1
|
Mottarlini F, Miglioranza P, Rizzi B, Taddini S, Parolaro S, Caprioli D, Ciccocioppo R, Caffino L, Fumagalli F. Repeated cocaine exposure and prolonged withdrawal induce spatial memory impairment and dysregulate the glutamatergic synapse composition in the dorsal hippocampus of male rats. Neuropharmacology 2025; 273:110453. [PMID: 40187639 DOI: 10.1016/j.neuropharm.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Adolescents are particularly susceptible to various forms of gratification, among which psychostimulants. During adolescence the hippocampus, a brain area relevant to spatial memory domain, undergoes maturational processes, such as structural and molecular reorganization of the excitatory synapses. Our goal was to reveal putatively enduring spatial memory deficits and molecular correlates in male rats exposed to repeated cocaine after a period of withdrawal. Towards this goal, adolescent Sprague-Dawley male rats were exposed to chronic cocaine treatment (5 mg/kg/day, subcutaneously) for 15 days and, after 2 weeks of withdrawal, were subjected to spatial order object recognition (SOOR) test, a memory task based on the rat's ability to recognize objects displacement. Next, we investigated subcellular specific expression of markers of the glutamate synapse in the dorsal hippocampus. Our findings show that withdrawal from repeated cocaine exposure during adolescence is associated with spatial memory impairment. Such deficit was correlated to a reduced expression and retention of NMDA receptor subunits, GluN1, GluN2A and GluN2B, at both synaptic and extra-synaptic sites, an effect indicative of impaired NMDA receptor trafficking. Analysis of endocytosis markers (Rab family of monomeric GTPase) revealed that cocaine-withdrawn rats favor the degradative pathway (Rab7-Rab9) over the recycling pathway (Rab11). In contrast, saline-treated rats primarily activate the recycling pathway. Our findings, mislocalization of glutamatergic receptors together with sorting of NMDA receptor towards degradation, rather than recycling, may contribute to the understanding of the mechanisms underlying the spatial memory deficits in male rats with an adolescent history of cocaine.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Paolo Miglioranza
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy; School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Sofia Taddini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Susanna Parolaro
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniele Caprioli
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy.
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
Wang L, Minocha T, Das BK, Kunika MD, Kannan A, Gao L, Mohan S, Xing W, Varughese KI, Zhao H. FAM98 Family Proteins Play Distinct Roles in Osteoclastogenesis and Bone Resorption. BIOLOGY 2025; 14:45. [PMID: 39857276 PMCID: PMC11762708 DOI: 10.3390/biology14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
There are three FAM98 family proteins (FAM98A/B/C) in humans and mice. Their physiological functions remain largely unknown. We have previously reported that Fam98a interacts with Plekhm1 in murine osteoclasts and functions in lysosome trafficking/secretion and bone resorption in osteoclasts in vitro. In this study, we found that all three Fam98 genes were expressed in precursor and mature osteoclasts. While the knockdown of Fam98c by a specific short-hairpin RNA (shRNA) in osteoclast precursors attenuated osteoclastogenesis, depletion of Fam98b by an shRNA specifically disrupted osteoclast lysosome trafficking and bone resorption with phenotypes similar to Fam98a shRNA-knockdown in our previous study. Loss of Fam98a in myeloid osteoclast precursors was dispensable for trabecular and cortical bone mass in mice, as well as osteoclastogenesis/bone resorption in vitro, possibly due to compensation by increased Fam98b expression in Fam98a-null osteoclasts. These findings indicate that the three Fam98 proteins play distinct roles in osteoclastogenesis and osteoclast function and need further investigation in future studies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedics, The Third People’s Hospital of Hefei, Third Clinical College, Anhui Medical University, Hefei 230032, China;
| | - Tarun Minocha
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Bhaba K. Das
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Mikaela D. Kunika
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Aarthi Kannan
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Ling Gao
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
- Department of Dermatology, University of California-Irvine, Irvine, CA 92617, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (S.M.); (W.X.)
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (S.M.); (W.X.)
| | - Kottayil I. Varughese
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Haibo Zhao
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| |
Collapse
|
3
|
Kovács KD, Visnovitz T, Gerecsei T, Peter B, Kurunczi S, Koncz A, Németh K, Lenzinger D, Vukman KV, Balogh A, Rajmon I, Lőrincz P, Székács I, Buzás EI, Horvath R. Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy. J Extracell Vesicles 2023; 12:e12388. [PMID: 38032323 PMCID: PMC10688506 DOI: 10.1002/jev2.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have attracted substantial interest in biomedicine. With progress in the field, we have an increasing understanding of cellular responses to EVs. In this Technical Report, we describe the direct nanoinjection of EVs into the cytoplasm of single cells of different cell lines. By using robotic fluidic force microscopy (robotic FluidFM), nanoinjection of GFP positive EVs and EV-like particles into single live HeLa, H9c2, MDA-MB-231 and LCLC-103H cells proved to be feasible. This injection platform offered the advantage of high cell selectivity and efficiency. The nanoinjected EVs were initially localized in concentrated spot-like regions within the cytoplasm. Later, they were transported towards the periphery of the cells. Based on our proof-of-principle data, robotic FluidFM is suitable for targeting single living cells by EVs and may lead to information about intracellular EV cargo delivery at a single-cell level.
Collapse
Affiliation(s)
- Kinga Dóra Kovács
- Nanobiosensorics LaboratoryInstitute of Technical Physics and Materials Science, HUN‐REN Centre for Energy ResearchBudapestHungary
- Department of Biological PhysicsEötvös UniversityBudapestHungary
| | - Tamás Visnovitz
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- Department of Plant Physiology and Molecular Plant BiologyEötvös Loránd UniversityBudapestHungary
| | - Tamás Gerecsei
- Nanobiosensorics LaboratoryInstitute of Technical Physics and Materials Science, HUN‐REN Centre for Energy ResearchBudapestHungary
| | - Beatrix Peter
- Nanobiosensorics LaboratoryInstitute of Technical Physics and Materials Science, HUN‐REN Centre for Energy ResearchBudapestHungary
| | - Sándor Kurunczi
- Nanobiosensorics LaboratoryInstitute of Technical Physics and Materials Science, HUN‐REN Centre for Energy ResearchBudapestHungary
| | - Anna Koncz
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupBudapestHungary
| | - Krisztina Németh
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupBudapestHungary
| | - Dorina Lenzinger
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Krisztina V. Vukman
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Anna Balogh
- Nanobiosensorics LaboratoryInstitute of Technical Physics and Materials Science, HUN‐REN Centre for Energy ResearchBudapestHungary
| | - Imola Rajmon
- Nanobiosensorics LaboratoryInstitute of Technical Physics and Materials Science, HUN‐REN Centre for Energy ResearchBudapestHungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | - Inna Székács
- Nanobiosensorics LaboratoryInstitute of Technical Physics and Materials Science, HUN‐REN Centre for Energy ResearchBudapestHungary
| | - Edit I. Buzás
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupBudapestHungary
| | - Robert Horvath
- Nanobiosensorics LaboratoryInstitute of Technical Physics and Materials Science, HUN‐REN Centre for Energy ResearchBudapestHungary
| |
Collapse
|
4
|
Choi J, DiMaio D. Noncanonical Rab9a action supports retromer-mediated endosomal exit of human papillomavirus during virus entry. PLoS Pathog 2023; 19:e1011648. [PMID: 37703297 PMCID: PMC10519607 DOI: 10.1371/journal.ppat.1011648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/25/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Rab GTPases play key roles in controlling intracellular vesicular transport. GTP-bound Rab proteins support vesicle trafficking. Here, we report that, unlike cellular protein cargos, retromer-mediated delivery of human papillomaviruses (HPV) into the retrograde transport pathway during virus entry is inhibited by Rab9a in its GTP-bound form. Knockdown of Rab9a inhibits HPV entry by modulating the HPV-retromer interaction and impairing retromer-mediated endosome-to-Golgi transport of the incoming virus, resulting in the accumulation of HPV in the endosome. Rab9a is in proximity to HPV as early as 3.5 h post-infection, prior to the Rab7-HPV interaction, and HPV displays increased association with retromer in Rab9a knockdown cells, even in the presence of dominant negative Rab7. Thus, Rab9a can regulate HPV-retromer association independently of Rab7. Surprisingly, excess GTP-Rab9a impairs HPV entry, whereas excess GDP-Rab9a reduces association between L2 and Rab9a and stimulates entry. These findings reveal that HPV and cellular proteins utilize the Rab9a host trafficking machinery in distinct ways during intracellular trafficking.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Yale Cancer Center, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
Choi J, DiMaio D. Noncanonical Rab9a action supports endosomal exit of human papillomavirus during virus entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538937. [PMID: 37205481 PMCID: PMC10187250 DOI: 10.1101/2023.05.01.538937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rab GTPases play key roles in controlling intracellular vesicular transport. GTP-bound Rab proteins support vesicle trafficking. Here, we report that, unlike cellular protein cargos, the delivery of human papillomaviruses (HPV) into the retrograde transport pathway during virus entry is inhibited by Rab9a in its GTP-bound form. Knockdown of Rab9a hampers HPV entry by regulating the HPV-retromer interaction and impairing retromer-mediated endosome-to-Golgi transport of the incoming virus, resulting in the accumulation of HPV in the endosome. Rab9a is in proximity to HPV as early as 3.5 h post-infection, prior to the Rab7-HPV interaction. HPV displays increased association with retromer in Rab9a knockdown cells, even in the presence of dominant negative Rab7. Thus, Rab9a can regulate HPV-retromer association independently of Rab7. Surprisingly, excess GTP-Rab9a impairs HPV entry, whereas excess GDP-Rab9a stimulates entry. These findings reveal that HPV employs a trafficking mechanism distinct from that used by cellular proteins.
