1
|
Li H, Li Y, Yu Y, Ren X, Yang C, Jin W, Li K, Zhou Y, Wu C, Shen Y, Hu W, Liu Y, Yu L, Tong X, Du J, Wang Y. GSH exhaustion via inhibition of xCT-GSH-GPX4 pathway synergistically enhanced DSF/Cu-induced cuproptosis in myelodysplastic syndromes. Free Radic Biol Med 2024; 222:130-148. [PMID: 38866192 DOI: 10.1016/j.freeradbiomed.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The clinical application of the therapeutic approach in myelodysplastic syndromes (MDS) remains an insurmountable challenge for the high propensity for progressing to acute myeloid leukemia and predominantly affecting elderly individuals. Thus, the discovery of molecular mechanisms underlying the regulatory network of different programmed cell death holds great promise for the identification of therapeutic targets and provides insights into new therapeutic avenues. Herein, we found that disulfiram/copper (DSF/Cu) significantly repressed the cell viability, increased reactive oxygen species (ROS) accumulation, destroyed mitochondrial morphology, and altered oxygen consumption rate. Further studies verified that DSF/Cu induces cuproptosis, as evidenced by the depletion of glutathione (GSH), aggregation of lipoylated DLAT, and induced loss of Fe-S cluster-containing proteins, which could be rescued by tetrathiomolybdate and knockdown of ferredoxin 1 (FDX1). Additionally, GSH contributed to the tolerance of DSF/Cu-mediated cuproptosis, while pharmacological chelation of GSH triggered ROS accumulation and sensitized cell death. The xCT-GSH-GPX4 axis is the ideal downstream component of ferroptosis that exerts a powerful protective mechanism. Notably, classical xCT inhibitors were capable of leading to the catastrophic accumulation of ROS and exerting synergistic cell death, while xCT overexpression restored these phenomena. Simvastatin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase, has beneficial effects in repurposing for inhibiting GPX4. Similarly, the combination treatment of DSF/Cu and simvastatin dramatically decreased the expression of GPX4 and Fe-S proteins, ultimately accelerating cell death. Moreover, we identified that the combination treatment of DSF/Cu and simvastatin also had a synergistic antitumor effect in the MDS mouse model, with the reduced GPX4, increased COX-2 and accumulated lipid peroxides. Overall, our study provided insight into developing a novel synergistic strategy to sensitize MDS therapy by targeting ferroptosis and cuproptosis.
Collapse
Affiliation(s)
- Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xueying Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Keyi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Cuiyun Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wanye Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiangmin Tong
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Ying Wang
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
2
|
Mohapatra D, Senapati PC, Senapati S, Pandey V, Dubey PK, Singh S, Sahu AN. Quality-by-design-based microemulsion of disulfiram for repurposing in melanoma and breast cancer therapy. Ther Deliv 2024; 15:521-544. [PMID: 38949622 PMCID: PMC11412148 DOI: 10.1080/20415990.2024.2363136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: The current study aims to develop and optimize microemulsions (ME) through Quality-by-Design (QbD) approach to improve the aqueous solubility and dissolution of poorly water-soluble drug disulfiram (DSF) for repurposing in melanoma and breast cancer therapy.Materials & methods: The ME was formulated using Cinnamon oil & Tween® 80, statistically optimized using a D-optimal mixture design-based QbD approach to develop the best ME with low vesicular size (Zavg) and polydispersity index (PDI).Results: The DSF-loaded optimized stable ME showed enhanced dissolution, in-vitro cytotoxicity and improved cellular uptake in B16F10 and MCF-7 cell lines compared with their unformulated free DSF.Conclusion: Our investigations suggested the potential of the statistically designed DSF-loaded optimized ME for repurposing melanoma and breast cancer therapy.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| | | | - Shantibhusan Senapati
- Tumor Microenvironment & Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar- 751023, Odisha, India
| | - Vivek Pandey
- Centre for Genetics Disorders, Institute of Science (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetics Disorders, Institute of Science (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sanjay Singh
- Nanomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Schmidt KE, Höving AL, Nowak K, an Mey N, Kiani Zahrani S, Nemeita B, Riedel L, Majewski A, Kaltschmidt B, Knabbe C, Kaltschmidt C. Serum Induces the Subunit-Specific Activation of NF-κB in Proliferating Human Cardiac Stem Cells. Int J Mol Sci 2024; 25:3593. [PMID: 38612406 PMCID: PMC11012129 DOI: 10.3390/ijms25073593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often linked to ageing and are the major cause of death worldwide. The declined proliferation of adult stem cells in the heart often impedes its regenerative potential. Thus, an investigation of the proliferative potential of adult human cardiac stem cells (hCSCs) might be of great interest for improving cell-based treatments of cardiovascular diseases. The application of human blood serum was already shown to enhance hCSC proliferation and reduce senescence. Here, the underlying signalling pathways of serum-mediated hCSC proliferation were studied. We are the first to demonstrate the involvement of the transcription factor NF-κB in the serum-mediated proliferative response of hCSCs by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). RNA-Sequencing (RNA-Seq) revealed ATF6B, COX5B, and TNFRSF14 as potential targets of NF-κB that are involved in serum-induced hCSC proliferation.
Collapse
Affiliation(s)
- Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna L. Höving
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Katja Nowak
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Nike an Mey
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Sina Kiani Zahrani
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Britta Nemeita
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Lena Riedel
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Agnes Majewski
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany;
| | - Cornelius Knabbe
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| |
Collapse
|
4
|
Zhang Z, Zhu Z, Zuo X, Wang X, Ju C, Liang Z, Li K, Zhang J, Luo L, Ma Y, Song Z, Li X, Li P, Quan H, Huang P, Yao Z, Yang N, Zhou J, Kou Z, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation reduces neuropathic pain after spinal cord injury by downregulating CXCL10 expression. CNS Neurosci Ther 2023; 29:3995-4017. [PMID: 37475184 PMCID: PMC10651991 DOI: 10.1111/cns.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Many studies have recently highlighted the role of photobiomodulation (PBM) in neuropathic pain (NP) relief after spinal cord injury (SCI), suggesting that it may be an effective way to relieve NP after SCI. However, the underlying mechanisms remain unclear. This study aimed to determine the potential mechanisms of PBM in NP relief after SCI. METHODS We performed systematic observations and investigated the mechanism of PBM intervention in NP in rats after SCI. Using transcriptome sequencing, we screened CXCL10 as a possible target molecule for PBM intervention and validated the results in rat tissues using reverse transcription-polymerase chain reaction and western blotting. Using immunofluorescence co-labeling, astrocytes and microglia were identified as the cells responsible for CXCL10 expression. The involvement of the NF-κB pathway in CXCL10 expression was verified using inhibitor pyrrolidine dithiocarbamate (PDTC) and agonist phorbol-12-myristate-13-acetate (PMA), which were further validated by an in vivo injection experiment. RESULTS Here, we demonstrated that PBM therapy led to an improvement in NP relative behaviors post-SCI, inhibited the activation of microglia and astrocytes, and decreased the expression level of CXCL10 in glial cells, which was accompanied by mediation of the NF-κB signaling pathway. Photobiomodulation inhibit the activation of the NF-κB pathway and reduce downstream CXCL10 expression. The NF-κB pathway inhibitor PDTC had the same effect as PBM on improving pain in animals with SCI, and the NF-κB pathway promoter PMA could reverse the beneficial effect of PBM. CONCLUSIONS Our results provide new insights into the mechanisms by which PBM alleviates NP after SCI. We demonstrated that PBM significantly inhibited the activation of microglia and astrocytes and decreased the expression level of CXCL10. These effects appear to be related to the NF-κB signaling pathway. Taken together, our study provides evidence that PBM could be a potentially effective therapy for NP after SCI, CXCL10 and NF-kB signaling pathways might be critical factors in pain relief mediated by PBM after SCI.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Liang Luo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Peipei Huang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhou Yao
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Ning Yang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jie Zhou
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhenzhen Kou
- Department of Anatomy, Histology and Embryology, School of Basic MedicineAir Force Military Medical UniversityXi'anShaanxiChina
| | - Beiyu Chen
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
5
|
Yang Y, Li M, Chen G, Liu S, Guo H, Dong X, Wang K, Geng H, Jiang J, Li X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord Chem Rev 2023; 495:215395. [DOI: 10.1016/j.ccr.2023.215395] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
6
|
Başımoğlu Koca Y, Koca S, Öztel Z, Balcan E. Determination of histopathological effects and myoglobin, periostin gene-protein expression levels in Danio rerio muscle tissue after acaricide yoksorrun-5EC (hexythiazox) application. Drug Chem Toxicol 2023; 46:50-58. [PMID: 34879781 DOI: 10.1080/01480545.2021.2007945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although pesticides are essential agrochemicals to annihilate harmful organisms in agriculture, their uncontrolled use has become an important threat to environmental health. Exposure to pesticides can affect many biological systems including immune system, endocrine system, and nervous system. However, the potential side effects of pesticides to skeletal muscle system remain unclear. Present study has focused on the evaluation of this issue by using an acaricide, yoksorrun-5EC (hexythiazox), in an aquatic model organism, Danio rerio. The histological analyses revealed that increased concentrations of the acaricide cause degradation of skeletal muscle along with increased necrosis and atrophy in myocytes, intercellular edema, and increased infiltrations between perimysium sheaths of muscle fibers. The effects of acaricide on myoglobin and periostin, which are associated with oxygen transport and muscle regeneration, respectively, were investigated at the gene and protein levels. RT-PCR results suggested that high concentration yoksorrun-5EC (hexythiazox) can induce myoglobin and periostin genes. Similar results were also obtained in the protein levels of these genes by western blotting analysis. These results suggested that yoksorrun-5EC (hexythiazox)-dependent disruption of skeletal muscle architecture is closely associated with the expression levels of myoglobin and periostin genes in Danio rerio model.
