1
|
Kanagy WK, Cleyrat C, Fazel M, Lucero SR, Bruchez MP, Lidke KA, Wilson BS, Lidke DS. Docking of Syk to FcεRI is enhanced by Lyn but limited in duration by SHIP1. Mol Biol Cell 2022; 33:ar89. [PMID: 35793126 PMCID: PMC9582627 DOI: 10.1091/mbc.e21-12-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β− and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the tyrosine kinase Syk. FcεRI signaling is tuned by the balance between Syk-driven positive signaling and the engagement of inhibitory molecules, including SHIP1. Here, we investigate the mechanistic contributions of Lyn, Syk, and SHIP1 to the formation of the FcεRI signalosome. Using Lyn-deficient RBL-2H3 mast cells, we found that another SFK can weakly monophosphorylate the γ-subunit, yet Syk still binds the incompletely phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs). Once recruited, Syk further enhances γ-phosphorylation to propagate signaling. In contrast, the loss of SHIP1 recruitment indicates that Lyn is required for phosphorylation of the β-subunit. We demonstrate two noncanonical Syk binding modes, trans γ-bridging and direct β-binding, that can support signaling when SHIP1 is absent. Using single particle tracking, we reveal a novel role of SHIP1 in regulating Syk activity, where the presence of SHIP1 in the signaling complex acts to increase the Syk:receptor off-rate. These data suggest that the composition and dynamics of the signalosome modulate immunoreceptor signaling activities.
Collapse
Affiliation(s)
- William K Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mohamadreza Fazel
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Marcel P Bruchez
- Department of Biological Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
2
|
Travers T, Kanagy WK, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 2019; 30:2331-2347. [PMID: 31216232 PMCID: PMC6743456 DOI: 10.1091/mbc.e18-11-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Syk/Zap70 family kinases are essential for signaling via multichain immune-recognition receptors such as tetrameric (αβγ2) FcεRI. Syk activation is generally attributed to cis binding of its tandem SH2 domains to dual phosphotyrosines within FcεRIγ-ITAMs (immunoreceptor tyrosine-based activation motifs). However, the mechanistic details of Syk docking on γ homodimers are unresolved. Here, we estimate that multivalent interactions for WT Syk improve cis-oriented binding by three orders of magnitude. We applied molecular dynamics (MD), hybrid MD/worm-like chain polymer modeling, and live cell imaging to evaluate relative binding and signaling output for all possible cis and trans Syk-FcεRIγ configurations. Syk binding is likely modulated during signaling by autophosphorylation on Y130 in interdomain A, since a Y130E phosphomimetic form of Syk is predicted to lead to reduced helicity of interdomain A and alter Syk's bias for cis binding. Experiments in reconstituted γ-KO cells, whose γ subunits are linked by disulfide bonds, as well as in cells expressing monomeric ITAM or hemITAM γ-chimeras, support model predictions that short distances between γ ITAM pairs are required for trans docking. We propose that the full range of docking configurations improves signaling efficiency by expanding the combinatorial possibilities for Syk recruitment, particularly under conditions of incomplete ITAM phosphorylation.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Rachael A. Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Elton Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cedric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
3
|
Velappan N, Mahajan A, Naranjo L, Velappan P, Andrews N, Tiee N, Chakraborti S, Hemez C, Gaiotto T, Wilson B, Bradbury A. Selection and characterization of FcεRI phospho-ITAM specific antibodies. MAbs 2019; 11:1206-1218. [PMID: 31311408 PMCID: PMC6748597 DOI: 10.1080/19420862.2019.1632113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications, such as the phosphorylation of tyrosines, are often the initiation step for intracellular signaling cascades. Pan-reactive antibodies against modified amino acids (e.g., anti-phosphotyrosine), which are often used to assay these changes, require isolation of the specific protein prior to analysis and do not identify the specific residue that has been modified (in the case that multiple amino acids have been modified). Phosphorylation state-specific antibodies (PSSAs) developed to recognize post-translational modifications within a specific amino acid sequence can be used to study the timeline of modifications during a signal cascade. We used the FcϵRI receptor as a model system to develop and characterize high-affinity PSSAs using phage and yeast display technologies. We selected three β-subunit antibodies that recognized: 1) phosphorylation of tyrosines Y218 or Y224; 2) phosphorylation of the Y228 tyrosine; and 3) phosphorylation of all three tyrosines. We used these antibodies to study the receptor activation timeline of FcϵR1 in rat basophilic leukemia cells (RBL-2H3) upon stimulation with DNP24-BSA. We also selected an antibody recognizing the N-terminal phosphorylation site of the γ-subunit (Y65) of the receptor and applied this antibody to evaluate receptor activation. Recognition patterns of these antibodies show different timelines for phosphorylation of tyrosines in both β and γ subunits. Our methodology provides a strategy to select antibodies specific to post-translational modifications and provides new reagents to study mast cell activation by the high-affinity IgE receptor, FcϵRI.
Collapse
Affiliation(s)
- Nileena Velappan
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Avanika Mahajan
- Department of Pathology, University of New Mexico School of Medicine , Albuquerque , NM , USA
| | | | - Priyanka Velappan
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Nasim Andrews
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Nicholas Tiee
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Subhendu Chakraborti
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Colin Hemez
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Tiziano Gaiotto
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory , Los Alamos , NM , USA
| | - Bridget Wilson
- Department of Pathology, University of New Mexico School of Medicine , Albuquerque , NM , USA
| | | |
Collapse
|
4
|
The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol 2015; 94:11-23. [PMID: 25835430 DOI: 10.1038/icb.2015.48] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 02/01/2023]
Abstract
The MS4A (membrane-spanning 4-domain family, subfamily A) family of proteins contains some well-known members including MS4A1 (CD20), MS4A2 (FcɛRIβ) and MS4A3 (HTm4). These three MS4A family members are expressed on the cell surface of specific leukocyte subsets and have been well characterized as having key roles in regulating cell activation, growth and development. However, beyond MS4A1-3 there are a large number of related molecules (18 to date in humans) where our understanding of their biological roles is at a relatively nascent stage. This review examines the larger MS4A family focusing on their structure, expression, regulation and characterized and/or emerging biological roles. Our own work on one family member MS4A8B, and its possible role in epithelial cell regulation, is also highlighted.
Collapse
|
5
|
Mahajan A, Barua D, Cutler P, Lidke DS, Espinoza FA, Pehlke C, Grattan R, Kawakami Y, Tung CS, Bradbury ARM, Hlavacek WS, Wilson BS. Optimal aggregation of FcεRI with a structurally defined trivalent ligand overrides negative regulation driven by phosphatases. ACS Chem Biol 2014; 9:1508-19. [PMID: 24784318 PMCID: PMC4105180 DOI: 10.1021/cb500134t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate why responses of mast cells to antigen-induced IgE receptor (FcεRI) aggregation depend nonlinearly on antigen dose, we characterized a new artificial ligand, DF3, through complementary modeling and experimentation. This ligand is a stable trimer of peptides derived from bacteriophage T4 fibritin, each conjugated to a hapten (DNP). We found low and high doses of DF3 at which degranulation of mast cells sensitized with DNP-specific IgE is minimal, but ligand-induced receptor aggregation is comparable to aggregation at an intermediate dose, optimal for degranulation. This finding makes DF3 an ideal reagent for studying the balance of negative and positive signaling in the FcεRI pathway. We find that the lipid phosphatase SHIP and the protein tyrosine phosphatase SHP-1 negatively regulate mast cell degranulation over all doses considered. In contrast, SHP-2 promotes degranulation. With high DF3 doses, relatively rapid recruitment of SHIP to the plasma membrane may explain the reduced degranulation response. Our results demonstrate that optimal secretory responses of mast cells depend on the formation of receptor aggregates that promote sufficient positive signaling by Syk to override phosphatase-mediated negative regulatory signals.
