1
|
Schneider K, Nelson GM, Watson JL, Morf J, Dalglish M, Luh LM, Weber A, Bertolotti A. Protein Stability Buffers the Cost of Translation Attenuation following eIF2α Phosphorylation. Cell Rep 2020; 32:108154. [PMID: 32937139 PMCID: PMC7495045 DOI: 10.1016/j.celrep.2020.108154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital response to many forms of stress, including protein-misfolding stress in the endoplasmic reticulum (ER stress). It is believed to cause a general reduction in protein synthesis while enabling translation of few transcripts. Such a reduction of protein synthesis comes with the threat of depleting essential proteins, a risk thought to be mitigated by its transient nature. Here, we find that translation attenuation is not uniform, with cytosolic and mitochondrial ribosomal subunits being prominently downregulated. Translation attenuation of these targets persists after translation recovery. Surprisingly, this occurs without a measurable decrease in ribosomal proteins. Explaining this conundrum, translation attenuation preferentially targets long-lived proteins, a finding not only demonstrated by ribosomal proteins but also observed at a global level. This shows that protein stability buffers the cost of translational attenuation, establishing an evolutionary principle of cellular robustness.
Collapse
Affiliation(s)
- Kim Schneider
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Geoffrey Michael Nelson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Joseph Luke Watson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Jörg Morf
- Wellcome - MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Maximillian Dalglish
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Laura Martina Luh
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Annika Weber
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
2
|
Mullick M, Nayak S. Comprehending the Unfolded Protein Response as a Conduit for Improved Mesenchymal Stem Cell-Based Therapeutics. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Park YR, Park HB, Kim MJ, Jung BD, Lee S, Park CK, Cheong HT. Effects of Endoplasmic Reticulum Stress Inhibitor Treatment during the Micromanipulation of Somatic Cell Nuclear Transfer in Porcine Oocytes. Dev Reprod 2019; 23:43-54. [PMID: 31049471 PMCID: PMC6487319 DOI: 10.12717/dr.2019.23.1.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/09/2019] [Indexed: 12/31/2022]
Abstract
We examined the effects of endoplasmic reticulum (ER) stress inhibitor treatment
during the micromanipulation of porcine somatic cell nuclear transfer (SCNT) on
the in vitro development of SCNT embryos. ER stress inhibitors
such as salubrinal (200 nM) and tauroursodeoxycholic acid (TUDCA; 100 μM)
were added to the micromanipulation medium and holding medium. The expression of
X-box binding protein 1 (Xbp1), ER-stress-associated genes, and
apoptotic genes in SCNT embryos was confirmed at the one-cell and blastocyst
stages. Levels of Xbp1 splicing and expression of
ER-stress-associated genes in SCNT embryos at the one-cell stage decreased
significantly with TUDCA treatment (p<0.05). The
expression of ER-stress-associated genes also decreased slightly with the
addition of both salubrinal and TUDCA (Sal+TUD). The expression levels of
caspase-3 and Bcl2-associated Xprotein
(Bax) mRNA were also significantly lower in the TUDCA and
Sal+TUD treatments (p<0.05). At the blastocyst stage,
there were no differences in levels of Xbp1 splicing, and transcription of
ER-stress-associated genes and apoptosis genes between control and treatment
groups. However, the blastocyst formation rate (20.2%) and mean blastocyst cell
number (63.0±7.2) were significantly higher
(p<0.05) for embryos in the TUDCA treatment compared
with those for control (12.6% and 41.7±3.1, respectively). These results
indicate that the addition of ER-stress inhibitors, especially TUDCA, during
micromanipulation can inhibit cellular damage and enhance in
vitro development of SCNT embryos by reducing stress levels in the
ER.
Collapse
Affiliation(s)
- Yeo-Reum Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hye-Bin Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Jeong Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bae-Dong Jung
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Tae Cheong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
4
|
Wang M, Law ME, Castellano RK, Law BK. The unfolded protein response as a target for anticancer therapeutics. Crit Rev Oncol Hematol 2018; 127:66-79. [DOI: 10.1016/j.critrevonc.2018.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
|
5
|
Hussain S, Du W, Zhang M, Fang B, Zhang G, Su R, Nan K, Zhang Q, Tian X, Tian Y, Chen Y. A series of two-photon absorption pyridinium sulfonate inner salts targeting endoplasmic reticulum (ER), inducing cellular stress and mitochondria-mediated apoptosis in cancer cells. J Mater Chem B 2018; 6:1943-1950. [PMID: 32254360 DOI: 10.1039/c8tb00173a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, a two-photon active DiphenthioER1 was screened from the four pyridinium sulfonate salt derivatives (TriphenER1-2 and DiphenthioER1-2) for imaging endoplasmic reticulum (ER) and tracking the dynamics of the ER morphology. The photophysical properties of TriphenER1-2 and DiphenthioER1-2 were systemically investigated both experimentally and theoretically, revealing that they possess large Stokes shifts, and large two-photon absorption cross-sections from 163 GM to 2023 GM in the near infrared region using a Z-scan method by avoiding spontaneous fluorescence, deep tissue penetration, and low cell damage in living cells. Among them, the DiphenthioER1 compound was found to exhibit the highest cellular uptake ability and two-photon fluorescence signals using confocal microscopy. DiphenthioER1 successfully targeted the ER and induced ER-stress, subsequently nuclear misshaping and mitochondria-mediated apoptosis have been displayed. This study thus provides great insights into designing novel two-photon fluorescent materials with dual functionality and offers tools to understand the ER-stress related mechanism for cell and chemical biologists.
Collapse
Affiliation(s)
- Sajid Hussain
- School of Life Science, Anhui University, Hefei 230039, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Briggs JW, Ren L, Chakrabarti KR, Tsai YC, Weissman AM, Hansen RJ, Gustafson DL, Khan YA, Dinman JD, Khanna C. Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus. PLoS One 2017; 12:e0185089. [PMID: 28926611 PMCID: PMC5605117 DOI: 10.1371/journal.pone.0185089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/06/2017] [Indexed: 01/21/2023] Open
Abstract
Activation of the unfolded protein response (UPR) in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus) and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.