Collapse
|
6
|
Dysregulation of AMPA Receptor Trafficking and Intracellular Vesicular Sorting in the Prefrontal Cortex of Dopamine Transporter Knock-Out Rats. Biomolecules 2023; 13:biom13030516. [PMID: 36979451 PMCID: PMC10046215 DOI: 10.3390/biom13030516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Dopamine (DA) and glutamate interact, influencing neural excitability and promoting synaptic plasticity. However, little is known regarding the molecular mechanisms underlying this crosstalk. Since perturbation of DA-AMPA receptor interaction might sustain pathological conditions, the major aim of our work was to evaluate the effect of the hyperactive DA system on the AMPA subunit composition, trafficking, and membrane localization in the prefrontal cortex (PFC). Taking advantage of dopamine transporter knock-out (DAT−/−) rats, we found that DA overactivity reduced the translation of cortical AMPA receptors and their localization at both synaptic and extra-synaptic sites through, at least in part, altered intracellular vesicular sorting. Moreover, the reduced expression of AMPA receptor-specific anchoring proteins and structural markers, such as Neuroligin-1 and nCadherin, likely indicate a pattern of synaptic instability. Overall, these data reveal that a condition of hyperdopaminergia markedly alters the homeostatic plasticity of AMPA receptors, suggesting a general destabilization and depotentiation of the AMPA-mediated glutamatergic neurotransmission in the PFC. This effect might be functionally relevant for disorders characterized by elevated dopaminergic activity.
Collapse
|
7
|
Mastrogiacomo R, Trigilio G, Devroye C, Dautan D, Ferretti V, Losi G, Caffino L, Orso G, Marotta R, Maltese F, Vitali E, Piras G, Forgiarini A, Pacinelli G, Lia A, Rothmond DA, Waddington JL, Drago F, Fumagalli F, Luca MAD, Leggio GM, Carmignoto G, Weickert CS, Managò F, Papaleo F. Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Mol Psychiatry 2022; 27:4201-4217. [PMID: 35821415 DOI: 10.1038/s41380-022-01683-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.
Collapse
Affiliation(s)
- Rosa Mastrogiacomo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriella Trigilio
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Céline Devroye
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Daniel Dautan
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Ferretti
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriele Losi
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Roberto Marotta
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Enrica Vitali
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giada Pacinelli
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Annamaria Lia
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Cynthia S Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Francesca Managò
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
8
|
Mavroeidi P, Vetsi M, Dionysopoulou D, Xilouri M. Exosomes in Alpha-Synucleinopathies: Propagators of Pathology or Potential Candidates for Nanotherapeutics? Biomolecules 2022; 12:957. [PMID: 35883513 PMCID: PMC9313025 DOI: 10.3390/biom12070957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
The pathological accumulation of alpha-synuclein governs the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, collectively termed alpha-synucleinopathies. Alpha-synuclein can be released in the extracellular space, partly via exosomes, and this extracellular protein pool may contribute to disease progression by facilitating the spread of pathological alpha-synuclein or activating immune cells. The content of exosomes depends on their origin and includes specific proteins, lipids, functional mRNAs and various non-coding RNAs. Given their ability to mediate intercellular communication via the transport of multilevel information, exosomes are considered to be transporters of toxic agents. Beyond neurons, glial cells also release exosomes, which may contain inflammatory molecules and this glia-to-neuron or neuron-to-glia transmission of exosomal alpha-synuclein may contribute to the propagation of pathology and neuroinflammation throughout the brain. In addition, as their content varies as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection, whereas targeted exosomes may be used as scaffolds to deliver therapeutic agents into the brain. This review summarizes the current knowledge regarding the role of exosomes in the progression of alpha-synuclein-related pathology and their potential use as biomarkers and nanotherapeutics in alpha-synucleinopathies.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (M.V.); (D.D.)
| |
Collapse
|
9
|
Thongboonkerd V, Kanlaya R. The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. Int J Biochem Cell Biol 2022; 149:106262. [PMID: 35787447 DOI: 10.1016/j.biocel.2022.106262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Exosomes are the self-packed nanoscale vesicles (nanovesicles) derived from late endosomes and released from the cells to the extracellular milieu. Exosomal biogenesis is based on endosomal pathway to form the nanovesicles surrounded by membrane originated from plasma membranes of the parental cells. During biogenesis, exosomes selectively encapsulate an array of biomolecules (proteins, nucleic acids, lipids, metabolites, etc.), thereby conveying diverse messages for cell-cell communications. Once released, these exosomal contents trigger signaling and trafficking that play roles in cell growth, development, immune responses, homeostasis, remodeling, etc. Recent advances in exosomal research have provided a wealth of useful information that enhances our knowledge on the roles for exosomes in pathogenic mechanisms of human diseases involving a wide variety of organ systems. In the kidney, exosomes play divergent roles, ranging from pathogenesis to therapeutics, based on their original sources and type of interventions. Herein, we summarize and update the current knowledge on the divergent roles of exosomes involving the pathogenesis, diagnostics, prognostics, and therapeutics in various groups of kidney diseases, including acute kidney injury, immune-mediated kidney diseases (e.g., IgA nephropathy, lupus nephritis, membranous nephropathy, focal segmental glomerulosclerosis), chronic kidney disease (caused by diabetic nephropathy and others), renal cell carcinoma, nephrolithiasis, kidney transplantation and related complications, and polycystic kidney disease. Finally, the future perspectives on research in this area are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Zhang J, Jiang Z, Shi A. Rab GTPases: The principal players in crafting the regulatory landscape of endosomal trafficking. Comput Struct Biotechnol J 2022; 20:4464-4472. [PMID: 36051867 PMCID: PMC9418685 DOI: 10.1016/j.csbj.2022.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
After endocytosis, diverse cargos are sorted into endosomes and directed to various destinations, including extracellular macromolecules, membrane lipids, and membrane proteins. Some cargos are returned to the plasma membrane via endocytic recycling. In contrast, others are delivered to the Golgi apparatus through the retrograde pathway, while the rest are transported to late endosomes and eventually to lysosomes for degradation. Rab GTPases are major regulators that ensure cargos are delivered to their proper destinations. Rabs are localized to distinct endosomes and play predominant roles in membrane budding, vesicle formation and motility, vesicle tethering, and vesicle fusion by recruiting effectors. The cascades between Rabs via shared effectors or the recruitment of Rab activators provide an additional layer of spatiotemporal regulation of endocytic trafficking. Notably, several recent studies have indicated that disorders of Rab-mediated endocytic transports are closely associated with diseases such as immunodeficiency, cancer, and neurological disorders.
Collapse
|
11
|
Straka T, Schröder C, Roos A, Kollipara L, Sickmann A, Williams MPI, Hafner M, Khan MM, Rudolf R. Regulatory Function of Sympathetic Innervation on the Endo/Lysosomal Trafficking of Acetylcholine Receptor. Front Physiol 2021; 12:626707. [PMID: 33776791 PMCID: PMC7991846 DOI: 10.3389/fphys.2021.626707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Recent studies have demonstrated that neuromuscular junctions are co-innervated by sympathetic neurons. This co-innervation has been shown to be crucial for neuromuscular junction morphology and functional maintenance. To improve our understanding of how sympathetic innervation affects nerve–muscle synapse homeostasis, we here used in vivo imaging, proteomic, biochemical, and microscopic approaches to compare normal and sympathectomized mouse hindlimb muscles. Live confocal microscopy revealed reduced fiber diameters, enhanced acetylcholine receptor turnover, and increased amounts of endo/lysosomal acetylcholine-receptor-bearing vesicles. Proteomics analysis of sympathectomized skeletal muscles showed that besides massive changes in mitochondrial, sarcomeric, and ribosomal proteins, the relative abundance of vesicular trafficking markers was affected by sympathectomy. Immunofluorescence and Western blot approaches corroborated these findings and, in addition, suggested local upregulation and enrichment of endo/lysosomal progression and autophagy markers, Rab 7 and p62, at the sarcomeric regions of muscle fibers and neuromuscular junctions. In summary, these data give novel insights into the relevance of sympathetic innervation for the homeostasis of muscle and neuromuscular junctions. They are consistent with an upregulation of endocytic and autophagic trafficking at the whole muscle level and at the neuromuscular junction.
