1
|
Mirasierra M, Vallejo M. Glucose-dependent downregulation of glucagon gene expression mediated by selective interactions between ALX3 and PAX6 in mouse alpha cells. Diabetologia 2016; 59:766-75. [PMID: 26739814 DOI: 10.1007/s00125-015-3849-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS The stimulation of glucagon secretion in response to decreased glucose levels has been studied extensively. In contrast, little is known about the regulation of glucagon gene expression in response to fluctuations in glucose concentration. Paired box 6 (PAX6) is a key transcription factor that regulates the glucagon promoter by binding to the G1 and G3 elements. Here, we investigated the role of the transcription factor aristaless-like homeobox 3 (ALX3) as a glucose-dependent modulator of PAX6 activity in alpha cells. METHODS Experiments were performed in wild-type or Alx3-deficient islets and alphaTC1 cells. We used chromatin immunoprecipitations and electrophoretic mobility shift assays for DNA binding, immunoprecipitations and pull-down assays for protein interactions, transfected cells for promoter activity, and small interfering RNA and quantitative RT-PCR for gene expression. RESULTS Elevated glucose concentration resulted in stimulated expression of Alx3 and decreased glucagon gene expression in wild-type islets. In ALX3-deficient islets, basal glucagon levels were non-responsive to changes in glucose concentration. In basal conditions ALX3 bound to the glucagon promoter at G3, but not at G1. ALX3 could form heterodimers with PAX6 that were permissive for binding to G3 but not to G1. Thus, increasing the levels of ALX3 in response to glucose resulted in the sequestration of PAX6 by ALX3 for binding to G1, thus reducing glucagon promoter activation and glucagon gene expression. CONCLUSIONS/INTERPRETATION Glucose-stimulated expression of ALX3 in alpha cells provides a regulatory mechanism for the downregulation of glucagon gene expression by interfering with PAX6-mediated transactivation on the glucagon G1 promoter element.
Collapse
Affiliation(s)
- Mercedes Mirasierra
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Calle Arturo Duperier 4, 28029, Madrid, Spain
| | - Mario Vallejo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Calle Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Sangan CB, Jover R, Heimberg H, Tosh D. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression. Mol Cell Endocrinol 2015; 399:50-9. [PMID: 25224487 DOI: 10.1016/j.mce.2014.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022]
Abstract
There is currently a shortage of organ donors available for pancreatic beta cell transplantation into diabetic patients. An alternative source of beta cells is pre-existing pancreatic cells. While we know that beta cells can arise directly from alpha cells during pancreatic regeneration we do not understand the molecular basis for the switch in phenotype. The aim of the present study was to investigate if hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor essential for a normal beta cell phenotype, could induce the reprogramming of alpha cells towards potential beta cells. We utilised an in vitro model of pancreatic alpha cells, the murine αTC1-9 cell line. We initially characterised the αTC1-9 cell line before and following adenovirus-mediated ectopic expression of HNF4α. We analysed the phenotype at transcript and protein level and assessed its glucose-responsiveness. Ectopic HNF4α expression in the αTC1-9 cell line induced a change in morphology (1.7-fold increase in size), suppressed glucagon expression, induced key beta cell-specific markers (insulin, C-peptide, glucokinase, GLUT2 and Pax4) and pancreatic polypeptide (PP) and enabled the cells to secrete insulin in a glucose-regulated manner. In conclusion, HNF4α reprograms alpha cells to beta-like cells.
Collapse
Affiliation(s)
| | - Ramiro Jover
- Experimental Hepatology Unit. Hosp. La Fe & Dep. Biochemistry, University of Valencia. CIBERehd, Spain
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Tosh
- Centre for Regenerative Medicine, University of Bath, Bath, UK.
| |
Collapse
|
3
|
Wang Q, Liang X, Wang S. Intra-islet glucagon secretion and action in the regulation of glucose homeostasis. Front Physiol 2013; 3:485. [PMID: 23316165 PMCID: PMC3539678 DOI: 10.3389/fphys.2012.00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 11/13/2022] Open
Abstract
Glucagon, a key hormone in the regulation of glucose homeostasis, acts as a counter-regulatory hormone to insulin by promoting hepatic glucose output. Under normal conditions, insulin and glucagon operate in concert to maintain the glucose level within a narrow physiological range. In diabetes, however, while insulin secretion or action is insufficient, the production and secretion of glucagon are excessive, contributing to the development of diabetic hyperglycemia. Within an islet, intra-islet insulin, in cooperation with intra-islet GABA, suppresses glucagon secretion via direct modulation of α-cell intracellular signaling pathways involving Akt activation, GABA receptor phosphorylation and the receptor plasma membrane translocation, while intra-islet glucagon plays an important role in modulating β-cell function and insulin secretion. Defects in the insulin-glucagon fine-tuning machinery may result in β-cell glucose incompetence, leading to unsuppressed glucagon secretion and subsequent hyperglycemia, which often occur under extreme conditions of glucose influx or efflux. Therefore, deciphering the precise molecular mechanisms underlying glucagon secretion and action will facilitate our understanding of glucagon physiology, in particular, its role in regulating islet β-cell function, and hence the mechanisms behind glucose homeostasis.
