds have been synthesized or isolated from natural sources to be evaluated for their CK1 inhibitory activity. Here we report a comprehensive review on the development of CK1 inhibitors, with a particular emphasis on structure-activity relationships and computational studies which provide useful insight for the design of novel inhibitors.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Erica Vigiani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Catia Lambertucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Andrea Spinaci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Li SS, Dong YH, Liu ZP. Recent Advances in the Development of Casein Kinase 1 Inhibitors. Curr Med Chem 2021; 28:1585-1604. [PMID: 32660395 DOI: 10.2174/0929867327666200713185413] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The casein kinase 1 (CK1) family is involved in regulating many cellular processes, including membrane trafficking, DNA damage repair, cytoskeleton dynamics, cytoskeleton maintenance and apoptosis. CK1 isoforms, especially CK1δ and CK1ε have emerged as important therapeutic targets for severe disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), familial advanced sleep phase syndrome and cancer. Due to the importance of CK1 for the pathogenesis of disorders, there are great interests in the development of CK1 inhibitors. METHODS Using SciFinder® as a tool, the publications about the biology of CK1 and the recent developments of CK1 inhibitors were surveyed with an exclusion of those published as patents. RESULTS This review presents the current state of knowledge on the development of CK1 inhibitors, including both synthetic small molecular inhibitors that were divided into 7 categories according to structural features, and the natural compounds. An overview of the advancement of CK1 inhibitors was given, with the introduction of various existing CK1 inhibitors, their inhibitory activities, and the structure-activity relationships. CONCLUSION Through physicochemical characterization and biological investigations, it is possible to understand the structure-activity relationship of CK1 inhibitors, which will contribute to better design and discovery of potent and selective CK1 inhibitors as potential agents for severe disorders such as AD, ALS and cancer.
Collapse
Affiliation(s)
- Sha-Sha Li
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-Hui Dong
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
3
|
Fulcher LJ, Sapkota GP. Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem J 2020; 477:4603-4621. [PMID: 33306089 PMCID: PMC7733671 DOI: 10.1042/bcj20200506] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Regarded as constitutively active enzymes, known to participate in many, diverse biological processes, the intracellular regulation bestowed on the CK1 family of serine/threonine protein kinases is critically important, yet poorly understood. Here, we provide an overview of the known CK1-dependent cellular functions and review the emerging roles of CK1-regulating proteins in these processes. We go on to discuss the advances, limitations and pitfalls that CK1 researchers encounter when attempting to define relationships between CK1 isoforms and their substrates, and the challenges associated with ascertaining the correct physiological CK1 isoform for the substrate of interest. With increasing interest in CK1 isoforms as therapeutic targets, methods of selectively inhibiting CK1 isoform-specific processes is warranted, yet challenging to achieve given their participation in such a vast plethora of signalling pathways. Here, we discuss how one might shut down CK1-specific processes, without impacting other aspects of CK1 biology.
Collapse
Affiliation(s)
- Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | - Gopal P. Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
4
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
5
|
Shen S, Li C, Dai M, Yan X. Induction of Huh‑7 cell apoptosis by HCV core proteins via CK1α‑p53‑Bid signaling pathway. Mol Med Rep 2018; 17:7559-7566. [PMID: 29620268 PMCID: PMC5983949 DOI: 10.3892/mmr.2018.8844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 02/28/2018] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV)-infected liver cells sensitize host cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cell apoptosis; however, the precise mechanisms are unknown. In the present study, flow cytometry demonstrated that the Annexin V-positive Huh-7 cell number was higher in groups transfected with core proteins when compared with the pcDNA3.1 group. The mRNA and protein expression levels of B-cell lymphoma 2 (Bcl-2) were negatively associated, while Bcl-2-associated X protein (Bax) were positively correlated, with cell apoptotic rate, which, were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. There were no significant differences in the expressions of casein kinase 1 (CK1)-ε, CK1γ or CK1δ; however, the mRNA and protein levels of CK1α were markedly higher in groups transfected with the T (those derived from the HCV-J6 strain), NT (those derived from non-tumor tissues) and C191 (those derived from tumor tissues) HCV core proteins than in mock group. When compared with the Mock and Negative Control (control known-down) groups, the mRNA and protein levels of CK1α were lower in the CK1α known-down group, and there were no marked Huh-7 cell morphological changes among the 3 groups. There was more sensitivity to cell apoptosis in CK1α-silenced, however, not in non-CK1α-silenced, Huh-7 cells. BH3 interacting-domain death agonist (Bid) protein levels in CK1α-silenced Huh-7 cells were higher when compared with non-CK1α-silenced Huh-7 cells, and the level of p53 that translocated to the nucleus increased. Chromatin immunoprecipitation-PCR demonstrated that p53 bound to human Bid gene promoter. The level of the Bid promoter in CK1α-silenced Huh-7 cells was significantly higher than in the non-CK1α-silenced Huh-7 cells. Electron microscopy indicated that p53 knockdown decreased HCV core protein and TRAIL-induced cell apoptosis. Bid/caspase-8 protein levels in CK1α-silenced Huh-7 cells that were transfected with p53 siRNA were lower than in the control group. The present study demonstrated that HCV core proteins sensitize host cells to TRAIL-induced cell apoptosis by activating the CK1α-p53-Bid dependent pathway.
Collapse
Affiliation(s)
- Shanshan Shen
- Department of Infectious Disease, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Chunyang Li
- Department of Infectious Disease, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Mingjia Dai
- Department of Infectious Disease, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xuebing Yan
- Department of Infectious Disease, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
6
|
Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy. PLoS Genet 2015; 11:e1005171. [PMID: 25951229 PMCID: PMC4423883 DOI: 10.1371/journal.pgen.1005171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/25/2015] [Indexed: 01/23/2023] Open
Abstract
While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag) of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc) in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in the optic lobes. Alzheimer’s disease is the most common cause of dementia in the aging population. It is a progressive neurodegenerative disorder that attacks the brain neurons, resulting in loss of memory, thinking and behavioral changes. One pathological hallmark is aggregation of the microtubule-associated protein Tau. A growing body of evidence highlights the importance of caspase-dependent Tau truncation in initiation and potentiation of Tau aggregation. Here we use the fruit fly Drosophila to examine the links between circadian rhythms, aging, apoptosis and Alzheimer’s Disease. We identified a regulator (spag) of the circadian kinase Dbt that functions to stabilize Dbt during the middle of the day. In addition, the caspase Dronc is regulated by Dbt and Spag and, when activated by reduction of either, targets Tau for cleavage, leading to behavioral deficits and shortened lifespans. The expression of activated caspase occurs in several parts of the brain in a manner requiring signaling from a neuropeptide produced by circadian cells. Wild type flies with no genetic modifications eventually exhibit modified Dbt and expression of activated caspase at specific times of day, further demonstrating the links between the circadian clock, light and apoptosis.
Collapse
|
7
|
Penas C, Govek EE, Fang Y, Ramachandran V, Daniel M, Wang W, Maloof ME, Rahaim RJ, Bibian M, Kawauchi D, Finkelstein D, Han JL, Long J, Li B, Robbins DJ, Malumbres M, Roussel MF, Roush WR, Hatten ME, Ayad NG. Casein kinase 1δ is an APC/C(Cdh1) substrate that regulates cerebellar granule cell neurogenesis. Cell Rep 2015; 11:249-60. [PMID: 25843713 DOI: 10.1016/j.celrep.2015.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/23/2014] [Accepted: 03/05/2015] [Indexed: 02/07/2023] Open
Abstract
Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/C(Cdh1)) ubiquitin ligase, and conditional deletion of the APC/C(Cdh1) activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/C(Cdh1) also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/C(Cdh1) controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.
Collapse
Affiliation(s)
- Clara Penas
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Yin Fang
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Vimal Ramachandran
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Mark Daniel
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Weiping Wang
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marie E Maloof
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Ronald J Rahaim
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, USA
| | - Mathieu Bibian
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, USA
| | - Daisuke Kawauchi
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeng-Liang Han
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, USA
| | - Jun Long
- Departments of Surgery and Biochemistry and Molecular Biology, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bin Li
- Departments of Surgery and Biochemistry and Molecular Biology, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David J Robbins
- Departments of Surgery and Biochemistry and Molecular Biology, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William R Roush
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Nagi G Ayad
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
8
|
CSNK1α1 mediates malignant plasma cell survival. Leukemia 2014; 29:474-82. [PMID: 24962017 DOI: 10.1038/leu.2014.202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/18/2022]
Abstract
Here we report that targeting casein kinase 1-α1 (CSNK1α1) is a potential novel treatment strategy in multiple myeloma (MM) therapy distinct from proteasome inhibition. CSNK1α1 is expressed in all the tested MM cell lines and patient MM cells, and is not altered during bortezomib-triggered cytotoxicity. Inhibition of CSNK1α1 kinase activity in MM cells with targeted therapy D4476 or small hairpin RNAs triggers cell G0/G1-phase arrest, prolonged G2/M phase and apoptosis. D4476 also induced cytotoxicity in bortezomib-resistant MM cells and enhanced bortezomib-triggered cytotoxicity. CSNK1α1 signaling pathways include CDKN1B, P53 and FADD; gene signatures involved included interferon-α, tumor necrosis factor-α and LIN9. In addition, reduction of Csnk1α1 prevents cMYC/KRAS12V transformation of BaF3 cells independent of interleukin-3. Impartially, reducing Csnk1α1 prevented development of cMYC/KRAS12V-induced plasmacytomas in mice, suggesting that CSNK1α1 may be involved in MM initiation and progression. Our data suggest that targeting CSNK1α1, alone or combined with bortezomib, is a potential novel therapeutic strategy in MM. Moreover, inhibition of CSNK1α1 may prevent the progression of monoclonal gammopathy of undetermined significance to MM.
