1
|
Qian Y, Lai L, Cheng M, Fang H, Fan D, Zylstra GJ, Huang X. Identification, characterization, and distribution of novel amidase gene aphA in sphingomonads conferring resistance to amphenicol antibiotics. Appl Environ Microbiol 2024; 90:e0151224. [PMID: 39431819 DOI: 10.1128/aem.01512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Amphenicol antibiotics, such as chloramphenicol (CHL), thiamphenicol (TAP), and florfenicol (Ff), are high-risk emerging pollutants. Their extensive usage in aquaculture, livestock, and poultry farming has led to an increase in bacterial antibiotic resistance and facilitated the spread of resistance genes. Yet, limited research has been conducted on the co-resistance of CHL, TAP, and Ff. Herein, a novel amidase AphA was identified from a pure cultured strain that can concurrently mediate the hydrolytic inactivation of CHL, TAP, and Ff, yielding products p-nitrophenylserinol, thiamphenicol amine (TAP-amine), and florfenicol amine (Ff-amine), respectively. The antibacterial activity of these antibiotic hydrolysates exhibited a significant reduction or complete loss in comparison to the parent compounds. Notably, AphA shared less than 26% amino acid sequence identity with previously reported enzymes and exhibited high conservation within the sphingomonad species. Through enzymatic kinetic analysis, the AphA exhibited markedly superior affinity and catalytic activity toward Ff in comparison to CHL and TAP. Site-directed mutagenesis analysis revealed the indispensability of catalytic triad residues, particularly serine 153 and histidine 277, in forming crucial hydrogen bonds essential for AphA's hydrolytic activity. Comparative genomic analysis showed that aphA genes in some species are closely adjacent to various transposable elements, indicating that there is a high potential risk of horizontal gene transfer (HGT). This study established a hydrolysis resistance mechanism of amphenicol antibiotics in sphingomonads, which offers theoretical guidance and a novel marker gene for assessing the prevalent risk of amphenicol antibiotics in the environment.IMPORTANCEAmphenicol antibiotics are pervasive emerging contaminants that present a substantial threat to ecological systems. Few studies have elucidated resistance genes or mechanisms that can act on CHL, TAP, and Ff simultaneously. The results of this study fill this knowledge gap and identify a novel amidase AphA from the bacterium Sphingobium yanoikuyae B1, which mediates three typical amphenicol antibiotic inactivation, and the molecular mechanism is elucidated. The diverse types of transposable elements were identified in the flanking regions of the aphA gene, indicating the risk of horizontal transfer of this antibiotic resistance genes (ARG). These findings offer new insights into the bacterial resistance to amphenicol antibiotics. The gene reported herein can be utilized as a novel genetic diagnostic marker for monitoring the environmental fate of amphenicol antibiotics, thereby enriching risk assessment efforts within the context of antibiotic resistance.
Collapse
Affiliation(s)
- Yingying Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lin Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Fan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gerben J Zylstra
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Ni J, Li S, Lai Y, Wang Z, Wang D, Tan Y, Fan Y, Lu J, Yao YF. Global profiling of ribosomal protein acetylation reveals essentiality of acetylation homeostasis in maintaining ribosome assembly and function. Nucleic Acids Res 2023; 51:10411-10427. [PMID: 37742082 PMCID: PMC10602876 DOI: 10.1093/nar/gkad768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Acetylation is a global post-translational modification that regulates various cellular processes. Bacterial acetylomic studies have revealed extensive acetylation of ribosomal proteins. However, the role of acetylation in regulating ribosome function remains poorly understood. In this study, we systematically profiled ribosomal protein acetylation and identified a total of 289 acetylated lysine residues in 52 ribosomal proteins (r-proteins) from Salmonella Typhimurium. The majority of acetylated lysine residues of r-proteins were found to be regulated by both acetyltransferase Pat and metabolic intermediate acetyl phosphate. Our results show that acetylation plays a critical role in the assembly of the mature 70S ribosome complex by modulating r-proteins binding to rRNA. Moreover, appropriate acetylation is important for the interactions between elongation factors and polysomes, as well as regulating ribosome translation efficiency and fidelity. Dysregulation of acetylation could alter bacterial sensitivity to ribosome-targeting antibiotics. Collectively, our data suggest that the acetylation homeostasis of ribosomes is crucial for their assembly and function. Furthermore, this mechanism may represent a universal response to environmental signals across different cell types.
Collapse
Affiliation(s)
- Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuxian Li
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Lai
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongcong Tan
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| |
Collapse
|
3
|
Li F, Xiong S, Zhao P, Dong P, Wu Z. Few Layer Ti 3C 2 MXene-Based Label-Free Aptasensor for Ultrasensitive Determination of Chloramphenicol in Milk. Molecules 2023; 28:6074. [PMID: 37630325 PMCID: PMC10459553 DOI: 10.3390/molecules28166074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Quantitative detection of veterinary drug residues in animal-derived food is of great significance. In this work, a simple and label-free electrochemical aptasensor for the highly sensitive detection of chloramphenicol (CAP) in milk was successfully developed based on a new biosensing method, where the single- or few-layer Ti3C2 MXene nanosheets functionalized via the specific aptamer by self-assembly were used as electrode modifiers for a glassy carbon electrode (aptamer/Ti3C2 MXene/GCE). Differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy (SEM), atomic force microscope (AFM), and so on were utilized for electrochemical and morphological characterization. Under the optimized conditions, the constructed aptasensor exhibited excellent performance with a wider linearity to CAP in the range from 10 fM to 1 μM and a low detection limit of 1 fM. Aptamer/Ti3C2 MXene/GCE demonstrated remarkable selectivity over other potentially interfering antibiotics, as well as exceptional reproducibility and stability. In addition, the aptasensor was successfully applied to determine CAP in milk with acceptable recovery values of 96.13% to 108.15% and relative standard deviations below 9%. Therefore, the proposed electrochemical aptasensor is an excellent alternative for determining CAP in food samples.