Collapse
Affiliation(s)
- Qinghua Wang
- Division of Endocrinology and Metabolism, The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Department of Medicine, University of Toronto Toronto, ON, Canada
| | | | | |
Collapse
|
4
|
Daoudi M, Hennuyer N, Borland MG, Touche V, Duhem C, Gross B, Caiazzo R, Kerr-Conte J, Pattou F, Peters JM, Staels B, Lestavel S. PPARβ/δ activation induces enteroendocrine L cell GLP-1 production. Gastroenterology 2011; 140:1564-74. [PMID: 21300064 DOI: 10.1053/j.gastro.2011.01.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Glucagon-like peptide (GLP)-1, an intestinal incretin produced by L cells through proglucagon processing, is secreted after nutrient ingestion and acts on endocrine pancreas beta cells to enhance insulin secretion. Peroxisome proliferator-activated receptor (PPAR) β/δ is a nuclear receptor that improves glucose homeostasis and pancreas islet function in diabetic animal models. Here, we investigated whether PPARβ/δ activation regulates L cell GLP-1 production. METHODS Proglucagon regulation and GLP-1 release were evaluated in murine GLUTag and human NCI-H716 L cells and in vivo using wild-type, PPARβ/δ-null, and ob/ob C57Bl/6 mice treated with the PPARβ/δ synthetic agonists GW501516 or GW0742. RESULTS PPARβ/δ activation increased proglucagon expression and enhanced glucose- and bile acid-induced GLP-1 release by intestinal L cells in vitro and ex vivo in human jejunum. In vivo treatment with GW0742 increased proglucagon messenger RNA levels in the small intestine in wild-type but not in PPARβ/δ-deficient mice. Treatment of wild-type and ob/ob mice with GW501516 enhanced the increase in plasma GLP-1 level after an oral glucose load and improved glucose tolerance. Concomitantly, proglucagon and GLP-1 receptor messenger RNA levels increased in the small intestine and pancreas, respectively. Finally, PPARβ/δ agonists activate the proglucagon gene transcription by interfering with the β-catenin/TCF-4 pathway. CONCLUSIONS Our data show that PPARβ/δ activation potentiates GLP-1 production by the small intestine. Pharmacologic targeting of PPARβ/δ is a promising approach in the treatment of patients with type 2 diabetes mellitus, especially in combination with dipeptidyl peptidase IV inhibitors.
Collapse
|
5
|
Gosmain Y, Marthinet E, Cheyssac C, Guérardel A, Mamin A, Katz LS, Bouzakri K, Philippe J. Pax6 controls the expression of critical genes involved in pancreatic {alpha} cell differentiation and function. J Biol Chem 2010; 285:33381-33393. [PMID: 20592023 DOI: 10.1074/jbc.m110.147215] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The paired box homeodomain Pax6 is crucial for endocrine cell development and function and plays an essential role in glucose homeostasis. Indeed, mutations of Pax6 are associated with diabetic phenotype. Importantly, homozygous mutant mice for Pax6 are characterized by markedly decreased β and δ cells and absent α cells. To better understand the critical role that Pax6 exerts in glucagon-producing cells, we developed a model of primary rat α cells. To study the transcriptional network of Pax6 in adult and differentiated α cells, we generated Pax6-deficient primary rat α cells and glucagon-producing cells, using either specific siRNA or cells expressing constitutively a dominant-negative form of Pax6. In primary rat α cells, we confirm that Pax6 controls the transcription of the Proglucagon and processing enzyme PC2 genes and identify three new target genes coding for MafB, cMaf, and NeuroD1/Beta2, which are all critical for Glucagon gene transcription and α cell differentiation. Furthermore, we demonstrate that Pax6 directly binds and activates the promoter region of the three genes through specific binding sites and that constitutive expression of a dominant-negative form of Pax6 in glucagon-producing cells (InR1G9) inhibits the activities of the promoters. Finally our results suggest that the critical role of Pax6 action on α cell differentiation is independent of those of Arx and Foxa2, two transcription factors that are necessary for α cell development. We conclude that Pax6 is critical for α cell function and differentiation through the transcriptional control of key genes involved in glucagon gene transcription, proglucagon processing, and α cell differentiation.
Collapse
Affiliation(s)
- Yvan Gosmain
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland.
| | - Eric Marthinet
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Claire Cheyssac
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Audrey Guérardel
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Aline Mamin
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Liora S Katz
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Karim Bouzakri
- Department of Genetic Medicine and Development, University Medical Center, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jacques Philippe