Collapse
Affiliation(s)
- Yücel Başımoğlu Koca
- Department of Biology, Zoology Section, Faculty of Science and Art, Adnan Menderes University, Aydin, Turkey
| | - Serdar Koca
- Department of Biology, General Biology Section, Faculty of Science and Art, Adnan Menderes University, Aydin, Turkey
| | - Zübeyde Öztel
- Department of Biology, Molecular Biology Section, Faculty of Science and Art, Manisa Celal Bayar University, Manisa, Turkey
| | - Erdal Balcan
- Department of Biology, Molecular Biology Section, Faculty of Science and Art, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
7
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Mishukov A, Lomovskaya Y, Pavlik L, Mikheeva I, Holmuhamedov E, Akatov V. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim Biophys Acta Gen Subj 2022; 1866:130184. [PMID: 35660414 DOI: 10.1016/j.bbagen.2022.130184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dithiocarbamates and derivatives (including disulfiram, DSF) are currently investigated as antineoplastic agents. We have revealed earlier the ability of hydroxocobalamin (vitamin В12b) combined with diethyldithiocarbamate (DDC) to catalyze the formation of highly cytotoxic oxidized derivatives of DSF (DSFoxy, sulfones and sulfoxides). METHODS Electron and fluorescent confocal microscopy, molecular biology and conventional biochemical techniques were used to study the morphological and functional responses of MCF-7 human breast cancer cells to treatment with DDC and B12b alone or in combination. RESULTS DDC induces unfolded protein response in MCF-7 cells. The combined use of DDC and B12b causes MCF-7 cell death. Electron microscopy revealed the separation of ER and nuclear membranes, leading to the formation of both cytoplasmic and perinuclear vacuoles, with many fibers inside. The process of vacuolization coincided with the appearance of ER stress markers, a marked damage to mitochondria, a significant inhibition of 20S proteasome, and actin depolimerization at later stages. Specific inhibitors of apoptosis, necroptosis, autophagy, and ferroptosis did not prevent cell death. A short- time (6-h) exposure to DSFoxy caused a significant increase in the number of entotic cells. CONCLUSIONS These observations indicate that MCF-7 cells treated with a mixture of DDC and B12b die by the mechanism of paraptosis. A short- time exposure to DSFoxy caused, along with paraptosis, a significant activation of the entosis and its final stage, lysosomal cell death. GENERAL SIGNIFICANCE The results obtained open up opportunities for the development of new approaches to induce non-apoptotic death of cancer cells by dithiocarbamates.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Artem Mishukov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Laboratory of Biorheology and Biomechanics, Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russian Federation
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Liubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Ekhson Holmuhamedov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
8
|
Tella T, Adegbegi A, Emeninwa C, Odola A, Ayangbenro A, Adaramoye O. Evaluation of the antioxidative potential of diisopropyldithiocarbamates sodium salt on diclofenac-induced toxicity in male albino rats. Toxicol Rep 2022; 9:828-833. [PMID: 36518424 PMCID: PMC9742835 DOI: 10.1016/j.toxrep.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Diclofenac (DIC) is a non-steroidal anti-inflammatory drug (NSAID) which is known to induce oxidative stress. Dithiocarbamates are compounds with proven antioxidant effect. The aim of the present study was to investigate the antioxidant capacity of diisopropyldithiocarbamates sodium salt (a synthetized compound) (Na(i-Pr2dtc)) against diclofenac-induced toxicity in the testes of male Wistar albino rats. The animals were assigned into six groups of six rats each. Group 1 (control) received corn oil, Groups 2, 3, 4, 5, 6 received DIC (100 mg/kg), DIC and (Na(i-Pr2dtc) (30 mg/kg), DIC and vitamin E (30 mg/kg), (Na(i-Pr2dtc) (30 mg/kg) and vitamin E only respectively. Our findings show that treatment with DIC significantly reduced superoxide dismutase (SOD) activity by 42% compared to normal control (NC) animals. In DIC treated group, Na(i-Pr2dtc) caused a 17% elevation of catalase (CAT) activity compared to DIC only group. Reduced glutathione level was significantly reduced in DIC only treated group when compared with DIC and VIT E treated group. Photomicrographs of testis from Na(i-Pr2dtc) treated rats showed normal seminiferous epithelium with no lesions. In conclusion, Na(i-Pr2dtc) has antioxidant properties.
Collapse
Key Words
- Antioxidant
- CAT, Catalase
- DDTC, Diethyldithiocarbamate
- DIC, Diclofenac
- Diclofenac
- Diisopropyldithiocarbamates sodium salt
- GSH, Reduced glutathione
- LPO, Lipid peroxidation
- NC, Normal control
- NSAID, Non-steroidal anti-inflammatory drug
- Na i-Pr2dtc, Diisopropyldithiocarbamate sodium salt
- POSS, Positive oxidative stress status
- PUFA, Polyunsaturated fatty acids
- ROS, Reactive oxygen species
- SOD, Superoxide dismutase
- Testes and vitamin E
- VIT E, Vitamin E
Collapse
Affiliation(s)
- Toluwani Tella
- Department of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | - Ademuyiwa Adegbegi
- Biochemistry Unit, Department of Science Laboratory Technology, Rufus Giwa Polytechnic, Owo, Ondo State, Nigeria
| | - Chiedu Emeninwa
- Department of Biochemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adekunle Odola
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ayansina Ayangbenro
- Food Security and Safety, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | | |
Collapse
|
9
|
Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 2021; 281:121335. [PMID: 34979419 DOI: 10.1016/j.biomaterials.2021.121335] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) has been used as an alcoholism drug for 70 years. Recently, it has attracted increasing attention owing to the distinguished anticancer activity, which can be further potentiated by the supplementation of Cu2+. Although encouraging anticancer results are obtained in lab, the clinical outcomes of oral DSF are not satisfactory, which urges an in-depth understanding of the underlying mechanisms, bottlenecks, and proposal of potential methods to address the dilemma. In this review, a critical summarization of various molecular biological anticancer mechanisms of DSF/Cu2+ is provided and the predicament of orally delivering DSF in clinical oncotherapy is explained by the metabolic barriers. We highlight the recent advances in the DSF/Cu2+ delivery strategies and the emerging treatment regimens for cancer treatment. Last but not the least, we summarize the clinical trials regarding DSF and make a prospect of DSF/Cu-based cancer therapy.
Collapse
|
10
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. DNA/BSA binding affinity studies of new Pd(II) complex with S-S and N-N donor mixed ligands via experimental insight and molecular simulation: Preliminary antitumor activity, lipophilicity and DFT perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science, Biosciences and Beyond. INORGANICS 2021. [DOI: 10.3390/inorganics9090070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines.
Collapse
|
12
|
|
13
|
Hecel A, Ostrowska M, Stokowa-Sołtys K, Wątły J, Dudek D, Miller A, Potocki S, Matera-Witkiewicz A, Dominguez-Martin A, Kozłowski H, Rowińska-Żyrek M. Zinc(II)-The Overlooked Éminence Grise of Chloroquine's Fight against COVID-19? Pharmaceuticals (Basel) 2020; 13:E228. [PMID: 32882888 PMCID: PMC7558363 DOI: 10.3390/ph13090228] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
Zn(II) is an inhibitor of SARS-CoV-2's RNA-dependent RNA polymerase, and chloroquine and hydroxychloroquine are Zn(II) ionophores-this statement gives a curious mind a lot to think about. We show results of the first clinical trials on chloroquine (CQ) and hydroxychloroquine (HCQ) in the treatment of COVID-19, as well as earlier reports on the anticoronaviral properties of these two compounds and of Zn(II) itself. Other FDA-approved Zn(II) ionophores are given a decent amount of attention and are thought of as possible COVID-19 therapeutics.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Małgorzata Ostrowska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Dorota Dudek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Sławomir Potocki
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Alicia Dominguez-Martin
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain;
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
- Department of Physiotherapy, Opole Medical School, Katowicka 68, 40-060 Opole, Poland
| | - Magdalena Rowińska-Żyrek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.H.); (M.O.); (K.S.-S.); (J.W.); (D.D.); (A.M.); (S.P.); (H.K.)
