1
|
Jain PM, Nellikka A, Kammara R. Understanding bacteriocin heterologous expression: A review. Int J Biol Macromol 2024; 277:133916. [PMID: 39033897 DOI: 10.1016/j.ijbiomac.2024.133916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Bacteriocins are a diverse group of ribosomally synthesised antimicrobial peptides/proteins that play an important role in self-defence. They are widely used as bio-preservatives and effective substitutes for disease eradication. They can be used in conjunction with or as an alternative to antibiotics to minimize the risk of resistance development. There are remarkably few reports indicating resistance to bacteriocins. Although there are many research reports that emphasise heterologous expression of bacteriocin, there are no convincing reports on the significant role that intrinsic and extrinsic factors play in overexpression. A coordinated and cooperative expression system works in concert with multiple genetic elements encoding native proteins, immunoproteins, exporters, transporters and enzymes involved in the post-translational modification of bacteriocins. The simplest way could be to utilise the existing E. coli expression system, which is conventional, widely used for heterologous expression and has been further extended for bacteriocin expression. In this article, we will review the intrinsic and extrinsic factors, advantages, disadvantages and major problems associated with bacteriocin overexpression in E. coli. Finally, we recommend the most effective strategies as well as numerous bacteriocin expression systems from E. coli, Lactococcus, Kluveromyces lactis, Saccharomyces cerevisiae and Pichia pastoris for their suitability for successful overexpression.
Collapse
Affiliation(s)
- Priyanshi M Jain
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India.
| |
Collapse
|
2
|
Arnold E. Non-classical roles of bacterial siderophores in pathogenesis. Front Cell Infect Microbiol 2024; 14:1465719. [PMID: 39372500 PMCID: PMC11449898 DOI: 10.3389/fcimb.2024.1465719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Within host environments, iron availability is limited, which instigates competition for this essential trace element. In response, bacteria produce siderophores, secondary metabolites that scavenge iron and deliver it to bacterial cells via specific receptors. This role in iron acquisition contributes significantly to bacterial pathogenesis, thereby designating siderophores as virulence factors. While prior research has primarily focused on unravelling the molecular mechanisms underlying siderophore biosynthesis, uptake, and iron sequestration, recent investigations have unveiled additional non-iron chelating functions of siderophores. These emerging roles are being consistently shown to support bacterial pathogenesis. In this review, we present the current understanding of siderophores in various roles: acquiring non-iron metal ions, supporting tolerance to metal-induced and reactive oxygen species (ROS)-induced stresses, mediating siderophore signalling, inducing ROS formation, and functioning in class IIb microcins. By integrating recent findings, this review aims to provide an overview of the diverse roles of siderophores in bacterial pathogenesis.
Collapse
|
3
|
Tirziu M, Colombini L, Stincarelli MA, Cuppone AM, Lazzeri E, Santoro F, Pozzi G, Lannelli F. A nisin-inducible chromosomal gene expression system based on ICE Tn5253 of Streptococcus pneumoniae, transferable among streptococci and enterococci. World J Microbiol Biotechnol 2024; 40:319. [PMID: 39261358 PMCID: PMC11390789 DOI: 10.1007/s11274-024-04124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The present work reports the development and validation of a chromosomal expression system in Streptococcus pneumoniae which permits gene expression under the control of Lactococcus lactis lantibiotic nisin. The system is based on the integrative and conjugative element (ICE) Tn5253 of S. pneumoniae capable of site-specific chromosomal integration and conjugal transfer to a variety of bacterial species. We constructed an insertion vector that integrates in Tn5251, an ICE contained in Tn5253, which carries the tetracycline resistance tet(M) gene. The vector contains the nisRK regulatory system operon, the L. lactis nisin inducible promoter PnisA upstream of a multiple cloning site for target DNA insertion, and is flanked by two DNA regions of Tn5251 which drive homologous recombination in ICE Tn5253. For system evaluation, the emm6.1::ha1 fusion gene was cloned and integrated into the chromosome of the Tn5253-carrying pneumococcal strain FR24 by transformation. This gene encodes a fusion protein containing the signal peptide, the 122 N-terminal and the 140 C-terminal aa of the Streptococcus pyogenes M6 surface protein joined to the HA1 subunit of the influenza virus A hemagglutinin. Quantitative RT-PCR analysis carried out on total RNA purified from nisin treated and untreated cultures showed an increase in emm6.1::ha1 transcript copy number with growing nisin concentration. The expression of M6-HA1 protein was detected by Western blot and quantified by Dot blot, while Flow cytometry analysis confirmed the presence on the pneumococcal surface. Recombinant ICE Tn5253::[nisRK]-[emm6.1::ha1] containing the nisin-inducible expression system was successfully transferred by conjugation in different streptococcal species including Streptococcus gordonii, S. pyogenes, Streptococcus agalactiae and Enterococcus faecalis. As for S. pneumoniae, the emm6.1::ha1 transcript copy number and the amount of M6-HA1 protein produced correlated with the nisin concentration used for induction in all investigated bacterial hosts. We demonstrated that this host-vector expression system is stably integrated as a single copy within the bacterial chromosome, is transferable to both transformable and non transformable bacterial species, and allows fine tuning of protein expression modulated by nisin concentration. These characteristics make our system suitable for a wide range of applications including complementation assays, physiological studies, host-pathogen interaction studies.
Collapse
Affiliation(s)
- Mariana Tirziu
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Maria Alfreda Stincarelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Anna Maria Cuppone
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy.
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Francesco Lannelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy.
| |
Collapse
|
4
|
Li J, Qin Z, Zhang B, Wu X, Wu J, Peng L, Xiao Y. Development of transcriptional factor-based whole-cell biosensors to monitor and degrade antibiotics using mutant cells obtained via adaptive laboratory evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134536. [PMID: 38759406 DOI: 10.1016/j.jhazmat.2024.134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
With the widespread use of antibiotics and increasing environmental concerns regarding antibiotic abuse, the detection and degradation of antibiotic residues in various samples has become a pressing issue. Transcriptional factor (TF)-based whole-cell biosensors are low-cost, easy-to-use, and flexible tools for detecting chemicals and controlling bioprocesses. However, because of cytotoxicity caused by antibiotics, the application of such biosensors is limited in the presence of antibiotics. In this study, we used antibiotic-tolerant mutants obtained via adaptive laboratory evolution (ALE) to develop TF-based whole-cell biosensors for antibiotic monitoring and degradation. The biosensors had high performance and stability in detecting relatively high concentrations of tetracycline (Tc) and nisin. The ALE mutant-based Tc biosensor exhibited a 10-fold larger linear detection range than the wild-type strain-based biosensor. Then, the Tc biosensor was employed to detect residual amounts of Tc in mouse stool, serum, and urine samples and facilitate Tc biodegradation in mouse stool, demonstrating its high utility. Considering that ALE has been demonstrated to enhance cell tolerance to various toxic chemicals, our strategy might facilitate the development of whole-cell biosensors for most antibiotics and other toxic ligands.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ziqing Qin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Baohui Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaofeng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jing Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Rodrigues RC, Andre C, Dantas Vanetti MC. Subinhibitory concentrations of nisin enhance virulence gene expression in Staphylococcus aureus and increase mortality in Galleria mellonella. Lett Appl Microbiol 2024; 77:ovae064. [PMID: 38970380 DOI: 10.1093/lambio/ovae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Alternative strategies for controlling Staphylococcus aureus and other pathogens have been continuously investigated, with nisin, a bacteriocin widely used in the food industry as a biopreservative, gaining increasing attention. In addition to its antimicrobial properties, bacteriocins have significant effects on genome functionality even at inhibitory concentrations. This study investigated the impact of subinhibitory concentrations of nisin on S. aureus. Culturing in the presence of 0.625 μmol l-1 nisin, led to the increased relative expression of hla, saeR, and sarA, genes associated with virulence while expression of the sea gene, encoding staphylococcal enterotoxin A (SEA), decreased. In an in vivo experiment, Galleria mellonella larvae inoculated with S. aureus cultured in the presence of nisin exhibited 97% mortality at 72 h post-infection, compared to over 40% of larvae mortality in larvae infected with S. aureus. A comprehensive understanding of the effect of nisin on the transcriptional response of virulence genes and the impact of these changes on the virulence of S. aureus can contribute to assessing the application of this bacteriocin in food and medical contexts.
Collapse
Affiliation(s)
- Ramila Cristiane Rodrigues
- Departamento de Microbiologia, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n - Campus Universitário, Viçosa, Minas Gerais 36570-900, Brazil
| | - Cleriane Andre
- Departamento de Microbiologia, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n - Campus Universitário, Viçosa, Minas Gerais 36570-900, Brazil
| | - Maria Cristina Dantas Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n - Campus Universitário, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
6
|
Campos GM, Américo MF, Dos Santos Freitas A, Barroso FAL, da Cruz Ferraz Dutra J, Quaresma LS, Cordeiro BF, Laguna JG, de Jesus LCL, Fontes AM, Birbrair A, Santos TM, Azevedo V. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob Proteins 2024; 16:352-366. [PMID: 36746838 PMCID: PMC9902259 DOI: 10.1007/s12602-023-10041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.