Collapse
Affiliation(s)
- Joseph W. Briggs
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Ling Ren
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kristi R. Chakrabarti
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ryan J. Hansen
- Colorado State University Flint Animal Cancer Center, Fort Collins, Colorado, United States of America
| | - Daniel L. Gustafson
- Colorado State University Flint Animal Cancer Center, Fort Collins, Colorado, United States of America
| | - Yousuf A. Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Chand Khanna
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Zito E. ERO1: A protein disulfide oxidase and H2O2 producer. Free Radic Biol Med 2015; 83:299-304. [PMID: 25651816 DOI: 10.1016/j.freeradbiomed.2015.01.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
Abstract
Oxidative protein folding in the endoplasmic reticulum (ER) is an essential function of eukaryotic cells that requires the relaying of electrons between the proteinaceous components of the pathway. During this process, protein disulfide isomerase (PDI) chaperones oxidatively fold their client proteins before endoplasmic reticulum oxireductin 1 (ERO1) oxidase transfers electrons from the reduced PDI to the terminal acceptor, which is usually molecular oxygen and is subsequently reduced to H2O2. ERO1 function is essential for disulfide bond formation in yeast, whereas in mammals its function is compensated for by alternative pathways. ERO1 activity is allosterically and transcriptionally regulated by the ER unfolded protein response (UPR). The ER stress-induced upregulation of ERO1 and other genes contributes to a cell's ability to cope with ER stress as a result of an adaptive homeostatic response, but the stress persists if a "maladaptive UPR" fails to reestablish ER homeostasis. As the oxidative activity of ERO1 is related to the production of H2O2 and consequently burdens cells with potentially toxic reactive oxygen species, deregulated ERO1 activity is likely to impair cell fitness under certain conditions of severe ER stress and may therefore lead to a change from an adaptive to a maladaptive UPR. This review summarizes the evidence of the double-edged sword activity of ERO1 by highlighting its role as a protein disulfide oxidase and H2O2 producer.
Collapse
Affiliation(s)
- Ester Zito
- Dulbecco Telethon Institute, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, Italy.
| |
Collapse
|
8
|
Liang X, Sun S, Zhang X, Wu H, Tao W, Liu T, Wei W, Geng J, Pang D. Expression of ribosome-binding protein 1 correlates with shorter survival in Her-2 positive breast cancer. Cancer Sci 2015; 106:740-746. [PMID: 25845758 PMCID: PMC4471791 DOI: 10.1111/cas.12666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/21/2015] [Accepted: 03/29/2015] [Indexed: 11/27/2022] Open
Abstract
The aim of this study is to investigate the expression of ribosome-binding protein 1 (RRBP1) in invasive breast cancer and to analyze its relationship to clinical features and prognosis. RRBP1 expression was studied using real-time quantitative PCR and western blotting using pair-matched breast samples and immunohistochemical staining using a tissue microarray. Then the correlation between RRBP1 expression and clinicopathologic features was analyzed. RRBP1 mRNA and protein expression were significantly increased in breast cancer tissues compared with normal tissues. The protein level of RRBP1 is proved to be positively related to histological grade (P = 0.02), molecular subtype (P = 0.048) and status of Her-2 (P = 0.026) and P53 (P = 0.015). We performed a grade-stratified analysis of all patients according to the level of RRBP1 expression and found that RRBP1 overexpression highly affected overall survival in patients with early-stage (I and II) tumors (P = 0.042). Furthermore, Her-2 positive patients with negative RRBP1 expression had longer overall survival rates than those with positive RRBP1 expression (P = 0.031). Using multivariate analysis, it was determined that lymph node metastasis (LNM, P = 0.002) and RRBP1 expression (P = 0.005) were independent prognosis factors for overall survival. RRBP1 is a valuable prognostic factor in Her-2-positive breast cancer patients, indicating that RRBP1 is a potentially important target for the prediction of prognosis.
Collapse
Affiliation(s)
- Xiaoshuan Liang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Sun
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weiyang Tao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Wei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,North (China) Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
9
|
Fransson L, Sjöholm A, Ortsäter H. Inhibition of palmitate-induced GADD34 expression augments apoptosis in mouse insulinoma cells (MIN6). Cell Biochem Funct 2014; 32:445-52. [PMID: 24633916 DOI: 10.1002/cbf.3036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 01/09/2023]
Abstract
Saturated fatty acids like palmitate induce endoplasmic reticulum (ER) stress in pancreatic beta-cells, an event linked to apoptotic loss of β-cells in type 2 diabetes. Sustained activation of the ER stress response leads to expression of growth arrest and DNA damage-inducible protein 34 (GADD34), a regulatory subunit of protein phosphatase 1. In the present study, we have used small interfering RNA in order to knockdown GADD34 expression in insulin-producing MIN6 cells prior to induction of ER stress by palmitate and evaluated its consequences on RNA-activated protein kinase-like ER-localized eIF2alpha kinase (PERK) signalling and apoptosis. Salubrinal, a specific inhibitor of eukaryotic initiation factor 2α (eIF2α) dephosphorylation, was used as a comparison. Salubrinal treatment augmented palmitate-induced ER stress and increased GADD34 levels. Both GADD34 knockdown and salubrinal treatment potentiated the cytotoxic effects of palmitate as evidenced by increased DNA fragmentation and activation of caspase 3, with the fundamental difference that the former did not involve enhanced levels of GADD34. The data from this study suggest that sustained activation of PERK signalling and eIF2α phosphorylation sensitizes insulin-producing MIN6 cells to lipoapoptosis independently of GADD34 expression levels.
Collapse
Affiliation(s)
- Liselotte Fransson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
10
|
Ambrose RL, Mackenzie JM. Flaviviral regulation of the unfolded protein response: can stress be beneficial? Future Virol 2013. [DOI: 10.2217/fvl.13.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the Flaviviridae family remain some of the most significant human viral pathogens, with few vaccines or antivirals commercially available for therapeutic use. Thus, understanding the intracellular events of replication and how these viruses modulate signaling within an infected cell is of great importance. The ER is central to replication within the Flaviviridae family, as the site of viral protein translation and processing, as a source of membranes for replication complex formation and as a site of virus assembly. This places a large burden upon the organelle, resulting in the induction of ER stress responses, in particular the unfolded protein response. In turn, unfolded protein response signaling induced in infected cells is tightly modulated by the virus in order to maintain an optimal environment for replication. The loss of various components of the stress response can have either beneficial or detrimental effects, presenting intriguing targets for antiviral discovery.