Collapse
|
9
|
Microtubules depolymerization caused by the CK1 inhibitor IC261 may be not mediated by CK1 blockage. PLoS One 2014; 9:e100090. [PMID: 24937750 PMCID: PMC4061085 DOI: 10.1371/journal.pone.0100090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/21/2014] [Indexed: 12/18/2022] Open
Abstract
The ubiquitously expressed serine/threonine specific casein kinase 1 (CK1) family plays important roles in the regulation of various physiological processes. Small-molecule inhibitors, such as the CK1δ/ε selectively inhibitor IC261, have been used to antagonize CK1 phosphorylation events in cells in many studies. Here we present data to show that, similarly to the microtubule destabilizing agent nocodazole, IC261 depolymerizes microtubules in interphase cells. IC261 treatment of interphase cells affects the morphology of the TGN and Golgi apparatus as well as the localization of CK1δ, which co-localizes with COPI positive membranes. IC261-induced depolymerization of microtubules is rapid, reversible and can be antagonized by pre-treatment of cells with taxol. At lower concentrations of IC261, mitotic spindle microtubule dynamics are affected; this leads to cell cycle arrest and, depending on the cellular background, to apoptosis in a dose-dependent manner. In addition, FACS analysis revealed that IC261 could induce apoptosis independent of cell cycle arrest. In summary this study provides additional and valuable information about various IC261-induced effects that could be caused by microtubule depolymerization rather than by inhibition of CK1. Data from studies that have used IC261 as an inhibitor of CK1 should be interpreted in light of these observations.
Collapse
|
10
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
11
|
CK1δ kinase activity is modulated by Chk1-mediated phosphorylation. PLoS One 2013; 8:e68803. [PMID: 23861943 PMCID: PMC3701638 DOI: 10.1371/journal.pone.0068803] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/01/2013] [Indexed: 12/19/2022] Open
Abstract
CK1δ, a member of the casein kinase 1 family, is involved in the regulation of various cellular processes and has been associated with the pathophysiology of neurodegenerative diseases and cancer. Therefore recently, interest in generating highly specific inhibitors for personalized therapy has increased enormously. However, the efficacy of newly developed inhibitors is affected by the phosphorylation state of CK1δ. Cellular kinases phosphorylating CK1δ within its C-terminal domain have been identified but still more information regarding the role of site-specific phosphorylation in modulating the activity of CK1δ is required. Here we show that Chk1 phosphorylates rat CK1δ at serine residues 328, 331, 370, and threonine residue 397 as well as the human CK1δ transcription variants 1 and 2. CK1δ mutant proteins bearing one, two or three mutations at these identified phosphorylation sites exhibited significant differences in their kinetic properties compared to wild-type CK1δ. Additionally, CK1δ co-precipitates with Chk1 from HT1080 cell extracts and activation of cellular Chk1 resulted in a significant decrease in cellular CK1δ kinase activity. Taken together, these data point towards a possible regulatory relationship between Chk1 and CK1δ.
Collapse
|
12
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
13
|
Bischof J, Müller A, Fänder M, Knippschild U, Fischer D. Neurite outgrowth of mature retinal ganglion cells and PC12 cells requires activity of CK1δ and CK1ε. PLoS One 2011; 6:e20857. [PMID: 21698236 PMCID: PMC3116831 DOI: 10.1371/journal.pone.0020857] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/10/2011] [Indexed: 01/07/2023] Open
Abstract
Mature retinal ganglion cells (RGCs) do not normally regenerate severed axons after optic nerve injury and show only little neurite outgrowth in culture. However, RGCs can be transformed into an active regenerative state after lens injury (LI) enabling these neurons to regrow axons in vitro and in vivo. In the current study we investigated the role of CK1δ and CK1ε activity in neurite outgrowth of LI stimulated RGCs and nerve growth factor (NGF) stimulated PC12 cells, respectively. In both cell types CK1δ and ε were localized in granular particles aligned at microtubules in neurites and growth cones. Although LI treatment did not measurably affect the expression of CK1δ and ε, it significantly elevated the specific kinase activity in the retina. Similarly, CK1δ/ε specific kinase activity was also elevated in NGF treated PC12 cells compared with untreated controls. Neurite extension in PC12 cells was associated with a change in the activity of CK1δ C-terminal targeting kinases, suggesting that activity of these kinases might be necessary for neurite outgrowth. Pharmacological inactivation of CK1δ and ε markedly compromised neurite outgrowth of both, PC12 cells and LI stimulated RGCs in a concentration dependent manner. These data provide evidence for a so far unknown, but essential role of CK1 isoforms in neurite growth.
Collapse
Affiliation(s)
- Joachim Bischof
- Department of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Adrienne Müller
- Department of Experimental Neurology, University of Ulm, Ulm, Germany
| | - Miriam Fänder
- Department of Experimental Neurology, University of Ulm, Ulm, Germany
| | - Uwe Knippschild
- Department of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
- * E-mail: (UK); (DF)
| | - Dietmar Fischer
- Department of Experimental Neurology, University of Ulm, Ulm, Germany
- Department of Experimental Neurology, University of Düsseldorf, Düsseldorf, Germany
- * E-mail: (UK); (DF)
| |
Collapse
|
14
|
David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 2010; 8:e1000450. [PMID: 20711477 PMCID: PMC2919420 DOI: 10.1371/journal.pbio.1000450] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/02/2010] [Indexed: 12/20/2022] Open
Abstract
Several hundred proteins become insoluble and aggregation-prone as a consequence of aging in Caenorhabditis elegans. The data indicate that these proteins influence disease-related protein aggregation and toxicity. Aberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are predicted to be significantly enriched in β-sheets, which promote disease protein aggregation. Strikingly, these insoluble proteins are highly over-represented in aggregates found in human neurodegeneration. We examined several of these proteins in vivo and confirmed their propensity to aggregate with age. Different proteins aggregated in different tissues and cellular compartments. Protein insolubility and aggregation were significantly delayed or even halted by reduced insulin/IGF-1-signaling, which also slows aging. We found a significant overlap between proteins that become insoluble and proteins that influence lifespan and/or polyglutamine-repeat aggregation. Moreover, overexpressing one aggregating protein enhanced polyglutamine-repeat pathology. Together our findings indicate that widespread protein insolubility and aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease. In neurodegenerative diseases, such as Alzheimer's disease and Huntington's disease, specific proteins escape the cell's quality-control system and associate together, forming insoluble aggregates. Until now, little was known about whether proteins aggregate in a non-disease context. In this study, we discovered that the aging process itself, in the absence of disease, leads to the insolubilization and increased aggregation propensity of several hundred proteins in the roundworm Caenorhabditis elegans. These aggregation-prone proteins have distinct structural and functional proprieties. We asked if this inherent age-dependent protein aggregation impacts neurodegenerative diseases. We found that proteins similar to those aggregating in old worms have also been identified as minor components of human disease aggregates. In addition, we showed that higher levels of inherent protein aggregation aggravated toxicity in a C. elegans Huntington's disease model. Inherent protein aggregation is a new biomarker of aging. Understanding how to modulate it will lead to important insights into the mechanisms that underlie aging and protein aggregation diseases.
Collapse
Affiliation(s)
- Della C. David
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Noah Ollikainen
- Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California, United States of America
| | - Jonathan C. Trinidad
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Michael P. Cary
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Alma L. Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Cynthia Kenyon
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Venerando A, Marin O, Cozza G, Bustos VH, Sarno S, Pinna LA. Isoform specific phosphorylation of p53 by protein kinase CK1. Cell Mol Life Sci 2010; 67:1105-18. [PMID: 20041275 PMCID: PMC11115815 DOI: 10.1007/s00018-009-0236-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/18/2009] [Accepted: 12/14/2009] [Indexed: 12/27/2022]
Abstract
The ability of three isoforms of protein kinase CK1 (alpha, gamma(1), and delta) to phosphorylate the N-terminal region of p53 has been assessed using either recombinant p53 or a synthetic peptide reproducing its 1-28 sequence. Both substrates are readily phosphoylated by CK1delta and CK1alpha, but not by the gamma isoform. Affinity of full size p53 for CK1 is 3 orders of magnitude higher than that of its N-terminal peptide (K (m) 0.82 muM vs 1.51 mM). The preferred target is S20, whose phosphorylation critically relies on E17, while S6 is unaffected despite displaying the same consensus (E-x-x-S). Our data support the concept that non-primed phosphorylation of p53 by CK1 is an isoform-specific reaction preferentially affecting S20 by a mechanism which is grounded both on a local consensus and on a remote docking site mapped to the K(221)RQK(224) loop according to modeling and mutational analysis.