Collapse
Affiliation(s)
- Avanika Mahajan
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patrick Cutler
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Flor A. Espinoza
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Carolyn Pehlke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Rachel Grattan
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
| | - Chang-Shung Tung
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew R. M. Bradbury
- Advanced Measurement Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
6
|
Potaczek DP, Kabesch M. Current concepts of IgE regulation and impact of genetic determinants. Clin Exp Allergy 2013; 42:852-71. [PMID: 22909159 DOI: 10.1111/j.1365-2222.2011.03953.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunoglobulin E (IgE) mediated immune responses seem to be directed against parasites and neoplasms, but are best known for their involvement in allergies. The IgE network is tightly controlled at different levels as outlined in this review. Genetic determinants were suspected to influence IgE regulation and IgE levels considerably for many years. Linkage and candidate gene studies suggested a number of loci and genes to correlate with total serum IgE levels, and recently genome-wide association studies (GWAS) provided the power to identify genetic determinants for total serum IgE levels: 1q23 (FCER1A), 5q31 (RAD50, IL13, IL4), 12q13 (STAT6), 6p21.3 (HLA-DRB1) and 16p12 (IL4R, IL21R). In this review, we analyse the potential role of these GWAS hits in the IgE network and suggest mechanisms of how genes and genetic variants in these loci may influence IgE regulation.
Collapse
Affiliation(s)
- D P Potaczek
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
7
|
Nunomura S, Kawakami Y, Kawakami T, Ra C. The FcRβ- and γ-ITAMs Play Crucial but Distinct Roles in the Full Activation of Mast Cells Induced by IgEκ and Protein L. THE JOURNAL OF IMMUNOLOGY 2012; 188:4052-64. [DOI: 10.4049/jimmunol.1102796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Abstract
Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | |
Collapse
|
9
|
Detection of reaginic antibodies against Faenia rectivirgula from the serum of horses affected with Recurrent Airway Obstruction by an in vitro bioassay. Vet Res Commun 2010; 34:719-26. [PMID: 20814741 DOI: 10.1007/s11259-010-9440-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Reaginic antibodies, mainly of the IgE and some IgG subclasses, play an important role in the induction of type I immediate hypersensitivity reactions. These antibodies bind through their Fc fragment to high affinity receptors (FcεRI) present in the membrane of mast cells and basophils. Previously, several studies have investigated the role of reaginic antibodies in the pathogenesis of RAO. However, whereas immunological aspects of RAO have been extensively studied, the precise sequence of events is still not well understood and role of IgE in this disease still remains controversial. Therefore, in this study a bioassay was developed for reaginic antibody determination in serum from RAO-affected horses in order to determine the etiology of disease. The technique involves measuring in vitro calcium mobilization in RBL-2H3 cells following incubation with horse serum from RAO-affected or unaffected horses and one of the RAO antigens (Faenia rectivirgula). Results demonstrated that 15% of samples from the RAO-affected horses reacted positively in this in vitro bioassay, whereas the samples from unaffected horses did not. This bioassay indicates that reaginic antibodies could be involved in the immunological mechanism leading to RAO; and this technique may facilitate future research in other allergic diseases in horses.
Collapse
|
10
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
11
|
Youssef LA, Schuyler M, Wilson BS, Oliver JM. Roles for the High Affinity IgE Receptor, FcεRI, of Human Basophils in the Pathogenesis and Therapy of Allergic Asthma: Disease Promotion, Protection or Both? THE OPEN ALLERGY JOURNAL 2010; 3:91-101. [PMID: 25018787 PMCID: PMC4090948 DOI: 10.2174/1874838401003010091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of basophils, the rarest of blood granulocytes, in the pathophysiology of allergic asthma is still incompletely understood. Indirect evidence generated over many decades is consistent with a role for basophils in disease promotion. Recent improvements in procedures to purify and analyze very small numbers of human cells have generally supported this view, but have also revealed new complexities. This chapter focuses on our analyses of Fcε R1 function in basophils in the context of understanding and treating human allergic asthma. In long-term studies, we demonstrated that asthmatic subjects have higher circulating numbers of basophils than non-atopic non-asthmatic subjects and that their basophils show higher rates of both basal and anti-IgE or antigen-stimulated histamine release. These results hint at a direct role for basophils in promoting asthma. Supporting this interpretation, the non-releaser phenotype that we linked to the excessive proteolysis of Syk via the ubiquitin/proteasomal pathway is less common in basophils from asthmatic than non-asthmatic donors. The discovery of a basophil-specific pathway regulating Syk levels presents a clear opportunity for therapy. Another route to therapy was revealed by evidence that basophil FcεRI signaling can be downregulated by co-crosslinking the ITAM-containing IgE receptor, FcγRI, to the ITIM-containing IgG receptor, FcγRIIB. Based on this discovery, hybrid co-crosslinking fusion proteins are being engineered as potential therapies targeting basophils. A third distinguishing property of human basophils is their high dependence on IgE binding to stabilize membrane FcεRI. The circulating IgE scavenging mAb, Omalizumab, reduces FcεRI expression in basophils from asthmatics by over 95% and produces a substantial impairment of IL-4, IL-8 and IL-13 production in response to the crosslinking of residual cell surface IgE-FcεRI. A search for small molecule inhibitors that similarly impair high affinity IgE binding to basophils may yield reagents that mimic Omalizumab's therapeutic benefits without the potential for immune side effects. Although studies on allergen and FcεRI-mediated basophil activation all point to a role in promoting disease, a case can also be made for an alternative or additional role of basophil FcεRI in protection against allergic asthma. Human basophils have high affinities for IgE, they upregulate receptor levels over a >100-fold range as circulating IgE levels increase and they have short half-lives in the circulation. Thus, when allergen is absent, basophil FcεRI could serve as scavengers of serum IgE and therefore protectors against mast cell IgE-mediated inflammatory responses. Further studies are clearly needed to determine if FcεR-expressing basophils play pathogenic or protective roles - or both - in human allergic asthma and other IgE-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Lama A. Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, Damascus University, Damascus, Syria
| | - Mark Schuyler
- Departments of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Janet M. Oliver
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
12
|
Andrews NL, Pfeiffer JR, Martinez AM, Haaland DM, Davis RW, Kawakami T, Oliver JM, Wilson BS, Lidke DS. Small, mobile FcepsilonRI receptor aggregates are signaling competent. Immunity 2009; 31:469-79. [PMID: 19747859 DOI: 10.1016/j.immuni.2009.06.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/15/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Crosslinking of IgE-bound FcepsilonRI triggers mast cell degranulation. Previous fluorescence recovery after photobleaching (FRAP) and phosphorescent anisotropy studies suggested that FcepsilonRI must immobilize to signal. Here, single quantum dot (QD) tracking and hyperspectral microscopy methods were used for defining the relationship between receptor mobility and signaling. QD-IgE-FcepsilonRI aggregates of at least three receptors remained highly mobile over extended times at low concentrations of antigen that induced Syk kinase activation and near-maximal secretion. Multivalent antigen, presented as DNP-QD, also remained mobile at low doses that supported secretion. FcepsilonRI immobilization was marked at intermediate and high antigen concentrations, correlating with increases in cluster size and rates of receptor internalization. The kinase inhibitor PP2 blocked secretion without affecting immobilization or internalization. We propose that immobility is a feature of highly crosslinked immunoreceptor aggregates and a trigger for receptor internalization, but is not required for tyrosine kinase activation leading to secretion.
Collapse
Affiliation(s)
- Nicholas L Andrews
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Abstract
The type I Fc epsilon receptor (Fc epsilon RI) is one of the better understood members of its class and is central to the immunological activation of mast cells and basophils, the key players in immunoglobulin E (IgE)-dependent immediate hypersensitivity. This review provides background information on several distinct regulatory mechanisms controlling this receptor's stimulus-response coupling network. First, we review the current understanding of this network's operation, and then we focus on the inhibitory regulatory mechanisms. In particular, we discuss the different known cytosolic molecules (e.g. kinases, phosphatases, and adapters) as well as cell membrane proteins involved in negatively regulating the Fc epsilon RI-induced secretory responses. Knowledge of this field is developing at a fast rate, as new proteins endowed with regulatory functions are still being discovered. Our understanding of the complex networks by which these proteins exert regulation is limited. Although the scope of this review does not include addressing several important biochemical and biophysical aspects of the regulatory mechanisms, it does provide general insights into a central field in immunology.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
15
|
Hernandez-Sanchez BA, Boyle TJ, Lambert TN, Daniel-Taylor SD, Oliver JM, Wilson BS, Lidke DS, Andrews NL. Synthesizing biofunctionalized nanoparticles to image cell signaling pathways. IEEE Trans Nanobioscience 2007; 5:222-30. [PMID: 17181020 DOI: 10.1109/tnb.2006.886565] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This minireview outlines the synthetic efforts, from our research group, to produce nanomaterials for use as imaging agents to study cell signaling pathways. An overview of our approach to the synthesis and biofunctionalization of metal, semiconductor, and ceramic nanomaterials is presented. The probes investigated include coinage metals, Cd-based, Ge(o), naturally occurring fluorescent (NOF) minerals, and Ln-based nanoparticles which were synthesized from novel metal alkoxide, amide, and alkyl precursors. We illustrate the applications of some of these materials as imaging probes to detect signaling pathway components and cellular responses to signals (apoptosis and degranulation) in inflammatory and cancer cells.