Collapse
Affiliation(s)
- Rebecca L Ambrose
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Jason M Mackenzie
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| |
Collapse
|
11
|
Zito E. PRDX4, an endoplasmic reticulum-localized peroxiredoxin at the crossroads between enzymatic oxidative protein folding and nonenzymatic protein oxidation. Antioxid Redox Signal 2013; 18:1666-74. [PMID: 23025503 DOI: 10.1089/ars.2012.4966] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Peroxiredoxin 4 (PRDX4) is an endoplasmic reticulum (ER)-resident peroxiredoxin that has the characteristic of coupling hydrogen peroxide (H(2)O(2)) catabolism with oxidative protein folding. This enzymatic arrangement involves the ingenious use of H(2)O(2) as a substrate to streamline protein metabolism. RECENT ADVANCES Mice with compound mutations in Prdx4 and Ero1 have revealed the physiological implication that PRDX4 is a fine-tuned enzymatic mediator of oxidative folding. Remarkably, by simultaneously triggering slow disulfide bond formation and the buildup of H(2)O(2), the lack of PRDX4 and endoplasmic oxidoreductin 1 (ERO1) exposes the thiols of new client proteins to competing H(2)O(2)-mediated oxidation, which leads to an increase in sulfenylated proteins. Such oxygenated thiol derivatives exploit ascorbate as their reductant, thus accelerating its clearance. This relay of events culminates in an altered extracellular matrix (ECM) and a senescent phenotype. CRITICAL ISSUES AND FUTURE DIRECTIONS By combining H(2)O(2) metabolism with oxidative folding, PRDX4 protects nascent proteins from an alternative oxidative fate, and cells from the consequences of having misfolded proteins. This highlights the importance of kinetic-regulated disulfide formation at physiological level, and the presence of an exquisite backup system to protect ER redox homeostasis. By altering ECM architecture, ascorbate depletion in the cells triggers an integrated signaling cascade. This sequence of events is part of a multifaceted response linking the ER and the nucleus, which helps cells to overcome ER redox impairment. Furthermore, the relationship between the protein sulfenylation and ascorbate depletion suggests that it would be interesting to explore the metabolism of ascorbate in pathological conditions accompanied by oxidative stress and a defective ECM.
Collapse
Affiliation(s)
- Ester Zito
- NIHR Cambridge Biomedical Research Centre, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1612-24. [PMID: 23380704 DOI: 10.1016/j.bbamcr.2013.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) performs multiple functions in the cell: it is the major site of protein and lipid synthesis as well as the most important intracellular Ca(2+) reservoir. Adverse conditions, including a decrease in the ER Ca(2+) level or an increase in oxidative stress, impair the formation of new proteins, resulting in ER stress. The subsequent unfolded protein response (UPR) is a cellular attempt to lower the burden on the ER and to restore ER homeostasis by imposing a general arrest in protein synthesis, upregulating chaperone proteins and degrading misfolded proteins. This response can also lead to autophagy and, if the stress can not be alleviated, to apoptosis. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and IP3-induced Ca(2+) signaling are important players in these processes. Not only is the IP3R activity modulated in a dual way during ER stress, but also other key proteins involved in Ca(2+) signaling are modulated. Changes also occur at the structural level with a strengthening of the contacts between the ER and the mitochondria, which are important determinants of mitochondrial Ca(2+) uptake. The resulting cytoplasmic and mitochondrial Ca(2+) signals will control cellular decisions that either promote cell survival or cause their elimination via apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
13
|
Zito E, Hansen H, Yeo G, Fujii J, Ron D. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice. Mol Cell 2012; 48:39-51. [PMID: 22981861 PMCID: PMC3473360 DOI: 10.1016/j.molcel.2012.08.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/16/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022]
Abstract
Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H(2)O(2)-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy.
Collapse
Affiliation(s)
- Ester Zito
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Henning Gram Hansen
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Giles S.H. Yeo
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - David Ron
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
14
|
Abstract
The endoplasmic reticulum (ER) is the key cellular organelle involved in protein homoeostasis. The unfolded protein response (UPR) is a fundamental cellular process triggered by ER stress because of lack of ATP or primary ER dysfunction. The UPR is activated and dysregulated in non-alcoholic fatty liver disease (NAFLD). The UPR has been shown to be involved in both normal physiologic functions and the cellular response to a host of pathologic states. This article reviews the pathways by which the UPR unfolds and its potential role in the development and progression of NAFLD.