Collapse
Affiliation(s)
- Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Charlotte Schröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Muzamil Majid Khan
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Liu Y, Wang X, Zhang Z, Xiao B, An B, Zhang J. The overexpression of Rab9 promotes tumor progression regulated by XBP1 in breast cancer. Onco Targets Ther 2019; 12:1815-1824. [PMID: 30881034 PMCID: PMC6404677 DOI: 10.2147/ott.s183748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes and is involved in the recycling of mannose-6-phosphate receptors (MPRs). Materials and methods To determine new treatment strategies for breast cancer and to elucidate the mechanism underlying the phenomenon, we investigated the effects of Rab9 in the human breast cancer cell lines MCF7 and MDA-MB-231. Results We observed that knockdown of Rab9 inhibited the survival and proliferation of MCF7 and MDA-MB-231 cells, whereas Rab9 overexpression facilitated cell survival and proliferation by inducing or suppressing apoptosis. These results were further confirmed by the Bax/Bcl-2 ratio in affected MCF7 and MDA-MB-231 cells, which demonstrated whether the mitochondrial apoptotic pathway was triggered. Furthermore, the AKT/PI3K pathway is implicated in cell growth and survival and Rab9 changed the expression and phosphorylation of PI3K signaling pathway members. XBP1 is a key regulator of Rab9 and further confirmed that Rab9 play important roles in breast cancer tumorigenesis. Conclusion These data suggest that Rab9 is a good candidate for a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yansong Liu
- Breast Department, Shandong Cancer Hospital, Affiliated to Shandong University, Shandong, China,
| | - Xin Wang
- Breast Department, Yinan Country People's Hospital, Shandong, China
| | - Zhonghua Zhang
- Breast Department, Dongping Country People's Hospital, Shandong, China
| | - Bin Xiao
- Breast Department, Shanxian Hygeia Hospital, Shandong, China
| | - Baoming An
- Breast Department, Wulian Country People's Hospital, Shandong, China
| | - Jun Zhang
- Breast Department, Zhangqiu Hospital of Chinese Medicine, Shandong, China
| |
Collapse
|
13
|
Mohapatra G, Gaur P, Mujagond P, Singh M, Rana S, Pratap S, Kaur N, Verma S, Krishnan V, Singh N, Srikanth CV. A SUMOylation-dependent switch of RAB7 governs intracellular life and pathogenesis of Salmonella Typhimurium. J Cell Sci 2019; 132:jcs.222612. [PMID: 30510112 DOI: 10.1242/jcs.222612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
Salmonella Typhimurium is an intracellular pathogen that causes gastroenteritis in humans. Aided by a battery of effector proteins, S. Typhimurium resides intracellularly in a specialized vesicle, called the Salmonella-containing vacuole (SCV) that utilizes the host endocytic vesicular transport pathway (VTP). Here, we probed the possible role of SUMOylation, a post-translation modification pathway, in SCV biology. Proteome analysis by complex mass-spectrometry (MS/MS) revealed a dramatically altered SUMO-proteome (SUMOylome) in S. Typhimurium-infected cells. RAB7, a component of VTP, was key among several crucial proteins identified in our study. Detailed MS/MS assays, in vitro SUMOylation assays and structural docking analysis revealed SUMOylation of RAB7 (RAB7A) specifically at lysine 175. A SUMOylation-deficient RAB7 mutant (RAB7K175R) displayed longer half-life, was beneficial to SCV dynamics and functionally deficient. Collectively, the data revealed that RAB7 SUMOylation blockade by S. Typhimurium ensures availability of long-lived but functionally compromised RAB7, which was beneficial to the pathogen. Overall, this SUMOylation-dependent switch of RAB7 controlled by S. Typhimurium is an unexpected mode of VTP pathway regulation, and unveils a mechanism of broad interest well beyond Salmonella-host crosstalk. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gayatree Mohapatra
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India.,Manipal Acadamy of Higher Education, Manipal, Karnataka 576104, India
| | - Preksha Gaur
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - Prabhakar Mujagond
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - Mukesh Singh
- Pediatric Biology Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO box #04, Faridabad - 121001 Haryana, India
| | - Sarika Rana
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India.,Manipal Acadamy of Higher Education, Manipal, Karnataka 576104, India
| | - Shivendra Pratap
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - Navneet Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Smriti Verma
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Building 114, 16th Street, Charlestown, MA 02129, USA
| | - Vengadesan Krishnan
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - Nirpendra Singh
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| | - C V Srikanth
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001 Haryana (NCR Delhi), India
| |
Collapse
|
14
|
Jayson CBK, Arlt H, Fischer AW, Lai ZW, Farese RV, Walther TC. Rab18 is not necessary for lipid droplet biogenesis or turnover in human mammary carcinoma cells. Mol Biol Cell 2018; 29:2045-2054. [PMID: 29949452 PMCID: PMC6232964 DOI: 10.1091/mbc.e18-05-0282] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rab GTPases recruit peripheral membrane proteins and can define organelle identity. Rab18 localizes to the endoplasmic reticulum (ER) but also to lipid droplets (LDs), where it has been implicated in effector protein recruitment and in defining LD identity. Here, we studied Rab18 localization and function in a human mammary carcinoma cell line. Rab18 localized to the ER and to LD membranes on LD induction, with the latter depending on the Rab18 activation state. In cells lacking Rab18, LDs were modestly reduced in size and numbers, but we found little evidence for Rab18 function in LD formation, LD turnover on cell starvation, or the targeting of several proteins to LDs. We conclude that Rab18 is not a general, necessary component of the protein machinery involved in LD biogenesis or turnover.
Collapse
Affiliation(s)
- Christina B K Jayson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Henning Arlt
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Alexander W Fischer
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115.,Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, DE-20246 Hamburg, Germany
| | - Zon Weng Lai
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115.,Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115.,Broad Institute of MIT and Harvard, Cambridge, MA 02142.,Howard Hughes Medical Institute, Boston, MA 02115
| |
Collapse
|
15
|
Sedlyarov V, Eichner R, Girardi E, Essletzbichler P, Goldmann U, Nunes-Hasler P, Srndic I, Moskovskich A, Heinz LX, Kartnig F, Bigenzahn JW, Rebsamen M, Kovarik P, Demaurex N, Superti-Furga G. The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host Microbe 2018; 23:766-774.e5. [PMID: 29779931 PMCID: PMC6002608 DOI: 10.1016/j.chom.2018.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/14/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Macrophages represent the first line of immune defense against pathogens, and phagosome acidification is a necessary step in pathogen clearance. Here, we identified the bicarbonate transporter SLC4A7, which is strongly induced upon macrophage differentiation, as critical for phagosome acidification. Loss of SLC4A7 reduced acidification of phagocytosed beads or bacteria and impaired the intracellular microbicidal capacity in human macrophage cell lines. The phenotype was rescued by wild-type SLC4A7, but not by SLC4A7 mutants, affecting transport capacity or cell surface localization. Loss of SLC4A7 resulted in increased cytoplasmic acidification during phagocytosis, suggesting that SLC4A7-mediated, bicarbonate-driven maintenance of cytoplasmic pH is necessary for phagosome acidification. Altogether, we identify SLC4A7 and bicarbonate-driven cytoplasmic pH homeostasis as an important element of phagocytosis and the associated microbicidal functions in macrophages.
Collapse
Affiliation(s)
- Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ruth Eichner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Ismet Srndic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Anna Moskovskich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
16
|
Pham CD, Smith CE, Hu Y, Hu JCC, Simmer JP, Chun YHP. Endocytosis and Enamel Formation. Front Physiol 2017; 8:529. [PMID: 28824442 PMCID: PMC5534449 DOI: 10.3389/fphys.2017.00529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage) and to reach final mineralization (maturation stage). Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.
Collapse
Affiliation(s)
- Cong-Dat Pham
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| | - Charles E. Smith
- Department of Anatomy and Cell Biology, McGill UniversityMontreal, QC, Canada
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yong-Hee P. Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| |
Collapse
|
17
|
Abstract
Clearing misfolded proteins from the cytoplasm is essential to maintain cellular homeostasis. Now, a parallel clearance system is described that uses the deubiquitylase USP19 to enable secretion of misfolded cytoplasmic proteins when conventional proteasomal degradation is compromised. Misfolding-associated protein secretion (MAPS) has important implications for protein quality control and prion-like transmission.
Collapse
|
18
|
Kucera A, Bakke O, Progida C. The multiple roles of Rab9 in the endolysosomal system. Commun Integr Biol 2016; 9:e1204498. [PMID: 27574541 PMCID: PMC4988448 DOI: 10.1080/19420889.2016.1204498] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
The small GTPase Rab9 has long been described as a protein that mediates endosome-to-trans-Golgi Network (TGN) transport, and specifically mannose-6-phospate receptor (MPR) recycling. However, studies have challenged this view by showing that Rab9 also is connected to sorting pathways toward the endolysosomal compartments. We recently characterized the spatio-temporal dynamics of Rab9 and, by using live cell imaging, we showed that it enters the endosomal pathway together with CI-MPR at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. More so, the Rab9 constitutively active mutant, Rab9Q66L, accumulates on late endosomes and promotes carrier formation at the TGN. Here, we discuss our findings in light of previous reports on Rab9 in the retrograde transport pathway.