Collapse
Affiliation(s)
| | | | | | | | - Zijian Wu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (F.L.); (S.X.); (P.Z.); (P.D.)
| |
Collapse
|
4
|
Selvarajan R, Obize C, Sibanda T, Abia ALK, Long H. Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance. Antibiotics (Basel) 2022; 12:28. [PMID: 36671228 PMCID: PMC9855083 DOI: 10.3390/antibiotics12010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chinedu Obize
- Centre d’étude de la Forêt, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Timothy Sibanda
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Akebe Luther King Abia
- Department of Microbiology, Venda University, Thohoyando 1950, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| | - Haijun Long
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
5
|
El-Khoury C, Mansour E, Yuliandra Y, Lai F, Hawkins BA, Du JJ, Sundberg EJ, Sluis-Cremer N, Hibbs DE, Groundwater PW. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. RSC Med Chem 2022; 13:1276-1299. [PMID: 36439977 PMCID: PMC9667779 DOI: 10.1039/d2md00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023] Open
Abstract
Antibacterial resistance is a prominent issue with monotherapy often leading to treatment failure in serious infections. Many mechanisms can lead to antibacterial resistance including deactivation of antibacterial agents by bacterial enzymes. Enzymatic drug modification confers resistance to β-lactams, aminoglycosides, chloramphenicol, macrolides, isoniazid, rifamycins, fosfomycin and lincosamides. Novel enzyme inhibitor adjuvants have been developed in an attempt to overcome resistance to these agents, only a few of which have so far reached the market. This review discusses the different enzymatic processes that lead to deactivation of antibacterial agents and provides an update on the current and potential enzyme inhibitors that may restore bacterial susceptibility.
Collapse
Affiliation(s)
- Christy El-Khoury
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Elissar Mansour
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Yori Yuliandra
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
6
|
Elder FCT, Feil EJ, Snape J, Gaze WH, Kasprzyk-Hordern B. The role of stereochemistry of antibiotic agents in the development of antibiotic resistance in the environment. ENVIRONMENT INTERNATIONAL 2020; 139:105681. [PMID: 32251898 DOI: 10.1016/j.envint.2020.105681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance (ABR) is now recognised as a serious global health and economic threat that is most efficiently managed via a 'one health' approach incorporating environmental risk assessment. Although the environmental dimension of ABR has been largely overlooked, recent studies have underlined the importance of non-clinical settings in the emergence and spread of resistant strains. Despite this, several research gaps remain in regard to the development of a robust and fit-for-purpose environmental risk assessment for ABR drivers such as antibiotics (ABs). Here we explore the role the environment plays in the dissemination of ABR within the context of stereochemistry and its particular form, enantiomerism. Taking chloramphenicol as a proof of principle, we argue that stereoisomerism of ABs impacts on biological properties and the mechanisms of resistance and we discuss more broadly the importance of stereochemistry (enantiomerism in particular) with respect to antimicrobial potency and range of action.
Collapse
Affiliation(s)
- Felicity C T Elder
- Department of Chemistry, University of Bath, BA27AY Bath, United Kingdom
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA27AY Bath, United Kingdom
| | - JasoN Snape
- AstraZeneca Global Safety, Health and Environment, Mereside, Macclesfield SK10, 4TG, United Kingdom
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, United Kingdom
| | | |
Collapse
|
7
|
Abstract
While the description of resistance to quinolones is almost as old as these antimicrobial agents themselves, transferable mechanisms of quinolone resistance (TMQR) remained absent from the scenario for more than 36 years, appearing first as sporadic events and afterward as epidemics. In 1998, the first TMQR was soundly described, that is, QnrA. The presence of QnrA was almost anecdotal for years, but in the middle of the first decade of the 21st century, there was an explosion of TMQR descriptions, which definitively changed the epidemiology of quinolone resistance. Currently, 3 different clinically relevant mechanisms of quinolone resistance are encoded within mobile elements: (i) target protection, which is mediated by 7 different families of Qnr (QnrA, QnrB, QnrC, QnrD, QnrE, QnrS, and QnrVC), which overall account for more than 100 recognized alleles; (ii) antibiotic efflux, which is mediated by 2 main transferable efflux pumps (QepA and OqxAB), which together account for more than 30 alleles, and a series of other efflux pumps (e.g., QacBIII), which at present have been sporadically described; and (iii) antibiotic modification, which is mediated by the enzymes AAC(6')Ib-cr, from which different alleles have been claimed, as well as CrpP, a newly described phosphorylase.
Collapse
|
8
|
Green KD, Fosso MY, Mayhoub AS, Garneau-Tsodikova S. Investigating the promiscuity of the chloramphenicol nitroreductase from Haemophilus influenzae towards the reduction of 4-nitrobenzene derivatives. Bioorg Med Chem Lett 2019; 29:1127-1132. [PMID: 30826292 DOI: 10.1016/j.bmcl.2019.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 01/28/2023]
Abstract
Chloramphenicol nitroreductase (CNR), a drug-modifying enzyme from Haemophilus influenzae, has been shown to be responsible for the conversion of the nitro group into an amine in the antibiotic chloramphenicol (CAM). Since CAM structurally bears a 4-nitrobenzene moiety, we explored the substrate promiscuity of CNR by investigating its nitroreduction of 4-nitrobenzyl derivatives. We tested twenty compounds containing a nitrobenzene core, two nitropyridines, one compound with a vinylogous nitro group, and two aliphatic nitro compounds. In addition, we also synthesized twenty-eight 4-nitrobenzyl derivatives with ether, ester, and thioether substituents and assessed the relative activity of CNR in their presence. We found several of these compounds to be modified by CNR, with the enzyme activity ranging from 1 to 150% when compared to CAM. This data provides insights into two areas: (i) chemoenzymatic reduction of select compounds to avoid harsh chemicals and heavy metals routinely used in reductions of nitro groups and (ii) functional groups that would aid CAM in overcoming the activity of this enzyme.