Collapse
Affiliation(s)
- Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Fernandes Cordeiro
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aparecida Maria Fontes
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tulio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Uniclon Biotecnologia, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Guo L, Stoffels K, Broos J, Kuipers OP. Altering Specificity and Enhancing Stability of the Antimicrobial Peptides Nisin and Rombocin through Dehydrated Amino Acid Residue Engineering. Peptides 2024; 174:171152. [PMID: 38220092 DOI: 10.1016/j.peptides.2024.171152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Nisin serves as the prototype within the lantibiotic group of antimicrobial peptides, exhibiting a broad-spectrum inhibition against Gram-positive bacteria, including important food-borne pathogens and clinically relevant antibiotic-resistant strains. The gene-encoded nature of nisin allows for gene-based bioengineering, enabling the generation of novel derivatives. It has been demonstrated that nisin mutants can be produced with improved functional properties. Here, we particularly focus on the uncommon amino acid residues dehydroalanine (Dha) and dehydrobutyrin (Dhb), whose functions are not yet fully elucidated. Prior to this study, we developed a new expression system that utilizes the nisin modification machinery NisBTC to advance expression, resulting in enhanced peptide dehydration efficiency. Through this approach, we discovered that the dehydrated amino acid Dhb at position 18 in the peptide rombocin, a short variant of nisin, displayed four times higher activity compared to the non-dehydrated peptide against the strain Lactococcus lactis. Furthermore, we observed that in the peptides nisin and rombocin, the dehydrated amino acid Dha at residue positon 18 exhibited superior activity compared to the dehydrated amino acid Dhb. Upon purifying the wild-type nisin and its variant nisinG18/Dha to homogeneity, the minimum inhibitory concentration (MIC) indicated that the variant exhibited activity similar to that of wild-type nisin in inhibiting the growth of Bacillus cereus but showed twice the MIC values against the other four tested Gram-positive strains. Further stability tests demonstrated that the dehydrated peptide exhibited properties similar to wild-type nisin under different temperatures but displayed higher resistance to proteolytic enzymes compared to wild-type nisin.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Konstantin Stoffels
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Xu X, Zhang L, Cui Y, Kong J, Guo T. Development of Zn 2+-controlled expression system for lactic acid bacteria and its application in engineered probiotics. Synth Syst Biotechnol 2024; 9:152-158. [PMID: 38328736 PMCID: PMC10847839 DOI: 10.1016/j.synbio.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Lactococcus lactis and Streptococcus thermophilus are considered as ideal chassis of engineered probiotics, while food-grade genetic tools are limited in those strains. Here, a Zn2+-controlled gene expression (ZICE) system was identified in the genome of S. thermophilus CGMCC7.179, including a transcriptional regulator sczAst and a promoter region of cation transporter czcD (PczcDst). Specific binding of the SczAst to the palindromic sequences in PczcDst was demonstrated by EMSA analysis, suggesting the regulation role of SczAst on PczcDst. To evaluate their possibility to control gene expression in vivo, the sczAst-PczcDst was employed to drive the expression of green fluorescence protein (GFP) gene in L. lactis NZ9000 and S. thermophilus CGMCC7.179, respectively. Both of the transformants could express GFP under Zn2+ induction, while no fluorescence without Zn2+ addition. For optimal conditions, Zn2+ was used at a final concentration of 0.8 mM in L. lactis and 0.16 mM in S. thermophilus at OD600 close to 0.4, and omitting yeast extract powder in the medium unexpectedly improved GFP expression level by 2.2-fold. With the help of the ZICE system, engineered L. lactis and S. thermophilus strains were constructed to secret cytokine interleukin-10 (IL-10) with immunogenicity, and the IL-10 content in the supernatant of the engineered L. lactis was 59.37 % of that under the nisin controlled expression system. This study provided a tightly controlled expression system by the food-grade inducer Zn2+, having potential in development of engineered probiotics.
Collapse
Affiliation(s)
| | | | - Yue Cui
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, PR China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, PR China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, PR China
| |
Collapse
|
9
|
Arbulu S, Kjos M. Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins. MICROBIAL ECOLOGY 2024; 87:41. [PMID: 38351266 PMCID: PMC10864542 DOI: 10.1007/s00248-024-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.
Collapse
Affiliation(s)
- Sara Arbulu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
10
|
Guo L, Wambui J, Wang C, Broos J, Stephan R, Kuipers OP. Rombocin, a Short Stable Natural Nisin Variant, Displays Selective Antimicrobial Activity against Listeria monocytogenes and Employs a Dual Mode of Action to Kill Target Bacterial Strains. ACS Synth Biol 2024; 13:370-383. [PMID: 38194633 PMCID: PMC10804407 DOI: 10.1021/acssynbio.3c00612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Nisin, with its unique mode of action and potent antimicrobial activity, serves as a remarkable inspiration for the design of novel antibiotics. However, peptides possess inherent weaknesses, particularly their susceptibility to proteolytic degradation, such as by trypsin, which limits their broader applications. This led us to speculate that natural variants of nisin produced by underexplored bacterial species can potentially overcome these limitations. We carried out genome mining of two Romboutsia sedimentorum strains, RC001 and RC002, leading to the discovery of rombocin A, which is a 25 amino acid residue short nisin variant that is predicted to have only four macrocycles compared to the known 31-35 amino acids long nisin variants with five macrocycles. Using the nisin-controlled expression system, we heterologously expressed fully modified and functional rombocin A in Lactococcus lactis and demonstrated its selective antimicrobial activity against Listeria monocytogenes. Rombocin A uses a dual mode of action involving lipid II binding activity and dissipation of the membrane potential to kill target bacteria. Stability tests confirmed its high stability at different pH values, temperatures, and in particular, against enzymatic degradation. With its gene-encoded characteristic, rombocin A is amenable to bioengineering to generate novel derivatives. Further mutation studies led to the identification of rombocin K, a mutant with enhanced bioactivity against L. monocytogenes. Our findings suggest that rombocin A and its bioengineered variant, rombocin K, are promising candidates for development as food preservatives or antibiotics against L. monocytogenes.
Collapse
Affiliation(s)
- Longcheng Guo
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Joseph Wambui
- Institute
for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Chenhui Wang
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jaap Broos
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roger Stephan
- Institute
for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
11
|
Zhang ZJ, Cole C, Lin H, Wu C, Haro F, McSpadden E, van der Donk WA, Pamer EG. Exposure and resistance to lantibiotics impact microbiota composition and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573728. [PMID: 38234830 PMCID: PMC10793476 DOI: 10.1101/2023.12.30.573728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The intestinal microbiota is composed of hundreds of distinct microbial species that interact with each other and their mammalian host. Antibiotic exposure dramatically impacts microbiota compositions and leads to acquisition of antibiotic-resistance genes. Lantibiotics are ribosomally synthesized and post-translationally modified peptides produced by some bacterial strains to inhibit the growth of competing bacteria. Nisin A is a lantibiotic produced by Lactococcus lactis that is commonly added to food products to reduce contamination with Gram-positive pathogens. Little is known, however, about lantibiotic-resistance of commensal bacteria inhabiting the human intestine. Herein, we demonstrate that Nisin A administration to mice alters fecal microbiome compositions and the concentration of taurine-conjugated primary bile acids. Lantibiotic Resistance System genes (LRS) are encoded by lantibiotic-producing bacterial strains but, we show, are also prevalent in microbiomes across human cohorts spanning vastly different lifestyles and 5 continents. Bacterial strains encoding LRS have enhanced in vivo fitness upon dietary exposure to Nisin A but reduced fitness in the absence of lantibiotic pressure. Differential binding of host derived, secreted IgA contributes to fitness discordance between bacterial strains encoding or lacking LRS. Although LRS are associated with mobile genetic elements, sequence comparisons of LRS encoded by distinct bacterial species suggest they have been long-term components of their respective genomes. Our study reveals the prevalence, abundance and physiologic significance of an underappreciated subset of antimicrobial resistance genes encoded by commensal bacterial species constituting the human gut microbiome, and provides insights that will guide development of microbiome augmenting strategies.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Cody Cole
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Chunyu Wu
- Department of Chemistry, University of Illinois Urbana-Champaign, IL 61801, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois Urbana-Champaign, IL 61801, USA; Howard Hughes Medical Institute, University of Illinois Urbana-Champaign, IL 61801, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Javid H, Oryani MA, Akbari S, Amiriani T, Ravanbakhsh S, Rezagholinejad N, Afshari AR, Karimi-Shahri M. L. plantarum and L. lactis as a promising agent in treatment of inflammatory bowel disease and colorectal cancer. Future Microbiol 2023; 18:1197-1209. [PMID: 37882738 DOI: 10.2217/fmb-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