Collapse
|
16
|
Sigalov AB. Immune cell signaling: a novel mechanistic model reveals new therapeutic targets. Trends Pharmacol Sci 2006; 27:518-24. [PMID: 16908074 DOI: 10.1016/j.tips.2006.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 07/12/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Multichain immune recognition receptors (MIRRs) represent a family of surface receptors that is expressed on different cells and that transduces extracellular signals, leading to many biological responses. The most intriguing common structural feature of MIRR family members is that the extracellular recognition domains and the intracellular signaling domains are located on separate subunits. It is not clear how extracellular ligand binding triggers MIRRs and initiates intracellular signal-transduction processes. In this article, I suggest that the structural similarity of the MIRRs provides the basis for the similarity in the mechanisms of MIRR-mediated transmembrane signaling. This hypothesis assumes that the therapeutic strategies learned from a novel mechanistic model of MIRR-mediated signal transduction, the signaling chain homo-oligomerization model, are generalized for this entire family and have important implications for the treatment of many disorders that are mediated by immune cells, including HIV.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
17
|
Abstract
The high-affinity immunoglobulin (Ig)E receptor, FcepsilonRI, regulates the action of mast cells and basophils and therefore, regulates the expression of atopic disease. There have been several recent observations that demonstrate new behaviors for this receptor. The control of FcepsilonRI expression, control of cell function by FcepsilonRI, and expression of FcepsilonRI on other cell types are important new areas of understanding currently being explored.
Collapse
|
18
|
Humphrey MB, Lanier LL, Nakamura MC. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev 2005; 208:50-65. [PMID: 16313340 DOI: 10.1111/j.0105-2896.2005.00325.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The immunoreceptor tyrosine-based activation motif (ITAM) is a highly conserved region in the cytoplasmic domain of signaling chains and receptors and is a critical mediator of intracellular signals. ITAM-mediated signals depend on the Syk or zeta-associated protein of 70 kDa tyrosine kinases, and ITAM signaling is required for the differentiation and function of B and T cells in adaptive immunity. ITAM-dependent receptors also regulate the function of innate immune cells, including natural killer cells, and myeloid-derived cells such as macrophages, neutrophils, dendritic cells, and mast cells. Myeloid lineage cells also include osteoclasts (OCLs), the cells required for bone resorption, and recent studies show a critical role for the ITAM-containing adapter proteins DAP12 and the FcRgamma chain (Fcepsilon receptor I gamma chain) in OCL differentiation. Mice deficient in both the DAP12 and FcRgamma ITAM-bearing adapters are significantly osteopetrotic with a severe defect in OCL differentiation, demonstrating the requirement for ITAM signals in bone and further implicating this pathway in the development of highly specialized cell functions in hematopoietic cells. Regulation of osteoclastogenesis by ITAM-dependent receptors suggests that OCLs, similar to related myeloid cells, are tightly controlled by arrays of receptors that allow them to sense and respond to their local microenvironment like other innate immune cells.
Collapse
Affiliation(s)
- Mary Beth Humphrey
- Department of Medicine, University of California, San Francisco, CA 94121, USA
| | | | | |
Collapse
|
19
|
Gosse JA, Wagenknecht-Wiesner A, Holowka D, Baird B. Transmembrane sequences are determinants of immunoreceptor signaling. THE JOURNAL OF IMMUNOLOGY 2005; 175:2123-31. [PMID: 16081778 DOI: 10.4049/jimmunol.175.4.2123] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate structural features critical for signal initiation by Ag-stimulated immunoreceptors, we constructed a series of single-chain chimeric receptors that incorporate extracellular human Fc epsilonRIalpha for IgE binding, a variable transmembrane (TM) segment, and the ITAM-containing cytoplasmic tail of the TCR zeta-chain. We find that functional responses mediated by these receptors are strongly dependent on their TM sequences, and these responses are highly correlated to cross-link-dependent association with detergent-resistant lipid rafts. For one chimera designated alpha Fzeta, mutation of a TM cysteine abolishes robust signaling and lipid raft association. In addition, TM disulfide-mediated oligomerization of another chimeric receptor, alpha zetazeta, enhances signaling. These results demonstrate an important role for TM segments in immunoreceptor signaling and a strong correspondence between strength of signaling and cross-link-dependent partitioning into ordered membrane domains.
Collapse
Affiliation(s)
- Julie A Gosse
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
20
|
Abstract
A central feature of allergic reactions is the aggregation of the high-affinity IgE receptor, FcepsilonRI, to initiate a change in the behavior of the cell expressing the receptor. It is now clear that a number of cell types can express this receptor, which broadens the biology that revolves around IgE antibody. It is also quite clear that the presence of monomeric IgE antibody alters the expression of FcepsilonRI. There remains considerable uncertainty about the importance of independent regulation of the FcepsilonRIbeta subunit or its splice variant beta(T), in terms of regulating both expression and function of FcepsilonRI. There is also only primitive understanding of the role of various polymorphisms in the subunit genes on the atopic phenotype. There are, however, many efforts being made to resolve these issues and to discover other factors that regulate expression of this receptor. Of particular interest for understanding the variation in expression in atopy among patients, the role of this receptor on non-mast cell/basophils will be important to elucidate.
Collapse
Affiliation(s)
- Donald Macglashan
- The Johns Hopkins Asthma and Allergy Center, 5501 Bayview Circle, Baltimore, MD 21224, USA.
| |
Collapse
|
21
|
Sigalov AB. Multichain immune recognition receptor signaling: different players, same game? Trends Immunol 2005; 25:583-9. [PMID: 15489186 DOI: 10.1016/j.it.2004.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
22
|
Vilariño N, MacGlashan D. Transient transfection of human peripheral blood basophils. J Immunol Methods 2004; 296:11-8. [PMID: 15680146 DOI: 10.1016/j.jim.2004.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/06/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
The human basophil has resisted previous attempts at transient transfection. Basophils were transfected by nucleoporation and to test whether there was sufficient expression to modify cell function, the cells were transfected with a syk kinase tandem SH2 construct linked to GFP. This approach was taken because in RBL cells and murine mast cells syk kinase is known to play a very early role in signal transduction and previous studies in RBL cells demonstrated that expression of the tandem SH2 domains of syk would inhibit signaling, presumably by competition with endogenous syk for binding to ITAMs. Results from basophil transfections with SH2syk were compared to an empty construct. Basophils were stimulated with anti-IgE antibody and analyzed for single cell changes in cytosolic calcium levels. Basophils expressing the empty GFP construct showed a cytosolic calcium response similar to non-expressing cells. In contrast, basophils expressing the GFP-tandem SH2syk construct, on average, showed an anti-IgE-induced calcium response that was completely ablated. The transfection frequency was 8% (median), with an average viable recovery of 12% (n=18). While the procedure is not benign and is not always successful, these studies indicate that with gating techniques, the human basophil, a non-dividing primary leukocyte, can be transiently transfected to express high enough levels of an inhibitory protein to alter an IgE-mediated response.