Collapse
Affiliation(s)
- Keith D Green
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA
| | - Marina Y Fosso
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA
| | - Abdelrahman S Mayhoub
- Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA.
| |
Collapse
|
9
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
10
|
Gagunashvili AN, Andrésson ÓS. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics 2018; 19:434. [PMID: 29866043 PMCID: PMC5987646 DOI: 10.1186/s12864-018-4743-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cyanobacteria of the genus Nostoc are capable of forming symbioses with a wide range of organism, including a diverse assemblage of cyanolichens. Only certain lineages of Nostoc appear to be able to form a close, stable symbiosis, raising the question whether symbiotic competence is determined by specific sets of genes and functionalities. RESULTS We present the complete genome sequencing, annotation and analysis of two lichen Nostoc strains. Comparison with other Nostoc genomes allowed identification of genes potentially involved in symbioses with a broad range of partners including lichen mycobionts. The presence of additional genes necessary for symbiotic competence is likely reflected in larger genome sizes of symbiotic Nostoc strains. Some of the identified genes are presumably involved in the initial recognition and establishment of the symbiotic association, while others may confer advantage to cyanobionts during cohabitation with a mycobiont in the lichen symbiosis. CONCLUSIONS Our study presents the first genome sequencing and genome-scale analysis of lichen-associated Nostoc strains. These data provide insight into the molecular nature of the cyanolichen symbiosis and pinpoint candidate genes for further studies aimed at deciphering the genetic mechanisms behind the symbiotic competence of Nostoc. Since many phylogenetic studies have shown that Nostoc is a polyphyletic group that includes several lineages, this work also provides an improved molecular basis for demarcation of a Nostoc clade with symbiotic competence.
Collapse
Affiliation(s)
- Andrey N. Gagunashvili
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, Reykjavík, 101 Iceland
| | - Ólafur S. Andrésson
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, Reykjavík, 101 Iceland
| |
Collapse
|
11
|
Huang L, Yuan H, Liu MF, Zhao XX, Wang MS, Jia RY, Chen S, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC, Zhu DK. Type B Chloramphenicol Acetyltransferases Are Responsible for Chloramphenicol Resistance in Riemerella anatipestifer, China. Front Microbiol 2017; 8:297. [PMID: 28298905 PMCID: PMC5331189 DOI: 10.3389/fmicb.2017.00297] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
Riemerella anatipestifer causes serositis and septicaemia in domestic ducks, geese, and turkeys. Traditionally, the antibiotics were used to treat this disease. Currently, our understanding of R. anatipestifer susceptibility to chloramphenicol and the underlying resistance mechanism is limited. In this study, the cat gene was identified in 69/192 (36%) R. anatipestifer isolated from different regions in China, including R. anatipestifer CH-2 that has been sequenced in previous study. Sequence analysis suggested that there are two copies of cat gene in this strain. Only both two copies of the cat mutant strain showed a significant decrease in resistance to chloramphenicol, exhibiting 4 μg/ml in the minimum inhibitory concentration for this antibiotic, but not for the single cat gene deletion strains. Functional analysis of the cat gene via expression in Escherichia coli BL21 (DE3) cells and in vitro site-directed mutagenesis indicated that His79 is the main catalytic residue of CAT in R. anatipestifer. These results suggested that chloramphenicol resistance of R. anatipestifer CH-2 is mediated by the cat genes. Finally, homology analysis of types A and B CATs indicate that R. anatipestifer comprises type B3 CATs.
Collapse
Affiliation(s)
- Li Huang
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - Hui Yuan
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - Ma-Feng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ming-Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ren-Yong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - Shun Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kun-Feng Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiao-Yue Chen
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - An-Chun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - De-Kang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural University Chengdu, China
| |
Collapse
|
12
|
Schwarz S, Shen J, Kadlec K, Wang Y, Brenner Michael G, Feßler AT, Vester B. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harb Perspect Med 2016; 6:a027037. [PMID: 27549310 PMCID: PMC5088508 DOI: 10.1101/cshperspect.a027037] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lincosamides, streptogramins, phenicols, and pleuromutilins (LSPPs) represent four structurally different classes of antimicrobial agents that inhibit bacterial protein synthesis by binding to particular sites on the 50S ribosomal subunit of the ribosomes. Members of all four classes are used for different purposes in human and veterinary medicine in various countries worldwide. Bacteria have developed ways and means to escape the inhibitory effects of LSPP antimicrobial agents by enzymatic inactivation, active export, or modification of the target sites of the agents. This review provides a comprehensive overview of the mode of action of LSPP antimicrobial agents as well as of the mutations and resistance genes known to confer resistance to these agents in various bacteria of human and animal origin.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Geovana Brenner Michael
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Birte Vester
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
13
|
Dinos GP, Athanassopoulos CM, Missiri DA, Giannopoulou PC, Vlachogiannis IA, Papadopoulos GE, Papaioannou D, Kalpaxis DL. Chloramphenicol Derivatives as Antibacterial and Anticancer Agents: Historic Problems and Current Solutions. Antibiotics (Basel) 2016; 5:antibiotics5020020. [PMID: 27271676 PMCID: PMC4929435 DOI: 10.3390/antibiotics5020020] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Chloramphenicol (CAM) is the D-threo isomer of a small molecule, consisting of a p-nitrobenzene ring connected to a dichloroacetyl tail through a 2-amino-1,3-propanediol moiety. CAM displays a broad-spectrum bacteriostatic activity by specifically inhibiting the bacterial protein synthesis. In certain but important cases, it also exhibits bactericidal activity, namely against the three most common causes of meningitis, Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis. Resistance to CAM has been frequently reported and ascribed to a variety of mechanisms. However, the most important concerns that limit its clinical utility relate to side effects such as neurotoxicity and hematologic disorders. In this review, we present previous and current efforts to synthesize CAM derivatives with improved pharmacological properties. In addition, we highlight potentially broader roles of these derivatives in investigating the plasticity of the ribosomal catalytic center, the main target of CAM.
Collapse
Affiliation(s)
- George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| | | | - Dionissia A Missiri
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | | | - Ioannis A Vlachogiannis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| | - Georgios E Papadopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26, GR-41221 Larissa, Greece.