Collapse
Affiliation(s)
- Ana Kucera
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| |
Collapse
|
19
|
Queiroz RML, Charneau S, Mandacaru SC, Schwämmle V, Lima BD, Roepstorff P, Ricart CAO. Quantitative proteomic and phosphoproteomic analysis of Trypanosoma cruzi amastigogenesis. Mol Cell Proteomics 2014; 13:3457-72. [PMID: 25225356 DOI: 10.1074/mcp.m114.040329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chagas disease is a tropical neglected disease endemic in Latin America caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote, and amastigote. The differentiation from infective trypomastigotes into replicative amastigotes, called amastigogenesis, takes place in vivo inside mammalian host cells after a period of incubation in an acidic phagolysosome. This differentiation process can be mimicked in vitro by incubating tissue-culture-derived trypomastigotes in acidic DMEM. Here we used this well-established differentiation protocol to perform a comprehensive quantitative proteomic and phosphoproteomic analysis of T. cruzi amastigogenesis. Samples from fully differentiated forms and two biologically relevant intermediate time points were Lys-C/trypsin digested, iTRAQ-labeled, and multiplexed. Subsequently, phosphopeptides were enriched using a TiO2 matrix. Non-phosphorylated peptides were fractionated via hydrophilic interaction liquid chromatography prior to LC-MS/MS analysis. LC-MS/MS and bioinformatics procedures were used for protein and phosphopeptide quantitation, identification, and phosphorylation site assignment. We were able to identify regulated proteins and pathways involved in coordinating amastigogenesis. We also observed that a significant proportion of the regulated proteins were membrane proteins. Modulated phosphorylation events coordinated by protein kinases and phosphatases that are part of the signaling cascade induced by incubation in acidic medium were also evinced. To our knowledge, this work is the most comprehensive quantitative proteomics study of T. cruzi amastigogenesis, and these data will serve as a trustworthy basis for future studies, and possibly for new potential drug targets.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil; §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sébastien Charneau
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Samuel C Mandacaru
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Veit Schwämmle
- §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Beatriz D Lima
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Peter Roepstorff
- §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Carlos A O Ricart
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil;
| |
Collapse
|
20
|
Shivanna V, Kim Y, Chang KO. Endosomal acidification and cathepsin L activity is required for calicivirus replication. Virology 2014; 464-465:287-295. [PMID: 25108379 PMCID: PMC4157107 DOI: 10.1016/j.virol.2014.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/02/2014] [Accepted: 07/16/2014] [Indexed: 11/22/2022]
Abstract
The role of cellular proteases and endosome maturation in the entry of caliciviruses including porcine enteric calicivirus (PEC), murine norovirus (MNV)-1 and feline calicivirus (FCV) were investigated. Treatment with chloroquine or cathepsin L inhibitors, but not cathepsin B inhibitors, significantly reduced the replication of PEC, MNV and FCV. When concentrated PEC, MNV or FCV were incubated with recombinant cathepsin L, the minor capsid protein VP2 of PEC and the major capsid protein VP1 of MNV and FCV were cleaved by the protease based on the Western blot analysis. Confocal microscopy analysis of PEC and MNV-1 showed that viral capsid proteins were retained in the endosomes in the presence of a cathepsin L inhibitor or chloroquine during virus entry. The results of this study suggest the important role of endosome maturation and cathepsin L in the entry of caliciviruses, and cathepsin L as a potential therapeutic target for calicivirus infection. Endosome maturation and/or cathepsin L are important in the replication of caliciviruses. Inhibition of endosome maturation blocked viral entry by retaining viruses in the endosomes. Cathepsin L facilitates the viral escape from endosome by cleaving calicivirus capsid protein.
Collapse
Affiliation(s)
- Vinay Shivanna
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States.
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States.
| |
Collapse
|
21
|
Tam JHK, Seah C, Pasternak SH. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol Brain 2014; 7:54. [PMID: 25085554 PMCID: PMC4237969 DOI: 10.1186/s13041-014-0054-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/23/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cerebral deposition of β-amyloid peptide (Aβ). Aβ is produced by sequential cleavage of the Amyloid Precursor Protein (APP) by β- and γ-secretases. Many studies have demonstrated that the internalization of APP from the cell surface can regulate Aβ production, although the exact organelle in which Aβ is produced remains contentious. A number of recent studies suggest that intracellular trafficking also plays a role in regulating Aβ production, but these pathways are relatively under-studied. The goal of this study was to elucidate the intracellular trafficking of APP, and to examine the site of intracellular APP processing. RESULTS We have tagged APP on its C-terminal cytoplasmic tail with photoactivatable Green Fluorescent Protein (paGFP). By photoactivating APP-paGFP in the Golgi, using the Golgi marker Galactosyltranferase fused to Cyan Fluorescent Protein (GalT-CFP) as a target, we are able to follow a population of nascent APP molecules from the Golgi to downstream compartments identified with compartment markers tagged with red fluorescent protein (mRFP or mCherry); including rab5 (early endosomes) rab9 (late endosomes) and LAMP1 (lysosomes). Because γ-cleavage of APP releases the cytoplasmic tail of APP including the photoactivated GFP, resulting in loss of fluorescence, we are able to visualize the cleavage of APP in these compartments. Using APP-paGFP, we show that APP is rapidly trafficked from the Golgi apparatus to the lysosome; where it is rapidly cleared. Chloroquine and the highly selective γ-secretase inhibitor, L685, 458, cause the accumulation of APP in lysosomes implying that APP is being cleaved by secretases in the lysosome. The Swedish mutation dramatically increases the rate of lysosomal APP processing, which is also inhibited by chloroquine and L685, 458. By knocking down adaptor protein 3 (AP-3; a heterotetrameric protein complex required for trafficking many proteins to the lysosome) using siRNA, we are able to reduce this lysosomal transport. Blocking lysosomal transport of APP reduces Aβ production by more than a third. CONCLUSION These data suggests that AP-3 mediates rapid delivery of APP to lysosomes, and that the lysosome is a likely site of Aβ production.
Collapse
Affiliation(s)
- Joshua HK Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London N6A 5K8, Ontario, Canada
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
| | - Stephen H Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
- Department of Clinical Neurological Sciences, London N6A 5K8, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London N6A 5K8, Ontario, Canada
| |
Collapse
|
22
|
Ali KS, Rees RC, Terrell-Nield C, Ali SA. Virulence loss and amastigote transformation failure determine host cell responses to Leishmania mexicana. Parasite Immunol 2014; 35:441-56. [PMID: 23869911 DOI: 10.1111/pim.12056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022]
Abstract
The effect of alterations in virulence and transformation by long-term in vitro culture of Leishmania mexicana promastigotes on infectivity and immune responses was investigated. Fresh parasite cultures harvested from Balb/c mice were passaged 20 times in vitro. Infectivity was decreased and was completely avirulent after 20 passages. The qPCR results showed a down-regulation of GP63, LPG2, CPC, CPB2, CPB2.8, CHT1, LACK and LDCEN3 genes after passage seven concomitant with a reduced and absence of infectivity by passages seven and 20, respectively. Parasites at passages one and 20 are referred to as virulent and avirulent, respectively. The growth of avirulent and virulent parasite was affected by conditioned media derived from macrophages or monocytes infected with parasites for 2 h. Giemsa staining showed the failure of avirulent but not virulent parasites to transform to the amastigote stage in infected host cells with both virulent and avirulent modulating the expression of CCL-22, Tgad51, Cox2, IL-1, IL-10, TGF-β, TNF-α, Rab7, Rab9 and A2 genes; virulent but not avirulent L. mexicana significantly up-regulated Th2-associated cytokines, but down-regulated Rab7 and Rab9 gene expression. In conclusion, a model for L. mexicana is reported, which is of potential value in studying host-parasite interaction.
Collapse
Affiliation(s)
- K S Ali
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | | | | |
Collapse
|
23
|
Ganem MB, De Marzi MC, Fernández-Lynch MJ, Jancic C, Vermeulen M, Geffner J, Mariuzza RA, Fernández MM, Malchiodi EL. Uptake and intracellular trafficking of superantigens in dendritic cells. PLoS One 2013; 8:e66244. [PMID: 23799083 PMCID: PMC3682983 DOI: 10.1371/journal.pone.0066244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Bacterial superantigens (SAgs) are exotoxins produced mainly by Staphylococcus aureus and Streptococcus pyogenes that can cause toxic shock syndrome (TSS). According to current paradigm, SAgs interact directly and simultaneously with T cell receptor (TCR) on the T cell and MHC class II (MHC-II) on the antigen-presenting cell (APC), thereby circumventing intracellular processing to trigger T cell activation. Dendritic cells (DCs) are professional APCs that coat nearly all body surfaces and are the most probable candidate to interact with SAgs. We demonstrate that SAgs are taken up by mouse DCs without triggering DC maturation. SAgs were found in intracellular acidic compartment of DCs as biologically active molecules. Moreover, SAgs co-localized with EEA1, RAB-7 and LAMP-2, at different times, and were then recycled to the cell membrane. DCs loaded with SAgs are capable of triggering in vitro lymphocyte proliferation and, injected into mice, stimulate T cells bearing the proper TCR in draining lymph nodes. Transportation and trafficking of SAgs in DCs might increase the local concentration of these exotoxins where they will produce the highest effect by promoting their encounter with both MHC-II and TCR in lymph nodes, and may explain how just a few SAg molecules can induce the severe pathology associated with TSS.