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Ye DZ, Kaestner KH. Foxa1 and Foxa2 control the differentiation of goblet and enteroendocrine L- and D-cells in mice. Gastroenterology 2009; 137:2052-62. [PMID: 19737569 PMCID: PMC2789913 DOI: 10.1053/j.gastro.2009.08.059] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 08/04/2009] [Accepted: 08/21/2009] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The winged helix transcription factors Foxa1 and Foxa2 are expressed in all epithelia of the gastrointestinal tract from its embryonic origin into adulthood. In vitro studies have shown that Foxa1/a2 can transactivate the promoters of Mucin 2 (Muc2), which is expressed in goblet cells, and of preproglucagon, which is expressed in enteroendocrine cells. These findings suggest Foxa1/a2 as critical factors in the differentiation of gut epithelial cells. METHODS Mice with intestine-specific simultaneous deletion of Foxa1 and Foxa2 were derived using the Cre-loxP system and analyzed using histologic and molecular means. RESULTS Both Foxa1 and Foxa2 were deleted successfully in the epithelia of the small intestine and colon using Villin-Cre mice. Immunohistochemical staining showed that Foxa1/a2 mutants lack glucagon-like peptide-1- and peptide-2-expressing cells (L-cells), and have reduced numbers of somatostatin (D-cells) and peptide YY-expressing cells (L-cells). Preproglucagon, somatostatin, and peptide YY messenger RNA (mRNA) levels also were reduced significantly in Foxa1/a2 mutants. Thus, Foxa1 and Foxa2 are essential regulators of these enteroendocrine lineages in vivo. The mRNA levels of transcription factors Islet-1 and Pax6 were reduced significantly in the small intestine, showing that Foxa1 and Foxa2 impact on a transcription factor network in the enteroendocrine lineage. In addition, deletion of Foxa1/a2 caused a reduction in goblet cell number with altered expression of the secretory mucins Muc2, Mucin5b, Mucin5ac, and Mucin 6. CONCLUSIONS The winged helix factors Foxa1 and Foxa2 are essential members of the transcription factor network that govern secretory cell differentiation in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
| | - Klaus H. Kaestner
- Corresponding author, , Klaus H. Kaestner, PhD, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA, Phone: 215-898-8759, Fax: 215-573-5892
| |
Collapse
|
7
|
Yu Z, Jin T. New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1). Cell Signal 2009; 22:1-8. [PMID: 19772917 DOI: 10.1016/j.cellsig.2009.09.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/10/2009] [Accepted: 09/13/2009] [Indexed: 12/25/2022]
Abstract
The proglucagon gene (gcg) encodes both glucagon and glucagon-like peptide-1 (GLP-1), produced in pancreatic alpha cells and intestinal endocrine L cells, respectively. The incretin hormone GLP-1 stimulates insulin secretion and pro-insulin gene transcription. GLP-1 also enhances pancreatic beta-cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. A long-term effective GLP-1 receptor agonist, Byetta, has now been developed as the drug in treating type II diabetes and potentially other metabolic disorders. The expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP, and the crosstalk between PKA and the Wnt signaling pathway, are involved in cAMP-stimulated gcg transcription and GLP-1 production as well. Finally, functions of GLP-1 in pancreatic beta cells are also mediated by PKA, Epac, as well as the effector of the Wnt signaling pathway. Together, these novel findings bring us a new insight into the role of cAMP in the production and function of the incretin hormone GLP-1.
Collapse
Affiliation(s)
- Zhiwen Yu
- Banting and Best Diabetes Centre, University of Toronto, Canada
| | | |
Collapse
|
8
|
Abstract
Pax6 is important in the development of the pancreas and was previously shown to regulate pancreatic endocrine differentiation, as well as the insulin, glucagon, and somatostatin genes. Prohormone convertase 2 (PC2) is the main processing enzyme in pancreatic alpha cells, where it processes proglucagon to produce glucagon under the spatial and temporal control of 7B2, which functions as a molecular chaperone. To investigate the role of Pax6 in glucagon biosynthesis, we studied potential target genes in InR1G9 alpha cells transfected with Pax6 small interfering RNA and in InR1G9 clones expressing a dominant-negative form of Pax6. We now report that Pax6 controls the expression of the PC2 and 7B2 genes. By binding and transactivation studies, we found that Pax6 indirectly regulates PC2 gene transcription through cMaf and Beta2/NeuroD1 while it activates the 7B2 gene both directly and indirectly through the same transcription factors, cMaf and Beta2/NeuroD1. We conclude that Pax6 is critical for glucagon biosynthesis and processing by directly and indirectly activating the glucagon gene through cMaf and Beta2/NeuroD1, as well as the PC2 and 7B2 genes.
Collapse
|
9
|
Abstract
Glucose homeostasis is regulated primarily by the opposing actions of insulin and glucagon, hormones that are secreted by pancreatic islets from beta-cells and alpha-cells, respectively. Insulin secretion is increased in response to elevated blood glucose to maintain normoglycemia by stimulating glucose transport in muscle and adipocytes and reducing glucose production by inhibiting gluconeogenesis in the liver. Whereas glucagon secretion is suppressed by hyperglycemia, it is stimulated during hypoglycemia, promoting hepatic glucose production and ultimately raising blood glucose levels. Diabetic hyperglycemia occurs as the result of insufficient insulin secretion from the beta-cells and/or lack of insulin action due to peripheral insulin resistance. Remarkably, excessive secretion of glucagon from the alpha-cells is also a major contributor to the development of diabetic hyperglycemia. Insulin is a physiological suppressor of glucagon secretion; however, at the cellular and molecular levels, how intraislet insulin exerts its suppressive effect on the alpha-cells is not very clear. Although the inhibitory effect of insulin on glucagon gene expression is an important means to regulate glucagon secretion, recent studies suggest that the underlying mechanisms of the intraislet insulin on suppression of glucagon secretion involve the modulation of K(ATP) channel activity and the activation of the GABA-GABA(A) receptor system. Nevertheless, regulation of glucagon secretion is multifactorial and yet to be fully understood.