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| |
Collapse
|
14
|
Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM. Isolation and characterization of cyclo-(tryptophanyl-prolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1817-27. [PMID: 27330275 PMCID: PMC4896468 DOI: 10.2147/dddt.s101212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Zingiber spectabile, commonly known as Beehive Ginger, is used as an ethnobotanical plant in many countries as an appetizer or to treat stomachache, toothache, muscle sprain, and as a cure for swelling, sores and cuts. This is the first report of isolation of Streptomyces strain from the root of this plant. Strain Universiti Kebangsaan 25 (SUK 25) has a very high activity to produce secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA), which is associated with high morbidity and mortality rates due to acquired multidrug resistance genes and causes medication failure in some clinical cases worldwide. Phylogenetic analysis based on the 16S ribosomal RNA gene sequence exhibited that the most closely related strain was Streptomyces omiyaensis NBRC 13449T (99.0% similarity). Aim This study was conducted to carry out the extraction, identification, and biological evaluation of active metabolites isolated from SUK 25 against three MRSA strains, namely, MRSA ATCC 43300, MRSA ATCC 33591, and MRSA ATCC 49476. Materials and methods The production of secondary metabolites by this strain was optimized through Thronton’s media. Isolation, purification, and identification of the bioactive compounds were carried out using reversed-phase high-performance liquid chromatography, high-resolution mass spectrometry, Fourier transform infrared, and one-dimensional and two-dimensional nuclear magnetic resonance. Results During screening procedure, SUK 25 exhibited good antimicrobial potential against several strains of MRSA. The best biological activity was shown from fraction number VII and its subfractions F2 and F3 with minimum inhibitory concentration values at 16 µg/mL and 8 µg/mL, respectively. These two subfractions were identified as diketopiperazine cyclo-(tryptophanyl-prolyl) and chloramphenicol. Conclusion On the basis of obtained results, SUK 25 isolated from Z. spectabile can be regarded as a new valuable source to produce secondary metabolites against bacteria, especially MRSA.
Collapse
Affiliation(s)
- Muhanna M Alshaibani
- Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik M Sidik
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ruangelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Noraziah M Zin
- Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Roberts MC, Schwarz S. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:576-592. [PMID: 27065405 DOI: 10.2134/jeq2015.04.0207] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent reports have speculated on the future impact that antibiotic-resistant bacteria will have on food production, human health, and global economics. This review examines microbial resistance to tetracyclines and phenicols, antibiotics that are widely used in global food production. The mechanisms of resistance, mode of spread between agriculturally and human-impacted environments and ecosystems, distribution among bacteria, and the genes most likely to be associated with agricultural and environmental settings are included. Forty-six different tetracycline resistance () genes have been identified in 126 genera, with (M) having the broadest taxonomic distribution among all bacteria and (B) having the broadest coverage among the Gram-negative genera. Phenicol resistance genes are organized into 37 groups and have been identified in 70 bacterial genera. The review provides the latest information on tetracycline and phenicol resistance genes, including their association with mobile genetic elements in bacteria of environmental, medical, and veterinary relevance. Knowing what specific antibiotic-resistance genes (ARGs) are found in specific bacterial species and/or genera is critical when using a selective suite of ARGs for detection or surveillance studies. As detection methods move to molecular techniques, our knowledge about which type of bacteria carry which resistance gene(s) will become more important to ensure that the whole spectrum of bacteria are included in future surveillance studies. This review provides information needed to integrate the biology, taxonomy, and ecology of tetracycline- and phenicol-resistant bacteria and their resistance genes so that informative surveillance strategies can be developed and the correct genes selected.
Collapse
|
16
|
Zhang Z, Zheng P, Li W, Wang R, Ghulam A. Effect of organic toxicants on the activity of denitrifying granular sludge. ENVIRONMENTAL TECHNOLOGY 2015; 36:699-705. [PMID: 25220622 DOI: 10.1080/09593330.2014.959065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Denitrification plays a key role in the biological nitrogen removal from the wastewater using granular sludge as the integral part of a high-rate denitrification technology. It is helpful to evaluate the effect of typical organic toxicants on the activity of denitrifying granular sludge for the application of denitrification technology. In this study, four typical organic toxicants, namely, penicillin, chloramphenicol, 2,4-dinitrophenol and polymyxin B sulphate were used to assess the effect of organic toxicants on the activity of denitrifying granular sludge. The results of individual toxicity indicated that penicillin, chloramphenicol and 2,4-dinitrophenol had significant inhibition, whose half-inhibitory concentrations were 0.534, 0.162 and 0.474 g/L with respective inhibitory magnitudes of 90.79%/(g/L), 282.5%/(g/L) and 138.83%/(g/L). Polymyxin B sulphate showed no significant inhibition. The results of combined toxicity indicated that the binary mixture of penicillin and chloramphenicol had an antagonistic effect, both the binary mixture of penicillin and 2,4-dinitrophenol and the binary mixture of chloramphenicol and 2,4-dinitrophenol had additive effects. The ternary mixture of penicillin, chloramphenicol and 2,4-dinitrophenol had a partial additive effect.
Collapse
Affiliation(s)
- Zonghe Zhang
- a Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Lin B, Lyu J, Lyu XJ, Yu HQ, Hu Z, Lam JCW, Lam PKS. Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:158-64. [PMID: 25070321 DOI: 10.1016/j.jhazmat.2014.06.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/20/2014] [Accepted: 06/27/2014] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals have recently been regarded as contaminants of emerging concern. To date, there is limited knowledge about antibiotic-degrading microorganisms in conventional activated sludge treatment systems and their characteristics toward antibiotic degradation especially in the presence of a pharmaceutical mixture. As such, antibiotic-degrading microorganisms were investigated and isolated from the activated sludge, and their degradation capabilities were evaluated. Two strains of cefalexin-degrading bacteria CE21 and CE22 were isolated and identified as Pseudomonas sp. in the collected activated sludge. Strain CE22 was able to degrade over 90% of cefalexin, while CE21 was able to remove 46.7% of cefalexin after incubation for 24h. The removal efficiency of cefalexin by CE22, different from that of CE21, was not significantly affected by an increase in cefalexin concentration, even up to 10ppm, however the presence of 1ppm of other pharmaceuticals had a significant effect on the degradation of cefalexin by CE22, but no significant effect on CE21. The degradation product of cefalexin by the two strains was identified to be 2-hydroxy-3-phenyl pyrazine. Our results also indicated that CE21 and CE22 were able to degrade caffeine, salicylic acid and chloramphenicol. Moreover, CE21 was found to be capable of eliminating sulfamethoxazole and naproxen.
Collapse
Affiliation(s)
- Bokun Lin
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute Building, Shenzhen 518057, China; Medical College, Shantou University, Shantou, Guangdong, China
| | - Jinling Lyu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute Building, Shenzhen 518057, China
| | - Xian-jin Lyu
- Department of Chemistry, University of Science and Technology of China, Hefei, China; Advanced Laboratory for Environmental Research and Technology (ALERT), USTC-CityU Joint Advanced Research Center, Suzhou, China; Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Han-qing Yu
- Department of Chemistry, University of Science and Technology of China, Hefei, China; Advanced Laboratory for Environmental Research and Technology (ALERT), USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Zhong Hu
- Medical College, Shantou University, Shantou, Guangdong, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute Building, Shenzhen 518057, China.