| |
Collapse
|
14
|
Samarkhazan NS, Yekta R, Sayadi M, Tackallou SH, Safaralizadeh R, Mahdavi M. 2-NDC from dithiocarbamates improves ATRA efficiency and ROS-induced apoptosis via downregulation of Bcl2 and Survivin in human acute promyelocytic NB4 cells. Hum Exp Toxicol 2020; 39:960-972. [PMID: 32096428 DOI: 10.1177/0960327120905958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although it has been widely considered that all-trans retinoic acid (ATRA) is an efficient therapeutic agent for acute promyelocytic leukemia (APL), there is an urgent need for extending and examining new therapeutics in medicine. Dithiocarbamates (DTCs) are one of the recent important chemical synthetic compounds used in cancer therapy. The aim of this study was to evaluate the apoptosis-inducing effect of 2-nitro-1-phenylethylpiperidine-1-carbodithioate (2-NDC) as an active derivative from DTCs, in combination with ATRA on human APL NB4 cells. The viability of treated NB4 cells was measured by 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in various concentrations (10-120 µM). The proapoptotic effects of 2-NDC were investigated by acridine orange/ethidium bromide staining, DNA ladder formation, and flow cytometry. We also assessed the oxidative stress-inducing effect of 2-NDC and in combination with ATRA on the NB4 cells. The alteration in gene expression levels of Bax, Bcl2, and Survivin was measured through a real-time polymerase chain reaction. Furthermore, we redetected the interaction between 2-NDC and antiapoptotic proteins Bcl2 and Survivin via molecular docking. We found that 2-NDC induced apoptosis in NB4 cells in a time-dosage-dependent manner. Also, 2-NDC triggered apoptosis by expanding intracellular reactive oxygen species, combined with ATRA. Bax/Bcl2 ratio was modulated and Survivin was downregulated in NB4 cells upon 2-NDC treatment. Molecular docking studies indicated that 2-NDC binds to the baculovirus inhibitor of apoptosis protein repeat domain of Survivin and Bcl homology 3 domain of Bcl2 with various affinities. Based on the present observations, it seems that this derivative can be estimated as an appropriate candidate for future pharmaceutical evaluations.
Collapse
Affiliation(s)
- N S Samarkhazan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - R Yekta
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - M Sayadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - S H Tackallou
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - R Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - M Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Solovieva ME, Shatalin YV, Solovyev VV, Sazonov AV, Kutyshenko VP, Akatov VS. Hydroxycobalamin catalyzes the oxidation of diethyldithiocarbamate and increases its cytotoxicity independently of copper ions. Redox Biol 2019; 20:28-37. [PMID: 30290302 PMCID: PMC6171330 DOI: 10.1016/j.redox.2018.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
It is known that some metals (Cu, Zn, Cd, Au) markedly increase the toxic effect of thiocarbamates. It was shown in the present study that hydroxycobalamin (a form of vitamin B12, HOCbl), which incorporates cobalt, significantly enhances the cytotoxicity of diethyldithiocarbamate (DDC), decreasing its IC50 value in tumor cells three to five times. The addition of HOCbl to aqueous DDC solutions accelerated the reduction of oxygen. No hydrogen peroxide accumulation was observed in DDC + HOCbl solutions; however, catalase slowed down the oxygen reduction rate. Catalase as well as the antioxidants N-acetylcysteine (NAC) and glutathione (GSH) partially inhibited the cytotoxic effect of DDC + HOCbl, whereas ascorbate, pyruvate, and tiron, a scavenger of superoxide anion, had no cytoprotective effect. The administration of HOCbl into DDC solutions (> 1 mM) resulted in the formation of a crystalline precipitate, which was inhibited in the presence of GSH. The data of UV and NMR spectroscopy and HPLC and Mass Spectrometry (LC/MS) indicated that the main products of the reaction of DDC with HOCbl are disulfiram (DSF) and its oxidized forms, sulfones and sulfoxides. The increase in the cytotoxicity of DDC combined with HOCbl occurred both in the presence of Cu2+ in culture medium and in nominally Cu-free solutions, as well as in growth medium containing the copper chelator bathocuproine disulfonate (BCS). The results indicate that HOCbl accelerates the oxidation of DDC with the formation of DSF and its oxidized forms. Presumably, the main cause of the synergistic increase in the toxic effect of DDC + HOCbl is the formation of sulfones and sulfoxides of DSF.
Collapse
Affiliation(s)
- M E Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Yu V Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | | | | | - V P Kutyshenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - V S Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia.
| |
Collapse
|
16
|
Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB. Pesticide toxicity: a mechanistic approach. EXCLI JOURNAL 2018; 17:1101-1136. [PMID: 30564086 PMCID: PMC6295629 DOI: 10.17179/excli2018-1710] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/24/2018] [Indexed: 12/04/2022]
Abstract
Pesticides are known for their high persistence and pervasiveness in the environment, and along with products of their biotransformation, they may remain in and interact with the environment and living organisms in multiple ways, according to their nature and chemical structure, dose and targets. In this review, the classifications of pesticides based on their nature, use, physical state, pathophysiological effects, and sources are discussed. The effects of these xenobiotics on the environment, their biotransformation in terms of bioaccumulation are highlighted with special focus on the molecular mechanisms deciphered to date. Basing on targeted organisms, most pesticides are classified as herbicides, fungicides, and insecticides. Herbicides are known as growth regulators, seedling growth inhibitors, photosynthesis inhibitors, inhibitors of amino acid and lipid biosynthesis, cell membrane disrupters, and pigment biosynthesis inhibitors, whereas fungicides include inhibitors of ergosterol biosynthesis, protein biosynthesis, and mitochondrial respiration. Insecticides mainly affect nerves and muscle, growth and development, and energy production. Studying the impact of pesticides and other related chemicals is of great interest to animal and human health risk assessment processes since potentially everyone can be exposed to these compounds which may cause many diseases, including metabolic syndrome, malnutrition, atherosclerosis, inflammation, pathogen invasion, nerve injury, and susceptibility to infectious diseases. Future studies should be directed to investigate influence of long term effects of low pesticide doses and to minimize or eliminate influence of pesticides on non-target living organisms, produce more specific pesticides and using modern technologies to decrease contamination of food and other goods by pesticides.
Collapse
Affiliation(s)
- Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Tetiana M. Matviishyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Viktor V. Husak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Janet M. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
17
|
Zhang J, Duan D, Xu J, Fang J. Redox-Dependent Copper Carrier Promotes Cellular Copper Uptake and Oxidative Stress-Mediated Apoptosis of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33010-33021. [PMID: 30209950 DOI: 10.1021/acsami.8b11061] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transportation of exogenous copper ions into cancer cells by copper carriers has gained increasing interest for cancer chemotherapy. We disclosed herein a redox-dependent copper carrier, 2,2'-dithiodipyridine (DPy), which binds copper ions and carries the cargo into cells. The cellular reducing environment cleaved the disulfide bond in DPy to facilitate unloading copper ions. The elevated copper level then elicits oxidative stress and subsequently promotes the reformation of DPy. Further mechanistic studies revealed that the DPy/copper combination predominantly targets the cellular redox-regulating systems, including the thioredoxin system and the glutathione system, to induce the oxidative stress-mediated death of tumor cells. The discovery of DPy as a cleavable and recyclable copper shuttle provides a proof of concept for designing novel biomaterials for copper transportation as potential anticancer agents.
Collapse
Affiliation(s)
| | | | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute , Dalian University of Technology , Panjin Campus , Panjin 124221 , China
| | | |
Collapse
|
18
|
Butcher K, Kannappan V, Kilari RS, Morris MR, McConville C, Armesilla AL, Wang W. Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer 2018; 18:753. [PMID: 30031402 PMCID: PMC6054747 DOI: 10.1186/s12885-018-4617-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Disulfiram (DS), an antialcoholism medicine, demonstrated strong anticancer activity in the laboratory but did not show promising results in clinical trials. The anticancer activity of DS is copper dependent. The reaction of DS and copper generates reactive oxygen species (ROS). After oral administration in the clinic, DS is enriched and quickly metabolised in the liver. The associated change of chemical structure may make the metabolites of DS lose its copper-chelating ability and disable their anticancer activity. The anticancer chemical structure of DS is still largely unknown. Elucidation of the relationship between the key chemical structure of DS and its anticancer activity will enable us to modify DS and speed its translation into cancer therapeutics. Methods The cytotoxicity, extracellular ROS activity, apoptotic effect of DS, DDC and their analogues on cancer cells and cancer stem cells were examined in vitro by MTT assay, western blot, extracellular ROS assay and sphere-reforming assay. Results Intact thiol groups are essential for the in vitro cytotoxicity of DS. S-methylated diethyldithiocarbamate (S-Me-DDC), one of the major metabolites of DS in liver, completely lost its in vitro anticancer activity. In vitro cytotoxicity of DS was also abolished when its thiuram structure was destroyed. In contrast, modification of the ethyl groups in DS had no significant influence on its anticancer activity. Conclusions The thiol groups and thiuram structure are indispensable for the anticancer activity of DS. The liver enrichment and metabolism may be the major obstruction for application of DS in cancer treatment. A delivery system to protect the thiol groups and development of novel soluble copper-DDC compound may pave the path for translation of DS into cancer therapeutics. Electronic supplementary material The online version of this article (10.1186/s12885-018-4617-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kate Butcher
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Vinodh Kannappan
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | | | - Mark R Morris
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | | | - Angel L Armesilla
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Weiguang Wang
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK.