It has been understood for nearly a century that patients with intestinal inflammatory disease (IBD) have a higher risk of developing colorectal cancer (CRC). Recently, two species of lactic acid bacteria, Lactobacillus plantarum and Lactococcus lactis, have been investigated as therapeutic agents for IBD. These bacteria have been shown to survive gastric transit, to adhere and colonize in the intestinal tract of humans and modulate the intestinal microbiota and immune response. L. plantarum and L. lactis might be used as multifunctional drugs for the treatment of IBD and the prevention or treatment of CRC. This article summarizes current knowledge of L. plantarum and L. lactis as therapeutic and preventative agents for IBD and CRC, respectively.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, 917966679, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
| | - Sanaz Akbari
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, 9133736351, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran
| | - Samaneh Ravanbakhsh
- Biology Expert, Plant Sciences, graduate of Golestan University, Gorgan, 4918936316, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, 9691657678, Iran
| |
Collapse
|
13
|
Guo L, Wang C, Broos J, Kuipers OP. Lipidated variants of the antimicrobial peptide nisin produced via incorporation of methionine analogs for click chemistry show improved bioactivity. J Biol Chem 2023; 299:104845. [PMID: 37209826 PMCID: PMC10404616 DOI: 10.1016/j.jbc.2023.104845] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023] Open
Abstract
The increase in antibiotic resistance calls for accelerated molecular engineering strategies to diversify natural products for drug discovery. The incorporation of non-canonical amino acids (ncAAs) is an elegant strategy for this purpose, offering a diverse pool of building blocks to introduce desired properties into antimicrobial lanthipeptides. We here report an expression system using Lactococcus lactis as a host for non-canonical amino acid incorporation with high efficiency and yield. We show that incorporating the more hydrophobic analog ethionine (instead of methionine) into nisin improves its bioactivity against several Gram-positive strains we tested. New-to-nature variants were further created by click chemistry. By azidohomoalanine (Aha) incorporation and subsequent click chemistry, we obtained lipidated variants at different positions in nisin or in truncated nisin variants. Some of them show improved bioactivity and specificity against several pathogenic bacterial strains. These results highlight the ability of this methodology for lanthipeptide multi-site lipidation, to create new-to-nature antimicrobial products with diverse features, and extend the toolbox for (lanthi)peptide drug improvement and discovery.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Markakiou S, Neves AR, Zeidan AA, Gaspar P. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus. Microbiol Spectr 2023; 11:e0066823. [PMID: 37191512 PMCID: PMC10269922 DOI: 10.1128/spectrum.00668-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Inducible gene expression systems are invaluable tools for the functional characterization of genes and in the construction of protein overexpression hosts. Controllable expression is especially important for the study of essential and toxic genes or genes where the level of expression tightly influences their cellular effect. Here, we implemented the well-characterized tetracycline-inducible expression system in two industrially important lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus. Using a fluorescent reporter gene, we show that optimization of the repression level is necessary for efficient induction using anhydrotetracycline in both organisms. Random mutagenesis in the ribosome binding site of the tetracycline repressor TetR in Lactococcus lactis indicated that altering the expression levels of TetR was necessary for efficient inducible expression of the reporter gene. Through this approach, we achieved plasmid-based, inducer-responsive, and tight gene expression in Lactococcus lactis. We then verified the functionality of the optimized inducible expression system in Streptococcus thermophilus following its chromosomal integration using a markerless mutagenesis approach and a novel DNA fragment assembly tool presented herein. This inducible expression system holds several advantages over other described systems in lactic acid bacteria, although more efficient techniques for genetic engineering are still needed to realize these advantages in industrially relevant species, such as S. thermophilus. Our work expands the molecular toolbox of these bacteria, which can accelerate future physiological studies. IMPORTANCE Lactococcus lactis and Streptococcus thermophilus are two industrially important lactic acid bacteria globally used in dairy fermentations and, therefore, are of considerable commercial interest to the food industry. Moreover, due to their general history of safe usage, these microorganisms are increasingly being explored as hosts for the production of heterologous proteins and various chemicals. Development of molecular tools in the form of inducible expression systems and mutagenesis techniques facilitates their in-depth physiological characterization as well as their exploitation in biotechnological applications.
Collapse
Affiliation(s)
- Sofia Markakiou
- R&D Department, Chr. Hansen A/S, Hørsholm, Denmark
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | | | | | - Paula Gaspar
- R&D Department, Chr. Hansen A/S, Hørsholm, Denmark
| |
Collapse
|
15
|
Humphreys JR, Bean Z, Twycross J, Winzer K. The Lanthipeptide Synthetase-like Protein CA_C0082 Is an Effector of Agr Quorum Sensing in Clostridium acetobutylicum. Microorganisms 2023; 11:1460. [PMID: 37374961 DOI: 10.3390/microorganisms11061460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Lanthipeptide synthetases are present in all domains of life. They catalyze a crucial step during lanthipeptide biosynthesis by introducing thioether linkages during posttranslational peptide modification. Lanthipeptides have a wide range of functions, including antimicrobial and morphogenetic activities. Intriguingly, several Clostridium species contain lanthipeptide synthetase-like genes of the class II (lanM) family but lack other components of the lanthipeptide biosynthetic machinery. In all instances, these genes are located immediately downstream of putative agr quorum sensing operons. The physiological role and mode of action of the encoded LanM-like proteins remain uncertain as they lack conserved catalytic residues. Here we show for the industrial organism Clostridium acetobutylicum that the LanM-like protein CA_C0082 is not required for the production of active AgrD-derived signaling peptide but nevertheless acts as an effector of Agr quorum sensing. Expression of CA_C0082 was shown to be controlled by the Agr system and is a prerequisite for granulose (storage polymer) formation. The accumulation of granulose, in turn, was shown to be required for maximal spore formation but also to reduce early solvent formation. CA_C0082 and its putative homologs appear to be closely associated with Agr systems predicted to employ signaling peptides with six-membered ring structures and may represent a new subfamily of LanM-like proteins. This is the first time their contribution to bacterial Agr signaling has been described.
Collapse
Affiliation(s)
- Jonathan R Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Zak Bean
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Jamie Twycross
- School of Computer Science, Jubilee Campus, The University of Nottingham, Nottingham NG8 1BB, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
16
|
Field D, Fernandez de Ullivarri M, Ross RP, Hill C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023; 47:fuad023. [PMID: 37300874 PMCID: PMC10257480 DOI: 10.1093/femsre/fuad023] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
Collapse
Affiliation(s)
- Des Field
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| |
Collapse
|
17
|
Portieles R, Xu H, Chen F, Gao J, Du L, Gao X, Nordelo CB, Yue Q, Zhao L, Gonzalez NP, Bermudez RS, Borrás-Hidalgo O. Bioengineering of a Lactococcus lactis subsp. lactis strain enhances nisin production and bioactivity. PLoS One 2023; 18:e0281175. [PMID: 37036850 PMCID: PMC10085027 DOI: 10.1371/journal.pone.0281175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Lactococcus lactis subsp. lactis is a food bacterium that has been utilized for decades in food fermentation and the development of high-value industrial goods. Among these, nisin, which is produced by several strains of L. lactis subsp. lactis, plays a crucial role as a food bio-preservative. The gene expression for nisin synthesis was evaluated using qPCR analysis. Additionally, a series of re-transformations of the strain introducing multiple copies of the nisA and nisRK genes related to nisin production were developed. The simultaneous expression of nisA and nisZ genes was used to potentiate the effective inhibition of foodborne pathogens. Furthermore, qPCR analysis indicated that the nisA and nisRK genes were expressed at low levels in wild-type L. lactis subsp. lactis. After several re-transformations of the strain with the nisA and nisRK genes, a high expression of these genes was obtained, contributing to improved nisin production. Also, co-expression of the nisA and nisZ genes resulted in extremely effective antibacterial action. Hence, this study would provide an approach to enhancing nisin production during industrial processes and antimicrobial activity.
Collapse
Affiliation(s)
- Roxana Portieles
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Hongli Xu
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Feng Chen
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Jingyao Gao
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Lihua Du
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Xiangyou Gao
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | | | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People’s Republic of China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People’s Republic of China
| | - Nayanci Portal Gonzalez
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, People’s Republic of China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, People’s Republic of China
| | - Orlando Borrás-Hidalgo
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People’s Republic of China
| |
Collapse
|
18
|
Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods 2023; 12:foods12051063. [PMID: 36900581 PMCID: PMC10000435 DOI: 10.3390/foods12051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.