Collapse
Affiliation(s)
- María B. Ganem
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio C. De Marzi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - María J. Fernández-Lynch
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Jancic
- Departamento de Inmunología, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Departamento de Inmunología, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jorge Geffner
- Departamento de Inmunología, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Roy A. Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland, United States of America
| | - Marisa M. Fernández
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emilio L. Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
24
|
Snyder JC, Rochelle LK, Lyerly HK, Caron MG, Barak LS. Constitutive internalization of the leucine-rich G protein-coupled receptor-5 (LGR5) to the trans-Golgi network. J Biol Chem 2013; 288:10286-97. [PMID: 23439653 DOI: 10.1074/jbc.m112.447540] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LGR5 is a Wnt pathway associated G protein-coupled receptor (GPCR) that serves as a molecular determinant of stem cells in numerous tissues including the intestine, stomach, hair follicle, eye, and mammary gland. Despite its importance as a marker for this critical niche, little is known about LGR5 signaling nor the biochemical mechanisms and receptor determinants that regulate LGR5 membrane expression and intracellular trafficking. Most importantly, in cells LGR5 is predominantly intracellular, yet the mechanisms underlying this behavior have not been determined. In this work we elucidate a precise trafficking program for LGR5 and identify the motif at its C terminus that is responsible for the observed constitutive internalization. We show that this process is dependent upon dynamin GTPase activity and find that wild-type full-length LGR5 rapidly internalizes into EEA1- and Rab5-positive endosomes. However, LGR5 fails to rapidly recycle to the plasmid membrane through Rab4-positive vesicles, as is common for other GPCRs. Rather, internalized LGR5 transits through Rab7- and Rab9-positive vesicles, co-localizes in vesicles with Vps26, a retromer complex component that regulates retrograde trafficking to the trans-Golgi network (TGN) and reaches a steady-state distribution in the TGN within 2 h. Using mutagenesis, particularly of putative phosphorylation sites, we show that the amino acid pair, serine 861 and 864, is the principal C-tail determinant that mediates LGR5 constitutive internalization. The constitutive internalization of LGR5 to the TGN suggests the existence of novel biochemical roles for its Wnt pathway related, but ill defined signaling program.
Collapse
Affiliation(s)
- Joshua C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
25
|
Sindhu M, Saini V, Piplani S, Kumar A. Molecular Dynamics of Rab7::REP1::GGTase-II Ternary Complex and Identification of Their Putative Drug Binding Sites. Indian J Pharm Sci 2013; 75:23-30. [PMID: 23901157 PMCID: PMC3719145 DOI: 10.4103/0250-474x.113534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 11/26/2022] Open
Abstract
The structure-function correlation of membrane proteins have been a difficult task, particularly in context to transient protein complexes. The molecular simulation of ternary complex of Rab7::REP1::GGTase-II was carried out to understand the basic structural events occurring during the prenylation event of Rab proteins, using the software YASARA. The study suggested that the C-terminus of Rab7 has to be in completely extended conformation during prenylation to reach the active site of RabGGTase-II. Also, attempt was made to find putative drug binding sites on the ternary complex of Rab7::REP1::GGTase-II using Q-SiteFinder programme. The comprehensive consensus probe generated by the program revealed a total of 10 major pockets as putative drug binding sites on Rab7::REP:: GGTase-II ternary complex. These pockets were found on REP protein and GGTase protein subunits. The Rab7 was found to be devoid of any putative drug binding sites in the ternary complex. The phylogenetic analysis of 60 Rab proteins of human was carried out using PHYLIP and study indicated the close phylogenetic relationship between Rab7 and Rab9 proteins of human and hence with further in silico study, the present observations can be extrapolated to Rab9 proteins. The study paves a good platform for further experimental verifications of the findings and other in silico studies like identifying the potential drug targets by searching the putative drug binding sites, generating pharmacophoric pattern, searching or constructing suitable ligand and docking studies.
Collapse
Affiliation(s)
- Meenakshi Sindhu
- Centre for Bioinformatics, M. D. University, Rohtak-124 001, India
| | - Vandana Saini
- Centre for Bioinformatics, M. D. University, Rohtak-124 001, India
| | - Sakshi Piplani
- Centre for Bioinformatics, M. D. University, Rohtak-124 001, India
| | - A. Kumar
- Centre for Bioinformatics, M. D. University, Rohtak-124 001, India
| |
Collapse
|
26
|
Humphries WH, Szymanski CJ, Payne CK. Endo-lysosomal vesicles positive for Rab7 and LAMP1 are terminal vesicles for the transport of dextran. PLoS One 2011; 6:e26626. [PMID: 22039519 PMCID: PMC3200357 DOI: 10.1371/journal.pone.0026626] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/29/2011] [Indexed: 12/30/2022] Open
Abstract
The endo-lysosomal pathway is essential for intracellular transport and the degradation of extracellular cargo. The relationship between three populations of endo-lysosomal vesicles--Rab7-positive, LAMP1-positive, and both Rab7- and LAMP1-postive--was probed with fluorescence microscopy and single particle tracking. Of specific interest was determining if these vesicles were intermediate or terminal vesicles in the transport of extracellular cargo. We find that the major organelle in the endo-lysosomal pathway, both in terms of population and cargo transport, is positive for Rab7 and LAMP1. Dextran, a fluid phase cargo, shifts from localization within all three populations of vesicles at 30 minutes and 1 hour to primarily LAMP1- and Rab7/LAMP1-vesicles at longer times. This demonstrates that LAMP1- and Rab7/LAMP1-vesicles are terminal vesicles in the endo-lysosomal pathway. We tested two possible mechanisms for this distribution of cargo, delivery to mannose 6-phosphate receptor (M6PR)-negative vesicles and the fusion dynamics of individual vesicles. We find no correlation with M6PR but do find that Rab7-vesicles undergo significantly fewer fusion events than LAMP1- or Rab7/LAMP1-vesicles suggesting that the distribution of fluid phase cargo is driven by vesicle dynamics.
Collapse
Affiliation(s)
- William H. Humphries
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Craig J. Szymanski
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christine K. Payne
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
27
|
Szymanski CJ, Humphries WH, Payne CK. Single particle tracking as a method to resolve differences in highly colocalized proteins. Analyst 2011; 136:3527-33. [PMID: 21283889 DOI: 10.1039/c0an00855a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single particle tracking fluorescence microscopy was used to study two late endosomal proteins, Rab7 and LAMP1, that appear to be highly colocalized in static fluorescence microscopy images. Imaging these proteins simultaneously reveals that Rab7 and LAMP1 undergo periods of separation within the cell. Single particle tracking carried out during these periods of separation shows that Rab7-vesicles have greater velocities, but undergo less efficient transport than LAMP1-vesicles. This research demonstrates the use of single particle tracking as a tool to resolve functional differences in highly colocalized proteins in intact live cells.
Collapse
Affiliation(s)
- Craig J Szymanski
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
28
|
Humphries WH, Fay NC, Payne CK. Intracellular degradation of low-density lipoprotein probed with two-color fluorescence microscopy. Integr Biol (Camb) 2010; 2:536-44. [PMID: 20852797 DOI: 10.1039/c0ib00035c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intracellular vesicle-mediated degradation of extracellular cargo is an essential cellular function. Using two-color single particle tracking fluorescence microscopy, we have probed the intracellular degradation of low-density lipoprotein (LDL) in living cells. To detect degradation, individual LDL particles were heavily labeled with multiple fluorophores resulting in a quenched fluorescent signal. The degradation of the LDL particle then resulted in an increase in fluorescence. Endocytic vesicles were fluorescently labeled with variants of GFP. We imaged the transient colocalization of LDL with endocytic vesicles while simultaneously measuring the intensity of the LDL particle as an indicator of degradation. These studies demonstrate that late endosomes are active sites of degradation for LDL. Measurement of the time from colocalization with lysosome-associated membrane protein 1 (LAMP1) vesicles to degradation suggests that LAMP1-vesicles initiate the degradative event. Observing degradation as it occurs in living cells makes it possible to describe the complete endocytic pathway of LDL from internalization to degradation. More generally, this research provides a model for the intracellular degradation of extracellular cargo and a method for its study in living cells.
Collapse
Affiliation(s)
- William H Humphries
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, USA
| | | | | |
Collapse
|
29
|
Tesar DB, Björkman PJ. An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G. Curr Opin Struct Biol 2010; 20:226-33. [PMID: 20171874 PMCID: PMC2865255 DOI: 10.1016/j.sbi.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/20/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Recent advances in imaging techniques along with more powerful in vitro and in vivo models of receptor-mediated ligand transport are facilitating advances in our understanding of how cells efficiently direct receptors and their cargo to target destinations within the cytoplasm and at the plasma membrane. Specifically, light and 3D electron microscopy studies examining the trafficking behavior of the neonatal Fc receptor (FcRn), a transport receptor for immunoglobulin G (IgG), have given us new insights into the dynamic interplay between the structural components of the cytosolic trafficking machinery, its protein regulators, and the receptors it directs to various locations within the cell. These studies build upon previous biochemical characterizations of FcRn transport and are allowing us to begin formulation of a more complete model for the intracellular trafficking of receptor-ligand complexes.