| |
Collapse
|
19
|
Gaál A, Orgován G, Mihucz VG, Pape I, Ingerle D, Streli C, Szoboszlai N. Metal transport capabilities of anticancer copper chelators. J Trace Elem Med Biol 2018; 47:79-88. [PMID: 29544811 DOI: 10.1016/j.jtemb.2018.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
In the present study, several Cu chelators [2,2'-biquinoline, 8-hydroxiquinoline (oxine), ammonium pyrrolidinedithiocarbamate (APDTC), Dp44mT, dithizone, neocuproine] were used to study Cu uptake, depletion and localization in different cancer cell lines. To better understand the concentration dependent fluctuations in the Cu intracellular metal content and Cu-dependent in vitro antiproliferative data, the conditional stability constants of the Cu complex species of the investigated ligands were calculated. Each investigated chelator increased the intracellular Cu content on HT-29 cells causing Cu accumulation depending on the amount of the free Cu(II). Copper accumulation was 159 times higher for Dp44mT compared to the control. Investigating a number of other transition metals, intracellular accumulation of Cd was observed only for two chelators. Intracellular Zn content slightly decreased (cca. 10%) for MCF-7 cells, while a dramatic decrease was observed on MDA-MB-231 ones (cca. 50%). A similar decrease was observed for HCT-116, while Zn depletion for HT-29 corresponded to cca. 20%. The IC50 values were registered for the investigated four cell lines at increasing external Cu(II) concentration, namely, MDA-MB-231 cells had the lowest IC50 values for Dp44mT ranging between 7 and 35 nM. Thus, Zn depletion could be associated with lower IC50 values. Copper depletion was observed for all ligands being less pronounced for Dp44mT and neocuproine. Copper localization and its colocalization with Zn were determined by μ-XRF imaging. Loose correlation (0.57) was observed for the MCF-7 cells independently of the applied chelator. Similarly, a weak correlation (0.47) was observed for HT-29 cells treated with Cu(II) and oxine. Colocalization of Cu and Zn in the nucleus of HT-29 cells was observed for Dp44mT (correlation coefficient of 0.85).
Collapse
Affiliation(s)
- Anikó Gaál
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary
| | - Gábor Orgován
- Department of Pharmaceutical Chemistry, Semmelweis University, H-1092 Budapest, Hőgyes Endre u. 9, Hungary; Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, H-1092 Budapest, Hőgyes Endre u. 9, Hungary
| | - Victor G Mihucz
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary; Hungarian Satellite Trace Elements Institute to UNESCO, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary
| | - Ian Pape
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Dieter Ingerle
- Atominstitut, Technische Universitaet Wien, A-1020 Vienna, Stadionallee 2, Austria
| | - Christina Streli
- Atominstitut, Technische Universitaet Wien, A-1020 Vienna, Stadionallee 2, Austria
| | - Norbert Szoboszlai
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary.
| |
Collapse
|
20
|
The Root Aqueous Extract of Entada africana Guill. et Perr. (Mimosaceae) Inhibits Implant Growth, Alleviates Dysmenorrhea, and Restores Ovarian Dynamic in a Rat Model of Endometriosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2017:8563909. [PMID: 29456574 PMCID: PMC5804318 DOI: 10.1155/2017/8563909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/24/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022]
Abstract
Entada africana (Mimosaceae) was reported to have analgesic and antioxidant properties. The present study is aimed at investigating the effects of the root aqueous extract of Entada africana (EA) on an experimental model of endometriosis. The study was performed in rats orally treated with EA at doses of 127.5, 255, and 510 mg/kg. Microgynon® 30 served as the reference substance. Estradiol valerate and oxytocin were used to induce dysmenorrhea. Endometrial implant levels of catalase and malondialdehyde (MDA) allowed estimating tissue oxidative status. Ovarian dynamic and rat sexual behavior were assessed through histological analysis of ovaries, uterus, and vagina. EA decreased dysmenorrhea at tested doses following a 7-day treatment (p < 0.001). Endometrial implant volume decreased following the three treatment periods (p < 0.05). Catalase activity (p < 0.001) and MDA level (p < 0.01) increased only following a 3-day treatment. EA also increased antral follicles, reduced luteinized unruptured follicle number (p < 0.001), and induced animals to be in the estrus phase. In conclusion, EA prevented the progress of endometriosis, reduced dysmenorrhea, promoted ovarian follicle growth, prevented anovulation, and stimulated the special period of rat sexual desire. These results suggest that Entada africana could be a promising alternative option for the treatment of endometriosis.
Collapse
|
21
|
Viola-Rhenals M, Patel KR, Jaimes-Santamaria L, Wu G, Liu J, Dou QP. Recent Advances in Antabuse (Disulfiram): The Importance of its Metal-binding Ability to its Anticancer Activity. Curr Med Chem 2018; 25:506-524. [PMID: 29065820 PMCID: PMC6873226 DOI: 10.2174/0929867324666171023161121] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Considerable evidence demonstrates the importance of dithiocarbamates especially disulfiram as anticancer drugs. However there are no systematic reviews outlining how their metal-binding ability is related to their anticancer activity. This review aims to summarize chemical features and metal-binding activity of disulfiram and its metabolite DEDTC, and discuss different mechanisms of action of disulfiram and their contributions to the drug's anticancer activity. METHODS We undertook a disulfiram-related search on bibliographic databases of peerreviewed research literature, including many historic papers and in vitro, in vivo, preclinical and clinical studies. The selected papers were carefully reviewed and summarized. RESULTS More than five hundreds of papers were obtained in the initial search and one hundred eighteen (118) papers were included in the review, most of which deal with chemical and biological aspects of Disulfiram and the relationship of its chemical and biological properties. Eighty one (81) papers outline biological aspects of dithiocarbamates, and fifty seven (57) papers report biological activity of Disulfiram as an inhibitor of proteasomes or inhibitor of aldehyde dehydrogenase enzymes, interaction with other anticancer drugs, or mechanism of action related to reactive oxygen species. Other papers reviewed focus on chemical aspects of dithiocarbamates. CONCLUSION This review confirms the importance of chemical features of compounds such as Disulfiram to their biological activities, and supports repurposing DSF as a potential anticancer agent.
Collapse
Affiliation(s)
- Maricela Viola-Rhenals
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Kush R. Patel
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Laura Jaimes-Santamaria
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Jinbao Liu
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| |
Collapse
|
22
|
Wang B, Cui X, Zhang Z, Chai X, Ding H, Wu Q, Guo Z, Wang T. A six-membered-ring incorporated Si-rhodamine for imaging of copper(ii) in lysosomes. Org Biomol Chem 2018; 14:6720-8. [PMID: 27314426 DOI: 10.1039/c6ob00894a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The regulation of copper homeostasis in lysosomes of living cells is closely related to various physiological and pathological processes. Thus, it is of urgent need to develop a fluorescent probe for selectively and sensitively monitoring the location and concentration of lysosomal Cu(2+). Herein, a six-membered ring, thiosemicarbazide, was incorporated into a Si-rhodamine (SiR) scaffold for the first time, affording a SiR-based fluorescent probe SiRB-Cu. Through the effective Cu(2+)-triggered ring-opening process, the probe exhibits fast NIR chromogenic and fluorogenic responses to Cu(2+) within 2 min as the result of formation of a highly fluorescent product SiR-NCS. Compared with a five-membered ring, the expanded ring retains great tolerance to H(+), ensuring the superior sensitivity with a detection limit as low as 7.7 nM and 200-fold enhancement of relative fluorescence in the presence of 1.0 equiv. of Cu(2+) in pH = 5.0 solution, the physiological pH of lysosome. Moreover, the thiosemicarbazide moiety acts not only as the chelating and reactive site, but also as an efficient lysosome-targeting group, leading to the proactive accumulation of the probe into lysosomes. Taking advantage of these distinct properties, SiRB-Cu provides a functional probe suitable for imaging exogenous and endogenous lysosomal Cu(2+) with high imaging contrast and fidelity.