Collapse
|
19
|
Huang Z. A Function of Amyloid-β in Mediating Activity-Dependent Axon/Synapse Competition May Unify Its Roles in Brain Physiology and Pathology. J Alzheimers Dis 2023; 92:29-57. [PMID: 36710681 PMCID: PMC10023438 DOI: 10.3233/jad-221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amyloid-β protein precursor (AβPP) gives rise to amyloid-β (Aβ), a peptide at the center of Alzheimer's disease (AD). AβPP, however, is also an ancient molecule dating back in evolution to some of the earliest forms of metazoans. This suggests a possible ancestral function that may have been obscured by those that evolve later. Based on literature from the functions of Aβ/AβPP in nervous system development, plasticity, and disease, to those of anti-microbial peptides (AMPs) in bacterial competition as well as mechanisms of cell competition uncovered first by Drosophila genetics, I propose that Aβ/AβPP may be part of an ancient mechanism employed in cell competition, which is subsequently co-opted during evolution for the regulation of activity-dependent neural circuit development and plasticity. This hypothesis is supported by foremost the high similarities of Aβ to AMPs, both of which possess unique, opposite (i.e., trophic versus toxic) activities as monomers and oligomers. A large body of data further suggests that the different Aβ oligomeric isoforms may serve as the protective and punishment signals long predicted to mediate activity-dependent axonal/synaptic competition in the developing nervous system and that the imbalance in their opposite regulation of innate immune and glial cells in the brain may ultimately underpin AD pathogenesis. This hypothesis can not only explain the diverse roles observed of Aβ and AβPP family molecules, but also provide a conceptual framework that can unify current hypotheses on AD. Furthermore, it may explain major clinical observations not accounted for and identify approaches for overcoming shortfalls in AD animal modeling.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Engineered Lactococcus lactis secreting Flt3L and OX40 ligand for in situ vaccination-based cancer immunotherapy. Nat Commun 2022; 13:7466. [PMID: 36463242 PMCID: PMC9719518 DOI: 10.1038/s41467-022-35130-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
In situ vaccination is a promising strategy to convert the immunosuppressive tumor microenvironment into an immunostimulatory one with limited systemic exposure and side effect. However, sustained clinical benefits require long-term and multidimensional immune activation including innate and adaptive immunity. Here, we develop a probiotic food-grade Lactococcus lactis-based in situ vaccination (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand. Intratumoural delivery of FOLactis contributes to local retention and sustained release of therapeutics to thoroughly modulate key components of the antitumour immune response, such as activation of natural killer cells, cytotoxic T lymphocytes, and conventional-type-1-dendritic cells in the tumors and tumor-draining lymph nodes. In addition, intratumoural administration of FOLactis induces a more robust tumor antigen-specific immune response and superior systemic antitumour efficacy in multiple poorly immune cell-infiltrated and anti-PD1-resistant tumors. Specific depletion of different immune cells reveals that CD8+ T and natural killer cells are crucial to the in situ vaccine-elicited tumor regression. Our results confirm that FOLactis displays an enhanced antitumour immunity and successfully converts the 'cold' tumors to 'hot' tumors.
Collapse
|
21
|
Langa S, Peirotén Á, Curiel JA, Arqués JL, Landete JM. Promoters for the expression of food-grade selectable markers in lactic acid bacteria and bifidobacteria. Appl Microbiol Biotechnol 2022; 106:7845-7856. [DOI: 10.1007/s00253-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
|
22
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
In vivo monitoring of Lactiplantibacillus plantarum in the nasal and vaginal mucosa using infrared fluorescence. Appl Microbiol Biotechnol 2022; 106:6239-6251. [PMID: 35999391 PMCID: PMC9398905 DOI: 10.1007/s00253-022-12121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Lactic acid bacteria (LAB) of the genus Lactiplantibacillus have been explored as potential mucosal vaccine vectors due to their ability to elicit an immune response against expressed foreign antigens and to their safety. However, tools for monitoring LAB distribution and persistence at the mucosal surfaces are needed. Here, we characterize Lactiplantibacillus plantarum bacteria expressing the infrared fluorescent protein IRFP713 for exploring their in vivo distribution in the mucosa and potential use as a mucosal vaccine vector. This bacterial species is commonly used as a vaginal probiotic and was recently found to have a niche in the human nose. Three different fluorescent L. plantarum strains were obtained using the nisin-inducible pNZRK-IRFP713 plasmid which contains the nisRK genes, showing stable and constitutive expression of IRFP713 in vitro. One of these strains was further monitored in BALB/c mice using near-infrared fluorescence, indicating successful colonization of the nasal and vaginal mucosae for up to 72 h. This study thus provides a tool for the in vivo spatiotemporal monitoring of lactiplantibacilli, allowing non-invasive bacterial detection in these mucosal sites. KEY POINTS: • Stable and constitutive expression of the IRFP713 protein was obtained in different L. plantarum strains. • IRFP713+ L. plantarum 3.12.1 was monitored in vivo using near-infrared fluorescence. • Residence times observed after intranasal and vaginal inoculation were 24-72 h.
Collapse
|
24
|
Levit R, Cortes-Perez NG, de Moreno de Leblanc A, Loiseau J, Aucouturier A, Langella P, LeBlanc JG, Bermúdez-Humarán LG. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health. Gut Microbes 2022; 14:2110821. [PMID: 35960855 PMCID: PMC9377234 DOI: 10.1080/19490976.2022.2110821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is now strong evidence to support the interest in using lactic acid bacteria (LAB)in particular, strains of lactococci and lactobacilli, as well as bifidobacteria, for the development of new live vectors for human and animal health purposes. LAB are Gram-positive bacteria that have been used for millennia in the production of fermented foods. In addition, numerous studies have shown that genetically modified LAB and bifodobacteria can induce a systemic and mucosal immune response against certain antigens when administered mucosally. They are therefore good candidates for the development of new mucosal delivery strategies and are attractive alternatives to vaccines based on attenuated pathogenic bacteria whose use presents health risks. This article reviews the most recent research and advances in the use of LAB and bifidobacteria as live delivery vectors for human and animal health.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Naima G. Cortes-Perez
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 0496, 78350 Jouy-en-Josas, France
| | - Alejandra de Moreno de Leblanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Jade Loiseau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| |
Collapse
|
25
|
Breeding of a High-Nisin-Yielding Bacterial Strain and Multiomics Analysis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nisin is a green, safe and natural food preservative. With the expansion of nisin application, the demand for nisin has gradually increased, which equates to increased requirements for nisin production. In this study, Lactococcus lactis subsp. lactis lxl was used as the original strain, and the compound mutation method was applied to induce mutations. A high-yielding and genetically stable strain (Lactobacillus lactis A32) was identified, with the nisin titre raised by 332.2% up to 5089.29 IU/mL. Genome and transcriptome sequencing was used to analyse A32 and compare it with the original lxl strain. The comparative genomics results show that 107 genes in the A32 genome had mutations and most base mutations were not located in the four well-researched nisin-related operons, nisABTCIPRK, nisI, nisRK and nisFEG: 39 single-nucleotide polymorphisms (SNPs), 34 insertion mutations and 34 deletion mutations. The transcription results show that the expression of 92 genes changed significantly, with 27 of these differentially expressed genes upregulated, while 65 were downregulated. Our findings suggest that the output of nisin increased in L. lactis strain A32, which was accompanied by changes in the DNA replication-related gene dnaG, the ABC-ATPase transport-related genes patM and tcyC, the cysteine thiometabolism-related gene cysS, and the purine metabolism-related gene purL. Our study provides new insights into the traditional genetic mechanisms involved nisin production in L. lactis, which could provide clues for a more efficient metabolic engineering process.
Collapse
|
26
|
Mathiesen G, Axelsson L, Eijsink VGH. Heterologous Protein Production in Lactobacillus (plantarum) Using pSIP Vectors. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2406:205-217. [PMID: 35089559 DOI: 10.1007/978-1-0716-1859-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While lactobacilli are not generally regarded as efficient cell factories for heterologous proteins, these food-grade Gram-positive bacteria are attractive as expression hosts for medicinal proteins. Furthermore, tools have been developed not only to secrete the protein of interest, but also to anchor the protein to the cell membrane or the cell wall. Research efforts aimed at the production and surface display of complex vaccine proteins have shown that lactobacilli are capable of producing heterologous proteins that are otherwise difficult to produce in soluble form. Many recent studies on expressing a wide variety of proteins in lactobacilli have employed the pSIP vector system, which offers a wide range of possibilities for inducible expression, including various options for secretion and surface anchoring. The modular nature of the pSIP vectors allows for rapid screening of multiple expression strategies. This chapter describes the pSIP vector system and how it can be used to accomplish protein expression in lactobacilli.