Collapse
Affiliation(s)
- Pritpal Bansal
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Gosmain Y, Avril I, Mamin A, Philippe J. Pax-6 and c-Maf functionally interact with the alpha-cell-specific DNA element G1 in vivo to promote glucagon gene expression. J Biol Chem 2007; 282:35024-34. [PMID: 17901057 DOI: 10.1074/jbc.m702795200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Specific expression of the glucagon gene in the rat pancreas requires the presence of the G1 element localized at -100/-49 base pairs on the promoter. Although it is known that multiple transcription factors such as Pax-6, Cdx-2/3, c-Maf, Maf-B, and Brain-4 can activate the glucagon gene promoter through G1, their relative importance in vivo is unknown. We first studied the expression of Maf-B, c-Maf, and Cdx-2/3 in the developing and adult mouse pancreas. Although Maf-B was detectable in a progressively increasing number of alpha-cells throughout development and in adulthood, c-Maf and Cdx-2/3 were expressed at low and very low levels, respectively. However, c-Maf but not Cdx-2/3 was detectable in adult islets by Western blot analyses. We then demonstrated the in vivo interactions of Pax-6, Cdx-2/3, Maf-B, and c-Maf but not Brain-4 with the glucagon gene promoter in glucagon-producing cells. Although Pax-6, Cdx-2/3, Maf-B, and c-Maf were all able to bind G1 by themselves, we showed that Pax-6 could interact with Maf-B, c-Maf, and Cdx-2/3 and activate transcription of the glucagon gene promoter. Overexpression of dominant negative forms of Cdx-2/3 and Mafs in alpha-cell lines indicated that Cdx-2/3 and the Maf proteins interact on an overlapping site within G1 and that this binding site is critical in the activation of the glucagon gene promoter. Finally, we show that specific inhibition of Pax-6 and c-Maf but not Cdx-2/3 or Maf-B led to decreases in endogenous glucagon gene expression and that c-Maf binds the glucagon gene promoter in mouse islets. We conclude that Pax-6 and c-Maf interact with G1 to activate basal expression of the glucagon gene.
Collapse
Affiliation(s)
- Yvan Gosmain
- Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, University of Geneva Medical School, 1211 Geneva 14, Switzerland.
| | | | | | | |
Collapse
|
11
|
McKinnon CM, Ravier MA, Rutter GA. FoxO1 is required for the regulation of preproglucagon gene expression by insulin in pancreatic alphaTC1-9 cells. J Biol Chem 2006; 281:39358-69. [PMID: 17062568 DOI: 10.1074/jbc.m605022200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Forkhead/winged helix box gene, group O-1 (FoxO1) is a member of a family of nuclear transcription factors regulated by insulin-dependent phosphorylation and implicated in the development of the endocrine pancreas. We show here firstly that FoxO1 protein is expressed in both primary mouse islet alpha and beta cells. Examined in clonal alphaTC1-9 cells, insulin caused endogenous FoxO1 to translocate from the nucleus to the cytoplasm. Demonstrating the importance of nuclear exclusion of FoxO1 for the inhibition of preproglucagon gene expression, FoxO1 silencing by RNA interference reduced preproglucagon mRNA levels by >40% in the absence of insulin and abolished the decrease in mRNA levels elicited by the hormone. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed direct binding of FoxO1 to a forkhead consensus binding site, termed GL3, in the preproglucagon gene promoter region, localized -1798 bp upstream of the transcriptional start site. Deletion or mutation of this site diminished FoxO1 binding and eliminated transcriptional regulation by glucose or insulin. FoxO1 silencing also abolished the acute regulation by insulin, but not glucose, of glucagon secretion, demonstrating the importance of FoxO1 expression in maintaining the alpha-cell phenotype.
Collapse
Affiliation(s)
- Caroline M McKinnon
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | | | |
Collapse
|
12
|
Mamin A, Philippe J. Activin A decreases glucagon and arx gene expression in alpha-cell lines. Mol Endocrinol 2006; 21:259-73. [PMID: 16988001 DOI: 10.1210/me.2005-0530] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activin A is a potent growth and differentiation factor involved in development, differentiation, and physiological functions of the endocrine pancreas; it increases insulin and pax4 gene expression in beta-cells and can induce transdifferentiation of the exocrine acinar cell line AR42J into insulin-producing cells. We show here that Activin A decreases glucagon gene expression in the alpha-cell lines InR1G9 and alphaTC1 in a dose- and time-dependent manner and that the effect is blocked by Follistatin. This effect is also observed in adult human islets. Glucagon gene expression is inhibited at the transcriptional level by the Smad signaling pathway through the G3 DNA control element. Furthermore, Activin A decreases cell proliferation of InR1G9 and alphaTC1 cells as well as cyclin D2 and arx gene expression, whose protein product Arx has been shown to be critical for alpha-cell differentiation. Overexpression of Arx in Activin A-treated InR1G9 cells does not prevent the decrease in glucagon gene expression but corrects the inhibition of cell proliferation, indicating that Arx mediates the Activin A effects on the cell cycle. We conclude that Activin A has opposite effects on alpha-cells compared with beta-cells, a finding that may have relevance during pancreatic endocrine lineage specification and physiological function of the adult islets.
Collapse
Affiliation(s)
- Aline Mamin
- Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital Geneva, 24, rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland.
| | | |
Collapse
|
13
|
Trinh DKY, Zhang K, Hossain M, Brubaker PL, Drucker DJ. Pax-6 activates endogenous proglucagon gene expression in the rodent gastrointestinal epithelium. Diabetes 2003; 52:425-33. [PMID: 12540617 DOI: 10.2337/diabetes.52.2.425] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The proglucagon gene encodes pancreatic glucagon and the glucagon-like peptides, which exert diverse effects on nutrient absorption and assimilation. The therapeutic potential of glucagon-like peptide-1 (GLP-1) has fostered interest in development of cellular engineering approaches to augment endogenous intestinal-derived GLP-1 for the treatment of type 2 diabetes. We have used adenovirus technology to examine the potential roles of the transcription factors Cdx-2/3 and Pax-6 as activators of endogenous proglucagon gene expression in enteroendocrine cell lines and in nontransformed rat intestinal cells. Adenoviral-expressed Cdx-2/3 and Pax-6 activated proglucagon promoter-luciferase activity in baby hamster kidney (BHK) fibroblasts, HEK 293 cells, and enteroendocrine cell lines. Pax-6, but not Cdx-2/3, induced expression of the endogenous proglucagon gene in enteroendocrine cell lines, but not in heterologous fibroblasts. Furthermore, transduction of primary rat intestinal cell cultures in vitro, or the rat colonic epithelium in vivo, with Ad-Pax-6 activated endogenous proglucagon gene expression. These data demonstrate that Pax-6, but not Cdx-2/3, is capable of activating the endogenous proglucagon gene in both immortalized enteroendocrine cells and the nontransformed intestinal epithelium in vivo.