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute Building, Shenzhen 518057, China; Advanced Laboratory for Environmental Research and Technology (ALERT), USTC-CityU Joint Advanced Research Center, Suzhou, China; Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
18
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
19
|
Abstract
The ribosome is one of the main antibiotic targets in the bacterial cell. Crystal structures of naturally produced antibiotics and their semi-synthetic derivatives bound to ribosomal particles have provided unparalleled insight into their mechanisms of action, and they are also facilitating the design of more effective antibiotics for targeting multidrug-resistant bacteria. In this Review, I discuss the recent structural insights into the mechanism of action of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance, in addition to the approaches that are being pursued for the production of improved drugs that inhibit bacterial protein synthesis.
Collapse
|
20
|
Rajesh T, Sung C, Kim H, Song E, Park HY, Jeon JM, Yoo D, Kim HJ, Kim YH, Choi KY, Song KG, Yang YH. Phosphorylation of chloramphenicol by a recombinant protein Yhr2 from Streptomyces avermitilis MA4680. Bioorg Med Chem Lett 2013; 23:3614-9. [PMID: 23659856 DOI: 10.1016/j.bmcl.2013.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 02/03/2023]
Abstract
Although phosphorylation of chloramphenicol has been shown to occur in the chloramphenicol producer, Streptomyces venezuelae, there are no reports on the existence of chloramphenicol phosphorylase in other Streptomyces species. In the present study, we report the modification of chloramphenicol by a recombinant protein, designated as Yhr2 (encoded by SAV_877), from Streptomyces avermitilis MA4680. Recombinant Yhr2 was expressed in Escherichia coli BL21 (DE3) and the cells expressing this recombinant protein were shown to phosphorylate chloramphenicol to a 3'-O-phosphoryl ester derivative, resulting in an inactivated form of the antibiotic. Expression of yhr2 conferred chloramphenicol resistance to E. coli cells up to 25 μg/mL and in an in vitro reaction, adenosine triphosphate (ATP), guanosine triphosphate (GTP), adenosine diphosphate (ADP) and guanosine diphosphate (GDP) were shown to be the phosphate donors for phosphorylation of chloramphenicol. This study highlights that antibiotic resistance conferring genes could be easily expressed and functionalized in other organisms that do not produce the respective antibiotic.
Collapse
Affiliation(s)
- Thangamani Rajesh
- Department of Microbial Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase. Appl Environ Microbiol 2012; 78:6295-301. [PMID: 22752166 DOI: 10.1128/aem.01154-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloramphenicol and florfenicol are broad-spectrum antibiotics. Although the bacterial resistance mechanisms to these antibiotics have been well documented, hydrolysis of these antibiotics has not been reported in detail. This study reports the hydrolysis of these two antibiotics by a specific hydrolase that is encoded by a gene identified from a soil metagenome. Hydrolysis of chloramphenicol has been recognized in cell extracts of Escherichia coli expressing a chloramphenicol acetate esterase gene, estDL136. A hydrolysate of chloramphenicol was identified as p-nitrophenylserinol by liquid chromatography-mass spectroscopy and proton nuclear magnetic resonance spectroscopy. The hydrolysis of these antibiotics suggested a promiscuous amidase activity of EstDL136. When estDL136 was expressed in E. coli, EstDL136 conferred resistance to both chloramphenicol and florfenicol on E. coli, due to their inactivation. In addition, E. coli carrying estDL136 deactivated florfenicol faster than it deactivated chloramphenicol, suggesting that EstDL136 hydrolyzes florfenicol more efficiently than it hydrolyzes chloramphenicol. The nucleotide sequences flanking estDL136 encode proteins such as amidohydrolase, dehydrogenase/reductase, major facilitator transporter, esterase, and oxidase. The most closely related genes are found in the bacterial family Sphingomonadaceae, which contains many bioremediation-related strains. Whether the gene cluster with estDL136 in E. coli is involved in further chloramphenicol degradation was not clear in this study. While acetyltransferases for chloramphenicol resistance and drug exporters for chloramphenicol or florfenicol resistance are often detected in numerous microbes, this is the first report of enzymatic hydrolysis of florfenicol resulting in inactivation of the antibiotic.
Collapse
|
22
|
Cundliffe E, Demain AL. Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 2010; 37:643-72. [PMID: 20446033 DOI: 10.1007/s10295-010-0721-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Many microbes synthesize potentially autotoxic antibiotics, mainly as secondary metabolites, against which they need to protect themselves. This is done in various ways, ranging from target-based strategies (i.e. modification of normal drug receptors or de novo synthesis of the latter in drug-resistant form) to the adoption of metabolic shielding and/or efflux strategies that prevent drug-target interactions. These self-defence mechanisms have been studied most intensively in antibiotic-producing prokaryotes, of which the most prolific are the actinomycetes. Only a few documented examples pertain to lower eukaryotes while higher organisms have hardly been addressed in this context. Thus, many plant alkaloids, variously described as herbivore repellents or nitrogen excretion devices, are truly antibiotics-even if toxic to humans. As just one example, bulbs of Narcissus spp. (including the King Alfred daffodil) accumulate narciclasine that binds to the larger subunit of the eukaryotic ribosome and inhibits peptide bond formation. However, ribosomes in the Amaryllidaceae have not been tested for possible resistance to narciclasine and other alkaloids. Clearly, the prevalence of suicide avoidance is likely to extend well beyond the remit of the present article.