Collapse
Affiliation(s)
- Baogang Wang
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xiaoyan Cui
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Zhiqiang Zhang
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xiaoyun Chai
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Hao Ding
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Qiuye Wu
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhongwu Guo
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433, China. and Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Ting Wang
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
Park SS, Lee DM, Lim JH, Lee D, Park SJ, Kim HM, Sohn S, Yoon G, Eom YW, Jeong SY, Choi EK, Choi KS. Pyrrolidine dithiocarbamate reverses Bcl-xL-mediated apoptotic resistance to doxorubicin by inducing paraptosis. Carcinogenesis 2018; 39:458-470. [DOI: 10.1093/carcin/bgy003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Seok Soon Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Min Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
- Genomic Instability Center, Ajou University School of Medicine, Suwon, Korea
| | - Jun Hee Lim
- Genomic Instability Center, Ajou University School of Medicine, Suwon, Korea
| | - Dongjoo Lee
- Department of Pharmacy, Ajou University, Suwon, Korea
| | - Sang Jun Park
- Department of Energy Systems Research, Ajou University, Suwon, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon, Korea
| | | | - Gyesoon Yoon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Young Woo Eom
- Cell therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Seong-Yun Jeong
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Center for Advancing Cancer Therapeutics, Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
- Genomic Instability Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
24
|
Zhang K, Dong R, Sun K, Wang X, Wang J, Yang CS, Zhang J. Synergistic toxicity of epigallocatechin-3-gallate and diethyldithiocarbamate, a lethal encounter involving redox-active copper. Free Radic Biol Med 2017; 113:143-156. [PMID: 28974447 DOI: 10.1016/j.freeradbiomed.2017.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/09/2017] [Accepted: 09/27/2017] [Indexed: 01/20/2023]
Abstract
Dithiocarbamates (DTC) are widely used in agricultural, industrial and therapeutic domains. There are ample opportunities for human exposure to DTC. Green tea extracts, with epigallocatechin-3-gallate (EGCG) being the most abundant constituent, have been used as dietary supplements for body weight reduction. Our hypothesis is that DTC can act as a copper ionophore to increase hepatic levels of redox-active copper which promotes EGCG auto-oxidation to produce oxidative stress and toxicity. The results of the present study in a mouse model is consistent with this hypothesis, showing that co-administration of EGCG and diethyldithiocarbamate - a metabolite of disulfiram (a drug for alcohol aversion therapy), both at tolerable levels, caused lethality. The liver was the major organ site of toxicity. The co-administration drastically increased lipid peroxidation, DNA damage and cell apoptosis as well as caused deleterious transcriptional responses including basal and Nrf2 antioxidant systems in the liver. The results suggest that exposure to DTC reduces toxic threshold of dietary polyphenols from green tea and possibly other plants, and vice versa. This novel hypothesis is important to human health, and the dose-response relationship of this synergistic toxicity needs to be further characterized.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ruixia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Kang Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoxiao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiajia Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
25
|
Helsel ME, White EJ, Razvi SZA, Alies B, Franz KJ. Chemical and functional properties of metal chelators that mobilize copper to elicit fungal killing of Cryptococcus neoformans. Metallomics 2017; 9:69-81. [PMID: 27853789 DOI: 10.1039/c6mt00172f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A panel of iron (Fe) and copper (Cu) chelators was screened for growth inhibitory activity against the fungal pathogen Cryptococcus neoformans. Select bidentate metal-binding ligands containing mixed O,S or O,N donor atoms were identified as agents that induce cell killing in a Cu-dependent manner. Conversely, structurally similar ligands with O,O donor atoms did not inhibit C. neoformans growth regardless of Cu status. Studies of Cu(ii) and Cu(i) binding affinity, lipophilicity, and growth recovery assays of Cu-import deficient cells identified lipophilicity of thermodynamically stable CuIIL2 complexes as the best predictor of antifungal activity. These same complexes induce cellular hyperaccumulation of Zn and Fe in addition to Cu. The results described here present the utility of appropriate metal-binding ligands as potential antifungal agents that manipulate cellular metal balance as an antimicrobial strategy.
Collapse
Affiliation(s)
- Marian E Helsel
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Elizabeth J White
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Sayyeda Zeenat A Razvi
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Bruno Alies
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Katherine J Franz
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| |
Collapse
|
26
|
Pyrrolidine dithiocarbamate (PDTC) inhibits inflammatory signaling via expression of regulator of calcineurin activity 1 (RCAN1). Biochem Pharmacol 2017; 143:107-117. [DOI: 10.1016/j.bcp.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
|
27
|
Fan RM, Zhu BZ, Huang CP, Sheng ZG, Mao L, Li MX. Different modes of synergistic toxicities between metam/copper (II) and metam/zinc (II) in HepG2 cells: apoptosis vs. necrosis. ENVIRONMENTAL TOXICOLOGY 2016; 31:1964-1973. [PMID: 26420683 DOI: 10.1002/tox.22197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Both metam sodium and copper/zinc-containing compounds are widely used as fungicides. They therefore may co-occur in the biosphere. Despite certain studies of individual toxicity for either metam or copper (II)/zinc (II), their synergistic toxicity has not been examined. In this paper, a remarkable synergistic toxicity was observed in HepG2 cells when metam and copper (II)/zinc (II) at non-toxic and sub-toxic levels were combined. Unexpectedly, cell death modes between metam/copper (II) and metam/zinc (II) were different: For metam/copper (II), apoptosis was evident from morphological characteristics including cytoplasm-chromatin condensation, phosphatidylserine (PS) exposure, SubG0 /G1 DNA fragmentation, mitochondrial membrane potential decrease, pro/anti-apoptotic protein activation, and cytochrome c release; for metam/zinc (II), necrosis was evident from organelle swelling and uncontrolled collapse. To our knowledge, this work first not only demonstrates the synergistic toxicities of metam and both copper (II)/zinc (II), but also verifies the different modes of apoptosis/necrosis between metam/copper (II) and metam/zinc (II). © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1964-1973, 2016.
Collapse
Affiliation(s)
- Rui-Mei Fan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Environmental Engineering, Civil and Environmental Engineering Department, University of Delaware, USA
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chin-Pao Huang
- Environmental Engineering, Civil and Environmental Engineering Department, University of Delaware, USA
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ming-Xin Li
- Environmental Engineering, Civil and Environmental Engineering Department, University of Delaware, USA
| |
Collapse
|
28
|
Development and characterisation of disulfiram-loaded PLGA nanoparticles for the treatment of non-small cell lung cancer. Eur J Pharm Biopharm 2016; 112:224-233. [PMID: 27915005 DOI: 10.1016/j.ejpb.2016.11.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 11/21/2022]
Abstract
Non-Small Cell Lung Cancer (NSCLC) is the most common type of lung cancer in both men and women. A recent phase IIb study demonstrated that disulfiram (DSF) in combination with cisplatin and vinorelbine was well tolerated and prolonged the survival of patients with newly diagnosed NSCLC. However, DSF is rapidly (4min) metabolised in the bloodstream and it is this issue which is limiting its anticancer application in the clinic. We have recently demonstrated that a low dose of DSF-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles supplemented with oral Cu inhibited tumour growth and reduced metastasis in a xenograft mouse lung cancer model. Here we demonstrate the influence of PLGA polymer, stabilizer loading and molecular weight as well as sonication time on the characteristics, including DSF release and the cytotoxicity of 10% w/w DSF-loaded PLGA nanoparticles. The paper demonstrates that the choice of PLGA as no significance on the characteristics of the nanoparticles apart from their DSF release, which is due to the differing degradation rates of the polymers. However, increasing the loading and molecular weight of the stabilizer as well as the sonication time reduced the size of the nanoparticles, reduced their ability to protect the DSF from reacting with Cu and degrading in serum, while increasing their DSF release rate and cytotoxicity. Additionally, increasing the sonication time resulted in the premature degradation of the PLGA, which increased the permeability of the nanoparticles further decreasing their ability to protect DSF from reacting with Cu and degrading in serum, while increasing their DSF release rate and cytotoxicity.
Collapse
|
29
|
Antioxidant properties of thio-caffeine derivatives: Identification of the newly synthesized 8-[(pyrrolidin-1-ylcarbonothioyl)sulfanyl]caffeine as antioxidant and highly potent cytoprotective agent. Bioorg Med Chem Lett 2016; 26:3994-8. [DOI: 10.1016/j.bmcl.2016.06.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/04/2023]
|
30
|
Liddell JR, Lehtonen S, Duncan C, Keksa-Goldsteine V, Levonen AL, Goldsteins G, Malm T, White AR, Koistinaho J, Kanninen KM. Pyrrolidine dithiocarbamate activates the Nrf2 pathway in astrocytes. J Neuroinflammation 2016; 13:49. [PMID: 26920699 PMCID: PMC4768425 DOI: 10.1186/s12974-016-0515-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 12/30/2022] Open
Abstract
Background Endogenous defense against oxidative stress is controlled by nuclear factor erythroid 2-related factor 2 (Nrf2). The normal compensatory mechanisms to combat oxidative stress appear to be insufficient to protect against the prolonged exposure to reactive oxygen species during disease. Counterbalancing the effects of oxidative stress by up-regulation of Nrf2 signaling has been shown to be effective in various disease models where oxidative stress is implicated, including Alzheimer’s disease. Stimulation of Nrf2 signaling by small-molecule activators is an appealing strategy to up-regulate the endogenous defense mechanisms of cells. Methods Here, we investigate Nrf2 induction by the metal chelator and known nuclear factor-κB inhibitor pyrrolidine dithiocarbamate (PDTC) in cultured astrocytes and neurons, and mouse brain. Nrf2 induction is further examined in cultures co-treated with PDTC and kinase inhibitors or amyloid-beta, and in Nrf2-deficient cultures. Results We show that PDTC is a potent inducer of Nrf2 signaling specifically in astrocytes and demonstrate the critical role of Nrf2 in PDTC-mediated protection against oxidative stress. This induction appears to be regulated by both Keap1 and glycogen synthase kinase 3β. Furthermore, the presence of amyloid-beta magnifies PDTC-mediated induction of endogenous protective mechanisms, therefore suggesting that PDTC may be an effective Nrf2 inducer in the context of Alzheimer’s disease. Finally, we show that PDTC increases brain copper content and glial expression of heme oxygenase-1, and decreases lipid peroxidation in vivo, promoting a more antioxidative environment. Conclusions PDTC activates Nrf2 and its antioxidative targets in astrocytes but not neurons. These effects may contribute to the neuroprotection observed for PDTC in models of Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0515-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey R Liddell
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia. .,Mental Health Research Institute of Victoria, Parkville, Victoria, Australia.
| | - Sarka Lehtonen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Clare Duncan
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia. .,Mental Health Research Institute of Victoria, Parkville, Victoria, Australia.
| | - Velta Keksa-Goldsteine
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Gundars Goldsteins
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Anthony R White
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia. .,Mental Health Research Institute of Victoria, Parkville, Victoria, Australia.