Collapse
Affiliation(s)
- Devin B. Tesar
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Pamela J. Björkman
- Division of Biology 114-96 California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| |
Collapse
|
30
|
Abstract
Sphingolipids constitute a biologically active lipid class that is significantly important from both structural and regulatory aspects. The manipulation of sphingolipid metabolism is currently being studied as a novel strategy for cancer therapy. The basics of this therapeutic approach lie in the regulation property of sphingolipids on cellular processes, which are important in a cell's fate, such as cell proliferation, apoptosis, cell cycle arrest, senescence, and inflammation. Furthermore, the mutations in the enzymes catalyzing some specific reactions in the sphingolipid metabolism cause mortal lysosomal storage diseases like Fabry, Gaucher, Niemann-Pick, Farber, Krabbe, and Metachromatic Leukodystrophy. Therefore, the alteration of the sphingolipid metabolic pathway determines the choice between life and death. Understanding the sphingolipid metabolism and regulation is significant for the development of new therapeutic approaches for all sphingolipid-related diseases, as well as for cancer. An important feature of the sphingolipid metabolic pathway is the compartmentalization into endoplasmic reticulum, the Golgi apparatus, lysosome and plasma membrane, and this compartmentalization makes the transport of sphingolipids critical for proper functioning. This paper focuses on the structures, metabolic pathways, localization, transport mechanisms, and diseases of sphingolipids in Saccharomyces cerevisiae and humans, and provides the latest comprehensive information on sphingolipid research.
Collapse
|
31
|
Brunner Y, Schvartz D, Couté Y, Sanchez JC. Proteomics of regulated secretory organelles. MASS SPECTROMETRY REVIEWS 2009; 28:844-867. [PMID: 19301366 DOI: 10.1002/mas.20211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Regulated secretory organelles are important subcellular structures of living cells that allow the release in the extracellular space of crucial compounds, such as hormones and neurotransmitters. Therefore, the regulation of biogenesis, trafficking, and exocytosis of regulated secretory organelles has been intensively studied during the last 30 years. However, due to the large number of different regulated secretory organelles, only a few of them have been specifically characterized. New insights into regulated secretory organelles open crucial perspectives for a better comprehension of the mechanisms that govern cell secretion. The combination of subcellular fractionation, protein separation, and mass spectrometry is also possible to study regulated secretory organelles at the proteome level. In this review, we present different strategies used to isolate regulated secretory organelles, separate their protein content, and identify the proteins by mass spectrometry. The biological significance of regulated secretory organelles-proteomic analysis is discussed as well.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
32
|
Abstract
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Collapse
|
33
|
Gan Z, Ram S, Vaccaro C, Ober RJ, Ward ES. Analyses of the recycling receptor, FcRn, in live cells reveal novel pathways for lysosomal delivery. Traffic 2009; 10:600-14. [PMID: 19192244 PMCID: PMC2813311 DOI: 10.1111/j.1600-0854.2009.00887.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lysosomes play a central role in the degradation of proteins and other macromolecules. The mechanisms by which receptors are transferred to lysosomes for constitutive degradation are poorly understood. We have analyzed the processes that lead to the lysosomal delivery of the Fc receptor, FcRn. These studies provide support for a novel pathway for receptor delivery. Specifically, unlike other receptors that enter intraluminal vesicles in late endosomes, FcRn is transferred from the limiting membrane of such endosomes to lysosomes, and is rapidly internalized into the lysosomal lumen. By contrast, LAMP-1 persists on the limiting membrane. Receptor transfer is mediated by tubular extensions from late endosomes to lysosomes, or by interactions of the two participating organelles in kiss-and-linger-like processes, whereas full fusion is rarely observed. The persistence of FcRn on the late endosomal limiting membrane, together with selective transfer to lysosomes, allows this receptor to undergo recycling or degradation. Consequently, late endosomes have functional plasticity, consistent with the presence of the Rab5 GTPase in discrete domains on these compartments.
Collapse
Affiliation(s)
- Zhuo Gan
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
| | - Sripad Ram
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
| | - Carlos Vaccaro
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
| | - Raimund J. Ober
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
- Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - E. Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
| |
Collapse
|
34
|
Ward ES, Ober RJ. Chapter 4: Multitasking by exploitation of intracellular transport functions the many faces of FcRn. Adv Immunol 2009; 103:77-115. [PMID: 19755184 DOI: 10.1016/s0065-2776(09)03004-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The MHC Class I-related receptor, FcRn, transports antibodies of the immunoglobulin G (IgG) class within and across a diverse array of different cell types. Through this transport, FcRn serves multiple roles throughout adult life that extend well beyond its earlier defined function of transcytosing IgGs from mother to offspring. These roles include the maintenance of IgG levels and the delivery of antigen in the form of immune complexes to degradative compartments within cells. Recent studies have led to significant advances in knowledge of the intracellular trafficking of FcRn and (engineered) IgGs at both the molecular and cellular levels. The engineering of FcRn-IgG (or Fc) interactions to generate antibodies of increased longevity represents an area of active interest, particularly in the light of the expanding use of antibodies in therapy. The strict pH dependence of FcRn-IgG interactions, with binding at pH 6 that becomes essentially undetectable as near neutral pH is approached, is essential for efficient transport. The requirement for retention of low affinity at near neutral pH increases the complexity of engineering antibodies for increased half-life. Conversely, engineered IgGs that have gained significant binding for FcRn at this pH can be potent inhibitors of FcRn that lower endogenous IgG levels and have multiple potential uses as therapeutics. In addition, molecular studies of FcRn-IgG interactions indicate that mice have limitations as preclinical models for FcRn function, primarily due to cross-species differences in FcRn-binding specificity.
Collapse
Affiliation(s)
- E Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
35
|
|
36
|
Chun DK, McEwen JM, Burbea M, Kaplan JM. UNC-108/Rab2 regulates postendocytic trafficking in Caenorhabditis elegans. Mol Biol Cell 2008; 19:2682-95. [PMID: 18434599 DOI: 10.1091/mbc.e07-11-1120] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
After endocytosis, membrane proteins are often sorted between two alternative pathways: a recycling pathway and a degradation pathway. Relatively little is known about how trafficking through these alternative pathways is differentially regulated. Here, we identify UNC-108/Rab2 as a regulator of postendocytic trafficking in both neurons and coelomocytes. Mutations in the Caenorhabditis elegans Rab2 gene unc-108, caused the green fluorescent protein (GFP)-tagged glutamate receptor GLR-1 (GLR-1::GFP) to accumulate in the ventral cord and in neuronal cell bodies. In neuronal cell bodies of unc-108/Rab2 mutants, GLR-1::GFP was found in tubulovesicular structures that colocalized with markers for early and recycling endosomes, including Syntaxin-13 and Rab8. GFP-tagged Syntaxin-13 also accumulated in the ventral cord of unc-108/Rab2 mutants. UNC-108/Rab2 was not required for ubiquitin-mediated sorting of GLR-1::GFP into the multivesicular body (MVB) degradation pathway. Mutations disrupting the MVB pathway and unc-108/Rab2 mutations had additive effects on GLR-1::GFP levels in the ventral cord. In coelomocytes, postendocytic trafficking of the marker Texas Red-bovine serum albumin was delayed. These results demonstrate that UNC-108/Rab2 regulates postendocytic trafficking, most likely at the level of early or recycling endosomes, and that UNC-108/Rab2 and the MVB pathway define alternative postendocytic trafficking mechanisms that operate in parallel. These results define a new function for Rab2 in protein trafficking.
Collapse
Affiliation(s)
- Denise K Chun
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston MA 02114, USA
| | | | | | | |
Collapse
|
37
|
Yu CTR, Li JH, Lee TC, Lin LF. Characterization of cocaine-elicited cell vacuolation: the involvement of calcium/calmodulin in organelle deregulation. J Biomed Sci 2007; 15:215-26. [PMID: 17922255 DOI: 10.1007/s11373-007-9213-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 09/13/2007] [Indexed: 11/30/2022] Open
Abstract
The sizes of organelles are tightly regulated in the cells. However, little is known on how cells maintain the homeostasis of these intracellular compartments. Using cocaine as a model compound, we have characterized the mechanism of deregulated vacuolation in cultured rat liver epithelial Clone 9 cells. The vacuoles were observed as early as 10 min following cocaine treatment. Removal of cocaine led to vacuole degeneration, indicating vacuolation is a reversible process. The vacuoles could devour intracellular materials and the vacuoles originated from late endosome/lysosome as indicated by immunofluorescence studies. Instant calcium influx and calmodulin were required for the initiation of vacuole formation. The unique properties of these late endosome/lysosome-derived vacuoles were further discussed. In summary, cocaine elicited a new type of deregulated vacuole and the involvement of calcium/calmodulin in vacuolation could shed light on prevention or treatment of cocaine-induced cytotoxicity.