Collapse
Affiliation(s)
- Andrea Venerando
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus, 2, 35129 Padova, Italy
- Department of Biological Chemistry, University of Padova, Viale G. Colombo, 3, 35131 Padova, Italy
| | - Oriano Marin
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus, 2, 35129 Padova, Italy
- Department of Biological Chemistry, University of Padova, Viale G. Colombo, 3, 35131 Padova, Italy
| | - Giorgio Cozza
- Department of Biological Chemistry, University of Padova, Viale G. Colombo, 3, 35131 Padova, Italy
| | - Victor H. Bustos
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus, 2, 35129 Padova, Italy
- Present Address: Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Stefania Sarno
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus, 2, 35129 Padova, Italy
- Department of Biological Chemistry, University of Padova, Viale G. Colombo, 3, 35131 Padova, Italy
| | - Lorenzo Alberto Pinna
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus, 2, 35129 Padova, Italy
- Department of Biological Chemistry, University of Padova, Viale G. Colombo, 3, 35131 Padova, Italy
| |
Collapse
|
16
|
Utz AC, Hirner H, Blatz A, Hillenbrand A, Schmidt B, Deppert W, Henne-Bruns D, Fischer D, Thal DR, Leithäuser F, Knippschild U. Analysis of cell type-specific expression of CK1 epsilon in various tissues of young adult BALB/c Mice and in mammary tumors of SV40 T-Ag-transgenic mice. J Histochem Cytochem 2009; 58:1-15. [PMID: 19755715 DOI: 10.1369/jhc.2009.954628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Casein kinase 1 epsilon (CK1epsilon) is involved in various cellular processes, including cell growth, differentiation, and apoptosis, vesicle transport, and control of the circadian rhythm. Deregulation of CK1epsilon has been linked to neurodegenerative diseases and cancer. To better understand the cell type-specific functions of CK1epsilon, we determined its localization by immunhistochemistry in tissues of healthy, young adult BALB/c mice and in mammary tumors of SV40 T-antigen-transgenic mice. CK1epsilon expression was found to be highly regulated in normal tissues of endodermal, mesodermal, and ectodermal origin and in neoplastic tissue of mammary cancer. The data presented here give an overview of CK1epsilon reactivity in different organs under normal conditions and outline changes in its expression in mammary carcinomas. Our data suggest a cell/organ type-specific function of CK1epsilon and indicate that tumorigenic conversion of mammary glands in SV40 T-antigen-transgenic mice leads to downregulation of CK1epsilon. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Anja C Utz
- Department of General, Visceral, and Transplantation Surgery, University of Ulm, Steinhövelstr. 9, 89075 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hoffmann U, Bergler T, Rihm M, Pace C, Krüger B, Rümmele P, Stoelcker B, Banas B, Männel DN, Krämer BK. Upregulation of TNF receptor type 2 in human and experimental renal allograft rejection. Am J Transplant 2009; 9:675-86. [PMID: 19298452 DOI: 10.1111/j.1600-6143.2008.02536.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An important role of TNF interacting with TNFR2 has been shown in different models of ischemic, nephrotoxic and immune-mediated renal injury. To systematically evaluate the expression of TNFR2 in renal allograft rejection, we investigated human renal allograft biopsies and, in addition, established an experimental transplantation model in rats to verify the human data under standardized conditions. The expression of TNFR2 was analyzed in 96 human renal allograft biopsies with different disease entities. In a 6-day and a 28-day experimental protocol, TNFR2 was examined in kidney specimens and in the urine of control, uni-nephrectomized and transplanted rats +/- cyclosporine treatment (n = 114). In human biopsies and in rat allografts on day 6 with acute allograft rejection, significantly elevated expression of TNFR2 was observed in tubular epithelial cells, podocytes, B cells and monocytes/macrophages. The expression level was associated with renal function. The TNFR2 expression level at day 28 was significantly lower compared to day 6. TNFR2 is markedly upregulated both in human and experimental acute renal allograft rejection. Our data are robust and consistent between different species, suggesting a role for TNFR2 in the early course of rejection.
Collapse
Affiliation(s)
- U Hoffmann
- Department of Internal Medicine II, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Löhler J, Hirner H, Schmidt B, Kramer K, Fischer D, Thal DR, Leithäuser F, Knippschild U. Immunohistochemical characterisation of cell-type specific expression of CK1delta in various tissues of young adult BALB/c mice. PLoS One 2009; 4:e4174. [PMID: 19137063 PMCID: PMC2613528 DOI: 10.1371/journal.pone.0004174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/24/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Casein kinase 1 delta (CK1delta) phosphorylates many key proteins playing important roles in such biological processes as cell growth, differentiation, apoptosis, circadian rhythm and vesicle transport. Furthermore, deregulation of CK1delta has been linked to neurodegenerative diseases and cancer. In this study, the cell specific distribution of CK1delta in various tissues and organs of young adult BALB/c mice was analysed by immunohistochemistry. METHODOLOGY/PRINCIPAL FINDINGS Immunohistochemical staining of CK1delta was performed using three different antibodies against CK1delta. A high expression of CK1delta was found in a variety of tissues and organ systems and in several cell types of endodermal, mesodermal and ectodermal origin. CONCLUSIONS These results give an overview of the cell-type specific expression of CK1delta in different organs under normal conditions. Thus, they provide evidence for possible cell-type specific functions of CK1delta, where CK1delta can interact with and modulate the activity of key regulator proteins by site directed phosphorylation. Furthermore, they provide the basis for future analyses of CK1delta in these tissues.
Collapse
Affiliation(s)
- Jürgen Löhler
- Molecular Pathology Group, Heinrich-Pette-Institute for Experimental Immunology and Virology, University Hamburg, Hamburg, Germany
| | - Heidrun Hirner
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Bernhard Schmidt
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Klaus Kramer
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Dietmar Fischer
- Department of Experimental Neurology, University of Ulm, Ulm, Germany
| | - Dietmar R. Thal
- Laboratory of Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
| | | | - Uwe Knippschild
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
19
|
Cozza G, Gianoncelli A, Montopoli M, Caparrotta L, Venerando A, Meggio F, Pinna LA, Zagotto G, Moro S. Identification of novel protein kinase CK1 delta (CK1delta) inhibitors through structure-based virtual screening. Bioorg Med Chem Lett 2008; 18:5672-5. [PMID: 18799313 DOI: 10.1016/j.bmcl.2008.08.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 02/02/2023]
Abstract
In eukaryotes, protein phosphorylation of serine, threonine or tyrosine residues by protein kinases plays an important role in many cellular processes. Members of the protein kinase CK1 family usually phosphorylate residues of serine that are close to other phosphoserine in a consensus motif of pS-X-X-S, and they are implicated in the regulation of a variety of physiological processes as well as in pathologies like cancer and Alzheimer's disease. Using a structure-based virtual screening (SBVS) approach we have identified two anthraquinones as novel CK1delta inhibitors. These amino-anthraquinone analogs (derivatives 1 and 2) are among the most potent and selective CK1delta inhibitors known today (IC(50)=0.3 and 0.6 microM, respectively).
Collapse
Affiliation(s)
- Giorgio Cozza
- Molecular Modeling Section, Dipartimento di Scienze Farmaceutiche, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xu S, Wong CCL, Tong EHY, Chung SSM, Yates JR, Yin Y, Ko BCB. Phosphorylation by casein kinase 1 regulates tonicity-induced osmotic response element-binding protein/tonicity enhancer-binding protein nucleocytoplasmic trafficking. J Biol Chem 2008; 283:17624-34. [PMID: 18411282 DOI: 10.1074/jbc.m800281200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, is the only known osmo-sensitive transcription factor that mediates cellular adaptations to extracellular hypertonic stress. Although it is well documented that the subcellular localization and transactivation activity of OREBP/TonEBP are tightly regulated by extracellular tonicity, the molecular mechanisms involved remain elusive. Here we show that nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by the dual phosphorylation of Ser-155 and Ser-158. Alanine scanning mutagenesis revealed that Ser-155 is an essential residue that regulates OREBP/TonEBP nucleocytoplasmic trafficking. Tandem mass spectrometry revealed that Ser-155 and Ser-158 of OREBP/TonEBP are both phosphorylated in living cells under hypotonic conditions. In vitro phosphorylation assays further suggest that phosphorylation of the two serine residues proceeds in a hierarchical manner with phosphorylation of Ser-155 priming the phosphorylation of Ser-158 and that these phosphorylations are essential for nucleocytoplasmic trafficking of the transcription factor. Finally, we have shown that the pharmacological inhibition of casein kinase 1 (CK1) abolishes the phosphorylation of Ser-158 and impedes OREBP/TonEBP nuclear export and that recombinant CK1 phosphorylates Ser-158. Knockdown of CK1alpha1L, a novel isoform of CK1, inhibits hypotonicity-induced OREBP/TonEBP nuclear export. Together these data highlight the importance of Ser-155 and Ser-158 in the nucleocytoplasmic trafficking of OREBP/TonEBP and indicate that CK1 plays a major role in regulating this process.
Collapse
Affiliation(s)
- SongXiao Xu
- The State Key Laboratory in Oncology in South China, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang Y, Sun X, Wu J, Xu BE, Gu C, Wang H, Wang X, Tan F, Peng X, Qiang B, Yuan J, Luo Y. Casein kinase 1alpha interacts with RIP1 and regulates NF-kappaB activation. Biochemistry 2007; 47:441-8. [PMID: 18067272 DOI: 10.1021/bi7010515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor alpha (TNFalpha) triggers a signaling pathway converging on the activation of NF-kappaB, which forms the basis for many physiological and pathological processes. In a kinase gene screen using a NF-kappaB reporter, we observed that overexpression of casein kinase 1alpha (CK1alpha) enhanced TNFalpha-induced NF-kappaB activation, and a CK1alpha kinase dead mutant, CK1alpha (K46A), reduced NF-kappaB activation induced by TNFalpha. We subsequently demonstrated that CK1alpha interacted with receptor interacting protein 1 (RIP1) but not with TRADD, TRAF2, MEKK3, IKKalpha, IKKbeta, or IKKgamma in mammalian cells. RIP1 is an indispensable molecule in TNFalpha/NF-kappaB signaling. We demonstrated that CK1alpha interacted with and phosphorylated RIP1 at the intermediate domain. Finally, we showed that CK1alpha enhanced RIP1-mediated NF-kappaB activation. Taken together, our studies suggest that CK1alpha is another kinase that regulates RIP1 function in NF-kappaB activation.
Collapse
Affiliation(s)
- Yong Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Giamas G, Hirner H, Shoshiashvili L, Grothey A, Gessert S, Kühl M, Henne-Bruns D, Vorgias C, Knippschild U. Phosphorylation of CK1delta: identification of Ser370 as the major phosphorylation site targeted by PKA in vitro and in vivo. Biochem J 2007; 406:389-98. [PMID: 17594292 PMCID: PMC2049039 DOI: 10.1042/bj20070091] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The involvement of CK1 (casein kinase 1) delta in the regulation of multiple cellular processes implies a tight regulation of its activity on many different levels. At the protein level, reversible phosphorylation plays an important role in modulating the activity of CK1delta. In the present study, we show that PKA (cAMP-dependent protein kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2) and PKC (protein kinase C) alpha all phosphorylate CK1delta. PKA was identified as the major cellular CK1deltaCK (CK1delta C-terminal-targeted protein kinase) for the phosphorylation of CK1delta in vitro and in vivo. This was implied by the following evidence: PKA was detectable in the CK1deltaCK peak fraction of fractionated MiaPaCa-2 cell extracts, PKA shared nearly identical kinetic properties with those of CK1deltaCK, and both PKA and CK1deltaCK phosphorylated CK1delta at Ser370 in vitro. Furthermore, phosphorylation of CK1delta by PKA decreased substrate phosphorylation of CK1delta in vitro. Mutation of Ser370 to alanine increased the phosphorylation affinity of CK1delta for beta-casein and the GST (gluthatione S-transferase)-p53 1-64 fusion protein in vitro and enhanced the formation of an ectopic dorsal axis during Xenopus laevis development. Anchoring of PKA and CK1delta to centrosomes was mediated by AKAP (A-kinase-anchoring protein) 450. Interestingly, pre-incubation of MiaPaCa-2 cells with the synthetic peptide St-Ht31, which prevents binding between AKAP450 and the regulatory subunit RII of PKA, resulted in a 6-fold increase in the activity of CK1delta. In summary, we conclude that PKA phosphorylates CK1delta, predominantly at Ser370 in vitro and in vivo, and that site-specific phosphorylation of CK1delta by PKA plays an important role in modulating CK1delta-dependent processes.