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
31
|
Abstract
BACKGROUND The roles of antioxidant therapy on non-thyroidal illness syndrome (NTIS) in uremic rats is still unclear. MATERIALS AND METHODS Twenty-four Sprague-Dawley (SD) rats were randomly divided into blank, 5/6 nephrectomy (Nx), pyrrolidine dithiocarbamate (PDTC, 10 mg/100 g), sodium bicarbonate (SB, 0.1 g/100 g), N-acetylcysteine (NAC, 80 mg/100 g) and thyroid hormones (TH, levothyroxine 2 μg/100 g) groups. The serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), advanced oxidation protein products (AOPP), interleukin (IL)-1β, free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) were detected in the sixth week. The expressions of IL-1β and deiodinase type 1 (DIO1) were assessed by western blotting. The nuclear factor kappa B (NF-κB) inflammatory signal pathway was confirmed by electrophoretic mobility shift assay (EMSA). RESULTS Compared with 5/6 Nx group, PDTC and NAC significantly reduced the levels (p < 0.01, respectively) of serum MDA, AOPP, TSH, and elevated levels of serum SOD (p < 0.01, respectively) and FT3 (p = 0.016 and p < 0.01). Neither had significant effects on serum IL-1β content (p = 0.612 and p = 0.582). PDTC and NAC markedly decreased the protein expression of IL-1β (p < 0.01) and increased the protein expression of DIO1 (p < 0.01), respectively. Both had been considerably blunted NF-κB activity (p < 0.01). CONCLUSIONS In uremic rat model, PDTC and NAC can effectively improve oxidative stress level and NTIS. In terms of improving oxidative stress level, NAC is probably superior to PDTC.
Collapse
Affiliation(s)
- Pingping Yang
- a Department of Nephrology, Second Affiliated Hospital , Nanchang University , Nanchang , China ;,b Medical Center of the Graduate School , Nanchang University , Nanchang , China
| | - Yun Li
- c Department of Nephrology , Jiangxi Provincial People's Hospital , Nanchang , China
| | - Gaosi Xu
- a Department of Nephrology, Second Affiliated Hospital , Nanchang University , Nanchang , China
| |
Collapse
|
32
|
Sgarbanti R, Amatore D, Celestino I, Marcocci ME, Fraternale A, Ciriolo MR, Magnani M, Saladino R, Garaci E, Palamara AT, Nencioni L. Intracellular redox state as target for anti-influenza therapy: are antioxidants always effective? Curr Top Med Chem 2015; 14:2529-41. [PMID: 25478883 PMCID: PMC4435240 DOI: 10.2174/1568026614666141203125211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/29/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022]
Abstract
Influenza virus infections represent a big issue for public health since effective treatments are still lacking. In particular, the emergence of strains resistant to drugs limits the effectiveness of anti-influenza agents. For this reason, many efforts have been dedicated to the identification of new therapeutic strategies aimed at targeting the virus-host cell interactions. Oxidative stress is a characteristic of some viral infections including influenza. Because antioxidants defend cells from damage caused by reactive oxygen species induced by different stimuli including pathogens, they represent interesting molecules to fight infectious diseases. However, most of the available studies have found that these would-be panaceas could actually exacerbate the diseases they claim to prevent, and have thus revealed "the dark side" of these molecules. This review article discusses the latest opportunities and drawbacks of the antioxidants used in anti-influenza therapy and new perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
33
|
Liu P, Wang Z, Brown S, Kannappan V, Tawari PE, Jiang W, Irache JM, Tang JZ, Armesilla AL, Darling JL, Tang X, Wang W. Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget 2015; 5:7471-85. [PMID: 25277186 PMCID: PMC4202137 DOI: 10.18632/oncotarget.2166] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are pan-resistant to different anticancer agents and responsible for cancer relapse. Disulfiram (DS), an antialcoholism drug, targets CSCs and reverses pan-chemoresistance. The anticancer application of DS is limited by its very short half-life in the bloodstream. This prompted us to develop a liposome-encapsulated DS (Lipo-DS) and examine its anticancer effect and mechanisms in vitro and in vivo. The relationship between hypoxia and CSCs was examined by in vitro comparison of BC cells cultured in spheroid and hypoxic conditions. To determine the importance of NFκB activation in bridging hypoxia and CSC-related pan-resistance, the CSC characters and drug sensitivity in BC cell lines were observed in NFκB p65 transfected cell lines. The effect of Lipo-DS on the NFκB pathway, CSCs and chemosensitivity was investigated in vitro and in vivo. The spheroid cultured BC cells manifested CSC characteristics and pan-resistance to anticancer drugs. This was related to the hypoxic condition in the spheres. Hypoxia induced activation of NFκB and chemoresistance. Transfection of BC cells with NFκB p65 also induced CSC characters and pan-resistance. Lipo-DS blocked NFκB activation and specifically targeted CSCs in vitro. Lipo-DS also targeted the CSC population in vivo and showed very strong anticancer efficacy. Mice tolerated the treatment very well and no significant in vivo nonspecific toxicity was observed. Hypoxia induced NFκB activation is responsible for stemness and chemoresistance in BCSCs. Lipo-DS targets NFκB pathway and CSCs. Further study may translate DS into cancer therapeutics.
Collapse
Affiliation(s)
- Peng Liu
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Zhipeng Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Sarah Brown
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Vinodh Kannappan
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Patricia Erebi Tawari
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Wenguo Jiang
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | - Juan M Irache
- School of Pharmacy, University of Navarra, Pamplona, Spain
| | - James Z Tang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Angel L Armesilla
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - John L Darling
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
34
|
Hot melt extruded and injection moulded disulfiram-loaded PLGA millirods for the treatment of glioblastoma multiforme via stereotactic injection. Int J Pharm 2015; 494:73-82. [PMID: 26235918 DOI: 10.1016/j.ijpharm.2015.07.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis and is one of the most common primary malignant brain tumours in adults. Stereotactic injections have been used to deliver chemotherapeutic drugs directly into brain tumours. This paper describes the development of disulfiram (DSF)-loaded biodegradable millirods manufactured using hot melt extrusion (HME) and injection moulding (IM). The paper demonstrates that the stability of the DSF within the millirods is dependent on the manufacturing technique used as well as the drug loading. The physical state of the DSF within the millirods was dependent on the fabrication process, with the DSF in the HME millirods being either completely amorphous within the PLGA, while the DSF within the IM millirods retained between 54 and 66% of its crystallinity. Release of DSF from the millirods was dependent on the degradation rate of the PLGA, the manufacturing technique used as well as the DSF loading. DSF in the 10% (w/w) DSF loaded HME millirods and the 20% (w/w) DSF-loaded HME and IM millirods had a similar cytotoxicity against a GBM cell line compared to the unprocessed DSF control. However, the 10% (w/w) DSF-loaded IM millirods had a significantly lower cytotoxicity when compared to the unprocessed control.
Collapse
|
35
|
Riera H, Afonso V, Collin P, Lomri A. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937. PLoS One 2015; 10:e0127571. [PMID: 25996379 PMCID: PMC4440650 DOI: 10.1371/journal.pone.0127571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/16/2015] [Indexed: 12/28/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.
Collapse
Affiliation(s)
- Humberto Riera
- Unidad de Reumatología, Nivel plaza del Instituto Autónomo Hospital Universitario de Los Andes. Mérida, Venezuela
| | - Valéry Afonso
- INSERM U1029, Laboratoire de l'Angiogenèse et du Microenvironnement des Cancers, Pessac, France
| | - Pascal Collin
- UMR 8601, Laboratoire de Chimie & Biochimie Pharmacologique, Paris, France
| | - Abderrahim Lomri
- INSERM U1029, Laboratoire de l'Angiogenèse et du Microenvironnement des Cancers, Pessac, France
- * E-mail:
| |
Collapse
|
36
|
Mould DP, McGonagle AE, Wiseman DH, Williams EL, Jordan AM. Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date. Med Res Rev 2015; 35:586-618. [PMID: 25418875 DOI: 10.1002/med.21334] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the 10 years since the discovery of lysine-specific demethylase 1 (LSD1), this epigenetic eraser has emerged as an important target of interest in oncology. More specifically, research has demonstrated that it plays an essential role in the self-renewal of leukemic stem cells in acute myeloid leukemia (AML). This review will cover clinical aspects of AML, the role of epigenetics in the disease, and discuss the research that led to the first irreversible inhibitors of LSD1 entering clinical trials for the treatment of AML in 2014. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of LSD1. These compounds differ in their mode of action from tranylcypromine derivatives and could facilitate novel biochemical studies to probe the pathways mediated by LSD1. In this review, we will critically evaluate the strengths and weaknesses of published series of reversible LSD1 inhibitors. Overall, while the development of reversible inhibitors to date has been less fruitful than that of irreversible inhibitors, there is still the possibility for their use to facilitate further research into the roles and functions of LSD1 and to expand the therapeutic applications of LSD1 inhibitors in the clinic.