Collapse
Affiliation(s)
- Denny K Y Trinh
- Department of Medicine, Banting and Best Diabetes Center, Toronto General Hospital, University of Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
14
|
Gauthier BR, Schwitzgebel VM, Zaiko M, Mamin A, Ritz-Laser B, Philippe J. Hepatic nuclear factor-3 (HNF-3 or Foxa2) regulates glucagon gene transcription by binding to the G1 and G2 promoter elements. Mol Endocrinol 2002; 16:170-83. [PMID: 11773447 DOI: 10.1210/mend.16.1.0752] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucagon gene expression in the endocrine pancreas is controlled by three islet-specific elements (G3, G2, and G4) and the alpha-cell-specific element G1. Two proteins interacting with G1 have previously been identified as Pax6 and Cdx2/3. We identify here the third yet uncharacterized complex on G1 as hepatocyte nuclear factor 3 (HNF-3)beta, a member of the HNF-3/forkhead transcription family, which plays an important role in the development of endoderm-related organs. HNF-3 has been previously demonstrated to interact with the G2 element and to be crucial for glucagon gene expression; we thus define a second binding site for this transcription on the glucagon gene promoter. We demonstrate that both HNF-3alpha and -beta produced in heterologous cells can interact with similar affinities to either the G1 or G2 element. Pax6, which binds to an overlapping site on G1, exhibited a greater affinity as compared with HNF-3alpha or -beta. We show that both HNF-3beta and -alpha can transactivate glucagon gene transcription through the G2 and G1 elements. However, HNF-3 via its transactivating domains specifically impaired Pax6-mediated transactivation of the glucagon promoter but had no effect on transactivation by Cdx2/3. We suggest that HNF-3 may play a dual role on glucagon gene transcription by 1) inhibiting the transactivation potential of Pax6 on the G1 and G3 elements and 2) direct activation through G1 and G2.
Collapse
Affiliation(s)
- Benoit R Gauthier
- Unité de Diabétologie Clinique, Centre Médical Universitaire, 1211 Genève 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
15
|
Kieffer TJ, Hussain MA, Habener JF. Glucagon and Glucagon‐like Peptide Production and Degradation. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Ritz-Laser B, Estreicher A, Gauthier B, Philippe J. The paired homeodomain transcription factor Pax-2 is expressed in the endocrine pancreas and transactivates the glucagon gene promoter. J Biol Chem 2000; 275:32708-15. [PMID: 10938089 DOI: 10.1074/jbc.m005704200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucagon gene expression is controlled by at least four DNA elements within the promoter; G2, G3, and G4 confer islet-specific expression, while G1 restricts glucagon transcription to alpha cells. Two islet-specific complexes are formed on G3, the insulin-responsive element of the glucagon gene; one of these corresponds to the paired homeodomain protein Pax-6, a major glucagon gene transactivator that plays a crucial role in alpha cell development. We describe here the identification of the second complex as Pax-2, another member of the paired box family. Pax-2 is known to be crucial for the development of the urogenital tract and of the central nervous system, but its presence in the endocrine pancreas has not been reported. We detected Pax-2 gene expression by RT-PCR; in islets, Pax-2 is present as two alternative splicing isoforms, Pax-2A and Pax-2B, whereas in the glucagon- and insulin-producing cell lines alphaTC1 and Min6, a distinct isoform, Pax-2D2, is found in addition to Pax-2B. Both islet-specific isoforms bind to the enhancer element G3 and to the alpha-specific promoter element G1 that also interacts with Pax-6. Pax-2A and Pax-2B dose-dependently activate transcription from the G3 and the G1 elements both in heterologous and in glucagon-producing cells. Our data indicate that Pax-2 is the third paired domain protein present in the endocrine pancreas and that one of its roles may be the regulation of glucagon gene expression.
Collapse
Affiliation(s)
- B Ritz-Laser
- Diabetes Unit, Centre Médical Universitaire, 1211 Genève 4, Switzerland.
| | | | | | | |
Collapse
|
17
|
Bramblett DE, Huang HP, Tsai MJ. Pancreatic islet development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 47:255-315. [PMID: 10582089 DOI: 10.1016/s1054-3589(08)60114-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D E Bramblett
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- T J Kieffer
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
19
|
Smith SB, Ee HC, Conners JR, German MS. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol 1999; 19:8272-80. [PMID: 10567552 PMCID: PMC84911 DOI: 10.1128/mcb.19.12.8272] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paired-homeodomain transcription factor PAX4 is expressed in the developing pancreas and along with PAX6 is required for normal development of the endocrine cells. In the absence of PAX4, the numbers of insulin-producing beta cells and somatostatin-producing delta cells are drastically reduced, while the numbers of glucagon-producing alpha cells are increased. To gain insight into PAX4 function, we cloned a full-length Pax4 cDNA from a beta-cell cDNA library and identified a bipartite consensus DNA binding sequence consisting of a homeodomain binding site separated from a paired domain binding site by 15 nucleotides. The paired half of this consensus sequence has similarities to the PAX6 paired domain consensus binding site, and the two proteins bind to common sequences in several islet genes, although with different relative affinities. When expressed in an alpha-cell line, PAX4 represses transcription through the glucagon or insulin promoters or through an isolated PAX4 binding site. This repression is not simply due to competition with the PAX6 transcriptional activator for the same binding site, since PAX4 fused to the unrelated yeast GAL4 DNA binding domain also represses transcription through the GAL4 binding site in the alpha-cell line and to a lesser degree in beta-cell lines and NIH 3T3 cells. Repressor activity maps to more than one domain within the molecule, although the homeodomain and carboxyl terminus give the strongest repression. PAX4 transcriptional regulation apparently plays a role only early in islet development, since Pax4 mRNA as determined by reverse transcriptase PCR peaks at embryonic day 13.5 in the fetal mouse pancreas and is undetectable in adult islets. In summary, PAX4 can function as a transcriptional repressor and is expressed early in pancreatic development, which may allow it to suppress alpha-cell differentiation and permit beta-cell differentiation.