Collapse
Affiliation(s)
- Georgios Giamas
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Heidrun Hirner
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Levani Shoshiashvili
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Arnhild Grothey
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Susanne Gessert
- †Institute for Biochemistry and Molecular Biology, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michael Kühl
- †Institute for Biochemistry and Molecular Biology, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Doris Henne-Bruns
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
| | - Constantinos E. Vorgias
- ‡Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis-Zographou, 15784 Athens, Greece
| | - Uwe Knippschild
- *Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Vielhauer V, Mayadas TN. Functions of TNF and its receptors in renal disease: distinct roles in inflammatory tissue injury and immune regulation. Semin Nephrol 2007; 27:286-308. [PMID: 17533007 DOI: 10.1016/j.semnephrol.2007.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor (TNF) alpha is a potent proinflammatory cytokine and important mediator of inflammatory tissue damage. In addition, it has important immune-regulatory functions. Many experimental studies and clinical observations support a role for TNF in the pathogenesis of acute and chronic renal disease. However, given its dual functions in inflammation and immune regulation, TNF may mediate both proinflammatory as well as immunosuppressive effects, particularly in chronic kidney diseases and systemic autoimmunity. Blockade of TNF in human rheumatoid arthritis or Crohn's disease led to the development of autoantibodies, lupus-like syndrome, and glomerulonephritis in some patients. These data raise concern about using TNF-blocking therapies in renal disease because the kidney may be especially vulnerable to the manifestation of autoimmune processes. Interestingly, recent experimental evidence suggests distinct roles for the 2 TNF receptors in mediating local inflammatory injury in the kidney and systemic immune-regulatory functions. In this review the biologic properties of TNF and its receptors, TNF receptors 1 and 2, relevant to kidney disease are summarized followed by a review of the available experimental and clinical data on the pathogenic role of the TNF system in nonimmune and immune renal diseases. Experimental evidence also is reviewed that supports a rationale for specifically blocking TNF receptor 2 versus anti-TNF therapies in some nephropathies, including immune complex-mediated glomerulonephritis.
Collapse
Affiliation(s)
- Volker Vielhauer
- Medizinische Poliklinik Innenstadt, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.
| | | |
Collapse
|
24
|
Bustos VH, Ferrarese A, Venerando A, Marin O, Allende JE, Pinna LA. The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1. Proc Natl Acad Sci U S A 2006; 103:19725-30. [PMID: 17172446 PMCID: PMC1750875 DOI: 10.1073/pnas.0609424104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple phosphorylation of beta-catenin by glycogen synthase kinase 3 (GSK3) in the Wnt pathway is primed by CK1 through phosphorylation of Ser-45, which lacks a typical CK1 canonical sequence. Synthetic peptides encompassing amino acids 38-64 of beta-catenin are phosphorylated by CK1 on Ser-45 with low affinity (K(m) approximately 1 mM), whereas intact beta-catenin is phosphorylated at Ser-45 with very high affinity (K(m) approximately 200 nM). Peptides extended to include a putative CK1 docking motif (FXXXF) at 70-74 positions or a F74AA mutation in full-length beta-catenin had no significant effect on CK1 phosphorylation efficiency. beta-Catenin C-terminal deletion mutants up to residue 181 maintained their high affinity, whereas removal of the 131-181 fragment, corresponding to the first armadillo repeat, was deleterious, resulting in a 50-fold increase in K(m) value. Implication of the first armadillo repeat in beta-catenin targeting by CK1 is supported in that the Y142E mutation, which mimics phosphorylation of Tyr-142 by tyrosine kinases and promotes dissociation of beta-catenin from alpha-catenin, further improves CK1 phosphorylation efficiency, lowering the K(m) value to <50 nM, approximating the physiological concentration of beta-catenin. In contrast, alpha-catenin, which interacts with the N-terminal region of beta-catenin, prevents Ser-45 phosphorylation of CK1 in a dose-dependent manner. Our data show that the integrity of the N-terminal region and the first armadillo repeat are necessary and sufficient for high-affinity phosphorylation by CK1 of Ser-45. They also suggest that beta-catenin association with alpha-catenin and beta-catenin phosphorylation by CK1 at Ser-45 are mutually exclusive.
Collapse
Affiliation(s)
- Victor H. Bustos
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Program of Cell and Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; and
| | - Anna Ferrarese
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Department of Biological Chemistry and Consiglio Nazionale delle Ricerche Institute for Neurosciences, University of Padova, 35121 Padova, Italy
| | - Andrea Venerando
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Department of Biological Chemistry and Consiglio Nazionale delle Ricerche Institute for Neurosciences, University of Padova, 35121 Padova, Italy
| | - Oriano Marin
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Department of Biological Chemistry and Consiglio Nazionale delle Ricerche Institute for Neurosciences, University of Padova, 35121 Padova, Italy
| | - Jorge E. Allende
- Program of Cell and Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; and
- To whom correspondence may be addressed at:
ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile. E-mail:
| | - Lorenzo A. Pinna
- *Venetian Institute for Molecular Medicine, 35129 Padova, Italy
- Department of Biological Chemistry and Consiglio Nazionale delle Ricerche Institute for Neurosciences, University of Padova, 35121 Padova, Italy
- To whom correspondence may be addressed at:
Department of Biological Chemistry, Viale G. Colombo 3, I-35121 Padova, Italy. E-mail:
| |
Collapse
|
25
|
Murata T, Tsuboi M, Hikita K, Kaneda N. Protective Effects of Neurotrophic Factors on Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Apoptosis of Murine Adrenal Chromaffin Cell Line tsAM5D. J Biol Chem 2006; 281:22503-16. [PMID: 16772303 DOI: 10.1074/jbc.m602579200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously established the murine adrenal chromaffin cell line tsAM5D, which was immortalized with the temperature-sensitive simian virus 40 large T-antigen. tsAM5D cells have the capacity to differentiate into neuron-like cells in response to neurotrophic factors when the culture temperature is shifted from 33 to 39 degrees C. In this model system, the temperature shift in the absence of neurotrophic factors led to cell death. Hoechst staining analysis revealed that typical apoptotic nuclei appeared in a time-dependent manner after the temperature shift. Upon shifting to 39 degrees C, the degradation of T-antigen was accompanied by the transcriptional activation of p53 protein. Among the p53 target genes, death receptor 5 (DR5), which is the receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), showed the highest level of induction. Interestingly, TRAIL-neutralizing antibody protected tsAM5D cells from the temperature shift-induced apoptotic cell death by blocking the activation of caspase-8 and -3, indicating the involvement of TRAIL-mediated death signaling in the temperature shift-induced apoptosis. Glial cell line-derived neurotrophic factor (GDNF) inhibited the TRAIL-mediated activation of caspase-8 in tsAM5D cells exposed to 39 degrees C and cooperated with basic fibroblast growth factor and ciliary neurotrophic factor. Interestingly, the temperature shift induced oligomerization of DR5, which is the earliest process necessary for transduction of the death signal. This oligomerization was inhibited by treatment with GDNF plus ciliary neurotrophic factor but not by that with GDNF alone or GDNF plus basic fibroblast growth factor. These results are discussed with respect to the intracellular mechanism underlying the protective function of neurotrophic factors against TRAIL-mediated death signaling.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468-8503, Japan
| | | | | | | |
Collapse
|
26
|
Vogel A, Aslan JE, Willenbring H, Klein C, Finegold M, Mount H, Thomas G, Grompe M. Sustained phosphorylation of Bid is a marker for resistance to Fas-induced apoptosis during chronic liver diseases. Gastroenterology 2006; 130:104-19. [PMID: 16401474 PMCID: PMC1424224 DOI: 10.1053/j.gastro.2005.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 09/28/2005] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Increased rates of apoptosis have been reported to play a role in the pathophysiology of many disorders, including liver diseases. Conversely, genetic mutations that result in impairment of programmed cell death have been associated with cancer development. However, apoptosis resistance can also be the result of nongenetic stress adaptation, as seen in the cancer-prone metabolic liver disease hereditary tyrosinemia. To clarify whether stress-induced apoptosis resistance is a general feature of chronic liver diseases, an animal model of chronic cholestasis was examined. METHODS Studies were performed with mice before and 2 weeks following bile duct ligation and with Fah-/- and Fah/p21-/- mice before and after NTBC withdrawal. RESULTS Here we show that bile duct ligation induced profound resistance against Fas monoclonal antibody-mediated hepatocyte death. The apoptosis signaling pathway was blocked downstream of caspase-8 activation and proximal to mitochondrial cytochrome c release. In controls, activation of the Fas receptor resulted in rapid dephosphorylation of Bid and its subsequent cleavage, whereas Bid remained phosphorylated and uncleaved in chronic cholestasis and other models of hepatic apoptosis resistance. CONCLUSIONS We propose a model in which the phosphorylation status of Bid determines the apoptotic threshold of hepatocytes in vivo. Furthermore, resistance to apoptosis in chronic cholestasis may contribute to the long-term risk of cancer in this setting.