Collapse
|
15
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part I: targeting p53, Mdm2, GADD153/CHOP, GRP78/BiP and heat shock proteins. Expert Opin Drug Discov 2009; 4:799-821. [PMID: 23496268 DOI: 10.1517/17460440903052559] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In eukaryotes, endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are coordinately regulated to maintain steady-state levels and activities of various cellular proteins to ensure cell survival. OBJECTIVE This review (Part I of II) focuses on specific ERS and UPR signalling regulators, their expression in the cancer phenotype and apoptosis, and proposes how their implication in these processes can be rationalised into proteasome inhibition, apoptosis induction and the development of more efficacious targeted molecular cancer therapies. METHOD In this review, we contextualise many ERS and UPR client proteins that are deregulated or mutated in cancers and show links between ERS and the UPR, their implication in oncogenic transformation, tumour progression and escape from immune surveillance, apoptosis inhibition, angiogenesis, metastasis, acquired drug resistance and poor cancer prognosis. CONCLUSION Evasion of programmed cell death or apoptosis is a hallmark of cancer that enables tumour cells to proliferate uncontrollably. Successful eradication of cancer cells through targeting ERS- and UPR-associated proteins to induce apoptosis is currently being pursued as a central tenet of anticancer drug discovery.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 21 959 1563 ;
| | | |
Collapse
|
16
|
Bánhegyi G, Mandl J, Csala M. Redox-based endoplasmic reticulum dysfunction in neurological diseases. J Neurochem 2008; 107:20-34. [PMID: 18643792 DOI: 10.1111/j.1471-4159.2008.05571.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The redox homeostasis of the endoplasmic reticulum lumen is characteristically different from that of the other subcellular compartments. The concerted action of membrane transport processes and oxidoreductase enzymes maintain the oxidized state of the thiol-disulfide and the reducing state of the pyridine nucleotide redox systems, which are prerequisites for the normal functions of the organelle. The powerful thiol-oxidizing machinery allows oxidative protein folding but continuously challenges the local antioxidant defense. Alterations of the cellular redox environment either in oxidizing or reducing direction affect protein processing and may induce endoplasmic reticulum stress and unfolded protein response. The activated signaling pathways attempt to restore the balance between protein loading and processing and induce apoptosis if the attempt fails. Recent findings strongly support the involvement of this mechanism in brain ischemia, neuronal degenerative diseases and traumatic injury. The redox changes in the endoplasmic reticulum are integral parts of the pathomechanism of neurological diseases, either as causative agents, or as complications.
Collapse
Affiliation(s)
- Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
17
|
Decreased ER-associated degradation of alpha-TCR induced by Grp78 depletion with the SubAB cytotoxin. Int J Biochem Cell Biol 2008; 40:2865-79. [PMID: 18611445 DOI: 10.1016/j.biocel.2008.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 02/07/2023]
Abstract
HeLa cells stably expressing the alpha chain of T-cell receptor (alphaTCR), a model substrate of ER-associated degradation (ERAD), were used to analyze the effects of BiP/Grp78 depletion by the SubAB cytotoxin. SubAB induced XBP1 splicing, followed by JNK phosphorylation, eIF2alpha phosphorylation, upregulation of ATF3/4 and partial ATF6 cleavage. Other markers of ER stress, including elements of ERAD pathway, as well as markers of cytoplasmic stress, were not induced. SubAB treatment decreased absolute levels of alphaTCR, which was caused by inhibition of protein synthesis. At the same time, the half-life of alphaTCR was extended almost fourfold from 70 min to 210 min, suggesting that BiP normally facilitates ERAD. Depletion of p97/VCP partially rescued SubAB-induced depletion of alphaTCR, confirming the role of VCP in ERAD of alphaTCR. It therefore appears that ERAD of alphaTCR is driven by at least two different ATP-ase systems located at two sides of the ER membrane, BiP located on the lumenal side, while p97/VCP on the cytoplasmic side. While SubAB altered cell morphology by inducing cytoplasm vacuolization and accumulation of lipid droplets, caspase activation was partial and subsided after prolonged incubation. Expression of CHOP/GADD153 occurred only after prolonged incubation and was not associated with apoptosis.
Collapse
|
18
|
Papp S, Zhang X, Szabo E, Michalak M, Opas M. Expression of endoplasmic reticulum chaperones in cardiac development. Open Cardiovasc Med J 2008; 2:31-5. [PMID: 18949096 PMCID: PMC2570582 DOI: 10.2174/1874192400802010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/22/2022] Open
Abstract
To determine if cardiogenesis causes endoplasmic reticulum stress, we examined chaperone expression. Many cardiac pathologies cause activation of the fetal gene program, and we asked the reverse: could activation of the fetal gene program during development induce endoplasmic reticulum stress/chaperones? We found stress related chaperones were more abundant in embryonic compared to adult hearts, indicating endoplasmic reticulum stress during normal cardiac development. To determine the degree of stress, we investigated endoplasmic reticulum stress pathways during cardiogenesis. We detected higher levels of ATF6alpha, caspase 7 and 12 in adult hearts. Thus, during embryonic development, there is large protein synthetic load but there is no endoplasmic reticulum stress. In adult hearts, chaperones are less abundant but there are increased levels of ATF6alpha and ER stress-activated caspases. Thus, protein synthesis during embryonic development does not seem to be as intense a stress as is required for apoptosis that is found during postnatal remodelling.
Collapse
Affiliation(s)
- Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Wang W, van Niekerk E, Willis DE, Twiss JL. RNA transport and localized protein synthesis in neurological disorders and neural repair. Dev Neurobiol 2007; 67:1166-82. [PMID: 17514714 DOI: 10.1002/dneu.20511] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural cells are able to finely tune gene expression through post-transcriptional mechanisms. Localization of mRNAs to subcellular regions has been detected in neurons, oligodendrocytes, and astrocytes providing these domains with a locally renewable source of proteins. Protein synthesis in dendrites has most frequently been associated with synaptic plasticity, while axonally synthesized proteins appear to facilitate pathfinding and injury responses. For oligodendrocytes, mRNAs encoding several proteins for myelin formation are locally generated suggesting that this mechanism assists in myelination. Astrocytic processes have not been well studied but localization of GFAP mRNA has been demonstrated. Both RNA transport and localized translation are regulated processes. RNA transport appears to be highly selective and, at least in part, the destiny of individual mRNAs is determined in the nucleus. RNA-protein and protein-protein interactions determine which mRNAs are targeted to subcellular regions. Several RNA binding proteins that drive mRNA localization have also been shown to repress translation during transport. Activity of the translational machinery is also regulated in distal neural cell processes. Clinically, disruption of mRNA localization and/or localized mRNA translation may contribute to pathophysiology of fragile X mental retardation and spinal muscular atrophy. Axonal injury has been shown to activate localized protein synthesis, providing both a means to initiate regeneration and retrogradely signal injury to the cell body. Decreased capacity to transport mRNAs and translational machinery into distal processes could jeopardize the ability to respond to injury or local stimuli within axons and dendrites.