Collapse
Affiliation(s)
- S B Smith
- Hormone Research Institute, University of California, San Francisco, San Francisco, California 94143-0534, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Dumonteil E, Ritz-Laser B, Magnan C, Grigorescu I, Ktorza A, Philippe J. Chronic exposure to high glucose concentrations increases proglucagon messenger ribonucleic acid levels and glucagon release from InR1G9 cells. Endocrinology 1999; 140:4644-50. [PMID: 10499521 DOI: 10.1210/endo.140.10.7052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alpha cell function is impaired in diabetes. In diabetics, plasma levels of glucagon are high despite persistently elevated glucose levels and may even rise paradoxically in response to a glucose load; high plasma glucagon levels are accompanied by increased proglucagon gene expression. We have investigated the effects of high glucose concentrations on InR1G9 cells, a glucagon-producing cell line. We show here that chronically elevated glucose concentrations increase glucagon release by 2.5- to 4-fold, glucagon cell content by 2.5- to 3-fold, and proglucagon messenger RNA levels by 4- to 8-fold, whereas changes for 24 h have no effect on proglucagon messenger RNA levels. Persistently elevated glucose affects proglucagon gene expression at the level of transcription and insulin is capable of preventing this effect. We conclude that chronically elevated glucose may be an important factor in the alpha cell dysfunction that occurs in diabetes and thus that glucose may not only affect the beta cell but also the alpha cell.
Collapse
Affiliation(s)
- E Dumonteil
- Diabetes Unit, Centre Médical Universtaire, Genève, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Kaneko K, Shirotani T, Araki E, Matsumoto K, Taguchi T, Motoshima H, Yoshizato K, Kishikawa H, Shichiri M. Insulin inhibits glucagon secretion by the activation of PI3-kinase in In-R1-G9 cells. Diabetes Res Clin Pract 1999; 44:83-92. [PMID: 10414926 DOI: 10.1016/s0168-8227(99)00021-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intracellular mechanisms through which insulin inhibits glucagon secretion remain to be elucidated in glucagon secreting cells. In this study, we confirmed that, in In-R1-G9 cells, a pancreatic alpha cell line, insulin stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) and activated phosphatidylinositol 3-kinase (PI3-kinase). We further studied, using wortmannin, an inhibitor of PI3-kinase, whether the inhibitory effect of insulin on glucagon secretion was mediated through PI3-kinase pathway in these cells. In static incubation studies, insulin significantly inhibited glucagon secretion at 2, 6 and 12 h, which was completely abolished by pretreatment with wortmannin. In perifusion studies, insulin significantly suppressed glucagon secretion after 10 min, which was also blocked by wortmannin. Insulin also reduced glucagon mRNA at 6 and 12 h but not at 2 h. Wortmannin also abolished insulin-induced reduction of glucagon mRNA. Insulin increased the amount of 85 kDa subunit of PI3-kinase in plasma membrane fraction (PM), with a reciprocal decrease of the kinase in cytosol fraction (CY). Insulin also increased PI3-kinase activity in PM, but not in CY. Our results suggest that insulin suppressed glucagon secretion by inhibiting glucagon release and gene expression. Both actions were mediated by activation of PI3-kinase. Recruitment and activation of PI3-kinase in plasma membrane might be relevant at least in part to insulin-induced inhibition of glucagon release.
Collapse
Affiliation(s)
- K Kaneko
- Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Andersen FG, Heller RS, Petersen HV, Jensen J, Madsen OD, Serup P. Pax6 and Cdx2/3 form a functional complex on the rat glucagon gene promoter G1-element. FEBS Lett 1999; 445:306-10. [PMID: 10094478 DOI: 10.1016/s0014-5793(99)00145-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alpha-cell specific transcription of the glucagon gene is mainly conferred by the glucagon promoter G1-element, while additional elements G2, G3, and G4 have broad islet cell specificity. Transcription of the glucagon gene has been shown to be stimulated by Pax6 through binding to the glucagon gene promoter G3-element. In this report, we show that Pax6 additionally binds the glucagon gene promoter G1-element and forms a transcriptionally active complex with another homeodomain protein, Cdx2/3. Two distinct mutations in the G1-element, that both reduce promoter activity by 85-90%, is shown to eliminate binding of either Pax6 or Cdx2/3. Additionally, Pax6 enhanced Cdx2/3 mediated activation of a glucagon reporter in heterologous cells. We discuss how Pax6 may contribute to cell-type specific transcription in the pancreatic islets by complex formation with different transcription factors.