Collapse
Affiliation(s)
- Daniel P Mould
- Department of Drug Discovery, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Dennis KE, Valentine WM. Ziram and sodium N,N-dimethyldithiocarbamate inhibit ubiquitin activation through intracellular metal transport and increased oxidative stress in HEK293 cells. Chem Res Toxicol 2015; 28:682-90. [PMID: 25714994 PMCID: PMC4406076 DOI: 10.1021/tx500450x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Ubiquitin activating enzyme E1 plays
a pivotal role in ubiquitin
based protein signaling through regulating the initiating step of
the cascade. Previous studies demonstrated that E1 is inhibited by
covalent modification of reactive cysteines contained within the ubiquitin-binding
groove and by conditions that increase oxidative stress and deplete
cellular antioxidants. In this study, we determined the relative contribution
of covalent adduction and oxidative stress to E1 inhibition produced
by ziram and sodium N,N-dimethyldithiocarbamate
(DMDC) in HEK293 cells. Although no dithiocarbamate-derived E1 adducts
were identified on E1 using shotgun LC/MS/MS for either ziram or DMDC,
both dithiocarbamates significantly decreased E1 activity, with ziram
demonstrating greater potency. Ziram increased intracellular levels
of zinc and copper, DMDC increased intracellular levels of only copper,
and both dithiocarbamates enhanced oxidative injury evidenced by elevated
levels of protein carbonyls and expression of heme oxygenase-1. To
assess the contribution of intracellular copper transport to E1 inhibition,
coincubations were performed with the copper chelator triethylenetetramine
hydrochloride (TET). TET significantly protected E1 activity for both
of the dithiocarbamates and decreased the associated oxidative injury
in HEK293 cells as well as prevented dithiocarbamate-mediated lipid
peroxidation assayed using an ethyl aracidonate micelle system. Because
TET did not completely ameliorate intracellular transport of copper
or zinc for ziram, TET apparently maintained E1 activity through its
ability to diminish dithiocarbamate-mediated oxidative stress. Experiments
to determine the relative contribution of elevated intracellular zinc
and copper were performed using a metal free incubation system and
showed that increases in either metal were sufficient to inhibit E1.
To evaluate the utility of the HEK293 in vitro system for screening
environmental agents, a series of additional pesticides and metals
was assayed, and eight agents that produced a significant decrease
and five that produced a significant increase in activated E1 were
identified. These studies suggest that E1 is a sensitive redox sensor
that can be modulated by exposure to environmental agents and can
regulate downstream cellular processes.
Collapse
Affiliation(s)
- Kathleen E Dennis
- †Department of Pathology, Microbiology and Immunology, ‡Center in Molecular Toxicology, §Vanderbilt Brain Institute, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232-2561, United States
| | - William M Valentine
- †Department of Pathology, Microbiology and Immunology, ‡Center in Molecular Toxicology, §Vanderbilt Brain Institute, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232-2561, United States
| |
Collapse
|
38
|
Zembko I, Ahmed I, Farooq A, Dail J, Tawari P, Wang W, Mcconville C. Development of Disulfiram-Loaded Poly(Lactic-co-Glycolic Acid) Wafers for the Localised Treatment of Glioblastoma Multiforme: A Comparison of Manufacturing Techniques. J Pharm Sci 2015; 104:1076-86. [DOI: 10.1002/jps.24304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/19/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022]
|
39
|
Baffoe CS, Nguyen N, Boyd P, Wang W, Morris M, McConville C. Disulfiram-loaded immediate and extended release vaginal tablets for the localised treatment of cervical cancer. J Pharm Pharmacol 2014; 67:189-98. [DOI: 10.1111/jphp.12330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/09/2014] [Indexed: 12/16/2022]
Abstract
Abstract
Objectives
To develop and manufacture both immediate and sustained release vaginal tablets containing the anticancer drug disulfiram, which has the potential to be used as a non-invasive treatment for cervical cancer.
Methods
Disulfiram-loaded vaginal tablets were manufactured at pilot scale using the direct compression method. These tablets were tested in accordance with the European Pharmacopeia testing of solid dosage form guidelines. They were also tested using a biorelevant dissolution method as well as a dual-chambered release model designed to better mimic the dynamic nature of the vaginal vault.
Key findings
We have developed both immediate and sustained release vaginal tablets, which when manufactured at pilot scale are within the limits set by the European Pharmacopeia for the testing of solid dosage forms. Furthermore, these tablets are capable of releasing disulfiram in vitro using the dual-chambered release model at levels 25 000 times and 35 000 times greater than its IC50 concentration for the HeLa cervical cancer cell line.
Conclusions
The successful pilot manufacture and testing of both the immediate and sustained release disulfiram-loaded vaginal tablets warrant further investigation, using an in-vivo model, to assess their potential for use as a non-invasive treatment option for cervical cancer.
Collapse
Affiliation(s)
- Clara S Baffoe
- School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Nhi Nguyen
- School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Peter Boyd
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Mark Morris
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | | |
Collapse
|
40
|
|
41
|
Development of disulfiram-loaded vaginal rings for the localised treatment of cervical cancer. Eur J Pharm Biopharm 2014; 88:945-53. [DOI: 10.1016/j.ejpb.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 12/14/2022]
|
42
|
Atamaniuk TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI. The Mancozeb-containing carbamate fungicide tattoo induces mild oxidative stress in goldfish brain, liver, and kidney. ENVIRONMENTAL TOXICOLOGY 2014; 29:1227-35. [PMID: 23436297 DOI: 10.1002/tox.21853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 01/13/2013] [Accepted: 01/17/2013] [Indexed: 05/20/2023]
Abstract
Tattoo belongs to the group of carbamate fungicides and contains Mancozeb (ethylene(bis)dithiocarbamate) as its main constituent. The toxicity of Mancozeb to living organisms, particularly fish, is not resolved. This work investigated the effects of 96 h of exposure to 3, 5, or 10 mg L(-1) of Tattoo (corresponding to 0.9, 1.5, or 3 mg L(-1) of Mancozeb) on the levels of oxidative stress markers and the antioxidant enzyme system of brain, liver, and kidney of goldfish, Carassius auratus). In liver, Tattoo exposure resulted in increased activities of superoxide dismutase (SOD) by 70%-79%, catalase by 23%-52% and glutathione peroxidase (GPx) by 49%. The content of protein carbonyls (CP) in liver was also enhanced by 92%-125% indicating extensive damage to proteins. Similar increases in CP levels (by 98%-111%) accompanied by reduced glucose-6-phosphate dehydrogenase activity (by 13%-15%) was observed in kidney of fish exposed to Tattoo; however, SOD activity increased by 37% in this tissue after treatment with 10 mg L(-1) Tattoo. In brain, a rise in lipid peroxide level (by 29%) took place after exposure to 10 mg L(-1) Tattoo and was accompanied by elevation of high-molecular mass thiols (by 14%). Tattoo exposure also resulted in a concentration-dependent decrease in glutathione reductase activity (by 26%-37%) in brain. The data collectively show that exposure of goldfish to 3-10 mg L(-1) of the carbamate fungicide Tattoo resulted in the development of mild oxidative stress and activation of antioxidant defense systems in goldfish tissues.
Collapse
Affiliation(s)
- Tetiana M Atamaniuk
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | | | | | | | | |
Collapse
|
43
|
Tahata S, Yuan B, Kikuchi H, Takagi N, Hirano T, Toyoda H. Cytotoxic effects of pyrrolidine dithiocarbamate in small-cell lung cancer cells, alone and in combination with cisplatin. Int J Oncol 2014; 45:1749-59. [PMID: 25070243 DOI: 10.3892/ijo.2014.2564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/01/2014] [Indexed: 11/06/2022] Open
Abstract
The cytocidal effect of pyrrolidine dithiocarbamate (PDTC) was investigated by focusing on cell viability, cell cycle arrest and apoptosis induction in small-cell lung cancer (SCLC) cell lines (NCI-H196 and NCI-H889). PDTC exhibited a much stronger dose-dependent cytotoxic activity against NCI-H196 compared to NCI-H889, while no such activity was observed in normal human embryonal lung fibroblast MRC-5 cells. Cell cycle arrest in S phase paralleled with suppression of c-myc expression without accompanying DNA fragmentation was observed in NCI-H196 cells. A transient increase in the intracellular ROS accompanied with an alteration of expression of oxidative stress-related genes was also confirmed in NCI-H196 cells. Furthermore, the addition of N-acetyl-l-cysteine (NAC), a free radical scavenger, not only abolished PDTC-trigger alterations of expression of these oxidative-related genes, but also almost completely abrogated PDTC-induced reduction in cell viability and morphological changes associated with cell damage. These results thus suggest that PDTC-induced cytotoxicity is attributed to its pro-oxidant activity. PDTC-induced cytotoxicity was further enhanced by CuCl2, however, abolished by bathocuproine disulfonate (BCPS), a non-permeable copper-specific chelator, supporting the plausibility that accumulation of intracellular Cu plays an important role in the cytotoxicity. Importantly, we demonstrated for the first time that PDTC downregulated the expression of ATP7A, known to be responsible for Cu efflux, but did not affect the expression of CTR1, known as a copper uptake transporter. Intriguingly, combination of much lower dose of cisplatin (5 µM) and non-toxic dose of PDTC (0.1 µM) synergistically induced a significant cytotoxicity in NCI-H196 cells. Given that ATP7A plays a critical role in the resistance of platinum-drug (such as cisplatin) representing a first-line treatment for SCLC, PDTC could be a promising candidate of adjunct therapeutic reagent for the patients requiring treatment with platinum-based regimens.