Collapse
Affiliation(s)
- Wenlan Wang
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Proteins synthesized in the endoplasmic reticulum (ER) are properly folded with the assistance of ER chaperones. Malfolded proteins are disposed of by ER-associated protein degradation (ERAD). When the amount of unfolded protein exceeds the folding capacity of the ER, human cells activate a defense mechanism called the ER stress response, which induces expression of ER chaperones and ERAD components and transiently attenuates protein synthesis to decrease the burden on the ER. It has been revealed that three independent response pathways separately regulate induction of the expression of chaperones, ERAD components, and translational attenuation. A malfunction of the ER stress response caused by aging, genetic mutations, or environmental factors can result in various diseases such as diabetes, inflammation, and neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and bipolar disorder, which are collectively known as 'conformational diseases'. In this review, I will summarize recent progress in this field. Molecules that regulate the ER stress response would be potential candidates for drug targets in various conformational diseases.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| |
Collapse
|
21
|
Chen H, Fan YH, Natarajan A, Guo Y, Iyasere J, Harbinski F, Luus L, Christ W, Aktas H, Halperin JA. Synthesis and biological evaluation of thiazolidine-2,4-dione and 2,4-thione derivatives as inhibitors of translation initiation. Bioorg Med Chem Lett 2005; 14:5401-5. [PMID: 15454234 DOI: 10.1016/j.bmcl.2004.08.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 08/04/2004] [Accepted: 08/05/2004] [Indexed: 11/17/2022]
Abstract
In an effort to generate novel translation initiation inhibitors for cancer therapy, a series of 2'-benzyloxy-5'-substituted-5-benzylidene-thiazolidine-2,4-thione and dione derivatives was synthesized and evaluated for activity in translation initiation specific assays. Several candidates of the 5-benzylidene-thiazolidine-2,4-diones (3c, 3d, and 3f) and -thiones (2b, 2e, and 2j), inhibit cell growth with low microM GI(50) mediated by inhibition of translation initiation, which involves partial depletion of intracellular Ca(2+) stores and strong phosphorylation of eIF2alpha.
Collapse
Affiliation(s)
- Han Chen
- Laboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fan YH, Chen H, Natarajan A, Guo Y, Harbinski F, Iyasere J, Christ W, Aktas H, Halperin JA. Structure–activity requirements for the antiproliferative effect of troglitazone derivatives mediated by depletion of intracellular calcium. Bioorg Med Chem Lett 2004; 14:2547-50. [PMID: 15109648 DOI: 10.1016/j.bmcl.2004.02.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 02/16/2004] [Accepted: 02/26/2004] [Indexed: 11/16/2022]
Abstract
Depletion of calcium from the endoplasmic reticulum has shown to affect protein synthesis and cell proliferation. The anticancer effect of troglitazone was reported to be mediated by depletion of intracellular calcium stores resulting in inhibition of translation initiation. The unsaturated form of troglitazone displays similar anticancer properties in vitro. In this letter, we report our findings on the minimum structural requirements for both compounds to retain their calcium release and antiproliferative activities.
Collapse
Affiliation(s)
- Yun-Hua Fan
- Laboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jayanthi S, Deng X, Noailles PAH, Ladenheim B, Cadet JL. Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 2004; 18:238-51. [PMID: 14769818 DOI: 10.1096/fj.03-0295com] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methamphetamine (METH) is an illicit drug that causes neurodegenerative effects in humans. In rodents, METH induces apoptosis of striatal glutamic acid decarboxylase (GAD) -containing neurons. This paper provides evidence that METH-induced cell death occurs consequent to interactions of ER stress and mitochondrial death pathways. Specifically, injections of METH are followed by an almost immediate activation of proteases calpain and caspase-12, events consistent with drug-induced ER stress. Involvement of ER stress was further supported by observations of increases in the expression of GRP78/BiP and CHOP. Participation of the mitochondrial pathway was demonstrated by the transition of AIF, smac/DIABLO, and cytochrome c from mitochondrial into cytoplasmic fractions. These changes occur before the apoptosome-associated pro-caspase-9 cleavage. Effector caspases-3 and -6, but not -7, were cleaved with the initial time of caspase-3 activation occurring before caspase 9 cleavage; this suggests possible earlier cleavage of caspase-3 by caspase-12. These events preceded proteolysis of the caspase substrates DFF-45, lamin A, and PARP in nuclear fractions. These findings indicate that METH causes neuronal apoptosis in part via cross-talks between ER- and mitochondria-generated processes, which cause activation of both caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, DHHS, 5500 Nathan Shock Dr., Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
24
|
Paschen W, Aufenberg C, Hotop S, Mengesdorf T. Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J Cereb Blood Flow Metab 2003; 23:449-61. [PMID: 12679722 DOI: 10.1097/01.wcb.0000054216.21675.ac] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cells respond to conditions associated with endoplasmic reticulum (ER) dysfunction with activation of the unfolded protein response, characterized by a shutdown of translation and induction of the expression of genes coding for ER stress proteins. The genetic response is based on IRE1-induced processing of xbp1 messenger RNA (mRNA), resulting in synthesis of new XBP1proc protein that functions as a potent transcription factor for ER stress genes. xbp1 processing in models of transient global and focal cerebral ischemia was studied. A marked increase in processed xbp1 mRNA levels during reperfusion was observed, most pronounced (about 35-fold) after 1-h occlusion of the right middle cerebral artery. The rise in processed xbp1 mRNA was not paralleled by a similar increase in XBP1proc protein levels because transient ischemia induces severe suppression of translation. As a result, mRNA levels of genes coding for ER stress proteins were only slightly increased, whereas mRNA levels of heat-shock protein 70 rose about 550-fold. Under conditions associated with ER dysfunction, cells require activation of the entire ER stress-induced signal transduction pathway, to cope with this severe form of stress. After transient cerebral ischemia, however, the block of translation may prevent synthesis of new XBP1proc protein and thus hinder recovery from ischemia-induced ER dysfunction.