Collapse
Key Words
- bdl, bile duct ligation
- disc, death-inducing signaling complex
- egta, ethylene glycol-bis[β-aminoethyl ether]-n,n,n′,n′ -tetraacetic acid
- fadd, fas-associated death domain adaptor protein
- ht-1, hereditary tyrosinemia
- iaps, inhibitors of apoptosis proteins
- mab, monoclonal antibody
- nf-κb, nuclear factor κb
- pp2a, protein phosphatase 2a
- sds-page, sodium dodecyl sulfate/polyacrylamide gel electrophoresis
- tunel, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling
Collapse
Affiliation(s)
- Arndt Vogel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Stöter M, Bamberger AM, Aslan B, Kurth M, Speidel D, Löning T, Frank HG, Kaufmann P, Löhler J, Henne-Bruns D, Deppert W, Knippschild U. Inhibition of casein kinase I delta alters mitotic spindle formation and induces apoptosis in trophoblast cells. Oncogene 2005; 24:7964-75. [PMID: 16027726 DOI: 10.1038/sj.onc.1208941] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 06/02/2005] [Accepted: 06/17/2005] [Indexed: 01/09/2023]
Abstract
The serine/threonine-specific casein kinase I delta (CKIdelta) is ubiquitously expressed in all tissues, is p53 dependently induced in stress situations and plays an important role in various cellular processes. Our immunohistochemical analysis of the human placenta revealed strongest expression of CKIdelta in extravillous trophoblast cells and in choriocarcinomas. Investigation of the functional role of CKIdelta in an extravillous trophoblast hybrid cell line revealed that CKIdelta was constitutively localized at the centrosomes and the mitotic spindle. Inhibition of CKIdelta with the CKI-specific inhibitor IC261 led to structural alterations of the centrosomes, the formation of multipolar spindles, the inhibition of mitosis and, in contrast to other cell lines, the induction of apoptosis. Our findings indicate that CKIdelta plays an important role in the mitotic progression and in the survival of cells of trophoblast origin. Therefore, IC261 could provide a new tool in treating choriocarcinomas.
Collapse
Affiliation(s)
- Martin Stöter
- Department of Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wolff S, Xiao Z, Wittau M, Süssner N, Stöter M, Knippschild U. Interaction of casein kinase 1 delta (CK1 delta) with the light chain LC2 of microtubule associated protein 1A (MAP1A). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:196-206. [PMID: 15961172 DOI: 10.1016/j.bbamcr.2005.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/28/2005] [Accepted: 05/13/2005] [Indexed: 11/25/2022]
Abstract
CK1delta, a member of the casein kinase 1 family of serine/threonine specific kinases, has been shown to be involved in the regulation of microtubule dynamics. We have now identified a 176 aa fragment of the light chain LC2 of MAP1A (termed LC2-P16) specifically interacting with CK1delta. Two CK1delta interacting domains of LC2 were identified, located between aa 2629 and 2753 close to aa 2683 and between aa 2712 and 2805 of LC2. The two regions necessary for the interaction of LC2 with CK1delta have been mapped between aa 76-103 and aa 351-375 of CK1delta. Furthermore, LC2 has been identified as a new substrate of CK1delta. We therefore propose a model in which CK1delta could modulate microtubule dynamics by changing the phosphorylation status of the light chain LC2 of MAP1A.
Collapse
Affiliation(s)
- Sonja Wolff
- Department of Visceral and Transplantation Surgery at the Medical University of Ulm, Chirurgische Universitätsklinik Ulm, Steinhövelstr. 9, 89075 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Van Linden AA, Cottin V, Frankel SK, Riches DWH. Hierarchical Phosphorylation of the TNF-α Receptor, TNF-R1, by p42mapk/erkat Basic Pro-Directed Kinase Sites†. Biochemistry 2005; 44:6980-9. [PMID: 15865443 DOI: 10.1021/bi050058w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of the TNF-alpha receptor TNF-R1 has been shown to differentially regulate receptor signaling and function and promote changes in its subcellular localization. Previous studies have shown that p42(mapk/erk2) phosphorylates Ser and Thr residues (T236, S240, S244, and S270) in the membrane proximal region of TNF-R1 and that mutation of these residues to Glu and Asp residues (TNF-R1.4D/E) mimics the effect of phosphorylation on receptor signaling and localization. In the present study, we investigated whether the initial phosphorylation of these residues by p42(mapk/erk2) promotes hierarchical phosphorylation of additional sites within the cytoplasmic domain of TNF-R1. This question was addressed by investigating the ability of the TNF-R1.4D/E mutant receptor to be phosphorylated in in vitro kinase assays using GST-mutant cytoplasmic domain fusion proteins as substrates and in intact cells following mutant receptor expression. In addition, we determined the location of the additional phosphorylation sites. Incubation of Sepharose bead-bound GST-TNF-R1(207)(-)(425).4D/E fusion protein with lysates containing activated p42(mapk/erk2) led to the phosphorylation of Ser and Thr residues in addition to the previously defined sites at T236, S240, S244, and S270. Deletional mutagenesis localized these residues to a stretch of 14 amino acids that encompasses three basic Pro-directed ([S/T]P) kinase consensus sequences located between residues S256 and T267. Point mutagenesis of T257, S262, and T267 to Ala residues indicated that these sites are targets of phosphorylation by p42(mapk/)(erk2). These findings support the conclusion that p42(mapk/erk2) promotes extensive phosphorylation of the membrane proximal region in a hierarchical fashion at both consensus and nonconsensus ERK-phosphorylation sites.
Collapse
Affiliation(s)
- Annemie A Van Linden
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
30
|
Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 2005; 17:675-89. [PMID: 15722192 DOI: 10.1016/j.cellsig.2004.12.011] [Citation(s) in RCA: 423] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 12/11/2022]
Abstract
Phosphorylation of serine, threonine and tyrosine residues by cellular protein kinases plays an important role in the regulation of various cellular processes. The serine/threonine specific casein kinase 1 and 2 protein kinase families--(CK1 and CK2)--were among the first protein kinases that had been described. In recent years our knowledge of the regulation and function of mammalian CK1 kinase family members has rapidly increased. Extracellular stimuli, the subcellular localization of CK1 isoforms, their interaction with various cellular structures and proteins, as well as autophosphorylation and proteolytic cleavage of their C-terminal regulatory domains influence CK1 kinase activity. Mammalian CK1 isoforms phosphorylate many different substrates among them key regulatory proteins involved in the control of cell differentiation, proliferation, chromosome segregation and circadian rhythms. Deregulation and/or the incidence of mutations in the coding sequence of CK1 isoforms have been linked to neurodegenerative diseases and cancer. This review will summarize our current knowledge about the function and regulation of mammalian CK1 isoforms.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhövelstr. 9, 89075 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Izeradjene K, Douglas L, Delaney AB, Houghton JA. Casein Kinase I Attenuates Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Induced Apoptosis by Regulating the Recruitment of Fas-Associated Death Domain and Procaspase-8 to the Death-Inducing Signaling Complex. Cancer Res 2004; 64:8036-44. [PMID: 15520213 DOI: 10.1158/0008-5472.can-04-0762] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a wide variety of malignant cell lines, in contrast to normal cells, but with considerable heterogeneity in response. Death receptor-mediated apoptosis may be attenuated by a variety of different mechanisms, including phosphorylation-based signaling pathways. We have demonstrated that casein kinase I can attenuate TRAIL-induced apoptosis in human cell lines derived from colon adenocarcinoma (HT29 and HCT8) and pediatric rhabdomyosarcoma (JR1). Inhibition of casein kinase I (CKI) phosphorylation events in HT29, HCT8, and JR1 cells by CKI-7 dramatically increased apoptosis after exposure to TRAIL, in the absence of apoptosis induced by TRAIL treatment alone. CKI inhibition enhanced the recruitment of Fas-associated death domain and procaspase-8 to the death-inducing signaling complex after TRAIL treatment and enhanced cleavage of procaspase-8 at the death-inducing signaling complex. In HT29 cells studied further, rapid cleavage of caspase-8, caspase-3, Bid, and the caspase substrate poly(ADP-ribose) polymerase occurred when CKI-7 and TRAIL were combined. Overexpression of Bcl-2, Bcl-xL, or mutant DN-Fas-associated death domain protected HT29 cells from TRAIL-induced apoptosis in the presence of the CKI inhibitor. In addition, TRAIL combined with CKI-7 promoted the release of cytochrome c, Smac/DIABLO, HtrA2/Omi, and AIF from the mitochondria and down-regulated the expression of XIAP and c-IAP1. Small hairpin RNAs directed against CKI revealed that the CKIalpha isoform contributed significantly to the inhibition of TRAIL-induced apoptosis. These findings suggest that CKIalpha plays an antiapoptotic role through the generation of phosphorylated sites at the level of the death-inducing signaling complex, thereby conferring resistance to caspase cleavage mediated by TRAIL.
Collapse
Affiliation(s)
- Kamel Izeradjene
- Division of Molecular Therapeutics, Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
32
|
Okamura A, Iwata N, Nagata A, Tamekane A, Shimoyama M, Gomyo H, Yakushijin K, Urahama N, Hamaguchi M, Fukui C, Chihara K, Ito M, Matsui T. Involvement of casein kinase Iepsilon in cytokine-induced granulocytic differentiation. Blood 2004; 103:2997-3004. [PMID: 15070676 DOI: 10.1182/blood-2003-08-2768] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two closely related casein kinase I (CKI) isoforms, CKIdelta and CKIepsilon, are ubiquitously expressed in many human tissues, but their specific biologic function remains to be clarified. Here, we provide the first evidence that CKIepsilon is involved in hematopoietic cell differentiation. CKIepsilon, but not CKIdelta, was down-regulated along with human granulocytic differentiation. The specific down-regulation was observed in granulocyte colony-stimulating factor (G-CSF)-induced cell differentiation of murine interleukin-3 (IL-3)-dependent myeloid progenitor 32D cells. Introduction of wild-type (WT)-CKIepsilon into 32D cells inhibited the G-CSF-induced cell differentiation, whereas kinase-negative (KN)-CKIepsilon promoted the differentiation. Neither WT- nor KN-CKIepsilon affected IL-3-dependent cell growth. Moreover, introduction of WT- or KN-CKIdelta did not affect the cytokine-induced cell growth and differentiation. While G-CSF-induced activation of signal transducers and activators of transcription 3 (STAT3) was sustained by KN-CKIepsilon, STAT3 activation was attenuated by WT-CKIepsilon. This may be explained by the fact that the suppressor of cytokine signaling 3 (SOCS3) was stabilized by its physical association with CKIepsilon. Such stabilization by CKIepsilon was also seen in IL-3-induced beta-catenin. The stabilization of downstream components of cytokine and Wnt signaling by CKIepsilon might be critical for integration of several intracellular signaling pathways to a cell-specific biologic response in hematopoietic cell self-renewal.