Collapse
Affiliation(s)
- Natalia Vilariño
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | |
Collapse
|
23
|
Kraft S, Rana S, Jouvin MH, Kinet JP. The role of the FcepsilonRI beta-chain in allergic diseases. Int Arch Allergy Immunol 2004; 135:62-72. [PMID: 15316148 DOI: 10.1159/000080231] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The high affinity receptor for IgE, FcepsilonRI, is a multimeric surface receptor that is expressed exclusively as a tetramer on rodent cells, but exists as a tetramer or trimer on human cells. The tetrameric form is expressed on effector cells of allergic responses such as mast cells and basophils and is composed of an IgE-binding alpha-subunit, a beta-subunit and a gamma-subunit dimer. Complexes lacking the beta-subunit are found on human antigen-presenting cells. On mast cells and basophils, FcepsilonRI is essential for IgE-mediated acute allergic reactions. Crosslinking of FcepsilonRI by IgE and multivalent antigen induces a signaling cascade that culminates in the release of preformed mediators and the synthesis of lipid mediators and cytokines. The beta-subunit functions as an amplifier of FcepsilonRI expression and signaling. As a consequence, strongly enhanced mast cell effector functions and in vivo allergic reactions can be observed in the presence of FcepsilonRIbeta. In contrast, a truncated beta-isoform (betaT) that is produced by alternative splicing acts as an inhibitor of FcepsilonRI surface expression. Thus, by producing two proteins with antagonistic functions, the FcepsilonRIbeta gene could serve as a potent regulator of allergic responses. In addition, the genomic region encompassing the beta-chain has been linked to atopy and a number of polymorphisms within the FcepsilonRIbeta gene are associated with various atopic diseases. It remains to be elucidated how these polymorphisms might affect the allergic phenotype. These functions of the beta-chain together with the described genetic linkages to atopy make it a candidate for a role in the pathophysiology of allergic diseases.
Collapse
Affiliation(s)
- Stefan Kraft
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
24
|
Maeda-Yamamoto M, Inagaki N, Kitaura J, Chikumoto T, Kawahara H, Kawakami Y, Sano M, Miyase T, Tachibana H, Nagai H, Kawakami T. O-Methylated Catechins from Tea Leaves Inhibit Multiple Protein Kinases in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:4486-92. [PMID: 15034065 DOI: 10.4049/jimmunol.172.7.4486] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tea contains a variety of bioactive compounds. In this study, we show that two O-methylated catechins, (-)-epigallocatechin-3-O-(3-O-methyl) gallate and (-)-epigallocatechin-3-O-(4-O-methyl) gallate, inhibit in vivo mast cell-dependent allergic reactions more potently than their nonmethylated form, (-)-epigallocatechin-3-O-gallate. Consistent with this, these O-methylated catechins inhibit IgE/Ag-induced activation of mouse mast cells: histamine release, leukotriene release, and cytokine production and secretion were all inhibited. As a molecular basis for the catechin-mediated inhibition of mast cell activation, Lyn, Syk, and Bruton's tyrosine kinase, the protein tyrosine kinases, known to be critical for early activation events, are shown to be inhibited by the O-methylated catechins. In vitro kinase assays using purified proteins show that the O-methylated catechins can directly inhibit the above protein tyrosine kinases. These catechins inhibit IgE/Ag-induced calcium response as well as the activation of downstream serine/threonine kinases such as Akt and c-Jun N-terminal kinase. These observations for the first time have revealed the molecular mechanisms of antiallergic effects of tea-derived catechins.
Collapse
Affiliation(s)
- Mari Maeda-Yamamoto
- National Institute of Vegetable and Tea Science, National Agriculture Research Organization, and School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wilson BS, Steinberg SL, Liederman K, Pfeiffer JR, Surviladze Z, Zhang J, Samelson LE, Yang LH, Kotula PG, Oliver JM. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol Biol Cell 2004; 15:2580-92. [PMID: 15034144 PMCID: PMC420084 DOI: 10.1091/mbc.e03-08-0574] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lipid rafts isolated by detergent extraction and sucrose gradient fractionation from mast cells are enriched for the glycosylphosphatidylinositol-linked protein Thy-1, the ganglioside GM1, palmitoylated LAT, and cross-linked IgE receptors, FcepsilonRI. This study addresses the relationship of fractionation data to the organization of raft markers in native membranes. Immunogold labeling and electron microscopy shows there is little or no colocalization of the raft markers Thy-1, GM1, and LAT with each other or with FcepsilonRI on native membrane sheets prepared from unstimulated cells. External cross-linking of Thy-1 promotes coclustering of Thy-1 with LAT, but not with GM1. Thy-1 and LAT clusters occur on membrane regions without distinctive features. In contrast, external cross-linking of FcepsilonRI and GM1 causes their redistribution to electron-dense membrane patches independently of each other and of Thy-1. The distinctive patches that accumulate cross-linked FcepsilonRI and GM1 also accumulate osmium, a stain for unsaturated lipids, and are sites for coated vesicle budding. Electron microscopy reveals a more complex and dynamic topographical organization of membrane microdomains than is predicted by biochemical analysis of detergent-resistant membranes.
Collapse
Affiliation(s)
- Bridget S Wilson
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Donnadieu E, Jouvin MH, Rana S, Moffatt MF, Mockford EH, Cookson WO, Kinet JP. Competing functions encoded in the allergy-associated F(c)epsilonRIbeta gene. Immunity 2003; 18:665-74. [PMID: 12753743 DOI: 10.1016/s1074-7613(03)00115-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allergic reactions are triggered via crosslinking of the high-affinity receptor for immunoglobulin E, F(c)epsilonRI. In humans, F(c)epsilonRI is expressed as a tetramer (alphabetagamma(2)) and a trimer (alphagamma(2)). The beta subunit is an amplifier of F(c)epsilonRI surface expression and signaling. Here, we show that as a consequence of alternative splicing, the F(c)epsilonRIbeta gene encodes two proteins with opposing and competing functions. One isoform is the full-length classical beta, the other a novel truncated form, beta(T). In contrast to beta, beta(T) prevents F(c)epsilonRI surface expression by inhibiting alpha chain maturation. Moreover, beta(T) competes with beta to control F(c)epsilonRI surface expression in vitro. We propose that the relative abundance of the products of the beta gene may control the level of F(c)epsilonRI surface expression and thereby influence susceptibility to allergic diseases.
Collapse
Affiliation(s)
- Emmanuel Donnadieu
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Lara M, Ortega E, Pecht I, Pfeiffer JR, Martinez AM, Lee RJ, Surviladze Z, Wilson BS, Oliver JM. Overcoming the signaling defect of Lyn-sequestering, signal-curtailing FcepsilonRI dimers: aggregated dimers can dissociate from Lyn and form signaling complexes with Syk. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4329-37. [PMID: 11591756 DOI: 10.4049/jimmunol.167.8.4329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clustering the tetrameric (alphabetagamma(2)) IgE receptor, FcepsilonRI, on basophils and mast cells activates the Src-family tyrosine kinase, Lyn, which phosphorylates FcepsilonRI beta and gamma subunit tyrosines, creating binding sites for the recruitment and activation of Syk. We reported previously that FcepsilonRI dimers formed by a particular anti-FcepsilonRI alpha mAb (H10) initiate signaling through Lyn activation and FcepsilonRI subunit phosphorylation, but cause only modest activation of Syk and little Ca(2+) mobilization and secretion. Curtailed signaling was linked to the formation of unusual, detergent-resistant complexes between Lyn and phosphorylated receptor subunits. Here, we show that H10-FcepsilonRI multimers, induced by adding F(ab')(2) of goat anti-mouse IgG to H10-treated cells, support strong Ca(2+) mobilization and secretion. Accompanying the recovery of signaling, H10-FcepsilonRI multimers do not form stable complexes with Lyn and do support the phosphorylation of Syk and phospholipase Cgamma2. Immunogold electron microscopy showed that H10-FcepsilonRI dimers colocalize preferentially with Lyn and are rarely within the osmiophilic "signaling domains" that accumulate FcepsilonRI and Syk in Ag-treated cells. In contrast, H10-FcepsilonRI multimers frequently colocalize with Syk within osmiophilic patches. In sucrose gradient centrifugation analyses of detergent-extracted cells, H10-treated cells show a more complete redistribution of FcepsilonRI beta from heavy (detergent-soluble) to light (Lyn-enriched, detergent-resistant) fractions than cells activated with FcepsilonRI multimers. We hypothesize that restraints imposed by the particular orientation of H10-FcepsilonRI dimers traps them in signal-initiating Lyn microdomains, and that converting the dimers to multimers permits receptors to dissociate from Lyn and redistribute to separate membrane domains that support Syk-dependent signal propagation.