Collapse
Affiliation(s)
- Wulf Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931 Köln, Germany.
| | | | | | | |
Collapse
|
25
|
Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:57-89. [PMID: 11575161 DOI: 10.1007/978-3-662-09889-9_3] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of polypeptide chain initiation factor eIF2 can be phosphorylated by a number of related protein kinases which are activated in response to cellular stresses. Physiological conditions which result in eIF2 alpha phosphorylation include virus infection, heat shock, iron deficiency, nutrient deprivation, changes in intracellular calcium, accumulation of unfolded or denatured proteins and the induction of apoptosis. Phosphorylated eIF2 acts as a dominant inhibitor of the guanine nucleotide exchange factor eIF2B and prevents the recycling of eIF2 between successive rounds of protein synthesis. Extensive phosphorylation of eIF2 alpha and strong inhibition of eIF2B activity can result in the downregulation of the overall rate of protein synthesis; less marked changes may lead to alterations in the selective translation of alternative open reading frames in polycistronic mRNAs, as demonstrated in yeast. These mechanisms can provide a signal transduction pathway linking eukaryotic cellular stress responses to alterations in the control of gene expression at the translational level.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
26
|
Gardiol A, Racca C, Triller A. RNA transport and local protein synthesis in the dendritic compartment. Results Probl Cell Differ 2001; 34:105-28. [PMID: 11288671 DOI: 10.1007/978-3-540-40025-7_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- A Gardiol
- Laboratoire de Biologie Cellulaire de la Synapse N&P INSERM U497 Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
27
|
Brostrom MA, Mourad F, Brostrom CO. Regulated expression of GRP78 during vasopressin-induced hypertrophy of heart-derived myocytes. J Cell Biochem 2001; 83:204-17. [PMID: 11573238 DOI: 10.1002/jcb.1219] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the development of cellular hypertrophy is widely believed to involve Ca(2+) signaling, potential supporting roles for sequestered Ca(2+) in this process have not been explored. H9c2 cardiomyocytes respond to arginine vasopressin with an initial mobilization of Ca(2+) stores and reduced rates of mRNA translation followed by repletion of Ca(2+) stores, up-regulation of translation beyond initial rates, and the development of hypertrophy. Rates of synthesis of the endoplasmic reticulum (ER) chaperones, GRP78 and GRP94, were found to increase preferentially at early times of vasopressin treatment. Total GRP78 content increased 2- to 3-fold within 8 h after which the chaperone was subject to post-translational modification. Preferential synthesis of GRP78 and the increase in chaperone content both occurred at pM vasopressin concentrations and were abolished at supraphysiologic Ca(2+) concentrations. Co-treatment with phorbol myristate acetate decreased vasopressin-dependent Ca(2+) mobilization and slowed appearance of new GRP78 molecules in response to the hormone, whereas 24 h pretreatment with phorbol ester prolonged vasopressin-dependent Ca(2+) mobilization and further increased rates of GRP78 synthesis in response to the hormone. Findings did not support a role for newly synthesized GRP78 in translational up-regulation by vasopressin. However up-regulation, which does not depend on Ca(2+) sequestration, appeared to expedite chaperone expression. This report provides the first evidence that a Ca(2+)-mobilizing hormone at physiologic concentrations signals increased expression of GRP78. Translational tolerance to depletion of ER Ca(2+) stores, typifying a robust ER stress response, did not accompany vasopressin-induced hypertrophy.
Collapse
Affiliation(s)
- M A Brostrom
- Department of Pharmacology, U.M.D.N.J.-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
28
|
Fukuda S, Sumii M, Masuda Y, Takahashi M, Koike N, Teishima J, Yasumoto H, Itamoto T, Asahara T, Dohi K, Kamiya K. Murine and human SDF2L1 is an endoplasmic reticulum stress-inducible gene and encodes a new member of the Pmt/rt protein family. Biochem Biophys Res Commun 2001; 280:407-14. [PMID: 11162531 DOI: 10.1006/bbrc.2000.4111] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated murine and human cDNAs for SDF2L1 (stromal cell-derived factor 2-like1) and characterized the genomic structures. Northern blot analysis of the gene expression in various tissues revealed that both murine Sdf2l1 and human SDF2L1 genes are expressed ubiquitously, with particularly high expression in the testis. The SDF2L1 protein has an endoplasmic reticulum (ER)-retention-like motif, HDEL, at the carboxy (C)-terminus. Interestingly, SDF2L1 protein also shows significant similarity to the central hydrophilic part of protein O-mannosyltransferase (Pmt) proteins of Saccharomyces cerevisiae, the human homologues of Pmt (POMT1 and POMT2) and Drosophila melanogaster rotated abdomen (rt) protein. In a murine hepatocellular carcinoma cell line, Sdf2l1 was strongly induced by tunicamycin and a calcium ionophore, A23187, and weakly induced by heat stress but was not induced by cycloheximide. In conclusion, SDF2L1 protein is a new member of Pmt/rt protein family and Sdf2l1 is a new ER stress-inducible gene.
Collapse
Affiliation(s)
- S Fukuda
- Second Department of Surgery, Department of Urology, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kimball SR, Clemens MJ, Tilleray VJ, Wek RC, Horetsky RL, Jefferson LS. The double-stranded RNA-activated protein kinase PKR is dispensable for regulation of translation initiation in response to either calcium mobilization from the endoplasmic reticulum or essential amino acid starvation. Biochem Biophys Res Commun 2001; 280:293-300. [PMID: 11162513 DOI: 10.1006/bbrc.2000.4103] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The alpha-subunit of eukaryotic initiation factor eIF2 is a preferred substrate for the double-stranded RNA-activated protein kinase, PKR. Phosphorylation of eIF2alpha converts the factor from a substrate into a competitive inhibitor of the guanine nucleotide exchange factor, eIF2B, leading to a decline in mRNA translation. Early studies provided evidence implicating PKR as the kinase that phosphorylates eIF2alpha under conditions of cell stress such as the accumulation of misfolded proteins in the lumen of the endoplasmic reticulum, i.e., the unfolded protein response (UPR). However, the recent identification of a trans-microsomal membrane eIF2alpha kinase, termed PEK or PERK, suggests that this kinase, and not PKR, might be the kinase that is activated by misfolded protein accumulation. Similarly, genetic studies in yeast provide compelling evidence that a kinase termed GCN2 phosphorylates eIF2alpha in response to amino acid deprivation. However, no direct evidence showing activation of the mammalian homologue of GCN2 by amino acid deprivation has been reported. In the present study, we find that in fibroblasts treated with agents that promote the UPR, protein synthesis is inhibited as a result of a decrease in eIF2B activity. Furthermore, the reduction in eIF2B activity is associated with enhanced phosphorylation of eIF2alpha. Importantly, the magnitude of the change in each parameter is identical in wildtype cells and in fibroblasts containing a chromosomal deletion in the PKR gene (PKR-KO cells). In a similar manner, we find that during amino acid deprivation the inhibition of protein synthesis and extent of increase in eIF2alpha phosphorylation are identical in wildtype and PKR-KO cells. Overall, the results show that PKR is not required for increased eIF2alpha phosphorylation or inhibition of protein synthesis under conditions promoting the UPR or in response to amino acid deprivation.