Collapse
Affiliation(s)
- Shinichi Tahata
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Bo Yuan
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hidetomo Kikuchi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
44
|
Wang JH, Du JY, Wu YY, Chen MC, Huang CH, Shen HJ, Lee CF, Lin TH, Lee YJ. Suppression of prolactin signaling by pyrrolidine dithiocarbamate is alleviated by N-acetylcysteine in mammary epithelial cells. Eur J Pharmacol 2014; 738:301-9. [PMID: 24952131 DOI: 10.1016/j.ejphar.2014.05.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Prolactin is the key hormone to stimulate milk synthesis in mammary epithelial cells. It signals through the Jak2-Stat5 pathway to induce the expression of β-casein, a milk protein which is often used as a marker for mammary differentiation. Here we examined the effect of pyrrolidine dithiocarbamate (PDTC) on prolactin signaling. Our results show that PDTC downregulates prolactin receptor levels, and inhibits prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. This is not due to its inhibitory action on NF-κB since application of another NF-κB inhibitor, BAY 11-7082, and overexpression of I-κBα super-repressor do not lead to the same results. Instead, the pro-oxidant activity of PDTC is involved as inclusion of the antioxidant N-acetylcysteine restores prolactin signaling. PDTC triggers great extents of activation of ERK and JNK in mammary epithelial cells. These do not cause suppression of prolactin signaling but confer serine phosphorylation of insulin receptor substrate-1, thereby perturbing insulin signal propagation. As insulin facilitates optimal β-casein expression, blocking insulin signaling by PDTC might pose additional impediment to β-casein expression. Our results thus imply that lactation will be compromised when the cellular redox balance is dysregulated, such as during mastitis.
Collapse
Affiliation(s)
- Jen-Hsing Wang
- Department of Obstetrics and Gynecology, Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan, Republic of China
| | - Jyun-Yi Du
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Yi-Ying Wu
- Department of Medical Laboratory Science and Technology, China Medical University and Hospital, Taichung 404, Taiwan, Republic of China
| | - Meng-Chi Chen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Chun-Hao Huang
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Hsin-Ju Shen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Chin-Feng Lee
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Yi-Ju Lee
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China.
| |
Collapse
|
45
|
Cheriyan VT, Wang Y, Muthu M, Jamal S, Chen D, Yang H, Polin LA, Tarca AL, Pass HI, Dou QP, Sharma S, Wali A, Rishi AK. Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis. PLoS One 2014; 9:e93711. [PMID: 24690739 PMCID: PMC3972204 DOI: 10.1371/journal.pone.0093711] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022] Open
Abstract
Dithiocarbamate compound Disulfiram (DSF) that binds with copper and functions as an inhibitor of aldehyde dehydrogenase is a Food and Drug Administration approved agent for treatment of alcoholism. Copper complexed DSF (DSF-Cu) also possesses anti-tumor and chemosensitizing properties; however, its molecular mechanisms of action remain unclear. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of DSF-Cu and the molecular mechanisms involved. DSF-Cu inhibited growth of the murine as well as human MPM cells in part by increasing levels of ubiquitinated proteins. DSF-Cu exposure stimulated apoptosis in MPM cells that involved activation of stress-activated protein kinases (SAPKs) p38 and JNK1/2, caspase-3, and cleavage of poly-(ADP-ribose)-polymerase, as well as increased expression of sulfatase 1 and apoptosis transducing CARP-1/CCAR1 protein. Gene-array based analyses revealed that DSF-Cu suppressed cell growth and metastasis-promoting genes including matrix metallopeptidase 3 and 10. DSF inhibited MPM cell growth and survival by upregulating cell cycle inhibitor p27Kip1, IGFBP7, and inhibitors of NF-κB such as ABIN 1 and 2 and Inhibitory κB (IκB)α and β proteins. DSF-Cu promoted cleavage of vimentin, as well as serine-phosphorylation and lysine-63 linked ubiquitination of podoplanin. Administration of 50 mg/kg DSF-Cu by daily i.p injections inhibited growth of murine MPM cell-derived tumors in vivo. Although podoplanin expression often correlates with metastatic disease and poor prognosis, phosphorylation of serines in cytoplasmic domain of podoplanin has recently been shown to interfere with cellular motility and migration signaling. Post-translational modification of podoplanin and cleavage of vimentin by DSF-Cu underscore a metastasis inhibitory property of this agent and together with our in vivo studies underscore its potential as an anti-MPM agent.
Collapse
Affiliation(s)
- Vino T. Cheriyan
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Ying Wang
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Magesh Muthu
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Shazia Jamal
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Di Chen
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Huanjie Yang
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Lisa A. Polin
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
| | - Harvey I. Pass
- Division of Cardiothoracic Surgery, New York University Cancer Center, New York, New York, United States of America
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (QPD); (AKR)
| | - Sunita Sharma
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Anil Wali
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Arun K. Rishi
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- * E-mail: (QPD); (AKR)
| |
Collapse
|
46
|
Synthesis, antifungal activities and molecular docking studies of novel 2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl dithiocarbamates. Eur J Med Chem 2014; 74:366-74. [DOI: 10.1016/j.ejmech.2014.01.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 11/22/2022]
|
47
|
Wang W, Darling JL. How could a drug used to treat alcoholism also be effective against glioblastoma? Expert Rev Anticancer Ther 2014; 13:239-41. [PMID: 23477507 DOI: 10.1586/era.12.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Nami SAA, Husain A, Ullah I. Self assembled homodinuclear dithiocarbamates: one pot synthesis and spectral characterization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:380-388. [PMID: 24064153 DOI: 10.1016/j.saa.2013.08.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 08/03/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Several self assembled homodinuclear complexes of the type [M2(Ldtc)2·4H2O] derived from quadridentate ligand (Ldtc), where Ldtc = 2-aminobenzoylhydrazidebis(dithiocarbamate) and M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) have been reported. The in situ procedure gives high yield with the formation of single product as evident by TLC and various other physicochemical techniques. Elemental analysis, TGA, (1)H NMR, (13)C NMR, ESI mass spectrometry, EPR, UV-vis. and IR spectroscopy were used to characterize the homodinuclear complexes. The spectroscopic evidences and room temperature magnetic moment values suggest that all the complexes have octahedral geometry around the transition metal atom. A symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the complexes. The energy-minimized structure of the molecule also showed that each metal atom acquires a distorted octahedral geometry. The complexes exhibit a three-step thermolytic pattern and are non-electrolyte in nature.
Collapse
Affiliation(s)
- Shahab A A Nami
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh 202002, India.
| | | | | |
Collapse
|
49
|
Sun Y, Liu C, Liu Y, Hosokawa T, Saito T, Kurasaki M. Changes in the expression of epigenetic factors during copper-induced apoptosis in PC12 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:1023-1028. [PMID: 24798901 DOI: 10.1080/10934529.2014.894847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite extensive research on copper toxicity the mechanisms involved are not fully characterized. There have been many recent reports concerning the relationship between epigenetic factors and cell metabolism, but the effects of copper exposure on epigenetic factors have not been investigated. In this study, an in vitro culture system was employed to study the influence of copper on apoptosis and epigenetic factors in PC12 cells. When PC12 cells were exposed to copper, DNA damage was observed as DNA fragmentation. In addition, cytosolic cytochrome c levels were increased by copper treatment. These results suggested that copper induced apoptosis via an oxidative stress pathway. This was consistent with the observation that copper-induced apoptosis was enhanced by further oxidative stress induced by exposing cells to H₂O₂. In addition, the epigenetic factors were significantly increased in apoptotic cells following exposure to copper and oxidative stress.
Collapse
Affiliation(s)
- Yongkun Sun
- a Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University , Sapporo , Japan
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Objectives: In this study, we investigated whether cytochrome P450s (CYPs) induced by a typical chlorinated hydrocarbon insecticide chlordane (CLD) potentiate hepatic toxicity of carbon disulfide (CS2). Materials and Methods: Male Sprague-Dawley rats were treated with CLD (25 mg/kg, intraperitoneally (i.p.)) daily for 4 days, and 24 h after the final injection the rats were treated with CS2 (380 mg/kg, i.p.) in corn oil; while controls received the vehicle alone. The rats were then sacrificed at 3, 6, and 24 h following the CS2 treatment. Results: It was found that at 3 h post-treatment, total hepatic glutathione (GSH) decreased modestly, but lipid peroxidation increased markedly, while all CLD-inducible CYPs (1A1, 2B1, 2E1, and 3A2) were inhibited by CS2 variably but significantly. On the other hand, samples taken at 24 h following the CS2 treatment showed a significant increase in relative liver weights, hepatic GSH and lipid peroxidation, microsomal reactive oxygen species (ROS), and serum alanine transaminase (ALT) level. Activity of the CYPs was also increased, but remained significantly depressed, especially that of CYP2B1. Livers removed at 3 and 6 h after CS2 treatment showed subtle to distinct apoptotic changes, while a severe lesion of hydropic degeneration of the centrilobular cells with apoptosis was microscopically distinguishable in samples taken at 24 h. Conclusions: These results suggest that the metabolism of CS2 by CLD-induced CYPs and the generation of lipid peroxides may have in concert contributed to the distinct hepatocellular damage.
Collapse
Affiliation(s)
- Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|