Collapse
Affiliation(s)
- M Lara
- Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico DF, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- C Tkaczyk
- Laboratory of Allergic Diseases, National Institutes of Allergy and Inflammatory Diseases, National Institutes of Health, Building 10, Room 11C213, MSC 1881, 10 Center Drive, Bethesda, MD 20892-1881, USA
| | | |
Collapse
|
29
|
Vonakis BM, Haleem-Smith H, Benjamin P, Metzger H. Interaction between the unphosphorylated receptor with high affinity for IgE and Lyn kinase. J Biol Chem 2001; 276:1041-50. [PMID: 11010962 DOI: 10.1074/jbc.m003397200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chinese hamster ovary fibroblasts previously transfected with the high affinity receptor for IgE (FcepsilonRI) were further transfected with the alpha subunit of the receptor for interleukin 2 (Tac) or with chimeric constructs in which the cytoplasmic domain of Tac was replaced with the C-terminal cytoplasmic domain of either the beta subunit or the gamma subunit of FcepsilonRI. Whereas native Tac failed to affect the aggregation-induced phosphorylation of FcepsilonRI, both chimeric constructs substantially inhibited this reaction. Alternatively, the FcepsilonRI-bearing fibroblasts were transfected with two chimeric constructs in which the cytoplasmic domain of Tac was replaced with a modified short form of Lyn kinase. The Lyn in both of the chimeric constructs had been mutated to remove the sites that are normally myristoylated and palmitoylated, respectively; one of the constructs had in addition been altered to be catalytically inactive. The catalytically active construct enhanced, and the inactive construct inhibited, aggregation-induced phosphorylation of the receptors. All of the chimeric constructs were largely distributed outside the detergent resistant microdomains, and whereas aggregation caused them to move to the domains in part, their aggregation was neither necessary nor enhanced their effects. These results and others indicate that the receptor and Lyn interact through protein-protein interactions that neither are dependent upon either the post-translational modification of the kinase with lipid moieties nor result exclusively from their co-localization in specialized membrane domains.
Collapse
Affiliation(s)
- B M Vonakis
- Section on Chemical Immunology, Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1820, USA
| | | | | | | |
Collapse
|
30
|
Asai K, Fujimoto K, Harazaki M, Kusunoki T, Korematsu S, Ide C, Ra C, Hosoi S. Distinct aggregation of beta- and gamma-chains of the high-affinity IgE receptor on cross-linking. J Histochem Cytochem 2000; 48:1705-16. [PMID: 11101638 DOI: 10.1177/002215540004801213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The high-affinity IgE receptor (FcepsilonRI) on mast cells and basophils consists of a ligand-binding alpha-chain and two kinds of signaling chains, a beta-chain and disulfide-linked homodimeric gamma-chains. Crosslinking by multivalent antigen results in the aggregation of the bound IgE/alpha-chain complexes at the cell surface, triggering cell activation, and subsequent internalization through coated pits. However, the precise topographical alterations of the signaling beta- and gamma-chains during stimulation remain unclarified despite their importance in ligand binding/signaling coupling. Here we describe the dynamics of FcepsilonRI subunit distribution in rat basophilic leukemia cells during stimulation as revealed by immunofluorescence and immunogold electron microscopy. Immunolocalization of beta- and gamma-chains was homogeneously distributed on the cell surfaces before stimulation, while crosslinking with multivalent antigen, which elicited optimal degranulation, caused a distinct aggregation of these signaling chains on the cell membrane. Moreover, only gamma- but not beta-chains were aggregated during the stimulation that evoked suboptimal secretion. These findings suggest that high-affinity IgE receptor beta- and gamma-chains do not co-aggregate but for the most part form homogenous aggregates of beta-chains or gamma-chains after crosslinking.
Collapse
Affiliation(s)
- K Asai
- Department of Pediatrics and Developmental Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Santini F, Penn RB, Gagnon AW, Benovic JL, Keen JH. Selective recruitment of arrestin-3 to clathrin coated pits upon stimulation of G protein-coupled receptors. J Cell Sci 2000; 113 ( Pt 13):2463-70. [PMID: 10852825 DOI: 10.1242/jcs.113.13.2463] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Non-visual arrestins (arrestin-2 and arrestin-3) play critical roles in the desensitization and internalization of many G protein-coupled receptors. In vitro experiments have shown that both non-visual arrestins bind with high and approximately comparable affinities to activated, phosphorylated forms of receptors. They also exhibit high affinity binding, again of comparable magnitude, to clathrin. Further, agonist-promoted internalization of many receptors has been found to be stimulated by exogenous over-expression of either arrestin2 or arrestin3. The existence of multiple arrestins raises the question whether stimulated receptors are selective for a specific endogenous arrestin under more physiological conditions. Here we address this question in RBL-2H3 cells, a cell line that expresses comparable levels of endogenous arrestin-2 and arrestin-3. When (beta)(2)-adrenergic receptors are stably expressed in these cells the receptors internalize efficiently following agonist stimulation. However, by immunofluorescence microscopy we determine that only arrestin-3, but not arrestin-2, is rapidly recruited to clathrin coated pits upon receptor stimulation. Similarly, in RBL-2H3 cells that stably express physiological levels of m1AChR, the addition of carbachol selectively induces the localization of arrestin-3, but not arrestin-2, to coated pits. Thus, this work demonstrates coupling of G protein-coupled receptors to a specific non-visual arrestin in an in vivo setting.
Collapse
MESH Headings
- Arrestins/metabolism
- Clathrin/metabolism
- Coated Pits, Cell-Membrane/metabolism
- GTP-Binding Proteins/metabolism
- Phosphoproteins/metabolism
- Receptor, Adenosine A3
- Receptor, Muscarinic M1
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/metabolism
- Signal Transduction/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- F Santini
- Department of Microbiology and Immunology and the Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The high affinity receptor for immunoglobulin E (designated Fc epsilon RI) is the member of the antigen (Ag) receptor superfamily responsible for linking pathogen-or allergen-specific IgEs with cellular immunologic effector functions. This review provides background information on Fc epsilon RI function combined with more detailed summaries of recent progress in understanding specific aspects of Fc epsilon RI biology and biochemistry. Topics covered include the coordination and function of the large multiprotein signaling complexes that are assembled when Fc epsilon RI and other Ag receptors are engaged, new information on human receptor structures and tissue distribution, and the role of the FcR beta chain in signaling and its potential contribution to atopic phenotypes.
Collapse
Affiliation(s)
- J P Kinet
- Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
33
|
Kawakami Y, Hartman SE, Kinoshita E, Suzuki H, Kitaura J, Yao L, Inagaki N, Franco A, Hata D, Maeda-Yamamoto M, Fukamachi H, Nagai H, Kawakami T. Terreic acid, a quinone epoxide inhibitor of Bruton's tyrosine kinase. Proc Natl Acad Sci U S A 1999; 96:2227-32. [PMID: 10051623 PMCID: PMC26765 DOI: 10.1073/pnas.96.5.2227] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bruton's tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.
Collapse
Affiliation(s)
- Y Kawakami
- Division of Allergy, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hiraoka S, Furumoto Y, Koseki H, Takagaki Y, Taniguchi M, Okumura K, Ra C. Fc receptor beta subunit is required for full activation of mast cells through Fc receptor engagement. Int Immunol 1999; 11:199-207. [PMID: 10069418 DOI: 10.1093/intimm/11.2.199] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high-affinity IgE receptor (Fc epsilonRI) and the low-affinity IgG receptor (Fc gammaRIII) on mast cells are the key molecules involved in triggering the allergic reaction. These receptors share the common beta subunit (FcRbeta) which contains an immunoreceptor tyrosine-based activation motif and transduces the signals of these receptors' aggregation. In rodents, FcRbeta is essential for the cell surface expression of the Fc epsilonRI. In humans, the FcRbeta gene was reported to be one of the candidate genes causing atopic diseases. However, the role of FcRbeta in vivo still remains ambiguous. To elucidate the functions of FcRbeta, we developed the mice lacking FcRbeta [FcRbeta(-/-)]. The FcRbeta(-/-) mice lacked the expression of the Fc epsilonRI on mast cells and IgE-mediated passive cutaneous anaphylaxis (PCA) was not induced in FcRbeta(-/-) mice as was expected. In these mice, the expression of IgG receptors on mast cells was augmented but the IgG-mediated PCA reaction was attenuated. Although with bone marrow-derived cultured mast cells from FcRbeta(-/-), adhesion to fibronectin and Ca2+ flux upon aggregation of IgG receptors were enhanced, mast cells co-cultured with 3T3 fibroblasts exhibited impaired degranulation on receptor aggregation. These observations indicate that FcRbeta accelerates the degranulation of mature mast cells via the IgG receptor in connective tissues.