Collapse
Affiliation(s)
- Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lars Axelsson
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
27
|
Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. Int J Food Microbiol 2022; 368:109611. [DOI: 10.1016/j.ijfoodmicro.2022.109611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
|
28
|
Weixler D, Berghoff M, Ovchinnikov KV, Reich S, Goldbeck O, Seibold GM, Wittmann C, Bar NS, Eikmanns BJ, Diep DB, Riedel CU. Recombinant production of the lantibiotic nisin using Corynebacterium glutamicum in a two-step process. Microb Cell Fact 2022; 21:11. [PMID: 35033086 PMCID: PMC8760817 DOI: 10.1186/s12934-022-01739-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The bacteriocin nisin is naturally produced by Lactococcus lactis as an inactive prepeptide that is modified posttranslationally resulting in five (methyl-)lanthionine rings characteristic for class Ia bacteriocins. Export and proteolytic cleavage of the leader peptide results in release of active nisin. By targeting the universal peptidoglycan precursor lipid II, nisin has a broad target spectrum including important human pathogens such as Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains. Industrial nisin production is currently performed using natural producer strains resulting in rather low product purity and limiting its application to preservation of dairy food products. RESULTS We established heterologous nisin production using the biotechnological workhorse organism Corynebacterium glutamicum in a two-step process. We demonstrate successful biosynthesis and export of fully modified prenisin and its activation to mature nisin by a purified, soluble variant of the nisin protease NisP (sNisP) produced in Escherichia coli. Active nisin was detected by a L. lactis sensor strain with strictly nisin-dependent expression of the fluorescent protein mCherry. Following activation by sNisP, supernatants of the recombinant C. glutamicum producer strain cultivated in standard batch fermentations contained at least 1.25 mg/l active nisin. CONCLUSIONS We demonstrate successful implementation of a two-step process for recombinant production of active nisin with C. glutamicum. This extends the spectrum of bioactive compounds that may be produced using C. glutamicum to a bacteriocin harboring complex posttranslational modifications. Our results provide a basis for further studies to optimize product yields, transfer production to sustainable substrates and purification of pharmaceutical grade nisin.
Collapse
Affiliation(s)
- Dominik Weixler
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Max Berghoff
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kirill V Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sebastian Reich
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Nadav S Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
29
|
Wang P, Yi Y, Lü X. CRISPR/Cas9-Based Genome Editing Platform for Companilactobacillus crustorum to Reveal the Molecular Mechanism of Its Probiotic Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15279-15289. [PMID: 34747603 DOI: 10.1021/acs.jafc.1c05389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Companilactobacillus crustorum usually serves as a starter culture for the food industry. Recent studies revealed that this species also possesses probiotic properties. Genome engineering, including point mutation or gene deletion, is desired to understand the mechanisms of its probiotic and fermentation properties. To tackle the hurdle in genetic manipulation in C. crustorum, here, we established a fast and easy CRISPR/Cas9-based platform for precise genome editing in this species. The platform includes two CRISPR/Cas9 systems and a CRISPR/Cas9-based editing system. Using the developed methods, we were able to knockout 12 genes in C. crustorum by deleting a fragment located in the open reading frames. The editing efficiency ranged from 14.3 to 100%. Moreover, we developed a CRISPR-assisted cytidine base-editing system, enabling programmed C to T conversion in the chromosome for gene inactivation or point mutation. To further exploit this platform, we investigated the role of nine putative bacteriocin-encoding genes and found that bacteriocins BM173 and BM1157 mostly contributed to the antimicrobial activity of C. crustorum MN047 against Staphylococcus aureus and Escherichia coli. In addition, the regulation of bacteriocin expression was also revealed to be linked with the quorum-sensing modulator luxS. This work will dramatically accelerate the genetic engineering of C. crustorum and close-related species.
Collapse
Affiliation(s)
- Panpan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Riboswitch RS thiT as a molecular tool in Lactococcus lactis. Appl Environ Microbiol 2021; 88:e0176421. [PMID: 34936833 PMCID: PMC8862789 DOI: 10.1128/aem.01764-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous RNA sequencing has allowed the identification of 129 long 5′ untranslated regions (UTRs) in the Lactococcus lactis MG1363 transcriptome. These sequences potentially harbor cis-acting riboswitches. One of the identified extended 5′ UTRs is a putative thiamine pyrophosphate (TPP) riboswitch. It is located immediately upstream of the thiamine transporter gene thiT (llmg_0334). To confirm this assumption, the 5′-UTR sequence was placed upstream of the gene encoding the superfolder green fluorescent protein (sfGFP), sfgfp, allowing the examination of the expression of sfGFP in the presence or absence of thiamine in the medium. The results show that this sequence indeed represents a thiamine-responsive TPP riboswitch. This RNA-based genetic control device was used to successfully restore the mutant phenotype of an L. lactis strain lacking the major autolysin gene, acmA. The L. lactisthiT TPP riboswitch (RSthiT) is a useful molecular genetic tool enabling the gradual downregulation of the expression of genes under its control by adjusting the thiamine concentration. IMPORTANCE The capacity of microbes with biotechnological importance to adapt to and survive under quickly changing industrial conditions depends on their ability to adequately control gene expression. Riboswitches are important RNA-based elements involved in rapid and precise gene regulation. Here, we present the identification of a natural thiamine-responsive riboswitch of Lactococcus lactis, a bacterium used worldwide in the production of dairy products. We used it to restore a genetic defect in an L. lactis mutant and show that it is a valuable addition to the ever-expanding L. lactis genetic toolbox.
Collapse
|
31
|
Hegemann JD, Fouque KJD, Santos-Fernandez M, Fernandez-Lima F. A Bifunctional Leader Peptidase/ABC Transporter Protein Is Involved in the Maturation of the Lasso Peptide Cochonodin I from Streptococcus suis. JOURNAL OF NATURAL PRODUCTS 2021; 84:2683-2691. [PMID: 34597519 PMCID: PMC9390802 DOI: 10.1021/acs.jnatprod.1c00514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lasso peptides are members of the natural product superfamily of ribosomally synthesized and post-translationally modified peptides (RiPPs). Here, we describe the first lasso peptide originating from a biosynthetic gene cluster belonging to a unique lasso peptide subclade defined by the presence of a bifunctional protein harboring both a leader peptidase (B2) and an ABC transporter (D) domain. Bioinformatic analysis revealed that these clusters also encode homologues of the NisR/NisK regulatory system and the NisF/NisE/NisG immunity factors, which are usually associated with the clusters of antimicrobial class I lanthipeptides, such as nisin, another distinct RiPP subfamily. The cluster enabling the heterologous production of the lasso peptide cochonodin I in E. coli originated from Streptococcus suis LSS65, and the threaded structure of cochonodin I was evidenced through extensive MS/MS analysis and stability assays. It was shown that the ABC transporter domain from SsuB2/D is not essential for lasso peptide maturation. By extensive genome mining dedicated exclusively to other lasso peptide biosynthetic gene clusters featuring bifunctional B2/D proteins, it was furthermore revealed that many bacteria associated with human or animal microbiota hold the biosynthetic potential to produce cochonodin-like lasso peptides, implying that these natural products might play roles in human and animal health.
Collapse
Affiliation(s)
- Julian D. Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
- Corresponding Author: (J. D. Hegemann):
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Miguel Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
32
|
Shlla B, Gazioglu O, Shafeeq S, Manzoor I, Kuipers OP, Ulijasz A, Hiller NL, Andrew PW, Yesilkaya H. The Rgg1518 transcriptional regulator is a necessary facet of sugar metabolism and virulence in Streptococcus pneumoniae. Mol Microbiol 2021; 116:996-1008. [PMID: 34328238 PMCID: PMC8460608 DOI: 10.1111/mmi.14788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Rggs are a group of transcriptional regulators with diverse roles in metabolism and virulence. Here, we present work on the Rgg1518/SHP1518 quorum sensing system of Streptococcus pneumoniae. The activity of Rgg1518 is induced by its cognate peptide, SHP1518. In vitro analysis showed that the Rgg1518 system is active in conditions rich in galactose and mannose, key nutrients during nasopharyngeal colonization. Rgg1518 expression is highly induced in the presence of these sugars and its isogenic mutant is attenuated in growth on galactose and mannose. When compared with other Rgg systems, Rgg1518 has the largest regulon on galactose. On galactose it controls up- or downregulation of a functionally diverse set of genes involved in galactose metabolism, capsule biosynthesis, iron metabolism, protein translation, as well as other metabolic functions, acting mainly as a repressor of gene expression. Rgg1518 is a repressor of capsule biosynthesis, and binds directly to the capsule regulatory region. Comparison with other Rggs revealed inter-regulatory interactions among Rggs. Finally, the rgg1518 mutant is attenuated in colonization and virulence in a mouse model of colonization and pneumonia. We conclude that Rgg1518 is a virulence determinant that contributes to a regulatory network composed of multiple Rgg systems.