Collapse
Affiliation(s)
- Eric Cundliffe
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
| | | |
Collapse
|
23
|
Pettigrew DM, Roversi P, Davies SG, Russell AJ, Lea SM. A structural study of the interaction between the Dr haemagglutinin DraE and derivatives of chloramphenicol. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:513-22. [PMID: 19465765 PMCID: PMC2685729 DOI: 10.1107/s0907444909005113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 02/12/2009] [Indexed: 12/02/2022]
Abstract
Dr adhesins are expressed on the surface of uropathogenic and diffusely adherent strains of Escherichia coli. The major adhesin subunit (DraE/AfaE) of these organelles mediates attachment of the bacterium to the surface of the host cell and possibly intracellular invasion through its recognition of the complement regulator decay-accelerating factor (DAF) and/or members of the carcinoembryonic antigen (CEA) family. The adhesin subunit of the Dr haemagglutinin, a Dr-family member, additionally binds type IV collagen and is inhibited in all its receptor interactions by the antibiotic chloramphenicol (CLM). In this study, previous structural work is built upon by reporting the X-ray structures of DraE bound to two chloramphenicol derivatives: chloramphenicol succinate (CLS) and bromamphenicol (BRM). The CLS structure demonstrates that acylation of the 3-hydroxyl group of CLM with succinyl does not significantly perturb the mode of binding, while the BRM structure implies that the binding pocket is able to accommodate bulkier substituents on the N-acyl group. It is concluded that modifications of the 3-hydroxyl group would generate a potent Dr haemagglutinin inhibitor that would not cause the toxic side effects that are associated with the normal bacteriostatic activity of CLM.
Collapse
Affiliation(s)
- David M. Pettigrew
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| | - Pietro Roversi
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| | - Stephen G. Davies
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, England
| | - Angela J. Russell
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, England
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| |
Collapse
|
24
|
Kapp U, Macedo S, Hall DR, Leiros I, McSweeney SM, Mitchell E. Structure of Deinococcus radiodurans tunicamycin-resistance protein (TmrD), a phosphotransferase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:479-86. [PMID: 18540055 PMCID: PMC2496873 DOI: 10.1107/s1744309108011822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/24/2008] [Indexed: 11/10/2022]
Abstract
The open-reading frame (ORF) DR_1419 in the Deinococcus radiodurans genome is annotated as a representative of the wide family of tunicamycin-resistance proteins as identified in a range of bacterial genomes. The D. radiodurans ORF DR_1419 was cloned and expressed; the protein TmrD was crystallized and its X-ray crystal structure was determined to 1.95 A resolution. The structure was determined using single-wavelength anomalous diffraction with selenomethionine-derivatized protein. The refined structure is the first to be reported for a member of the tunicamycin-resistance family. It reveals strong structural similarity to the family of nucleoside monophosphate kinases and to the chloramphenicol phosphotransferase of Streptomyces venezuelae, suggesting that the mode of action is possibly by phosphorylation of tunicamycin.
Collapse
Affiliation(s)
- Ulrike Kapp
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - Sofia Macedo
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - David Richard Hall
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - Ingar Leiros
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - Sean M. McSweeney
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - Edward Mitchell
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
- EPSAM, Keele University, Staffordshire ST5 5BG, England
| |
Collapse
|
25
|
Smith AL, Erwin AL, Kline T, Unrath WCT, Nelson K, Weber A, Howald WN. Chloramphenicol is a substrate for a novel nitroreductase pathway in Haemophilus influenzae. Antimicrob Agents Chemother 2007; 51:2820-9. [PMID: 17526758 PMCID: PMC1932534 DOI: 10.1128/aac.00087-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p-nitroaromatic antibiotic chloramphenicol has been used extensively to treat life-threatening infections due to Haemophilus influenzae and Neisseria meningitidis; its mechanism of action is the inhibition of protein synthesis. We found that during incubation with H. influenzae cells and lysates, chloramphenicol is converted to a 4-aminophenyl allylic alcohol that lacks antibacterial activity. The allylic alcohol moiety undergoes facile re-addition of water to restore the 1,3-diol, as well as further dehydration driven by the aromatic amine to form the iminoquinone. Several Neisseria species and most chloramphenicol-susceptible Haemophilus species, but not Escherichia coli or other gram-negative or gram-positive bacteria we examined, were also found to metabolize chloramphenicol. The products of chloramphenicol metabolism by species other than H. influenzae have not yet been characterized. The strains reducing the antibiotic were chloramphenicol susceptible, indicating that the pathway does not appear to mediate chloramphenicol resistance. The role of this novel nitroreductase pathway in the physiology of H. influenzae and Neisseria species is unknown. Further understanding of the H. influenzae chloramphenicol reduction pathway will contribute to our knowledge of the diversity of prokaryotic nitroreductase mechanisms.
Collapse
Affiliation(s)
- Arnold L Smith
- Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, WA 98109-5219, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Mindlin SZ, Petrova MA, Bass IA, Gorlenko ZM. Origin, evolution, and migration of drug resistance genes. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406110081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Abstract
Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
28
|
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2005; 28:519-42. [PMID: 15539072 DOI: 10.1016/j.femsre.2004.04.001] [Citation(s) in RCA: 440] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/05/2004] [Accepted: 04/17/2004] [Indexed: 11/21/2022] Open
Abstract
Chloramphenicol (Cm) and its fluorinated derivative florfenicol (Ff) represent highly potent inhibitors of bacterial protein biosynthesis. As a consequence of the use of Cm in human and veterinary medicine, bacterial pathogens of various species and genera have developed and/or acquired Cm resistance. Ff is solely used in veterinary medicine and has been introduced into clinical use in the mid-1990s. Of the Cm resistance genes known to date, only a small number also mediates resistance to Ff. In this review, we present an overview of the different mechanisms responsible for resistance to Cm and Ff with particular focus on the two different types of chloramphenicol acetyltransferases (CATs), specific exporters and multidrug transporters. Phylogenetic trees of the different CAT proteins and exporter proteins were constructed on the basis of a multisequence alignment. Moreover, information is provided on the mobile genetic elements carrying Cm or Cm/Ff resistance genes to provide a basis for the understanding of the distribution and the spread of Cm resistance--even in the absence of a selective pressure imposed by the use of Cm or Ff.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institut für Tierzucht, Bundesforschungsanstalt für Landwirtschaft (FAL), Höltystrasse 10, 31535 Neustadt-Mariensee, Germany.