Collapse
Affiliation(s)
- S Hiraoka
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Field KA, Holowka D, Baird B. Structural aspects of the association of FcepsilonRI with detergent-resistant membranes. J Biol Chem 1999; 274:1753-8. [PMID: 9880557 DOI: 10.1074/jbc.274.3.1753] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently showed that aggregation of the high affinity IgE receptor on mast cells, FcepsilonRI, causes this immunoreceptor to associate rapidly with specialized regions of the plasma membrane, where it is phosphorylated by the tyrosine kinase Lyn. In this study, we further characterize the detergent sensitivity of this association on rat basophilic leukemia-2H3 mast cells, and we compare the capacity of structural variants of FcepsilonRI and other receptors to undergo this association. We show that this interaction is not mediated by the beta subunit of the receptor or the cytoplasmic tail of the gamma subunit, both of which are involved in signaling. Using chimeric receptor constructs, we found that the extracellular segment of the FcepsilonRI alpha subunit was not sufficient to mediate this association, implicating FcepsilonRI alpha and/or gamma transmembrane segments. To determine the specificity of this interaction, we compared the association of several other receptors. Interleukin-1 type I receptors on Chinese hamster ovary cells and alpha4 integrins on rat basophilic leukemia cells showed little or no association with isolated membrane domains, both before and after aggregation on the cells. In contrast, interleukin-2 receptor alpha (Tac) on Chinese hamster ovary cells exhibited aggregation-dependent membrane domain association similar to FcepsilonRI. These results provide insights into the structural basis and selectivity of lipid-mediated interactions between certain transmembrane receptors and detergent-resistant membranes.
Collapse
Affiliation(s)
- K A Field
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
36
|
Arudchandran R, Brown MJ, Song JS, Wank SA, Haleem-Smith H, Rivera J. Polyethylene glycol-mediated infection of non-permissive mammalian cells with semliki forest virus: application to signal transduction studies. J Immunol Methods 1999; 222:197-208. [PMID: 10022386 DOI: 10.1016/s0022-1759(98)00161-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Semliki Forest Virus (SFV) vectors allow the subcloning of a gene of interest directly in the expression vector, thus avoiding the need to select and purify viral recombinants, making this viral expression system attractive over many others for mammalian protein expression. We now describe a novel and generally applicable method for infection of non-permissive mammalian cells with SFV, that greatly enhances the utility of this expression system. We demonstrate that the hygroscopic polymer poly (ethylene glycol), PEG, promotes the infectivity of cells by SFV under conditions that did not promote cell-cell fusion. We also found that the PEG-induced infection and expression of an exogenous protein (green fluorescent protein, GFP) did not elevate the basal tyrosine kinase activity, induce a stress-activated responses, or result in aberrant cell responses. Expression of GFP tagged-Vav, an activator of stress-activated protein kinase (SAPK/JNK), resulted in the expected induction of JNK activity and in the normal redistribution of Vav in response to engagement of the high affinity receptor for IgE (FcepsilonRI). Thus, our findings that PEG allows the infection of non-permissive cells by SFV makes this system extremely attractive for expression of proteins in mammalian cells, and studies on signal transduction and cellular localization in immune and non-immune cells.
Collapse
Affiliation(s)
- R Arudchandran
- Section on Chemical Immunology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ortega E, Lara M, Lee I, Santana C, Martinez AM, Pfeiffer JR, Lee RJ, Wilson BS, Oliver JM. Lyn Dissociation from Phosphorylated FcεRI Subunits: A New Regulatory Step in the FcεRI Signaling Cascade Revealed by Studies of FcεRI Dimer Signaling Activity. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Cross-linking the heterotrimeric (αβγ2) IgE receptor, FcεRI, of mast cells activates two tyrosine kinases: Lyn, which phosphorylates β and γ subunit immunoreceptor tyrosine-based activation motifs, and Syk, which binds γ-phospho-immunoreceptor tyrosine-based activation motifs and initiates cellular responses. We studied three FcεRI-dimerizing mAbs that maintain similar dispersed distributions over the surface of RBL-2H3 mast cells but elicit very different signaling responses. Specifically, mAb H10 receptor dimers induce very little inositol 1,4,5-trisphosphate synthesis, Ca2+ mobilization, secretion, spreading, ruffling, and actin plaque assembly, whereas dimers generated with the other anti-FcεRI mAbs induce responses that are only modestly lower than that to multivalent Ag. H10 receptor dimers activate Lyn and support FcεRI β and γ subunit phosphorylation but are poor Syk activators compared with Ag and the other anti-FcεRI mAbs. H10 receptor dimers have two other distinguishing features. First, they induce stable complexes between activated Lyn and receptor subunits. Second, the predominant Lyn-binding phospho-β isoform found in mAb H10-treated cells is a less tyrosine phosphorylated, more electrophoretically mobile species than the predominant isoform in Ag-treated cells that does not coprecipitate with Lyn. These studies implicate Lyn dissociation from highly phosphorylated receptor subunits as a new regulatory step in the FcεRI signaling cascade required for Syk activation and signal progression.
Collapse
Affiliation(s)
- Enrique Ortega
- *Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico; and
| | - Martha Lara
- *Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico; and
| | - Irene Lee
- *Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico; and
| | - Carla Santana
- *Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico; and
| | - A. Marina Martinez
- †Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Janet R. Pfeiffer
- †Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Rebecca J. Lee
- †Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Bridget S. Wilson
- †Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Janet M. Oliver
- †Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
38
|
Metzger H, Chen H, Goldstein B, Haleem-Smith H, Inman J, Peirce M, Torigoe C, Vonakis B, Wofsy C. Signal transduction by FcεRI: Analysis of the early molecular events. Allergol Int 1999. [DOI: 10.1046/j.1440-1592.1999.00132.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Graham TE, Pfeiffer JR, Lee RJ, Kusewitt DF, Martinez AM, Foutz T, Wilson BS, Oliver JM. MEK and ERK Activation in Ras-Disabled RBL-2H3 Mast Cells and Novel Roles for Geranylgeranylated and Farnesylated Proteins in FcεRI-Mediated Signaling. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Cross-linking the high affinity IgE receptor FcεRI of basophils and mast cells activates receptor-associated protein-tyrosine kinases and stimulates a signaling cascade leading to secretion, ruffling, spreading, and cytokine production. Previous evidence that the pan-prenylation inhibitor lovastatin blocks Ag-stimulated Ca2+ influx, secretion, and membrane/cytoskeletal responses implicated isoprenylated proteins in the FcεRI-coupled signaling cascade but could not distinguish between contributions of C15 (farnesylated) and C20 (geranylgeranylated) species. Here we establish concentrations of lovastatin and the farnesyl-specific inhibitor BZA-5B that inhibit the farnesylation and Ag-induced activation of Ras species in RBL-2H3 cells (H-Ras, K-RasA, and K-RasB). These inhibitors have little effect on tyrosine kinase activation, which initiates FcεRI signaling. Although Ras is disabled, only lovastatin substantially blocks Raf-1 activation, and neither inhibitor affects mitogen-activated protein kinase kinase/extracellular signal regulated kinase kinase (MEK) or ERK1/ERK2 activation. Thus, the pathway to FcεRI-mediated MEK/ERK and ERK activation can apparently bypass Ras and Raf-1. Predictably, only lovastatin inhibits Ag-induced ruffling, spreading, and secretion, previously linked to geranylgeranylated Rho and Rab family members. Additionally, only lovastatin inhibits phospholipase Cγ-mediated inositol (1,4,5) trisphosphate production, sustained Ca2+ influx, and Ca2+-dependent IL-4 production, suggesting novel roles for geranylgeranylated (lovastatin-sensitive, BZA-5B-insensitive) proteins in FcεRI signal propagation. Remarkably, BZA-5B concentrations too low to inactivate Ras reduce the lag time to Ag-induced Ca2+ stores release and enhance secretion. These results link a non-Ras farnesylated protein(s) to the negative regulation of Ca2+ release from intracellular stores and secretion. We identified no clear role for Ras in FcεRI-coupled signaling but suggest its involvement in mast cell growth regulation based on the inhibition of cell proliferation by both BZA-5B and lovastatin.