Collapse
Affiliation(s)
- Chang-Tze R Yu
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Nantou, 545, Taiwan, ROC
| | | | | | | |
Collapse
|
38
|
Takahashi M, Murate M, Fukuda M, Sato SB, Ohta A, Kobayashi T. Cholesterol controls lipid endocytosis through Rab11. Mol Biol Cell 2007; 18:2667-77. [PMID: 17475773 PMCID: PMC1924824 DOI: 10.1091/mbc.e06-10-0924] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular cholesterol increases when cells reach confluency in Chinese hamster ovary (CHO) cells. We examined the endocytosis of several lipid probes in subconfluent and confluent CHO cells. In subconfluent cells, fluorescent lipid probes including poly(ethylene glycol)derivatized cholesterol, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol, and fluorescent sphingomyelin analogs were internalized to pericentriolar recycling endosomes. This accumulation was not observed in confluent cells. Internalization of fluorescent lactosylceramide was not affected by cell confluency, suggesting that the endocytosis of specific membrane components is affected by cell confluency. The crucial role of cellular cholesterol in cell confluency-dependent endocytosis was suggested by the observation that the fluorescent sphingomyelin was transported to recycling endosomes when cellular cholesterol was depleted in confluent cells. To understand the molecular mechanism(s) of cell confluency- and cholesterol-dependent endocytosis, we examined intracellular distribution of rab small GTPases. Our results indicate that rab11 but not rab4, altered intracellular localization in a cell confluency-associated manner, and this alteration was dependent on cell cholesterol. In addition, the expression of a constitutive active mutant of rab11 changed the endocytic route of lipid probes from early to recycling endosomes. These results thus suggest that cholesterol controls endocytic routes of a subset of membrane lipids through rab11.
Collapse
Affiliation(s)
- Miwa Takahashi
- *Frontier Research System
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Mitsunori Fukuda
- Fukuda Initiative Research Unit, and
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Satoshi B. Sato
- *Frontier Research System
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; and
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihide Kobayashi
- *Frontier Research System
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Institut National de la Santé et de la Recherche Médicale U870, Institut National de la Recherche Agronomique U1235, Institut National des Sciences Appliquées de Lyon, University Lyon 1 and Hospices Civils de Lyon, 69621 Villeurbanne, France
| |
Collapse
|
39
|
Mavrakis M, Lippincott-Schwartz J, Stratakis CA, Bossis I. Depletion of type IA regulatory subunit (RIalpha) of protein kinase A (PKA) in mammalian cells and tissues activates mTOR and causes autophagic deficiency. Hum Mol Genet 2006; 15:2962-71. [PMID: 16963469 DOI: 10.1093/hmg/ddl239] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human PRKAR1A gene encodes the regulatory subunit 1-alpha (RIalpha) of the cAMP-dependent protein kinase A (PKA) holoenzyme. Regulation of the catalytic activity of PKA is the only well-studied function of RIalpha. Inactivating PRKAR1A mutations cause primary pigmented nodular adrenocortical disease (PPNAD) or Carney complex (CNC), an inherited syndrome associated with abnormal skin pigmentation and multiple neoplasias, including PPNAD. Histochemistry of tissues from CNC patients is indicative of autophagic deficiency and this led us to investigate the relationship between RIalpha and mammalian autophagy. We found that fluorescently tagged RIalpha associates with late endosomes and autophagosomes in cultured cells. The number of autophagosomes in prkar1a-/- mouse embryonic fibroblasts (MEFs) was reduced compared with wild-type MEFs. RIalpha co-immunoprecipitated with mTOR kinase, a major regulator of autophagy. Phosphorylated-mTOR levels and mTOR activity were dramatically increased in prkar1a-/- mouse cells, and in HEK 293 cells with RIalpha levels reduced by siRNA. Finally, phosphorylated-mTOR levels and mTOR activity were increased in CNC cells and in PPNAD tissues. These data suggest that RIalpha deficiency decreases autophagy by the activation of mTOR, providing a molecular basis to autophagic deficiency in PPNAD.
Collapse
Affiliation(s)
- Manos Mavrakis
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
40
|
Sivars U, Aivazian D, Pfeffer S. Purification and properties of Yip3/PRA1 as a Rab GDI displacement factor. Methods Enzymol 2006; 403:348-56. [PMID: 16473601 DOI: 10.1016/s0076-6879(05)03030-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Prenylated Rab proteins exist in the cytosol bound to guanine dissociation inhibitor (GDI). These dimeric complexes contain all of the information needed for accurate membrane delivery. We have shown that membranes contain a proteinaceous activity that is required for Rab delivery, and we named that activity GDI displacement factor (GDF). Biochemical analysis revealed that GDF activity was membrane associated and had a mass of approximately 25 kDa. We therefore used a candidate gene approach and were able to show that pure Yip3/PRA1 protein displays GDF activity. In this chapter, we review key aspects of GDF analysis: our assay and the method by which we purify Yip3/PRA1 in active form.
Collapse
|
41
|
Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 2004; 5:886-96. [PMID: 15520808 DOI: 10.1038/nrm1500] [Citation(s) in RCA: 366] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rab GTPases are key to membrane-trafficking events in eukaryotic cells, and human cells contain more than 60 Rab proteins that are localized to distinct compartments. The recent determination of the structure of a monoprenylated Rab GTPase bound to GDP-dissociation inhibitor provides new molecular details that are relevant to models of Rab delivery. The further discovery of an integral membrane protein that can dissociate prenylated Rab proteins from GDP-dissociation inhibitor gives new insights into the mechanisms of Rab localization.
Collapse
Affiliation(s)
- Suzanne Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA.
| | | |
Collapse
|
42
|
Ganley IG, Carroll K, Bittova L, Pfeffer S. Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Mol Biol Cell 2004; 15:5420-30. [PMID: 15456905 PMCID: PMC532021 DOI: 10.1091/mbc.e04-08-0747] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab9 GTPase resides in a late endosome microdomain together with mannose 6-phosphate receptors (MPRs) and the tail-interacting protein of 47 kDa (TIP47). To explore the importance of Rab9 for microdomain establishment, we depleted the protein from cultured cells. Rab9 depletion decreased late endosome size and reduced the numbers of multilamellar and dense-tubule-containing late endosomes/lysosomes, but not multivesicular endosomes. The remaining late endosomes and lysosomes were more tightly clustered near the nucleus, implicating Rab9 in endosome localization. Cells displayed increased surface MPRs and lysosome-associated membrane protein 1. In addition, cells showed increased MPR synthesis in conjunction with MPR missorting to the lysosome. Surprisingly, Rab9 stability on late endosomes required interaction with TIP47. Rabs are thought of as independent, prenylated entities that reside either on membranes or in cytosol, bound to GDP dissociation inhibitor. These data show that Rab9 stability is strongly influenced by a specific effector interaction. Moreover, Rab9 and the proteins with which it interacts seem critical for the maintenance of specific late endocytic compartments and endosome/lysosome localization.
Collapse
Affiliation(s)
- Ian G Ganley
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
43
|
Sivars U, Aivazian D, Pfeffer SR. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 2003; 425:856-9. [PMID: 14574414 DOI: 10.1038/nature02057] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/08/2003] [Indexed: 11/08/2022]
Abstract
Human cells contain more than 60 small G proteins of the Rab family, which are localized to the surfaces of distinct membrane compartments and regulate transport vesicle formation, motility, docking and fusion. Prenylated Rabs also occur in the cytosol bound to GDI (guanine nucleotide dissociation inhibitor), which binds to Rabs in their inactive state. Prenyl Rab-GDI complexes contain all of the information necessary to direct Rab delivery onto distinct membrane compartments. The late endosomal, prenyl Rab9 binds GDI with very high affinity, which led us to propose that there might be a 'GDI-displacement factor' to catalyse dissociation of Rab-GDI complexes and to enable transfer of Rabs from GDI onto membranes. Indeed, we have previously shown that endosomal membranes contain a proteinaceous factor that can act in this manner. Here we show that the integral membrane protein, Yip3, acts catalytically to dissociate complexes of endosomal Rabs bound to GDI, and to deliver them onto membranes. We propose that the conserved Yip proteins serve as GDI-displacement factors for the targeting of Rab GTPases in eukaryotic cells.
Collapse
Affiliation(s)
- Ulf Sivars
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | |
Collapse
|
44
|
Barbero P, Bittova L, Pfeffer SR. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156:511-8. [PMID: 11827983 PMCID: PMC2173336 DOI: 10.1083/jcb.200109030] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the trans-Golgi via a transport process that requires the Rab9 GTPase and the cargo adaptor TIP47. We have generated green fluorescent protein variants of Rab9 and determined their localization in cultured cells. Rab9 is localized primarily in late endosomes and is readily distinguished from the trans-Golgi marker galactosyltransferase. Coexpression of fluorescent Rab9 and Rab7 revealed that these two late endosome Rabs occupy distinct domains within late endosome membranes. Cation-independent mannose 6-phosphate receptors are enriched in the Rab9 domain relative to the Rab7 domain. TIP47 is likely to be present in this domain because it colocalizes with the receptors in fixed cells, and a TIP47 mutant disrupted endosome morphology and sequestered MPRs intracellularly. Rab9 is present on endosomes that display bidirectional microtubule-dependent motility. Rab9-positive transport vesicles fuse with the trans-Golgi network as followed by video microscopy of live cells. These data provide the first indication that Rab9-mediated endosome to trans-Golgi transport can use a vesicle (rather than a tubular) intermediate. Our data suggest that Rab9 remains vesicle associated until docking with the Golgi complex and is rapidly removed concomitant with or just after membrane fusion.