Collapse
Affiliation(s)
- Atsuo Okamura
- Hematology/Oncology, Department of Medicine, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Diehl D, Lahm H, Wolf E, Bauersachs S. Transcriptome analysis of a human colorectal cancer cell line shows molecular targets of insulin-like growth factor-binding protein-4 overexpression. Int J Cancer 2004; 113:588-99. [PMID: 15455346 DOI: 10.1002/ijc.20580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor II (IGF-II) is expressed commonly in colorectal tumors. IGF-binding protein-4 (IGFBP-4) counteracts the tumor promoting activities of IGF-II by binding this growth factor. We have shown previously that in LS1034 cells, which highly express IGF-II, overexpression of IGFBP-4 led to a strong reduction in proliferation, colony formation and invasive capacity. To investigate the effects of IGFBP-4 at the molecular level we analyzed growth parameters of LS1034 human colon cancer cells vs. cells expressing the murine IGFBP-4 (mIGFBP-4) and used a subtractive cDNA library approach in combination with cDNA array hybridization to detect changes in the mRNA expression profiles. The mRNA levels for several proteins that are known to affect important biological properties of neoplastic cells, such as proteolysis, proliferation and differentiation were altered by overexpression of IGFBP-4. Transcript levels for tumor markers, like the carcinoembryonic antigen-related cell adhesion molecule (CEACAM), were reduced by elevated mIGFBP-4. Changes at the mRNA level were confirmed by Western blotting for CST1 (proteolysis or protease inhibitor), COX-2 (cell motility) and CEACAM5 (tumor marker). Furthermore, the effect of mIGFBP-4 on apoptosis was investigated and no increase of apoptosis could be detected in the IGFBP-4 overexpressing LS1034 cells. Our data indicate that IGFBP-4 is involved in the regulation of gene products that are known or supposed to be important for the pathogenesis of colon cancer cells.
Collapse
Affiliation(s)
- Daniela Diehl
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University, Munich, Germany
| | | | | | | |
Collapse
|
34
|
Beyaert R, Van Loo G, Heyninck K, Vandenabeele P. Signaling to gene activation and cell death by tumor necrosis factor receptors and Fas. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:225-72. [PMID: 11893167 DOI: 10.1016/s0074-7696(02)14007-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor (TNF) receptors and Fas elicit a wide range of biological responses, including cell death, cell proliferation, inflammation, and differentiation. The pleiotropic character of these receptors is reflected at the level of signal transduction. The cytotoxic effects of TNF and Fas result from the activation of an apoptotic/necrotic program. On the other hand, TNF receptors, and under certain conditions also Fas, exert a proinflammatory function that results from the induction of several genes. In this context, the transcription factor nuclear factor-kappa B (NF-kappaB) plays an important role. NF-kappaB is also important for the induction of several antiapoptotic genes, which explains at least partially why several cell types can only be killed by TNF in the presence of transcription or translation inhibitors. It is the balance between proapoptotic and antiapoptotic pathways that determines whether a cell will finally die or proliferate. A third signal transduction pathway that is activated in response to TNF is the mitogen-activated protein kinase cascade, which plays an important role in the modulation of transcriptional gene activation.
Collapse
Affiliation(s)
- Rudi Beyaert
- Department of Molecular Biology, University of Gent-Flanders Interuniversity Institute for Biotechnology, Belgium
| | | | | | | |
Collapse
|
35
|
Abstract
Tumour necrosis factor-alpha (TNF alpha) is a multifunctional cytokine belonging to a family of ligands with an associated family of receptor proteins. The pleiotropic actions of TNF range from proliferative responses such as cell growth and differentiation, to inflammatory effects and the mediation of immune responses, to destructive cellular outcomes such as apoptotic and necrotic cell death mechanisms. Activated TNF receptors mediate the association of distinct adaptor proteins that regulate a variety of signalling processes including kinase or phosphatase activation, lipase stimulation, and protease induction. Moreover, the cytokine regulates the activities of transcription factors, heterotrimeric or monomeric G-proteins and calcium ion homeostasis in order to orchestrate its cellular functions. This review addresses the structural basis of TNF signalling, the pathways employed with their cellular consequences, and focuses on the specific role played by each of the two TNF receptor isotypes, TNFR1 and TNFR2.
Collapse
Affiliation(s)
- David J MacEwan
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
36
|
Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim HRC, Raz A. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem 2002; 277:6852-7. [PMID: 11724777 DOI: 10.1074/jbc.m107668200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Galectin-3, a beta-galactoside-binding protein, is implicated in cell growth, adhesion, differentiation, and tumor progression by interactions with its ligands. Recent studies have revealed that galectin-3 suppresses apoptosis and anoikis that contribute to cell survival during metastatic cascades. Previously, it has been shown that human galectin-3 undergoes post-translational signaling modification of Ser(6) phosphorylation that acts as an "on/off" switch for its sugar-binding capability. We questioned whether galectin-3 phosphorylation is required for its anti-apoptotic function. Serine to alanine (S6A) and serine to glutamic acid (S6E) mutations were produced at the casein kinase I phosphorylation site in galectin-3. The cDNAs were transfected into a breast carcinoma cell line BT-549 that innately expresses no galectin-3. Metabolic labeling revealed that only wild type galectin-3 undergoes phosphorylation in vivo. Expression of Ser(6) mutants of galectin-3 failed to protect cells from cisplatin-induced cell death and poly(ADP-ribose) polymerase from degradation when compared with wild type galectin-3. The non-phosphorylated galectin-3 mutants failed to protect cells from anoikis with G(1) arrest when cells were cultured in suspension. In response to a loss of cell-substrate interactions, only cells expressing wild type galectin-3 down-regulated cyclin A expression and up-regulated cyclin D(1) and cyclin-dependent kinase inhibitors, i.e. p21(WAF1/CIP1) and p27(KIP1) expression levels. These results demonstrate that galectin-3 phosphorylation regulates its anti-apoptotic signaling activity.
Collapse
Affiliation(s)
- Tadashi Yoshii
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, 110 E. Warren Ave., Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
37
|
Frankel SK, Van Linden AA, Riches DW. Heterogeneity in the phosphorylation of human death receptors by p42(mapk/erk2). Biochem Biophys Res Commun 2001; 288:313-20. [PMID: 11606045 DOI: 10.1006/bbrc.2001.5761] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of murine CD120a by p42(mapk/erk2) has been shown to inhibit its ability to initiate apoptosis while preserving signaling events such as NF-kappaB activation. Therefore, we sought to determine if p42(mapk/erk2) was also capable of phosphorylating additional human death receptors within the TNF receptor superfamily. These studies showed that CD120a and DR3 are significantly phosphorylated by p42(mapk/erk2) but Fas, DR4 and DR5 are not. Additionally, we demonstrated that (i) the p42(mapk/erk2)-dependent phosphorylation of CD120a and DR3 occurred on Ser and Thr residues, (ii) p42(mapk/erk2) phosphorylated residues located in the membrane proximal regions but not the death domains of CD120a and DR3, (iii) Ser 253 is a preferred site of phosphorylation on CD120a, and (iv) the p42(mapk/erk2)-dependent phosphorylation of the DR3 cytoplasmic domain occurred exclusively at non-p42/44(mapk/erk2/1) consensus sites. These findings suggest that human death receptors segregate into two groups along lines of phylogeny with respect to Ser/Thr phosphorylation by p42(mapk/erk2).
Collapse
Affiliation(s)
- S K Frankel
- Program in Cell Biology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | |
Collapse
|
38
|
Desagher S, Osen-Sand A, Montessuit S, Magnenat E, Vilbois F, Hochmann A, Journot L, Antonsson B, Martinou JC. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell 2001; 8:601-11. [PMID: 11583622 DOI: 10.1016/s1097-2765(01)00335-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bid plays an essential role in Fas-mediated apoptosis of the so-called type II cells. In these cells, following cleavage by caspase 8, the C-terminal fragment of Bid translocates to mitochondria and triggers the release of apoptogenic factors, thereby inducing cell death. Here we report that Bid is phosphorylated by casein kinase I (CKI) and casein kinase II (CKII). Inhibition of CKI and CKII accelerated Fas-mediated apoptosis and Bid cleavage, whereas hyperactivity of the kinases delayed apoptosis. When phosphorylated, Bid was insensitive to caspase 8 cleavage in vitro. Moreover, a mutant of Bid that cannot be phosphorylated was found to be more toxic than wild-type Bid. Together, these data indicate that phosphorylation of Bid represents a new mechanism whereby cells control apoptosis.
Collapse
|
39
|
Miyakawa Y, Drachman JG, Gallis B, Kaushansky A, Kaushansky K. A structure-function analysis of serine/threonine phosphorylation of the thrombopoietin receptor, c-Mpl. J Biol Chem 2000; 275:32214-9. [PMID: 10918061 DOI: 10.1074/jbc.m005080200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Numerous studies have shown that TPO binding leads to JAK2 kinase activation and Tyr phosphorylation of c-Mpl and several intracellular signaling intermediates, events vital for the biological activity of the hormone. In contrast, virtually nothing is known of the role of Ser or Thr phosphorylation of c-Mpl. By using phosphoamino acid analysis we found that Ser residues of c-Mpl were constitutively phosphorylated in receptor-bearing cells, levels that were increased following exposure of cells to TPO. To identify which residues were modified, and to determine the functional consequences of their phosphorylation, we generated a series of Ser to Ala mutations of a truncated c-Mpl receptor (T69) capable of supporting TPO-induced cell growth. Of the eight Ser within T69 we found that at least four are phosphorylated in TPO-stimulated cells. The mutation of each of these residues alone had minimal effects on TPO-induced proliferation, but substitution of all of the phosphoserine residues with Ala reduced the capacity of the receptor to support cell growth by over 50%. Additionally, the Ser at cytoplasmic position 18 is not detectably phosphorylated. However, the mutation of Ser-18 to Ala nearly abrogates TPO-induced proliferation and co-precipitation of JAK2 with Mpl. This study provides the first systematic analysis of the role of Ser residues in c-Mpl signaling.