Collapse
Affiliation(s)
| | | | | | - Donna F. Kusewitt
- †Cell Biology and Physiology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | | | | | | | | |
Collapse
|
40
|
Kepley CL, Wilson BS, Oliver JM. Identification of the Fc epsilonRI-activated tyrosine kinases Lyn, Syk, and Zap-70 in human basophils. J Allergy Clin Immunol 1998; 102:304-15. [PMID: 9723676 DOI: 10.1016/s0091-6749(98)70100-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In human blood basophils, cross-linking the high-affinity IgE receptor Fc epsilonRI with multivalent antigen activates a signaling pathway leading to Ca2+ mobilization, actin polymerization, shape changes, secretion, and cytokine production. METHODS AND RESULTS The role of tyrosine kinases in human Fc epsilonRI signaling was explored by using human basophils isolated by Percoll gradient centrifugation followed by negative and/or positive selection with antibody-coated magnetic beads. Fc epsilonRI cross-linking of more than 95% pure basophil preparations activates the protein-tyrosine kinases Lyn and Syk, previously linked to Fc epsilonRI-coupled rodent mast cell activation, as well as Zap-70, previously implicated in T-cell receptor signaling, and causes the tyrosine phosphorylation of multiple proteins. The presence of Lyn, Syk, and Zap-70 in basophils was confirmed by Western blotting in lysates of highly purified basophils and independently by confocal fluorescence microscopy in cells labeled simultaneously with kinase-specific antibodies and with the basophil-specific antibody 2D7. Comparable amounts of Lyn and Syk were found in basophils and B cells, whereas T cells appear to have greater amounts of Zap-70 than basophils. The tyrosine kinase inhibitor piceatannol spares IgE-mediated Lyn activation but inhibits IgE-induced Syk and Zap-70 activation as well as overall protein tyrosine phosphorylation and secretion. Overall protein-tyrosine phosphorylation increases steadily over a range of anti-IgE concentrations that are low to optimal for secretion. However, tyrosine phosphorylation continues to increase at high anti-IgE concentrations that elicit very little secretion (the characteristic high-dose inhibition of secretion). CONCLUSIONS Our data demonstrate the association of anti-IgE-stimulated, protein-tyrosine phosphorylation by a cascade of tyrosine kinases, including Zap-70 as well as Lyn and Syk, with the initiation of Fc epsilonRI-mediated signaling in human basophils.
Collapse
Affiliation(s)
- C L Kepley
- University of New Mexico School of Medicine, Department of Pathology, Asthma Research Center, Albuquerque, USA
| | | | | |
Collapse
|
41
|
Abstract
This review describes structures which determine the biological activities triggered by Fc gamma R and account for the cell-mediated functions of IgG antibodies in physiology and pathology. The binding specificity and affinity of Fc gamma R depend primarily on IgG-binding structures, in their immunoglobulin-like extracellular domains. Binding is however also influenced by subunits that associate to multichain Fc gamma R. Effector and regulatory intracytoplasmic sequences that are unique to molecules of the Fc gamma RIIB family determine the internalization properties of these receptors. Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) are intracytoplasmic effector sequences shared by Fc gamma R and other receptors involved in the recognition of antigen, which trigger cell activation and internalization. Immunoreceptor Tyrosine-based Inhibition Motifs (ITIMs) are intracytoplasmic sequences, shared by Fc gamma RIIB and a growing number of negative coreceptors which negatively regulate cell activation via ITAM-bearing receptors. Altogether, these structures enable IgG antibodies to exert a variety of finely tuned biological effects during the immune response.
Collapse
Affiliation(s)
- M Daëron
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U255, Institut Curie, Paris, France.
| |
Collapse
|
42
|
Hata D, Kitaura J, Hartman SE, Kawakami Y, Yokota T, Kawakami T. Bruton's tyrosine kinase-mediated interleukin-2 gene activation in mast cells. Dependence on the c-Jun N-terminal kinase activation pathway. J Biol Chem 1998; 273:10979-87. [PMID: 9556577 DOI: 10.1074/jbc.273.18.10979] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-linking of the high affinity IgE receptor (FcepsilonRI) on mast cells induces secretion of cytokines, including interleukin (IL)-2, through transcriptional activation of cytokine genes. Previously, defects in the gene coding for Bruton's tyrosine kinase (Btk) were shown to result in defective cytokine production in mast cells, and thereby mice carrying btk mutations exhibited diminished anaphylactic reactions in response to IgE and antigen. In this study, we provide evidence that the transcription factors involved in the IL-2 gene expression in T cells are also required for maximal activation of the IL-2 gene in FcepsilonRI-stimulated mast cells. Among them, AP-1 (Jun/Fos) and NF-AT were identified as candidate transcription factors that are regulated by Btk. Consistent with our previous data indicating that Btk regulates stress-activated protein kinases, c-Jun N-terminal kinase (JNK), c-Jun and other JNK-regulatable transcription factors are activated by FcepsilonRI cross-linking in a Btk-dependent manner. Further, FcepsilonRI-induced IL-2 gene activation is dependent on c-Jun and a component, SEK1, of its upstream activation pathway. Collectively, these data demonstrate that Btk regulates the transcription of the IL-2 gene through the JNK-regulatable transcription factors in FcepsilonRI-stimulated mast cells.
Collapse
Affiliation(s)
- D Hata
- Division of Allergy, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
43
|
Barker SA, Caldwell KK, Pfeiffer JR, Wilson BS. Wortmannin-sensitive phosphorylation, translocation, and activation of PLCgamma1, but not PLCgamma2, in antigen-stimulated RBL-2H3 mast cells. Mol Biol Cell 1998; 9:483-96. [PMID: 9450969 PMCID: PMC25278 DOI: 10.1091/mbc.9.2.483] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/1997] [Accepted: 11/20/1997] [Indexed: 02/06/2023] Open
Abstract
In RBL-2H3 tumor mast cells, cross-linking the high affinity IgE receptor (FcepsilonRI) with antigen activates cytosolic tyrosine kinases and stimulates Ins(1,4,5)P3 production. Using immune complex phospholipase assays, we show that FcepsilonRI cross-linking activates both PLCgamma1 and PLCgamma2. Activation is accompanied by the increased phosphorylation of both PLCgamma isoforms on serine and tyrosine in antigen-treated cells. We also show that the two PLCgamma isoforms have distinct subcellular localizations. PLCgamma1 is primarily cytosolic in resting RBL-2H3 cells, with low levels of plasma membrane association. After antigen stimulation, PLCgamma1 translocates to the plasma membrane where it associates preferentially with membrane ruffles. In contrast, PLCgamma2 is concentrated in a perinuclear region near the Golgi and adjacent to the plasma membrane in resting cells and does not redistribute appreciably after FcepsilonRI cross-linking. The activation of PLCgamma1, but not of PLCgamma2, is blocked by wortmannin, a PI 3-kinase inhibitor previously shown to block antigen-stimulated ruffling and to inhibit Ins(1,4,5)P3 synthesis. In addition, wortmannin strongly inhibits the antigen-stimulated phosphorylation of both serine and tyrosine residues on PLCgamma1 with little inhibition of PLCgamma2 phosphorylation. Wortmannin also blocks the antigen-stimulated translocation of PLCgamma1 to the plasma membrane. Our results implicate PI 3-kinase in the phosphorylation, translocation, and activation of PLCgamma1. Although less abundant than PLCgamma2, activated PLCgamma1 may be responsible for the bulk of antigen-stimulated Ins(1,4,5)P3 production in RBL-2H3 cells.
Collapse
Affiliation(s)
- S A Barker
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
44
|
Ottinger EA, Botfield MC, Shoelson SE. Tandem SH2 domains confer high specificity in tyrosine kinase signaling. J Biol Chem 1998; 273:729-35. [PMID: 9422724 DOI: 10.1074/jbc.273.2.729] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SH2 domain proteins transmit intracellular signals initiated by activated tyrosine kinase-linked receptors. Recent three-dimensional structures suggest mechanisms by which tandem SH2 domains might confer higher specificity than individual SH2 domains. To test this, binding studies were conducted with tandem domains from the five signaling enzymes: phosphatidylinositol 3-kinase p85, ZAP-70, Syk, SHP-2, and phospholipase C-gamma1. Bisphosphorylated TAMs (tyrosine-based activation motifs) were derived from biologically relevant sites in platelet-derived growth factor, T cell, B cell, and high affinity IgE receptors and the receptor substrates IRS-1 (insulin receptor substrate-1) and SHPS-1/SIRP. Each tandem SH2 domain binds a distinct TAM corresponding to its appropriate biological partner with highest affinity (0.5-3.0 nM). Alternative TAMs bind the tandem SH2 domains with 1,000- to >10,000-fold lower affinity than biologically relevant TAMs. This level of specificity is significantly greater than the approximately 20-50-fold typically seen for individual SH2 domains. We conclude that high biological specificity is conferred by the simultaneous interaction of two SH2 domains in a signaling enzyme with bisphosphorylated TAMs in activated receptors and substrates.