Collapse
Affiliation(s)
- Pierre Barbero
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
45
|
Samuels IS, Seibenhener ML, Neidigh KB, Wooten MW. Nerve growth factor stimulates the interaction of ZIP/p62 with atypical protein kinase C and targets endosomal localization: evidence for regulation of nerve growth factor-induced differentiation. J Cell Biochem 2001; 82:452-66. [PMID: 11500922 DOI: 10.1002/jcb.1177] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Atypical protein kinase Cs zeta and lambda/iota play a functional role in the regulation of NGF-induced differentiation and survival of pheochromocytoma, PC12 cells [Coleman and Wooten, 1994; Wooten et al., 1999]. Here we demonstrate an NGF-dependent interaction of aPKC with its binding protein, ZIP/p62. Although, ZIP/p62 was not a PKC-iota substrate, the formation of a ZIP/p62-aPKC complex in PC12 cells by NGF occurred post activation of PKC-iota and was regulated by the tyrosine phosphorylation state of aPKC. Furthermore, NGF-dependent localization of ZIP/p62 was observed within vesicular structures, identified as late endosomes by colocalization with a Rab7 antibody. Both ZIP/p62 as well as PKC-iota colocalized with Rab7 upon NGF stimulation. Inhibition of the tyrosine phosphorylation state of PKC-iota did not prevent movement of ZIP/p62 to the endosomal compartment. These observations indicate that the subcellular localization of ZIP/p62 does not depend entirely upon activation of aPKC itself. Of functional importance, transfection of an antisense p62 construct into PC12 cells significantly diminished NGF-induced neurite outgrowth. Collectively, these findings demonstrate that ZIP/p62 acts as a shuttling protein involved in routing activated aPKC to an endosomal compartment and is required for mediating NGF's biological properties.
Collapse
Affiliation(s)
- I S Samuels
- Department of Biological Sciences, Program in Cellular and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | |
Collapse
|
46
|
Chaudhuri S, Kumar A, Berger M. Association of ARF and Rabs with complement receptor Type‐1 storage vesicles in human neutrophils. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.4.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Subhendu Chaudhuri
- Department of Pediatrics, Case Western Reserve University School of Medicine, and Cleveland, Ohio
| | - Anoopa Kumar
- Division of Nephrology, Veterans Administration Hospital, Cleveland, Ohio
| | - Melvin Berger
- Department of Pediatrics, Case Western Reserve University School of Medicine, and Cleveland, Ohio
| |
Collapse
|
47
|
Abstract
A Dictyostelium Rab7 homolog has been demonstrated to regulate fluid-phase influx, efflux, retention of lysosomal hydrolases and phagocytosis. Since Rab7 function appeared to be required for efficient phagocytosis, we sought to further characterize the role of Rab7 in phagosomal maturation. Expression of GFP-Rab7 resulted in labeling of both early and late phagosomes containing yeast, but not forming phagocytic cups. In order to determine if Rab7 played a role in regulating membrane traffic between the endo/lysosomal system and maturing phagosomes, latex bead containing (LBC) phagosomes were purified from wild-type cells at various times after internalization. Glycosidases, cysteine proteinases, Rab7 and lysosomally associated membrane proteins were delivered rapidly to nascent phagosomes in control cells. LBC phagosomes isolated from cells overexpressing dominant negative (DN) Rab7 contained very low levels of LmpA (lysosomal integral membrane protein) and α-mannosidase was not detectable. Interestingly, cysteine proteinases were delivered to phagosomes as apparent pro-forms in cells overexpressing DN Rab7. Despite these defects, phagosomes in cells overexpressing DN Rab7 matured to form multi-particle spacious phagosomes, except that these phagosomes remained significantly more acidic than control phagosomes. These results suggested that Rab7 regulates both an early and late steps of phagosomal maturation, similar to its role in the endo/lysosomal system.
Collapse
Affiliation(s)
- A Rupper
- Department of Microbiology and Immunology and The Feist/Weiller Cancer Center, LSUHSC, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
48
|
Abstract
In Huntington's Disease (HD), the huntingtin protein (Htt) includes an expanded polyglutamine domain. Since mutant Htt concentrates in the nucleus of affected neurons, we have inquired whether normal Htt (Q16--23) is also able to access the nucleus. We observe that a major pool of normal full-length Htt of HeLa cells is anchored to endosomes and also detect RNase-sensitive nuclear foci which include a 70-kDa N-terminal Htt fragment. Agents which damage DNA trigger caspase-3-dependent cleavage of Htt and dramatically relocate the 70 kDa fragment to the nucleoplasm. Considering that polyglutamine tracts stimulate caspase activation, mutant Htt is therefore poised to enter the nucleus. These considerations help rationalize the nuclear accumulation of Htt which is characteristic of HD and provide a first example of involvement of caspase cleavage in release of membrane-bound proteins which subsequently enter the nucleus.
Collapse
Affiliation(s)
- T Tao
- Pathology Department and Cell Biology Program, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
49
|
Kujala P, Ikäheimonen A, Ehsani N, Vihinen H, Auvinen P, Kääriäinen L. Biogenesis of the Semliki Forest virus RNA replication complex. J Virol 2001; 75:3873-84. [PMID: 11264376 PMCID: PMC114878 DOI: 10.1128/jvi.75.8.3873-3884.2001] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 01/08/2001] [Indexed: 01/21/2023] Open
Abstract
The nonstructural (ns) proteins nsP1 to -4, the components of Semliki Forest virus (SFV) RNA polymerase, were localized in infected cells by confocal microscopy using double labeling with specific antisera against the individual ns proteins. All ns proteins were associated with large cytoplasmic vacuoles (CPV), the inner surfaces of which were covered by small invaginations, or spherules, typical of alphavirus infection. All ns proteins were localized by immuno-electron microscopy (EM) to the limiting membranes of CPV and to the spherules, together with newly labeled viral RNA. Along with earlier observations by EM-autoradiography (P. M. Grimley, I. K. Berezesky, and R. M. Friedman, J. Virol. 2:326-338, 1968), these results suggest that individual spherules represent template-associated RNA polymerase complexes. Immunoprecipitation of radiolabeled ns proteins showed that each antiserum precipitated the other three ns proteins, implying that they functioned as a complex. Double labeling with organelle-specific and anti-ns-protein antisera showed that CPV were derivatives of late endosomes and lysosomes. Indeed, CPV frequently contained endocytosed bovine serum albumin-coated gold particles, introduced into the medium at different times after infection. With time, increasing numbers of spherules were also observed on the cell surfaces; they were occasionally released into the medium, probably by secretory lysosomes. We suggest that the spherules arise by primary assembly of the RNA replication complexes at the plasma membrane, guided there by nsP1, which has affinity to lipids specific for the cytoplasmic leaflet of the plasma membrane. Endosomal recycling and fusion of CPV with the plasma membrane can circulate spherules between the plasma membrane and the endosomal-lysosomal compartment.
Collapse
Affiliation(s)
- P Kujala
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
50
|
Gilbert PM, Burd CG. GDP dissociation inhibitor domain II required for Rab GTPase recycling. J Biol Chem 2001; 276:8014-20. [PMID: 11116150 DOI: 10.1074/jbc.m008845200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab GTPases are localized to distinct subsets of organelles within the cell, where they regulate SNARE-mediated membrane trafficking between organelles. One factor required for Rab localization and function is Rab GDP dissociation inhibitor (GDI), which is proposed to recycle Rab after vesicle fusion by extracting Rab from the membrane and loading Rab onto newly formed transport intermediates. GDI is composed of two domains; Rab binding is mediated by Domain I, and the function of Domain II is not known. In this study, Domain II of yeast GDI, encoded by the essential GDI1/SEC19 gene, was targeted in a genetic screen to obtain mutants that might lend insight into the function of this domain. In one gdi1 mutant, the cytosolic pools of all Rabs tested were depleted, and Rab accumulated on membranes, suggesting that this mutant Gdi1 protein has a general defect in extraction of Rab from membranes. In a second gdi1 mutant, the endosomal/vacuolar Rabs Vps21/Ypt51p and Ypt7p accumulated in the cytosol bound to Gdi1p, but localization of Ypt1p and Sec4p were not significantly affected. Using an in vitro assay which reconstitutes Gdi1p-mediated membrane loading of Rab, this mutant Gdi1p was found to be defective in loading of Vps21p but not Ypt1p. Loading of Vps21p by loading-defective Gdi1p was restored when acceptor membranes prepared from a deletion strain lacking Vps21p were used. These results suggest that membrane-associated Rab may regulate recruitment of GDI-Rab from the cytosol, possibly by regulating a GDI-Rab receptor. We conclude that Domain II of Gdi1p is essential for Rab loading and Rab extraction, and confirm that each of these activities is required for Gdi1p function in vivo.
Collapse
Affiliation(s)
- P M Gilbert
- Department of Cell and Developmental Biology and The Institute for Human Gene Therapy, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|