Collapse
Affiliation(s)
- F G Andersen
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
Ritz-Laser B, Estreicher A, Klages N, Saule S, Philippe J. Pax-6 and Cdx-2/3 interact to activate glucagon gene expression on the G1 control element. J Biol Chem 1999; 274:4124-32. [PMID: 9933606 DOI: 10.1074/jbc.274.7.4124] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promoter element G1, critical for alpha-cell-specific expression of the glucagon gene, contains two AT-rich sequences important for transcriptional activity. Pax-6, a paired homeodomain protein previously shown to be required for normal alpha-cell development and to interact with the enhancer element G3 of the glucagon gene, binds as a monomer to the distal AT-rich site of G1. However, although the paired domain of Pax-6 is sufficient for interaction with the G3 element, the paired domain and the homeodomain are required for high affinity binding to G1. In addition to monomer formation, Pax-6 interacts with Cdx-2/3, a caudal-related homeodomain protein binding to the proximal AT-rich site, to form a heterodimer on G1. Both proteins are capable of directly interacting in the absence of DNA. In BHK-21 cells, Pax-6 activates glucagon gene transcription both through G3 and G1, and heterodimerization with Cdx-2/3 on G1 leads to more than additive transcriptional activation. In glucagon-producing cells, both G1 and G3 are critical for basal transcription, and the Pax-6 and Cdx-2/3 binding sites are required for activation. We conclude that Pax-6 is not only critical for alpha-cell development but also for glucagon gene transcription by its independent interaction with the two DNA control elements, G1 and G3.
Collapse
Affiliation(s)
- B Ritz-Laser
- Diabetes Unit, Centre Médical Universitaire, 1211 Genève 4, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Hussain MA, Lee J, Miller CP, Habener JF. POU domain transcription factor brain 4 confers pancreatic alpha-cell-specific expression of the proglucagon gene through interaction with a novel proximal promoter G1 element. Mol Cell Biol 1997; 17:7186-94. [PMID: 9372951 PMCID: PMC232576 DOI: 10.1128/mcb.17.12.7186] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The proglucagon gene is expressed in a highly restricted tissue-specific manner in the alpha cells of the pancreatic islet, the hypothalamus, and the small and large intestines. Proglucagon is processed to glucagon and glucagon-like peptides GLP-1 and -2. Glucagon is expressed in alpha cells and regulates glucose homeostasis. GLP-1 is implicated in the control of insulin secretion, food intake, and satiety signaling, and GLP-2 is implicated in regulating small-bowel growth. Cell-specific expression of the proglucagon gene is mediated by proteins that interact with the proximal G1 promoter element which contains several AT-rich domains with binding sites for homeodomain transcription factors. In an attempt to identify major homeodomain proteins involved in pancreatic alpha-cell-specific proglucagon expression, we found that the POU domain transcription factor brain 4 is abundantly expressed in proglucagon-producing islet cell lines and rat pancreatic islets. In the latter, brain 4 and glucagon immunoreactivity colocalize in the outer mantle of islets. Electrophoretic mobility shift assays with specific antisera identify brain 4 as a major constituent of nuclear proteins of glucagon-producing cells that bind to the G1 element of the proglucagon gene proximal promoter. Transcriptional transactivation experiments reveal that brain 4 is a major regulator of proglucagon gene expression by its interaction with the G1 element. The finding that a neuronal transcription factor is involved in glucagon gene transcription may explain the presence of proglucagon in certain areas of the brain as well as in pancreatic alpha cells. Further, this finding supports the idea that the neuronal properties of endodermis-derived endocrine pancreatic cells may find their basis in regulation of gene expression by neuronal transcription factors.
Collapse
Affiliation(s)
- M A Hussain
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, and Harvard Medical School, Boston 02114, USA
| | | | | | | |
Collapse
|
26
|
Sander M, Neubüser A, Kalamaras J, Ee HC, Martin GR, German MS. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev 1997; 11:1662-73. [PMID: 9224716 DOI: 10.1101/gad.11.13.1662] [Citation(s) in RCA: 435] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present genetic and biochemical evidence that PAX6 is a key regulator of pancreatic islet hormone gene transcription and is required for normal islet development. In embryos homozygous for a mutant allele of the Pax6 gene, Small eye (Sey(Neu)), the numbers of all four types of endocrine cells in the pancreas are decreased significantly, and islet morphology is abnormal. In the remaining islet cells, hormone production, particularly glucagon production, is markedly reduced because of decreased gene transcription. These effects appear to result from a lack of PAX6 protein in the mutant embryos. Biochemical studies identify wild-type PAX6 protein as the transcription factor that binds to a common element in the glucagon, insulin, and somatostatin promoters, and show that PAX6 transactivates the glucagon and insulin promoters.
Collapse
Affiliation(s)
- M Sander
- Hormone Research Institute, University of California, San Francisco 94143-0534, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chapter 7 Molecular aspects of the glucagon gene. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2566(97)80038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Laser B, Meda P, Constant I, Philippe J. The caudal-related homeodomain protein Cdx-2/3 regulates glucagon gene expression in islet cells. J Biol Chem 1996; 271:28984-94. [PMID: 8910549 DOI: 10.1074/jbc.271.46.28984] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glucagon gene transcription in the endocrine pancreas is regulated by at least four cis-acting DNA control elements. We showed previously that G1 is critical for alpha cell-specific expression. G1 contains three AT-rich sequences important for promoter function, which represent candidate binding sites for homeodomain transcription factors. Performing reverse transcription-polymerase chain reaction amplifications with degenerate oligonucleotide primers homologous to the Antennapedia homeobox, cDNA clones corresponding to the caudal-related gene cdx-2/3 were predominantly obtained from glucagon-producing cells and primary non-beta cells. From RNase protection and polymerase chain reaction analyses, cdx-2/3 turned out to be the only caudal-related gene that is expressed at significant levels in cells of the endocrine pancreas. Cdx-2/3 binds with high affinity to an AT-rich motif of G1, which matches the consensus binding site of caudal-related proteins. In the glucagon-producing hamster cell line InR1G9, Cdx-2/3 is a subunit of complex B3 formed on G1. Alternative splicing generates two cdx-2/3 transcripts in islet cells, coding for a full-length protein and an amino-terminally truncated isoform. Although both isoforms bind G1 with similar affinity, only the full-length Cdx-2/3 A protein activates glucagon gene transcription in non-glucagon-producing cells, transcriptional activation being dose-dependent. We therefore conclude that the caudal-related gene cdx-2/3 is implicated in the transcriptional control of glucagon gene expression in the alpha cells of the islets of Langerhans.