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
30
|
Paschen W. Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states. Cell Calcium 2001; 29:1-11. [PMID: 11133351 DOI: 10.1054/ceca.2000.0162] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER) is a subcellular compartment playing a pivotal role in the control of vital calcium-related cell functions, including calcium storage and signalling. In addition, newly synthesized membrane and secretory proteins are folded and processed in the ER, reactions which are strictly calcium dependent. The ER calcium activity is therefore high, being several orders of magnitude above that of the cytoplasm. Depletion of ER calcium stores causes an accumulation of unfolded proteins in the ER lumen, a pathological situation which induces the activation of two highly conserved stress responses, the ER overload response (EOR) and the unfolded protein response (UPR). EOR triggers activation of the transcription factor NF kappa B, which, in turn, activates the expression of target genes. UPR triggers two downstream processes: it activates the expression of genes coding for ER-resident stress proteins, and it causes a suppression of the initiation of protein synthesis. A similar stress response is activated in pathological states of the brain including cerebral ischaemia, implying common underlying mechanisms. Depending on the extent and duration of the disturbance, an isolated impairment of ER function is sufficient to induce cell injury. In this review, evidence is presented that ER function is indeed disturbed in various diseases of the brain, including acute pathological states (e.g. cerebral ischaemia) and degenerative diseases (e.g. Alzheimer's disease). A body of evidence suggests that disturbances of ER function could be a global pathomechanism underlying neuronal cell injury in various acute and chronic disorders of the central nervous system. If that is true, restoration of ER function or attenuation of secondary disturbances induced by ER dysfunction could present a highly promising new avenue for pharmacological intervention to minimize neuronal cell injury in different pathological states of the brain.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany.
| |
Collapse
|
31
|
Budihardjo II, Boerner SA, Eckdahl S, Svingen PA, Rios R, Ames MM, Kaufmann SH. Effect of 6-aminonicotinamide and other protein synthesis inhibitors on formation of platinum-DNA adducts and cisplatin sensitivity. Mol Pharmacol 2000; 57:529-38. [PMID: 10692493 DOI: 10.1124/mol.57.3.529] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present study was undertaken to examine the mechanistic basis for the recent observation that the pyridine nucleotide derivative 6-aminonicotinamide (6AN, NSC 21206) enhances the accumulation and resulting cytotoxicity of cisplatin in a variety of tumor cell lines. When A549 lung cancer cells or K562 leukemia cells were treated with 62.5 microM 6AN for 21 h and then pulse-labeled with [(35)S]methionine for 1 h, increased labeling of five polypeptides, one of which corresponded to a M(r) approximately 78,000 glucose-regulated protein (GRP78), was observed. Two subsequent observations, however, suggested that up-regulation of these polypeptides was unlikely to explain the interaction between 6AN and cisplatin: 1) the concentration of 6AN required to induce GRP78 was 4-fold higher than the dose required to sensitize cells to cisplatin; and 2) simultaneous treatment of cells with 6AN and cycloheximide prevented the increase in GRP78 but not the sensitizing effect of 6AN. On the contrary, treatment with the protein synthesis inhibitors cycloheximide, anisomycin, or puromycin as well as prolonged exposure to the RNA synthesis inhibitor actinomycin D mimicked the biochemical modulating effects of 6AN on cisplatin action. Conversely, 6AN inhibited protein synthesis, whereas 18 6AN analogs that failed to enhance Pt-DNA adducts and cisplatin cytotoxicity failed to inhibit protein synthesis. These observations are consistent with a model in which 6AN and other inhibitors of protein synthesis act as modulating agents by increasing cisplatin accumulation, thereby enhancing the formation of Pt-DNA adducts and subsequent cisplatin-induced cell death.
Collapse
Affiliation(s)
- I I Budihardjo
- Division of Oncology Research, Mayo Medical School, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Yang GH, Li S, Pestka JJ. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Toxicol Appl Pharmacol 2000; 162:207-17. [PMID: 10652249 DOI: 10.1006/taap.1999.8842] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms by which trichothecene mycotoxins cause immunological effects in leukocytes such as cytokine up-regulation, aberrant IgA production, or apoptotic cell death are not fully understood. In the present study, mRNA differential display analysis was used to evaluate changes in gene expression induced by the trichothecene vomitoxin (VT or deoxynivalenol) in a T-cell model, the murine EL-4 thymoma, that was stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (ION). Ten differentially expressed fragments of cDNA were isolated and sequenced and three of these were identified as the known genes GRP78/BiP, P58(IPK), and RAD17. Most notably, expression of GRP78/BiP (a 78-kDa glucose-regulated protein), a stress-response gene induced by agents or conditions that adversely affect endoplasmic reticulum (ER) function, was found to decrease in VT-exposed cells. Competitive RT-PCR analysis revealed that 250 ng/ml VT decreased GRP78/BiP mRNA expression in both unstimulated and PMA/ION-stimulated EL-4 cells at 6 and 24 h after VT treatment. Western blotting confirmed that VT (50 to 1000 ng/ml) also significantly diminished GRP/BiP protein levels in a dose-response manner in PMA/ION-stimulated cells. GRP78/BiP has been shown to play a role in regulation of protein folding and secretion, and to protect cells from apoptosis. When PMA/ION-stimulated cells were incubated with 50 to 1000 ng/ml VT for 24 h, 200-bp DNA laddering, a hallmark of apoptosis, increased in a dose-dependent manner. In addition to GRP78, mRNA expression of the cochaperone P58(IPK), which is the 58-kDa cellular inhibitor of the double-stranded RNA-regulated protein kinase (PKR), was also shown to be suppressed by VT-treatment. GRP78 and P58(IPK) are critical for maintenance of cell homeostasis and prevention of apoptosis. The down-regulation of these molecular chaperones by VT represent a novel observation and has the potential to impact immune function at multiple levels.