Collapse
Affiliation(s)
- E A Ottinger
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
45
|
Role of Immunoreceptor Tyrosine-Based Activation Motif in Signal Transduction from Antigen and Fc Receptors**Received for publication October 7, 1997. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60608-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Honda ZI, Suzuki T, Hirose N, Aihara M, Shimizu T, Nada S, Okada M, Ra C, Morita Y, Ito K. Roles of C-terminal Src kinase in the initiation and the termination of the high affinity IgE receptor-mediated signaling. J Biol Chem 1997; 272:25753-60. [PMID: 9325302 DOI: 10.1074/jbc.272.41.25753] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As an attempt to analyze the roles of C-terminal Src kinase (Csk) in the high affinity IgE receptor (FcepsilonRI)-mediated signaling, we overexpressed Csk, a membrane-targeted form of Csk (mCsk), and a kinase-defective, membrane-targeted form of Csk (mCsk(-)) in rat basophil leukemia (RBL) 2H3 cells. Specific activity of Lyn at the basal state was decreased in Csk-expressing cells, and further decreased in mCsk-expressing cells. In mCsk(-)-expressing cells, basal specific activity of Lyn was increased, thereby indicating that mCsk(-) functioned as a dominant negative molecule. The onset of FcepsilonRI-mediated Lyn activation was delayed in Csk-expressing cells, and further delayed in mCsk-expressing cells. In mCsk(-)-expressing cells, Lyn activation was rapid and quite long lasting. These findings indicate (i) Csk negatively regulates rapid FcepsilonRI/Lyn coupling, and (ii) Csk activity is potentially required for its termination. The onsets of the series of events including tyrosyl phosphorylation of Syk, mitogen-activated protein (MAP) kinase activation, elevation of intracellular calcium concentration ([Ca2+]i), and histamine release were all stepwisely delayed in Csk-expressing cells and in mCsk-expressing cells. The durations of Syk phosphorylation and MAP kinase activation also closely correlated with those of Lyn activation, but [Ca2+]i elevation and histamine release followed different temporal patterns: the delayed responses in Csk-expressing cells and in mCsk-expressing cells led to sustained [Ca2+]i oscillation and histamine release, while the prompt responses in parent cells and mCsk(-)-expressing cells rapidly subsided. These findings provide further evidence that the initiations of the FcepsilonRI-mediated signals are upstreamly regulated by Src family protein tyrosine kinases and revealed that their terminations are regulated by Lyn-dependent (Syk and MAP kinase) and -independent ([Ca2+]i elevation and histamine release) mechanisms.
Collapse
Affiliation(s)
- Z i Honda
- Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vonakis BM, Chen H, Haleem-Smith H, Metzger H. The unique domain as the site on Lyn kinase for its constitutive association with the high affinity receptor for IgE. J Biol Chem 1997; 272:24072-80. [PMID: 9295361 DOI: 10.1074/jbc.272.38.24072] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aggregation of the high affinity receptor for IgE (FcepsilonRI) leads to the phosphorylation of tyrosines on the beta and gamma chains of the receptor by the Src family kinase Lyn. We have studied the interaction between Lyn and the FcepsilonRI in vivo using a transfection-based approach. FcepsilonRI were stably transfected into Chinese hamster ovary cells. The small amount of endogenous Src family kinase was sufficient to phosphorylate receptor tyrosines upon extensive aggregation of FcepsilonRI but not after addition of dimers of IgE. Upon stable co-transfection of Lyn kinase into the cells, dimers were now able to stimulate receptor phosphorylation and the response to more extensive aggregation was enhanced. In contrast, co-transfection with catalytically inactive Lyn inhibited the aggregation-induced phosphorylation by the endogenous kinase, and a quantitatively similar inhibition was observed in cells transfected with the SH4-containing unique domain of Lyn. Consistent with the results of others using alternative approaches, our additional studies using a yeast two-hybrid system detected a direct interaction between intact Lyn or its unique domain and the C-terminal cytoplasmic domain of the beta chain but not with the receptor's other cytoplasmic domains.
Collapse
Affiliation(s)
- B M Vonakis
- Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1820, USA.
| | | | | | | |
Collapse
|
48
|
Field KA, Holowka D, Baird B. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J Biol Chem 1997; 272:4276-80. [PMID: 9020144 DOI: 10.1074/jbc.272.7.4276] [Citation(s) in RCA: 272] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The earliest known step in the activation of the high affinity IgE receptor, FcepsilonRI, is the tyrosine phosphorylation of its beta and gamma subunits by the Src family tyrosine kinase, Lyn. We report here that aggregation-dependent association of FcepsilonRI with specialized regions of the plasma membrane precedes its tyrosine phosphorylation and appears necessary for this event. Tyrosine phosphorylation of beta and gamma occurs in intact cells only for FcepsilonRI that associate with these detergent-resistant membrane domains, which are enriched in active Lyn. Furthermore, efficient in vitro tyrosine phosphorylation of FcepsilonRI subunits occurs only for those associated with isolated domains. This association and in vitro phosphorylation are highly sensitive to low concentrations of detergent, suggesting that lipid-mediated interactions with Lyn are important in FcepsilonRI activation. Participation of membrane domains accounts for previously unexplained aspects of FcepsilonRI-mediated signaling and may be relevant to signaling by other multichain immune receptors.
Collapse
Affiliation(s)
- K A Field
- Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | |
Collapse
|
49
|
Isakov N. ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery. Immunol Res 1997; 16:85-100. [PMID: 9048210 DOI: 10.1007/bf02786325] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The initial stages of an immune response are regulated at the level of the cell-surface antigen and Fc receptors. The extracellular portions of these receptors provide immune specificity and determine the nature of the responding effector cells, whereas the intracellular portion transduces signals into the cell and determines the intensity and duration of the immune response. Recent studies led to the identification of two types of modules within the cytoplasmic region of receptor subunits that are critical for the activation and termination of signal transduction pathways. Phosphorylation of the conserved tyrosine residues within the two modules, the immunoreceptor tyrosine-based activation motif (ITAM) and the immunoreceptor tyrosine-based inhibition motif (ITIM), is followed by the recruitment of different sets of SH2-containing molecules to the receptor site. These proteins regulate the receptor-linked signal transduction pathways in a positive or a negative fashion, which is a reminiscent of the ancestral Yin-Yang principle.
Collapse
Affiliation(s)
- N Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
50
|
Hendricks-Taylor LR, Motto DG, Zhang J, Siraganian RP, Koretzky GA. SLP-76 is a substrate of the high affinity IgE receptor-stimulated protein tyrosine kinases in rat basophilic leukemia cells. J Biol Chem 1997; 272:1363-7. [PMID: 8995445 DOI: 10.1074/jbc.272.2.1363] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Stimulation of the IgE high affinity receptor on rat basophilic leukemia RBL-2H3 cells results in activation of protein tyrosine kinases and rapid tyrosine phosphorylation of several substrates, many of which remain unidentified. In this report, we demonstrate that the Grb2 adapter protein, when expressed as a glutathione S-transferase fusion protein, associates with four tyrosine-phosphorylated molecules (116, 76, 36, and 31 kDa) from lysates of stimulated RBL-2H3 cells. We show further that the 76-kDa protein is SLP-76, a hematopoietic cell-specific protein first identified as a Grb2-binding protein in T cells. Upon stimulation of the high affinity receptor for IgE, SLP-76 undergoes rapid tyrosine phosphorylation and associates with two additional tyrosine phosphoproteins of 62 and 130 kDa via the SH2 domain of SLP-76. Additional studies demonstrate that the SLP-76 SH2 domain also binds a protein kinase from stimulated RBL-2H3 cell lysates. Furthermore, the phosphorylation of SLP-76 requires Syk activity but is not dependent on Ca+2 mobilization. These data, together with our previous work documenting its role in T-cell activation, suggest that SLP-76 and the proteins with which it associates may play a fundamental role in coupling signaling events in multiple cell types in the immune system.
Collapse
Affiliation(s)
- L R Hendricks-Taylor
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52246, USA
| | | | | | | | | |
Collapse
|