Collapse
Affiliation(s)
- Bushra Shlla
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Andrew Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
33
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Yan Q, Liu M, Kidarsa T, Johnson CP, Loper JE. Two Pathway-Specific Transcriptional Regulators, PltR and PltZ, Coordinate Autoinduction of Pyoluteorin in Pseudomonas protegens Pf-5. Microorganisms 2021; 9:microorganisms9071489. [PMID: 34361923 PMCID: PMC8305169 DOI: 10.3390/microorganisms9071489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
Antibiotic biosynthesis by microorganisms is commonly regulated through autoinduction, which allows producers to quickly amplify the production of antibiotics in response to environmental cues. Antibiotic autoinduction generally involves one pathway-specific transcriptional regulator that perceives an antibiotic as a signal and then directly stimulates transcription of the antibiotic biosynthesis genes. Pyoluteorin is an autoregulated antibiotic produced by some Pseudomonas spp. including the soil bacterium Pseudomonas protegens Pf-5. In this study, we show that PltR, a known pathway-specific transcriptional activator of pyoluteorin biosynthesis genes, is necessary but not sufficient for pyoluteorin autoinduction in Pf-5. We found that pyoluteorin is perceived as an inducer by PltZ, a second pathway-specific transcriptional regulator that directly represses the expression of genes encoding a transporter in the pyoluteorin gene cluster. Mutation of pltZ abolished the autoinducing effect of pyoluteorin on the transcription of pyoluteorin biosynthesis genes. Overall, our results support an alternative mechanism of antibiotic autoinduction by which the two pathway-specific transcriptional regulators PltR and PltZ coordinate the autoinduction of pyoluteorin in Pf-5. Possible mechanisms by which PltR and PltZ mediate the autoinduction of pyoluteorin are discussed.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence:
| | - Mary Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Teresa Kidarsa
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| | - Colin P. Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| |
Collapse
|
35
|
Vogel V, Spellerberg B. Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens 2021; 10:pathogens10070867. [PMID: 34358017 PMCID: PMC8308785 DOI: 10.3390/pathogens10070867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023] Open
Abstract
Beta-hemolytic streptococci cause a variety of infectious diseases associated with high morbidity and mortality. A key factor for successful infection is host colonization, which can be difficult in a multispecies environment. Secreting bacteriocins can be beneficial during this process. Bacteriocins are small, ribosomally produced, antimicrobial peptides produced by bacteria to inhibit the growth of other, typically closely related, bacteria. In this systematic review, bacteriocin production and regulation of beta-hemolytic streptococci was surveyed. While Streptococcus pyogenes produces eight different bacteriocins (Streptococcin A-FF22/A-M49, Streptin, Salivaricin A, SpbMN, Blp1, Blp2, Streptococcin A-M57), only one bacteriocin of Streptococcus agalactiae (Agalacticin = Nisin P) and one of Streptococcus dysgalactiae subsp. equisimilis (Dysgalacticin) has been described. Expression of class I bacteriocins is regulated by a two-component system, typically with autoinduction by the bacteriocin itself. In contrast, a separate quorum sensing system regulates expression of class II bacteriocins. Both identified class III bacteriocins are plasmid-encoded and regulation has not been elucidated.
Collapse
|
36
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
37
|
The Anti-Tumor Effect of Lactococcus lactis Bacteria-Secreting Human Soluble TRAIL Can Be Enhanced by Metformin Both In Vitro and In Vivo in a Mouse Model of Human Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13123004. [PMID: 34203951 PMCID: PMC8232584 DOI: 10.3390/cancers13123004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a major cause of morbidity and mortality in Europe, and accounts for over 10% of all cancer-related deaths worldwide. These indicate an urgent need for novel therapeutic options in CRC. Here, we analysed if genetically modified non-pathogenic Lactococcus lactis bacteria can be used for local delivery of human recombinant Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) and induction of tumor cells death in vitro and in vivo in CRC mouse model. We showed that modified L. lactis bacteria were able to secrete biologically active human soluble TRAIL (L. lactis(hsTRAIL+)), which selectively eliminated human CRC cells in vitro, and was further strengthened by metformin (MetF). Our results from in vitro studies were confirmed in vivo using subcutaneous NOD-SCID mouse model of human CRC. The data showed a significant reduction of the tumor growth by intratumor injection of L. lactis(hsTRAIL+) bacteria producing hsTRAIL. This effect could be further enhanced by oral administration of MetF. Abstract Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) induces apoptosis of many cancer cells, including CRC cells, being non-harmful for normal ones. However, recombinant form of human TRAIL failed in clinical trial when administered intravenously. To assess the importance of TRAIL in CRC patients, new form of TRAIL delivery would be required. Here we used genetically modified, non-pathogenic Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. Operating under the Nisin Controlled Gene Expression System (NICE), the modified bacteria (L. lactis(hsTRAIL+)) were able to induce cell death of HCT116 and SW480 human cancer cells and reduce the growth of HCT116-tumor spheres in vitro. This effect was cancer cell specific as the cells of normal colon epithelium (FHC cells) were not affected by hsTRAIL-producing bacteria. Metformin (MetF), 5-fluorouracil (5-FU) and irinotecan (CPT-11) enhanced the anti-tumor actions of hsTRAIL in vitro. In the NOD-SCID mouse model, treatment of subcutaneous HCT116-tumors with L. lactis(hsTRAIL+) bacteria given intratumorally, significantly reduced the tumor growth. This anti-tumor activity of hsTRAIL in vivo was further enhanced by oral administration of MetF. These findings indicate that L. lactis bacteria could be suitable for local delivery of biologically active human proteins. At the same time, we documented that anti-tumor activity of hsTRAIL in experimental therapy of CRC can be further enhanced by MetF given orally, opening a venue for alternative CRC-treatment strategies.
Collapse
|
38
|
Field D, Considine K, O’Connor PM, Ross RP, Hill C, Cotter PD. Bio-Engineered Nisin with Increased Anti- Staphylococcus and Selectively Reduced Anti- Lactococcus Activity for Treatment of Bovine Mastitis. Int J Mol Sci 2021; 22:3480. [PMID: 33801752 PMCID: PMC8036683 DOI: 10.3390/ijms22073480] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
Bovine mastitis is a significant economic burden for dairy enterprises, responsible for premature culling, prophylactic and therapeutic antibiotic use, reduced milk production and the withholding (and thus wastage) of milk. There is a desire to identify novel antimicrobials that are expressly directed to veterinary applications, do not require a lengthy milk withholding period and that will not have a negative impact on the growth of lactic acid bacteria involved in downstream dairy fermentations. Nisin is the prototypical lantibiotic, a family of highly modified antimicrobial peptides that exhibit potent antimicrobial activity against many Gram-positive microbes, including human and animal pathogens including species of Staphylococcus and Streptococcus. Although not yet utilized in the area of human medicine, nisin is currently applied as the active agent in products designed to prevent bovine mastitis. Over the last decade, we have harnessed bioengineering strategies to boost the specific activity and target spectrum of nisin against several problematic microorganisms. Here, we screen a large bank of engineered nisin derivatives to identify novel derivatives that exhibit improved specific activity against a selection of staphylococci, including mastitis-associated strains, but have unchanged or reduced activity against dairy lactococci. Three such peptides were identified; nisin A M17Q, nisin A T2L and nisin A HTK.
Collapse
Affiliation(s)
- Des Field
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, T12 YT20 Cork, Ireland;
| | - Kiera Considine
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (K.C.); (P.M.O.)
| | - Paula M. O’Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (K.C.); (P.M.O.)
| | - R. Paul Ross
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, T12 YT20 Cork, Ireland;
| | - Colin Hill
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, T12 YT20 Cork, Ireland;
| | - Paul D. Cotter
- APC Microbiome Ireland, T12 YT20 Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (K.C.); (P.M.O.)
| |
Collapse
|
39
|
van Gijtenbeek LA, Eckhardt TH, Herrera-Domínguez L, Brockmann E, Jensen K, Geppel A, Nielsen KF, Vindeloev J, Neves AR, Oregaard G. Gene-Trait Matching and Prevalence of Nisin Tolerance Systems in Lactococus lactis. Front Bioeng Biotechnol 2021; 9:622835. [PMID: 33748081 PMCID: PMC7965974 DOI: 10.3389/fbioe.2021.622835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis cheese starter cultures typically contain a mix of many strains and may include variants that produce and/or tolerate the antimicrobial bacteriocin nisin. Nisin is well-established as an effective agent against several undesirable Gram-positive bacteria in cheese and various other foods. In the current study, we have examined the effect of nisin on 710 individual L. lactis strains during milk fermentations. Changes in milk acidification profiles with and without nisin exposure, ranging from unaltered acidification to loss of acidification, could be largely explained by the type(s) and variants of nisin immunity and nisin degradation genes present, but surprisingly, also by genotypic lineage (L. lactis ssp. cremoris vs. ssp. lactis). Importantly, we identify that nisin degradation by NSR is frequent among L. lactis and therefore likely the main mechanism by which dairy-associated L. lactis strains tolerate nisin. Insights from this study on the strain-specific effect of nisin tolerance and degradation during milk acidification is expected to aid in the design of nisin-compatible cheese starter cultures.
Collapse
|
40
|
Modulation of quorum sensing-associated virulence in bacteria: carbohydrate as a key factor. Arch Microbiol 2021; 203:1881-1890. [PMID: 33641039 DOI: 10.1007/s00203-021-02235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
Quorum sensing (QS) is a method of inter-cellular communication that permits bacteria to dispense information about cell density and to synchronize the gene expression accordingly. Gram-positive and Gram-negative bacteria utilize distinct quorum sensing mechanisms for effective pathogenesis. Virulence factor production by pathogenic bacteria is one of the important traits that is under the control of QS. A growing body of evidence has indicated the role of the nutritional environment notably by carbohydrates in dictating the QS-associated virulence gene regulation. The modulation of QS by carbohydrates mitigates the survival and establishment of the pathogen within its host which in turn leads to an increase in morbidity and mortality. This mini-review throws light on the predilection of pathogenic bacteria to rapidly regulate its QS-linked virulence gene expression based on the changing nutrient levels that assist them in prospering within diverse niches.