| | | | | | | |
Collapse
|
29
|
Piraee M, White RL, Vining LC. Biosynthesis of the dichloroacetyl component of chloramphenicol in Streptomyces venezuelae ISP5230: genes required for halogenation. Microbiology (Reading) 2004; 150:85-94. [PMID: 14702400 DOI: 10.1099/mic.0.26319-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five ORFs were detected in a fragment from the Streptomyces venezuelae ISP5230 genomic DNA library by hybridization with a PCR product amplified from primers representing a consensus of known halogenase sequences. Sequencing and functional analyses demonstrated that ORFs 11 and 12 (but not ORFs 13-15) extended the partially characterized gene cluster for chloramphenicol (Cm) biosynthesis in the chromosome. Disruption of ORF11 (cmlK) or ORF12 (cmlS) and conjugal transfer of the insertionally inactivated genes to S. venezuelae gave mutant strains VS1111 and VS1112, each producing a similar series of Cm analogues in which unhalogenated acyl groups replaced the dichloroacetyl substituent of Cm. 1H-NMR established that the principal metabolite in the disrupted strains was the alpha-N-propionyl analogue. The sequence of CmlK implicated the protein in adenylation, and involvement in halogenation was inferred from biosynthesis of analogues by the cmlK-disrupted mutant. A role in generating the dichloroacetyl substituent was supported by partial restoration of Cm biosynthesis when a cloned copy of cmlK was introduced in trans into VS1111. Complementation of the mutant also indicated that inactivation of cmlK rather than a polar effect of the disruption on cmlS expression had interfered with dichloroacetyl biosynthesis. The deduced CmlS sequence resembled sequences of FADH2-dependent halogenases. Conjugal transfer of cmlK or cmlS into S. venezuelae cml-2, a chlorination-deficient strain with a mutation mapped genetically to the Cm biosynthesis gene cluster, did not complement the cml-2 lesion, suggesting that one or more genes in addition to cmlK and cmlS is needed to assemble the dichloroacetyl substituent. Insertional inactivation of ORF13 did not affect Cm production, and the products of ORF14 and ORF15 matched Streptomyces coelicolor A3(2) proteins lacking plausible functions in Cm biosynthesis. Thus cmlS appears to mark the downstream end of the gene cluster.
Collapse
Affiliation(s)
- Mahmood Piraee
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | - Robert L White
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3
| | - Leo C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| |
Collapse
|
30
|
Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol 2003; 333:781-815. [PMID: 14568537 DOI: 10.1016/j.jmb.2003.08.040] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences and structures of all P-loop-fold proteins were compared with the aim of reconstructing the principal events in the evolution of P-loop-containing kinases. It is shown that kinases and some related proteins comprise a monophyletic assemblage within the P-loop NTPase fold. An evolutionary classification of these proteins was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of approximately 40 distinct protein families within the P-loop kinase class. Most of these enzymes phosphorylate nucleosides and nucleotides, as well as sugars, coenzyme precursors, adenosine 5'-phosphosulfate and polynucleotides. In addition, the class includes sulfotransferases, amide bond ligases, pyrimidine and dihydrofolate reductases, and several other families of enzymes that have acquired new catalytic capabilities distinct from the ancestral kinase reaction. Our reconstruction of the early history of the P-loop NTPase fold includes the initial split into the common ancestor of the kinase and the GTPase classes, and the common ancestor of ATPases. This was followed by the divergence of the kinases, which primarily phosphorylated nucleoside monophosphates (NMP), but could have had broader specificity. We provide evidence for the presence of at least two to four distinct P-loop kinases, including distinct forms specific for dNMP and rNMP, and related enzymes in the last universal common ancestor of all extant life forms. Subsequent evolution of kinases seems to have been dominated by the emergence of new bacterial and, to a lesser extent, archaeal families. Some of these enzymes retained their kinase activity but evolved new substrate specificities, whereas others acquired new activities, such as sulfate transfer and reduction. Eukaryotes appear to have acquired most of their kinases via horizontal gene transfer from Bacteria, partly from the mitochondrial and chloroplast endosymbionts and partly at later stages of evolution. A distinct superfamily of kinases, which we designated DxTN after its sequence signature, appears to have evolved in selfish replicons, such as bacteriophages, and was subsequently widely recruited by eukaryotes for multiple functions related to nucleic acid processing and general metabolism. In the course of this analysis, several previously undetected groups of predicted kinases were identified, including widespread archaeo-eukaryotic and archaeal families. The results could serve as a framework for systematic experimental characterization of new biochemical and biological functions of kinases.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
31
|
He J, Magarvey N, Piraee M, Vining LC. The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2817-2829. [PMID: 11577160 DOI: 10.1099/00221287-147-10-2817] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regions of the Streptomyces venezuelae ISP5230 chromosome flanking pabAB, an amino-deoxychorismate synthase gene needed for chloramphenicol (Cm) production, were examined for involvement in biosynthesis of the antibiotic. Three of four ORFs in the sequence downstream of pabAB resembled genes involved in the shikimate pathway. BLASTX searches of GenBank showed that the deduced amino acid sequences of ORF3 and ORF4 were similar to proteins encoded by monofunctional genes for chorismate mutase and prephenate dehydrogenase, respectively, while the sequence of the ORF5 product resembled deoxy-arabino-heptulosonate-7-phosphate (DAHP) synthase, the enzyme that initiates the shikimate pathway. A relationship to Cm biosynthesis was indicated by sequence similarities between the ORF6 product and membrane proteins associated with Cm export. BLASTX searches of GenBank for matches with the translated sequence of ORF1 in chromosomal DNA immediately upstream of pabAB did not detect products relevant to Cm biosynthesis. However, the presence of Cm biosynthesis genes in a 7.5 kb segment of the chromosome beyond ORF1 was inferred when conjugal transfer of the DNA into a blocked S. venezuelae mutant restored Cm production. Deletions in the 7.5 kb segment of the wild-type chromosome eliminated Cm production, confirming the presence of Cm biosynthesis genes in this region. Sequencing and analysis located five ORFs, one of which (ORF8) was deduced from BLAST searches of GenBank, and from characteristic motifs detected in alignments of its deduced amino acid sequence, to be a monomodular nonribosomal peptide synthetase. GenBank searches did not identify ORF7, but matched the translated sequences of ORFs 9, 10 and 11 with short-chain ketoreductases, the ATP-binding cassettes of ABC transporters, and coenzyme A ligases, respectively. As has been shown for ORF2, disrupting ORF3, ORF7, ORF8 or ORF9 blocked Cm production.