Collapse
Affiliation(s)
- B Laser
- Clinical Diabetology, Department of Medicine, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
29
|
Jin T, Drucker DJ. Activation of proglucagon gene transcription through a novel promoter element by the caudal-related homeodomain protein cdx-2/3. Mol Cell Biol 1996; 16:19-28. [PMID: 8524295 PMCID: PMC230974 DOI: 10.1128/mcb.16.1.19] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The proglucagon gene is expressed in a highly restricted tissue-specific manner in the A cells of the pancreatic islet and the L cells of the small and large intestines. The results of previous experiments indicate that cell-specific expression of the proglucagon gene is mediated by proteins that interact with the proximal G1 promoter element. We show here that the G1 element contains several AT-rich subdomains that bind proteins present in islet and enteroendocrine cell extracts. Electrophoretic mobility shift assay experiments using specific antisera identified the homeobox protein cdx-2/3 (which designates the same homeobox protein called cdx-2 for mice and cdx-3 for hamsters) as a major component of the G1-Gc2 complex in islet and intestinal cells. Mutations of the Gc element that decreased cdx-2/3 binding also resulted in decreased proglucagon promoter activity in islet and intestinal cell lines. The finding that cdx-2/3 mediates activation of the proglucagon promoter in both islet and enteroendocrine cells is consistent with the common endodermal lineage of these tissues and provides new insight into the coordinate regulation of genes expressed in both pancreatic and intestinal endocrine cell types.
Collapse
Affiliation(s)
- T Jin
- Department of Medicine, Banting and Best Diabetes Center, University of Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Cordier-Bussat M, Morel C, Philippe J. Homologous DNA sequences and cellular factors are implicated in the control of glucagon and insulin gene expression. Mol Cell Biol 1995; 15:3904-16. [PMID: 7791796 PMCID: PMC230630 DOI: 10.1128/mcb.15.7.3904] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The glucagon gene is specifically expressed in the alpha cells of pancreatic islets. The promoter of the glucagon gene is responsible for this specificity. Within the promoter, the upstream promoter element G1 is critical to restrict expression to the alpha cells. We define here a composite DNA control element, G4, localized upstream of G1 between nucleotides -100 and -140 which functions as an islet-specific activator in both glucagon- and insulin-producing cells but not in nonislet cells. G4 contains at least three protein binding sites. The most proximal site, E2, is highly homologous to the E1, SMS-UE, and B elements of the rat insulin I, somastatin, and elastase I genes, respectively, and interacts with a pancreas-specific complex; the distal site, E3, represents an E box which is identical to the E boxes of the rat insulin I and II genes and binds to a complex similar or identical to IEF1 which has been implicated in the tissue-specific control of insulin gene expression. These two sites necessitate a third element, the intervening sequence, to activate transcription. We conclude that the first 140 bp of the glucagon gene promoter contains at least two DNA control elements responsible for pancreatic alpha-cell-specific expression: G4, an islet cell-specific element sharing common binding sites with the insulin gene, and G1, which restricts glucagon gene expression to the alpha cells. This double control of specificity might have relevance during islet cell differentiation.
Collapse
Affiliation(s)
- M Cordier-Bussat
- Department of Genetics, Centre Médical Universitaire, Geneva, Switzerland
| | | | | |
Collapse
|
31
|
Jansen E, Ayoubi TA, Meulemans SM, Van de Ven WJ. Neuroendocrine-specific expression of the human prohormone convertase 1 gene. Hormonal regulation of transcription through distinct cAMP response elements. J Biol Chem 1995; 270:15391-7. [PMID: 7797529 DOI: 10.1074/jbc.270.25.15391] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Prohormone convertases are involved in the tissue-specific endoproteolytic processing of prohormones and neuropeptide precursors within the secretory pathway. In the present study, we have isolated genomic clones comprising the 5'-terminal region of the human prohormone convertase 1 (PC1) gene and identified and characterized the PC1 promoter region. We found multiple transcription start sites located within a 15-base pair region, 205 base pairs upstream of the translation start codon. The promoter region is not G+C-rich and does not contain a canonical TATA box nor a CAAT box. Transient expression assays with a set of human PC1 gene fragments containing progressive 5' deletions demonstrate that the proximal promoter region is capable of directing high levels of neuroendocrine-specific expression of reporter gene constructs. In addition, the proximal promoter region confers both basal and hormone-regulated promoter activity. Site-specific mutagenesis experiments demonstrate that two closely spaced cAMP response elements within the proximal promoter region direct cAMP-mediated hormonal regulation of transcription of the PC1 gene.
Collapse
Affiliation(s)
- E Jansen
- Laboratory for Molecular Oncology, University of Leuven, Belgium
| | | | | | | |
Collapse
|