Collapse
Affiliation(s)
- Y Miyakawa
- Divisions of Hematology and Cardiology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
40
|
Faundez VV, Kelly RB. The AP-3 complex required for endosomal synaptic vesicle biogenesis is associated with a casein kinase Ialpha-like isoform. Mol Biol Cell 2000; 11:2591-604. [PMID: 10930456 PMCID: PMC14942 DOI: 10.1091/mbc.11.8.2591] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The formation of small vesicles is mediated by cytoplasmic coats the assembly of which is regulated by the activity of GTPases, kinases, and phosphatases. A heterotetrameric AP-3 adaptor complex has been implicated in the formation of synaptic vesicles from PC12 endosomes (). When the small GTPase ARF1 is prevented from hydrolyzing GTP, we can reconstitute AP-3 recruitment to synaptic vesicle membranes in an assembly reaction that requires temperatures above 15 degrees C and the presence of ATP suggesting that an enzymatic step is involved in the coat assembly. We have now found an enzymatic reaction, the phosphorylation of the AP-3 adaptor complex, that is linked with synaptic vesicle coating. Phosphorylation occurs in the beta3 subunit of the complex by a kinase similar to casein kinase 1alpha. The kinase copurifies with neuronal-specific AP-3. In vitro, purified casein kinase I selectively phosphorylates the beta3A and beta3B subunit at its hinge domain. Inhibiting the kinase hinders the recruitment of AP-3 to synaptic vesicles. The same inhibitors that prevent coat assembly in vitro also inhibit the formation of synaptic vesicles in PC12 cells. The data suggest, therefore, that the mechanism of AP-3-mediated vesiculation from neuroendocrine endosomes requires the phosphorylation of the adaptor complex at a step during or after AP-3 recruitment to membranes.
Collapse
Affiliation(s)
- V V Faundez
- Department of Biochemistry and Biophysics, Hormone Research Institute, University of California, San Francisco 94143-0534, USA
| | | |
Collapse
|
41
|
Molander C, Kallin A, Izumi H, Rönnstrand L, Funa K. TNF-alpha suppresses the PDGF beta-receptor kinase. Exp Cell Res 2000; 258:65-71. [PMID: 10912788 DOI: 10.1006/excr.2000.4917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PDGF and TNF-alpha are both known to play important roles in inflammation, albeit frequently by opposing actions. Typically, TNF-alpha can attenuate PDGF beta-receptor signaling. Pretreatment of mouse 3T3 L1 fibroblasts with TNF-alpha greatly diminished their proliferative response to PDGF. However, TNF-alpha affected neither the binding of PDGF-BB to cell surface receptors nor the total amount of PDGF beta-receptor in the cells, but decreased the PDGF-induced in vitro kinase activity of the receptor. The phosphatase inhibitor ortho-vanadate did not prevent this effect. Ortho-phosphate labeling of cells prior to TNF-alpha treatment and PDGF-BB stimulation confirmed a decrease of in vivo phosphorylation of the PDGF beta-receptor. Two-dimensional mapping after tryptic cleavage as well as phosphoamino acid analysis demonstrated a general decrease in phosphorylation of all known tyrosine residues in the PDGF beta-receptor. The exact mechanism for this suppression remains to be clarified.
Collapse
Affiliation(s)
- C Molander
- Department of Anatomy and Cell Biology, Göteborg University, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
42
|
Van Linden AA, Cottin V, Leu C, Riches DW. Phosphorylation of the membrane proximal region of tumor necrosis factor receptor CD120a (p55) at ERK consensus sites. J Biol Chem 2000; 275:6996-7003. [PMID: 10702263 DOI: 10.1074/jbc.275.10.6996] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of tumor necrosis factor-alpha with its receptor CD120a (p55) initiates downstream signaling cascades that include the activation of the mitogen-activated protein kinase (MAPK), p42(mapk/erk2). The membrane proximal region of CD120a (p55) is Ser-, Thr-, and Pro-rich and contains four mitogen-activated protein kinase consensus phosphorylation sites. In recent work, we showed that CD120a (p55) itself is a target of phosphorylation by p42(mapk/erk2), and after phosphorylation, the receptor is redistributed from the cell surface and Golgi complex to intracellular tubular structures associated with elements of the endoplasmic reticulum. The goal of this study was to define the specific amino acid residues that are phosphorylated. Deletional mutagenesis of the cytoplasmic domain of CD120a (p55) indicated that two sites located between residues 207-254 and 250-300 were phosphorylated predominantly on Thr and Ser residues, respectively. Site-directed mutagenesis of Ser and Thr residues contained within the extracellular signal-regulated kinase (ERK) consensus sequences indicated that the preferred residues were Thr-236 and Ser-270. Primary phosphorylation at these sites appeared to enable subsequent phosphorylation at Ser-240 and Ser-244, although the level of phosphorylation of these latter two sites was less than the preferred sites. Through the use of specific ligation of CD120a (p55) alone and mice deficient in CD120a (p55), CD120b (p75), or both receptors, CD120a (p55) was shown to be necessary and sufficient for the induction of kinase activity. These findings thus suggest that the phosphorylation of Thr-236 and Ser-270 within the membrane proximal region of CD120a (p55) are the preferred sites of phosphorylation by p42(mapk/erk2) and may set in motion phosphorylation at other sites.
Collapse
Affiliation(s)
- A A Van Linden
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
43
|
Uh S, Van Linden A, Riches DW. Phosphorylation of 130- and 95-kDa substrates associated with tumor necrosis factor-alpha receptor CD120a (p55). J Biol Chem 2000; 275:793-800. [PMID: 10625609 DOI: 10.1074/jbc.275.2.793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-linking of CD120a (p55), a receptor for tumor necrosis factor alpha (TNFalpha), initiates downstream events, including the activation of protein Ser/Thr kinases. In this report, we have characterized two protein Ser/Thr kinase substrates that are intrinsically associated with CD120a (p55) in mouse macrophages, and we have investigated the mechanism involved in their phosphorylation. pp130 and pp95 were detected by co-immunoprecipitation with CD120a (p55) from lysates of mouse bone marrow-derived macrophages and were phosphorylated on Ser and Thr residues during in vitro kinase assays in the presence of [gamma-(32)P]ATP. The level of phosphorylation of pp130 and pp95 was rapidly and transiently increased in response to TNFalpha in [(32)P]orthophosphate-labeled macrophages, although the level of pp130 protein associated with CD120a (p55) remained unchanged as detected by [(35)S]methionine labeling. In contrast, pp130 and pp95 were efficiently phosphorylated in in vitro kinase assays of CD120a (p55) immunoprecipitates from unstimulated cells, and the level of phosphorylation was rapidly and transiently reduced in response to TNFalpha. Both pp130 and pp95 were sensitive to dephosphorylation with purified protein phosphatase 2A, and okadaic acid, a PP1/PP2A inhibitor, mimicked the ability of TNFalpha to stimulate the phosphorylation of pp130 and pp95 in intact (32)P-labeled macrophages. Collectively, these findings suggest that pp130 and pp95 are constitutively associated with CD120a (p55) and become inducibly phosphorylated in macrophages in response to TNFalpha. We propose that the underlying mechanism of their phosphorylation may involve the inactivation of a cytoplasmic pp130/pp95 Ser/Thr phosphatase.
Collapse
Affiliation(s)
- S Uh
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | |
Collapse
|
44
|
Cottin V, Van Linden A, Riches DW. Phosphorylation of tumor necrosis factor receptor CD120a (p55) by p42(mapk/erk2) induces changes in its subcellular localization. J Biol Chem 1999; 274:32975-87. [PMID: 10551865 DOI: 10.1074/jbc.274.46.32975] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of tumor necrosis factor-alpha (TNFalpha) with its receptor sets in motion downstream signaling events including the activation of members of the mitogen-activated protein kinase (MAPK) family. In this study, we show that p42(mapk/erk2) phosphorylates sequences present within the cytoplasmic domain of CD120a (p55). By using a GST-CD120a-(207-425) fusion protein as substrate, phosphorylation was induced following stimulation of mouse macrophages with TNFalpha, granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and zymosan particles and was blocked by immunodepletion of p42(mapk/erk2) and by specific inhibition of p42(mapk/erk2) activation with PD098059. Transfection of COS-7 cells with CD120a (p55), wild-type p42(mapk/erk2), and constitutively active MEK-1 followed by metabolic labeling with [(32)P]orthophosphate indicated that p42(mapk/erk2) phosphorylated the cytoplasmic domain of CD120a (p55) in intact cells. As a consequence of phosphorylation, CD120a (p55) expression at the plasma membrane and Golgi apparatus was lost and the receptor accumulated in intracellular tubular structures associated with the endoplasmic reticulum. Mutation of the four Ser and Thr ERK consensus phosphorylation sites to Ala residues inhibited the ability of the receptor to redistribute to intracellular tubules in a p42(mapk/erk2)-dependent fashion; whereas mutation of the phosphorylation sites to Asp and Glu residues mimicked the effect of receptor phosphorylation. These findings thus indicate that the phosphorylation of CD120a (p55) alters the subcellular localization of the receptor and may thereby result in changes in its signaling properties.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Line
- Endoplasmic Reticulum/metabolism
- Enzyme Inhibitors/pharmacology
- HeLa Cells
- Humans
- MAP Kinase Kinase 1
- Macrophages/metabolism
- Mice
- Mice, Inbred C3H
- Microscopy, Electron
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mutation
- Phosphorylation
- Protein Binding
- Protein Serine-Threonine Kinases
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- V Cottin
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | |
Collapse
|
45
|
Abstract
Out of the almost 17 members of the TNF superfamily, TNF is probably the most potent inducer of apoptosis. TNF activates both cell-survival and cell-death mechanisms simultaneously. Activation of NF-kB-dependent genes regulates the survival and proliferative effects pf TNF, whereas activation of caspases regulates the apoptotic effects. TNF-induced apoptosis is mediated primarily through the activation of type I receptors, the death domain of which recruits more than a dozen different signaling proteins, which together are considered part of an apoptotic cascade. This cascade does not, however, account for the role of reactive oxygen intermediates, ceramide, phospholipases, and serine proteases which are also implicated in TNF-induced apoptosis. This cascade also does not explain how type II TNF receptors which lack the death domain, induce apoptosis. Nevertheless, this review of apoptosis signaling will be limited to those proteins that makeup the cascade.