Collapse
|
41
|
Liu ZS, Lin CF, Lee CP, Hsieh MC, Lu HF, Chen YF, Ku YW, Chen PW. A Single Plasmid of Nisin-Controlled Bovine and Human Lactoferrin Expressing Elevated Antibacterial Activity of Lactoferrin-Resistant Probiotic Strains. Antibiotics (Basel) 2021; 10:antibiotics10020120. [PMID: 33513782 PMCID: PMC7911973 DOI: 10.3390/antibiotics10020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional protein found in mammals, and it shows broad-spectrum antimicrobial activity. To improve the functional properties of specific probiotics in order to provide both the beneficial characteristics of lactic acid bacteria and the biological activity of LF, cDNAs of bovine LF (BLF), human LF (HLF), or porcine LF (PLF) were cloned into a nisin-inducible plasmid. These were then transformed into the selected eight probiotics, which are LF-resistant hosts. Expression of recombinant LFs (rLFs) was analyzed via SDS-PAGE and Western blot analysis. Although the selected host strains may not contain the nisRK genes (NisK, the sensor kinase; NisR, the regulator protein), the components of autoregulation, a low level of LFs expression can be successfully induced by using nisin within bacterial cells in a time-dependent manner in three engineered clones, including Lactobacillus delbrueckii/HLF, L. delbrueckii/BLF, and L. gasseri/BLF. Lactobacillus delbrueckii and Lactobacillus gasseri originate from yogurt and human milk, respectively, and both strains are functional probiotic strains. Therefore, we further compared the antibacterial activities of disrupted recombinant probiotic clones, conventional strains (host control), and vector control ones by using agar diffusion and broth inhibition analysis, and the expression of rLFs in the above three clones considerately improved their antibacterial efficacies against four important food-borne pathogens, namely, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Salmonellaenterica. In conclusion, this study provides a simple strategy for the production of functional LFs (BLF and HLF) in both functional and LF-resistant hosts for applications in the field.
Collapse
Affiliation(s)
- Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Z.-S.L.); (M.-C.H.); (H.-F.L.)
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan;
| | - Min-Chi Hsieh
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Z.-S.L.); (M.-C.H.); (H.-F.L.)
| | - Hung-Fu Lu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Z.-S.L.); (M.-C.H.); (H.-F.L.)
| | - Ying-Fang Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan; (Y.-F.C.); (Y.-W.K.)
| | - Yu-We Ku
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan; (Y.-F.C.); (Y.-W.K.)
| | - Po-Wen Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan; (Y.-F.C.); (Y.-W.K.)
- Correspondence: ; Tel.: +886-4-22840368-36
| |
Collapse
|
42
|
Nebbia S, Lamberti C, Lo Bianco G, Cirrincione S, Laroute V, Cocaign-Bousquet M, Cavallarin L, Giuffrida MG, Pessione E. Antimicrobial Potential of Food Lactic Acid Bacteria: Bioactive Peptide Decrypting from Caseins and Bacteriocin Production. Microorganisms 2020; 9:microorganisms9010065. [PMID: 33383704 PMCID: PMC7824078 DOI: 10.3390/microorganisms9010065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
Lactic acid bacteria (LAB) potential in the food industry and in the biotechnological sector is a well-established interest. LAB potential in counteracting especially food-borne infections has received growing attention, but despite being a road full of promises is yet poorly explored. Furthermore, the ability of LAB to produce antimicrobial compounds, both by ribosomal synthesis and by decrypting them from proteins, is of high value when considering the growing impact of multidrug resistant strains. The antimicrobial potential of 14 food-derived lactic acid bacteria strains has been investigated in this study. Among them, four strains were able to counteract Listeria monocytogenes growth: Lactococcus lactis SN12 and L. lactis SN17 by high lactic acid production, whereas L. lactis 41FLL3 and Lactobacillus sakei I151 by Nisin Z and Sakacin P production, respectively. Strains Lactococcus lactis MG1363, Lactobacillus rhamnosus 17D10 and Lactobacillus helveticus 4D5 were tested and selected for their potential attitude to hydrolyze caseins. All the strains were able to release bioactive peptides with already known antimicrobial, antihypertensive and opioid activities. These features render these strains or their bioactive molecules suitable for use in food as biocontrol agents, or as nutraceutical supplements to treat mild disorders such as moderate hypertension and children insomnia. These results highlight once again that LAB potential in ensuring food safety, food nutraceutical value and ultimately in favoring human health is still underexplored and underexploited.
Collapse
Affiliation(s)
- Stefano Nebbia
- Laboratory of Microbial and Applied Biochemistry-Department of Life Sciences and Systems Biology, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (S.N.); (G.L.B.); (E.P.)
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
| | - Cristina Lamberti
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
| | - Giuliana Lo Bianco
- Laboratory of Microbial and Applied Biochemistry-Department of Life Sciences and Systems Biology, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (S.N.); (G.L.B.); (E.P.)
| | - Simona Cirrincione
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
- Correspondence: ; Tel.: +39-011-670-9231
| | - Valerie Laroute
- Laboratoire d’ingénierie des systèmes biologiques et des procédés, Université de Toulouse, CNRS, INRA, INSA 135 Avenue de Rangueil, 31077 Toulouse, France; (V.L.); (M.C.-B.)
| | - Muriel Cocaign-Bousquet
- Laboratoire d’ingénierie des systèmes biologiques et des procédés, Université de Toulouse, CNRS, INRA, INSA 135 Avenue de Rangueil, 31077 Toulouse, France; (V.L.); (M.C.-B.)
| | - Laura Cavallarin
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
| | - Maria Gabriella Giuffrida
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
| | - Enrica Pessione
- Laboratory of Microbial and Applied Biochemistry-Department of Life Sciences and Systems Biology, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (S.N.); (G.L.B.); (E.P.)
| |
Collapse
|
43
|
Zou Y, Chen T. Engineered Akkermansia muciniphila: A promising agent against diseases (Review). Exp Ther Med 2020; 20:285. [PMID: 33209129 PMCID: PMC7668130 DOI: 10.3892/etm.2020.9415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
Achieving a harmonious gut microbial ecosystem has been hypothesized to be a successful method for alleviating metabolic disorders. The administration of probiotics, such as Lactobacillus and Bifidobacteria, is a known traditional and safe pathway to regulate human commensal microbes. With advancements in genetic sequencing and genetic editing tools, more bacteria are able to function as engineered probiotics with multiple therapeutic properties. As one of the next-generation probiotic candidates, Akkermansia muciniphila (A. muciniphila) has been discovered to enhance the gut barrier function and moderate inflammatory responses, exhibit improved effects with pasteurization and display beneficial probiotic effects in individuals with obesity, type 2 diabetes, atherosclerosis and autism-related gastrointestinal disturbances. In view of this knowledge, the present review aimed to summarize the effects of A. muciniphila in the treatment of metabolic disorders and to discuss several mature recombination systems for the genetic modification of A. muciniphila. From gaining an enhanced understanding of its genetic background, ingested A. muciniphila is expected to be used in various applications, including as a diagnostic tool, and in the site-specific delivery of therapeutic drugs.
Collapse
Affiliation(s)
- Yixuan Zou
- Institute of Translational Medicine, National Engineering Research Center for Bioengineering Drugs and Technologies, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Tingtao Chen
- Institute of Translational Medicine, National Engineering Research Center for Bioengineering Drugs and Technologies, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
44
|
Ishibashi N, Matsumoto N, Perez RH, Iwatani S, Sugino H, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K. Molecular characterization of the possible regulation of multiple bacteriocin production through a three-component regulatory system in Enterococcus faecium NKR-5-3. J Biosci Bioeng 2020; 131:S1389-1723(20)30368-6. [PMID: 34756351 DOI: 10.1016/j.jbiosc.2020.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
Enterococcus faecium NKR-5-3 produces multiple-bacteriocins, enterocins NKR-5-3A, B, C, D, and Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). However, the biosynthetic mechanisms on how their productions are regulated are yet to be fully understood. In silico analysis revealed putative promoters and terminators in the enterocin NKR-5-3ACDZ gene cluster, and the putative direct repeats (5'-ATTTTAGGATA-3') were conserved upstream of each promoter. Transcriptional analysis by quantitative real-time polymerase chain reaction (PCR) of the biosynthetic genes for the enterocins NKR-5-3 suggested that an inducing peptide (Ent53D) regulates the transcription of the structure genes and corresponding biosynthetic genes of enterocins NKR-5-3, except for Ent53B (a circular bacteriocin), thus consequently regulating their production. Moreover, transcriptional analysis of some knock-out mutants showed that the production of Ent53A, C, D and Z is controlled by a three-component regulatory system (TCS) consisting of Ent53D, EnkR (response regulator), and EnkK (histidine kinase). The production of the circular bacteriocin Ent53B appeared to be independent from this TCS. Nevertheless, disrupting the TCS by deletion of a single component (enkD, enkR and enkK) resulted in a slight increase of enkB transcription and consequently the production of Ent53B, presumably, as an indirect consequence of the increase of available energy to the strain NKR-5-3. Here, we demonstrate the regulatory control of the multiple bacteriocin production of strain NKR-5-3 likely through the TCS consisting of Ent53D, EnkR, and EnkK. The information of the sharing of the regulatory machinery between bacteriocins in strain NKR-5-3 can be useful in its future application such as designing strategies to effectively dispense its multiple bacteriocin arsenal.