Collapse
Affiliation(s)
- J He
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - N Magarvey
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - M Piraee
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - L C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| |
Collapse
|
32
|
Izard T. Structural basis for chloramphenicol tolerance in Streptomyces venezuelae by chloramphenicol phosphotransferase activity. Protein Sci 2001; 10:1508-13. [PMID: 11468347 PMCID: PMC2374082 DOI: 10.1002/pro.101508] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Streptomyces venezuelae synthesizes chloramphenicol (Cm), an inhibitor of ribosomal peptidyl transferase activity, thereby inhibiting bacterial growth. The producer escapes autoinhibition by its own secondary metabolite through phosphorylation of Cm by chloramphenicol phosphotransferase (CPT). In addition to active site binding, CPT binds its product 3-phosphoryl-Cm, in an alternate product binding site. To address the mechanisms of Cm tolerance of the producer, the crystal structures of CPT were determined in complex with either the nonchlorinated Cm (2-N-Ac-Cm) at 3.1 A resolution or the antibiotic's immediate precursor, the p-amino analog p-NH(2)-Cm, at 2.9 A resolution. Surprisingly, p-NH(2)-Cm binds CPT in a novel fashion. Additionally, neither 2-N-Ac-Cm nor p-NH(2)-Cm binds to the secondary product binding site.
Collapse
Affiliation(s)
- T Izard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA.
| |
Collapse
|
33
|
Izard T, Ellis J. The crystal structures of chloramphenicol phosphotransferase reveal a novel inactivation mechanism. EMBO J 2000; 19:2690-700. [PMID: 10835366 PMCID: PMC212772 DOI: 10.1093/emboj/19.11.2690] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/1999] [Revised: 04/12/2000] [Accepted: 04/13/2000] [Indexed: 11/12/2022] Open
Abstract
Chloramphenicol (Cm), produced by the soil bacterium Streptomyces venezuelae, is an inhibitor of bacterial ribosomal peptidyltransferase activity. The Cm-producing streptomycete modifies the primary (C-3) hydroxyl of the antibiotic by a novel Cm-inactivating enzyme, chloramphenicol 3-O-phosphotransferase (CPT). Here we describe the crystal structures of CPT in the absence and presence of bound substrates. The enzyme is dimeric in a sulfate-free solution and tetramerization is induced by ammonium sulfate, the crystallization precipitant. The tetrameric quaternary structure exhibits crystallographic 222 symmetry and has ATP binding pockets located at a crystallographic 2-fold axis. Steric hindrance allows only one ATP to bind per dimer within the tetramer. In addition to active site binding by Cm, an electron-dense feature resembling the enzyme's product is found at the other subunit interface. The structures of CPT suggest that an aspartate acts as a general base to accept a proton from the 3-hydroxyl of Cm, concurrent with nucleophilic attack of the resulting oxyanion on the gamma-phosphate of ATP. Comparison between liganded and substrate-free CPT structures highlights side chain movements of the active site's Arg136 guanidinium group of >9 A upon substrate binding.
Collapse
Affiliation(s)
- T Izard
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK.
| | | |
Collapse
|
34
|
Abstract
The free-living spirochete Spirochaeta aurantia was nearly as susceptible to diacetyl chloramphenicol, the product of chloramphenicol acetyltransferase, as it was to chloramphenicol itself. This unexpected susceptibility to diacetyl chloramphenicol was wholly or partly the consequence of intrinsic carboxylesterase activity, as indicated by high-performance liquid chromatography, thin-layer chromatography, and microbiological assays. The esterase converted the diacetate to chloramphenicol, thus inhibiting spirochete growth. The esterase activity was cell associated, reduced by proteinase K, eliminated by boiling, and independent of the presence of either chloramphenicol or diacetyl chloramphenicol. S. aurantia extracts also hydrolyzed other esterase substrates, and two of these, alpha-napthyl acetate and 4-methylumbelliferyl acetate, identified an esterase of approximately 75 kDa in a nondenaturing gel. Carboxylesterases occur in Streptomyces species, but in this study their activity was weaker than that of S. aurantia. The S. aurantia esterase could reduce the effectiveness of cat as either a selectable marker or a reporter gene in this species.
Collapse
Affiliation(s)
- C D Sohaskey
- Departments of Microbiology and Molecular Genetics and Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
35
|
Tauch A, Zheng Z, Pühler A, Kalinowski J. Corynebacterium striatum chloramphenicol resistance transposon Tn5564: genetic organization and transposition in Corynebacterium glutamicum. Plasmid 1998; 40:126-39. [PMID: 9735314 DOI: 10.1006/plas.1998.1362] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clinical isolate Corynebacterium striatum M82B (formerly Corynebacterium xerosis M82B) carries the 50-kb R-plasmid pTP10 conferring resistance to the antibiotics chloramphenicol, erythromycin, kanamycin, and tetracycline. DNA sequence analysis of the chloramphenicol resistance region revealed the presence of the 4155-bp transposable element Tn5564. The ends of Tn5564 are identical 22-bp inverted repeats flanked by a 6-bp target site duplication. The central region of Tn5564 encodes the chloramphenicol resistance gene cmx, specifying a transmembrane chloramphenicol efflux protein, and an open reading frame homologous to transposases of insertion sequences identified in Arthrobacter nicotinovorans and Bordetella pertussis. Furthermore, the 1715-bp insertion sequence IS1513 encoding a putative transposase of the IS30 family is an integral part of Tn5564 and is located upstream of cmx. For transposon mutagenesis, Tn5564 was transferred to Corynebacterium glutamicum on a mobilizable Escherichia coli plasmid using RP4-mediated intergeneric conjugation. Transposition of Tn5564 in C. glutamicum occurred with a frequency of 3.3 x 10(-8) and resulted in an insertion into target sites containing the central palindromic tetranucleotide CTAG. A Tn5564-induced mutant strain of C. glutamicum was found to carry the transposon in the ftsZ gene region.
Collapse
Affiliation(s)
- A Tauch
- Department of Genetics, University of Bielefeld, Germany
| | | | | | | |
Collapse
|
36
|
Murray IA, Shaw WV. O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother 1997; 41:1-6. [PMID: 8980745 PMCID: PMC163650 DOI: 10.1128/aac.41.1.1] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- I A Murray
- Department of Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | | |
Collapse
|