Collapse
Affiliation(s)
- P C Rath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
46
|
Bioukar EB, Marricco NC, Zuo D, Larose L. Serine phosphorylation of the ligand-activated beta-platelet-derived growth factor receptor by casein kinase I-gamma2 inhibits the receptor's autophosphorylating activity. J Biol Chem 1999; 274:21457-63. [PMID: 10409710 DOI: 10.1074/jbc.274.30.21457] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-derived growth factor (PDGF) receptors (PDGFRs) are membrane protein-tyrosine kinases that, upon activation, become tyrosine-phosphorylated and associate with numerous SH2 domain-containing molecules involved in mediating signal transduction. In Rat-2 fibroblasts, we have characterized the phosphorylation of the beta-PDGFR following its activation by PDGF. In contrast to tyrosine phosphorylation, which was transient and returned to near basal levels by 30 min, PDGF-stimulated Ser/Thr phosphorylation of the beta-PDGFR was increased by 5 min and remained elevated after 30 min. In vivo, after 5 min of PDGF stimulation, serine phosphorylation of the beta-PDGFR was greatly reduced by CKI-7, a specific inhibitor of casein kinase I (CKI). In vitro, recombinant CKI-gamma2 phosphorylated the ligand-activated beta-PDGFR on serine residues in a CKI-7-sensitive manner and resulted in a marked inhibition of the receptor's autophosphorylating activity. Furthermore, in Rat-2 fibroblasts, expression of hemagglutinin epitope-tagged active CKI-gamma2 resulted in a dramatic decrease in the tyrosine phosphorylation state of the beta-PDGFR in response to PDGF, consistent with receptor inactivation. Our data suggest that upon PDGF stimulation, CKI-gamma2 is activated and/or translocated in proximity to the beta-PDGFR, whereby it phosphorylates the beta-PDGFR on serine residues and negatively regulates its tyrosine kinase activity, leading to receptor inactivation.
Collapse
Affiliation(s)
- E B Bioukar
- Polypeptide Laboratory, Department of Experimental Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
47
|
Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17:331-67. [PMID: 10358762 DOI: 10.1146/annurev.immunol.17.1.331] [Citation(s) in RCA: 957] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Four members of the tumor necrosis factor (TNF) ligand family, TNF-alpha, LT-alpha, LT-beta, and LIGHT, interact with four receptors of the TNF/nerve growth factor family, the p55 TNF receptor (CD120a), the p75 TNF receptor (CD120b), the lymphotoxin beta receptor (LT beta R), and herpes virus entry mediator (HVEM) to control a wide range of innate and adaptive immune response functions. Of these, the most thoroughly studied are cell death induction and regulation of the inflammatory process. Fas/Apo1 (CD95), a receptor of the TNF receptor family activated by a distinct ligand, induces death in cells through mechanisms shared with CD120a. The last four years have seen a proliferation in knowledge of the proteins participating in the signaling by the TNF system and CD95. The downstream signaling molecules identified so far--caspases, phospholipases, the three known mitogen activated protein (MAP) kinase pathways, and the NF-kappa B activation cascade--mediate the effects of other inducers as well. However, the molecules that initiate these signaling events, including the death domain- and TNF receptor associated factor (TRAF) domain-containing adapter proteins and the signaling enzymes associated with them, are largely unique to the TNF/nerve growth factor receptor family.
Collapse
Affiliation(s)
- D Wallach
- Department of Biological Chemistry, Weizmann Institute, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
48
|
Watts AD, Hunt NH, Wanigasekara Y, Bloomfield G, Wallach D, Roufogalis BD, Chaudhri G. A casein kinase I motif present in the cytoplasmic domain of members of the tumour necrosis factor ligand family is implicated in 'reverse signalling'. EMBO J 1999; 18:2119-26. [PMID: 10205166 PMCID: PMC1171296 DOI: 10.1093/emboj/18.8.2119] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have identified a putative signalling feature of the cytoplasmic domains of the tumour necrosis factor (TNF) family members based on available amino acid sequence data. A casein kinase I (CKI) consensus sequence is conserved in the cytoplasmic domain of six of 15 members of the type II integral membrane TNF ligand family. We examined the phosphorylation state of transmembrane tumour necrosis factor-alpha (mTNF) with [32P]orthophosphate labelling and in vitro kinase assays, in lipopolysaccharide-stimulated RAW264.7 cells. A dimeric form of the type I soluble TNF receptor (sTNFR) was found to dephosphorylate mTNF. This effect could be prevented by treatment with phosphatase inhibitors. Recombinant CKI was able to phosphorylate mTNF that had been dephosphorylated by sTNFR ligation in vivo, and this was less effective if phosphatase inhibitors had been used to prevent mTNF dephosphorylation. A mutated form of mTNF, lacking the CKI recognition site, cannot be phosphorylated by the enzyme. Binding of sTNFR to mTNF induced an increase in intracellular calcium levels in RAW264.7 cells, implying the presence of an associated signalling pathway. We predict that this CKI motif is phosphorylated in other TNF ligand members, and that it represents a new insight into the mechanism of 'reverse signalling' in this cytokine family.
Collapse
Affiliation(s)
- A D Watts
- Departments of Pathology, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Pulgar V, Marin O, Meggio F, Allende CC, Allende JE, Pinna LA. Optimal sequences for non-phosphate-directed phosphorylation by protein kinase CK1 (casein kinase-1)--a re-evaluation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:520-6. [PMID: 10095790 DOI: 10.1046/j.1432-1327.1999.00195.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A variety of synthetic peptides derived from either the inhibitor-2 (I-2) phosphoacceptor sites or the optimal sequences selected in an oriented peptide library have been compared for their susceptibility to phosphorylation by protein kinase CK1 (also termed casein kinase-1). The I-2-derived peptides are by far preferred over the library peptides by both rat liver CK1 (and by the alpha/beta, gamma and delta/epsilon isoforms immunoprecipitated from it) and recombinant Xenopus laevis CK1 alpha. The superiority of the I-2-derived peptides over the library ones is reflected by Vmax values one to two orders of magnitude higher while the Km values are comparable. Individual substitutions of any of the aspartic acids with alanine in the I-2-derived peptide RRKHAAIGDDDDAYSITA is detrimental, producing both a fall in Vmax and an increase in Km which are more pronounced at position n -3, but also quite significant at positions n -4, n -5 and, to a lesser extent, n -6. The unfavourable effect of these substitutions is more evident with rat liver CK1 than with recombinant Xenopus laevis CK1 alpha. The chimeric peptide IGDDDDAY-S-IIIFFA, resulting from the combination of the N-terminal acidic sequence of the I-2 (Ser86) site and the C-terminal hydrophobic cluster selected in the library peptides (MAEFDTG-S-IIIFFAKKK and MAYYDAA-S-IIIFFAKKK) is phosphorylated as efficiently as the I-2-derived peptide in terms of both Km and Vmax. These combined data strongly support the conclusion that, at variance with the optimal sequences selected in the library, optimal non-phosphate-directed phosphorylation of peptide substrates by CK1 critically relies on the presence of a cluster of acidic residues (preferably aspartic acid) upstream from position n -2, while the highly hydrophobic region downstream from serine selected in the library appears to be dispensable. The reason for these discrepancies remains unclear. The possibility that the library data are biased by the invariant elements forming its scaffold (MA-x-x-x-x-x-SI-x-x-x-x-AKKK) would be consistent with the observation that the library-selected peptides, despite their low Km values, fail to compete against the phosphorylation of protein and peptide substrates by CK1, suggesting that they bind to elements partially distinct from those responsible for substrate recognition.
Collapse
Affiliation(s)
- V Pulgar
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | | | | | | | | | | |
Collapse
|
50
|
Gross SD, Anderson RA. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 1998; 10:699-711. [PMID: 9884021 DOI: 10.1016/s0898-6568(98)00042-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The casein kinase I family of serine/threonine protein kinases is highly conserved from yeast to humans. Until only recently, both the function and regulation of these enzymes remained poorly uncharacterised in that they appeared to be constitutively active and were capable of phosphorylating an untold number of other proteins. While relatively little was known regarding the exact function of the higher eukaryotic isoforms, the casein kinase I (CKI) isoforms from yeast have been genetically linked to vesicular trafficking, DNA repair, cell cycle progression and cytokinesis. All five S. cerevisiae isoforms are known to be associated with discrete cellular compartments and this localization has been shown to be absolutely essential for their respective functions. New evidence now suggests that the CKI isoforms in more complex systems also exhibit non-homogeneous subcellular distributions that may prove vital to defining the function and regulation of these enzymes. In particular, CKIalpha, the most-characterized vertebrate isoform, is associated with cytosolic vesicles, the mitotic spindle and structures within the nucleus. Functions associated with these localizations coincide with those previously reported in yeast, suggesting a conservation of function. Other reports have indicated that each of the remaining CKI isoforms have the capacity to make associations with components of several signal transduction pathways, thereby channeling CKI function toward specific regulatory events. This review will examine what is now known about the higher eukaryotic CKI family members from the perspective localization as a means of gaining a better understanding of the function and regulation of these kinases.
Collapse
Affiliation(s)
- S D Gross
- Department of Pharmacology, Howard Hughes Medical Institute, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|