Collapse
Affiliation(s)
- Naoki Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Naho Matsumoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Rodney Honrada Perez
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan; National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños (UPLB), Los Baños, Laguna 4031, Philippines
| | - Shun Iwatani
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Haruki Sugino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Takeshi Zendo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.
| | - Pongtep Wilaipun
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Paholyothin Rd., Chatuchak, Bangkok 10900, Thailand
| | - Vichien Leelawatcharamas
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Paholyothin Rd., Chatuchak, Bangkok 10900, Thailand
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Kenji Sonomoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
45
|
Enigk K, Jentsch H, Rodloff AC, Eschrich K, Stingu CS. Activity of five antimicrobial peptides against periodontal as well as non-periodontal pathogenic strains. J Oral Microbiol 2020; 12:1829405. [PMID: 33133417 PMCID: PMC7580719 DOI: 10.1080/20002297.2020.1829405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Due to the increasing emergence of multi-resistant bacteria the search for alternative antimicrobial substances is of high interest. Promising agents are antimicrobial peptides which are host defense molecules of the innate immune system in a wide range of different species. Objectives: The aim of this study was to assess the activity of nisin, melittin, lactoferrin, parasin-1 and LL-37 against 35 oral bacteria and Candida albicans employing the gold standard method for anaerobic susceptibility testing. Methods: The activity of the peptides was determined by an agar dilution method under anaerobic and aerobic conditions. The test media contained final peptide concentrations between 0.125 µg/ml and 8 µg/ml (melittin, lactoferrin, parasin-1, LL-37) and between 0.125 µg/ml and 128 µg/ml (nisin). Results: Nisin completely inhibited the growth of Megasphaera sp., Bifidobacterium longum, Parvimonas micra, Actinomyces israelii, Actinomyces naeslundii, Actinomyces odontolyticus, Prevotella intermedia, Streptococcus anginosus, Streptococcus constellatus and Staphylococcus aureus. Melittin and lactoferrin reduced the growth of Megasphaera sp., P. micra, B. longum (melittin) and Selenomonas flueggei (lactoferrin). Parasin-1 and LL-37 showed no activity. Conclusion: AMPs, especially nisin and to a smaller degree lactoferrin, might be promising alternatives to antibiotics because of their antimicrobial activity, high resistance to environmental conditions and partially low costs.
Collapse
Affiliation(s)
- Katharina Enigk
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | - Holger Jentsch
- Center for Periodontology, Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Arne C. Rodloff
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | - Klaus Eschrich
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Catalina-Suzana Stingu
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|
46
|
Zendo T, Ohashi C, Maeno S, Piao X, Salminen S, Sonomoto K, Endo A. Kunkecin A, a New Nisin Variant Bacteriocin Produced by the Fructophilic Lactic Acid Bacterium, Apilactobacillus kunkeei FF30-6 Isolated From Honey Bees. Front Microbiol 2020; 11:571903. [PMID: 33042078 PMCID: PMC7525160 DOI: 10.3389/fmicb.2020.571903] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
Apilactobacillus kunkeei FF30-6 isolated from healthy honey bees synthesizes the bacteriocin, which exhibits antimicrobial activity against Melissococcus plutonius. The bacteriocin, kunkecin A, was purified through three-step chromatography, and mass spectrometry revealed that its relative molecular mass was 4218.3. Edman degradation of purified kunkecin A showed only the N-terminal residue, isoleucine. Hence, alkaline alkylation made the subsequent amino acid residues accessible to Edman degradation, and 30 cycles were sequenced with 11 unidentified residues. Whole genome sequencing of A. kunkeei FF30-6, followed by Sanger sequencing, revealed that the genes encoding the proteins involved in lantibiotic biosynthesis were within the plasmid, pKUNFF30-6. Most of the identified proteins exhibited significant sequence similarities to the biosynthetic proteins of nisin A and its variants, such as subtilin. However, the kunkecin A gene cluster lacked the genes corresponding to nisI, nisR, and nisK of the nisin A biosynthetic gene cluster. A comparison of the gene products of kukA and nisA (kunkecin A and nisin A structural genes, respectively) suggested that they had similar post-translational modifications. Furthermore, the structure of kunkecin A was proposed based on a comparison of the observed and calculated relative molecular masses of kunkecin A. The structural analysis revealed that kunkecin A and nisin A had a similar mono-sulfide linkage pattern. Purified kunkecin A exhibited a narrow antibacterial spectrum, but high antibacterial activity against M. plutonius. Kunkecin A is the first bacteriocin to be characterized in fructophilic lactic acid bacteria and is the first nisin-type lantibiotic found in the family Lactobacillaceae.
Collapse
Affiliation(s)
- Takeshi Zendo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Chihiro Ohashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Xingguo Piao
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Kenji Sonomoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| |
Collapse
|
47
|
|
48
|
Effect of Lactococcus lactis expressing phage endolysin on the late blowing defect of cheese caused by Clostridium tyrobutyricum. Int J Food Microbiol 2020; 329:108686. [DOI: 10.1016/j.ijfoodmicro.2020.108686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/28/2023]
|
49
|
Mimicry of a Non-ribosomally Produced Antimicrobial, Brevicidine, by Ribosomal Synthesis and Post-translational Modification. Cell Chem Biol 2020; 27:1262-1271.e4. [PMID: 32707039 DOI: 10.1016/j.chembiol.2020.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
The group of bacterial non-ribosomally produced peptides (NRPs) forms a rich source of antibiotics, such as daptomycin, vancomycin, and teixobactin. The difficulty of functionally expressing and engineering the corresponding large biosynthetic complexes is a bottleneck in developing variants of such peptides. Here, we apply a strategy to synthesize mimics of the recently discovered antimicrobial NRP brevicidine. We mimicked the molecular structure of brevicidine by ribosomally synthesized, post-translationally modified peptide (RiPP) synthesis, introducing several relevant modifications, such as dehydration and thioether ring formation. Following this strategy, in two rounds peptides were engineered in vivo, which showed antibacterial activity against Gram-negative pathogenic bacteria susceptible to wild-type brevicidine. This study demonstrates the feasibility of a strategy to structurally and functionally mimic NRPs by employing the synthesis and post-translational modifications typical for RiPPs. This enables the future generation of large genetically encoded peptide libraries of NRP-mimicking structures to screen for antimicrobial activity against relevant pathogens.
Collapse
|
50
|
Nisin M: a Bioengineered Nisin A Variant That Retains Full Induction Capacity but Has Significantly Reduced Antimicrobial Activity. Appl Environ Microbiol 2020; 86:AEM.00984-20. [PMID: 32471915 DOI: 10.1128/aem.00984-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023] Open
Abstract
Nisin A is a potent antimicrobial with potential as an alternative to traditional antibiotics, and a number of genetically modified variants have been created that target clinically relevant pathogens. In addition to antimicrobial activity, nisin autoregulates its own production via a signal transduction pathway, a property that has been exploited in a protein expression system termed the nisin-controlled gene expression (NICE) system. Although NICE has become one of the most popular protein expression systems, one drawback is that the inducer peptide, nisin A, also has inhibitory activity. It has already been demonstrated that the N-terminal region of nisin A contributes to antimicrobial activity and signal transduction properties; therefore, we conducted bioengineering of nisin at positions Pro9 and Gly10 within ring B to produce a bank of variants that could potentially be used as alternative induction peptides. One variant, designated nisin M, has threonines at positions 9 and 10 and retains induction capacity comparable to that of wild-type nisin A, while most of the antimicrobial activity is abolished. Further analysis confirmed that nisin M produces a mix of peptides as a result of different degrees of dehydration of the two threonines. We show that nisin M exhibits potential as a more suitable alternative to nisin A for the expression of proteins that may be difficult to express or for production of proteins in strains that are sensitive to wild-type nisin. Moreover, it may address the increasing demand by industry for optimization of peptide fermentations to increase yields or production rates.IMPORTANCE This study describes the generation of a nisin variant with superior characteristics for use in the NICE protein expression system. The variant, termed nisin M, retains an induction capacity comparable to that of wild-type nisin A but exhibits significantly reduced antimicrobial activity and can therefore be used at concentrations that are normally toxic to the expression host.
Collapse
|