Collapse
Affiliation(s)
- G H Yang
- National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | | |
Collapse
|
33
|
Paschen W, Doutheil J. Disturbance of endoplasmic reticulum functions: a key mechanism underlying cell damage? ACTA NEUROCHIRURGICA. SUPPLEMENT 1999; 73:1-5. [PMID: 10494334 DOI: 10.1007/978-3-7091-6391-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in the folding and processing of newly synthesized proteins, reactions which are strictly calcium-dependent. Depletion of ER calcium pools activates a stress response (suppression of global protein synthesis and activation of stress gene expression) which is almost identical to that induced by transient ischemia or other forms of severe cellular stress, implying common underlying mechanisms. We conclude that disturbance of the ER functions may be involved in stress-induced cell injury. In our view, ER calcium homeostasis plays an important role in maintaining the physiological state in cells balanced between the extremes of growth arrest and cell death on the one hand, and uncontrolled proliferation on the other.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Köln, Germany
| | | |
Collapse
|
34
|
Uma S, Thulasiraman V, Matts RL. Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 1999; 19:5861-71. [PMID: 10454533 PMCID: PMC84435 DOI: 10.1128/mcb.19.9.5861] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The heme-regulated kinase of the alpha subunit of eukaryotic initiation factor 2 (HRI) is activated in rabbit reticulocyte lysate (RRL) in response to a number of environmental conditions, including heme deficiency, heat shock, and oxidative stress. Activation of HRI causes an arrest of initiation of protein synthesis. Recently, we have demonstrated that the heat shock cognate protein Hsc70 negatively modulates the activation of HRI in RRL in response to these environmental conditions. Hsc70 is also known to be a critical component of the Hsp90 chaperone machinery in RRL, which plays an obligatory role for HRI to acquire and maintain a conformation that is competent to activate. Using de novo-synthesized HRI in synchronized pulse-chase translations, we have examined the role of Hsc70 in the regulation of HRI biogenesis and activation. Like Hsp90, Hsc70 interacted with nascent HRI and HRI that was matured to a state which was competent to undergo stimulus-induced activation (mature-competent HRI). Interaction of HRI with Hsc70 was required for the transformation of HRI, as the Hsc70 antagonist clofibric acid inhibited the folding of HRI into a mature-competent conformation. Unlike Hsp90, Hsc70 also interacted with transformed HRI. Clofibric acid disrupted the interaction of Hsc70 with transformed HRI that had been matured and transformed in the absence of the drug. Disruption of Hsc70 interaction with transformed HRI in heme-deficient RRL resulted in its hyperactivation. Furthermore, activation of HRI in response to heat shock or denatured proteins also resulted in a similar blockage of Hsc70 interaction with transformed HRI. These results indicate that Hsc70 is required for the folding and transformation of HRI into an active kinase but is subsequently required to negatively attenuate the activation of transformed HRI.
Collapse
Affiliation(s)
- S Uma
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | |
Collapse
|
35
|
Doutheil J, Treiman M, Oschlies U, Paschen W. Recovery of neuronal protein synthesis after irreversible inhibition of the endoplasmic reticulum calcium pump. Cell Calcium 1999; 25:419-28. [PMID: 10579053 DOI: 10.1054/ceca.1999.0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the physiological state, protein synthesis is controlled by calcium homeostasis in the endoplasmic reticulum (ER). Recently, evidence has been presented that dividing cells can adapt to an irreversible inhibition of the ER calcium pump (SERCA), although the mechanisms underlying this adaption have not yet been elucidated. Exposing primary neuronal cells to thapsigargin (Tg, a specific irreversible inhibition of SERCA) resulted in a complete suppression of protein synthesis and disaggregation of polyribosomes indicating inhibition of the initiation step of protein synthesis. Protein synthesis and ribosomal aggregation recovered to 50-70% of control when cells were cultured in medium supplemented with serum for 24 h, but recovery was significantly suppressed in a serum-free medium. Culturing cells in serum-free medium for 24 h already caused an almost 50% suppression of SERCA activity and protein synthesis. SERCA activity did not recover after Tg treatment, and a second exposure of cells to Tg, 24 h after the first, had no effect on protein synthesis. Acute exposure of neurons to Tg induced a depletion of ER calcium stores as indicated by an increase in cytoplasmic calcium activity, but this response was not elicited by the same treatment 24 h later. However, treatments known to deplete ER calcium stores (exposure to the ryanodine receptor agonists caffeine or 2-hydroxycarbazole, or incubating cells in calcium-free medium supplemented with EGTA) caused a second suppression of protein synthesis when applied 24 h after Tg treatment. The results suggest that after Tg exposure, restoration of protein synthesis was induced by recovery of the regulatory link between ER calcium homeostasis and protein synthesis, and not by renewed synthesis of SERCA protein or development of a new regulatory system for the control of protein synthesis. The effect of serum withdrawal on SERCA activity and protein synthesis points to a role of growth factors in maintaining ER calcium homeostasis, and suggests that the ER acts as a mediator of cell damage after interruption of growth factor supplies.
Collapse
Affiliation(s)
- J Doutheil
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | |
Collapse
|
36
|
Tan SL, Katze MG. The emerging role of the interferon-induced PKR protein kinase as an apoptotic effector: a new face of death? J Interferon Cytokine Res 1999; 19:543-54. [PMID: 10433354 DOI: 10.1089/107999099313677] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent research has thrown a spotlight on the interferon (IFN)-induced PKR protein kinase, implicating it as an important effector of apoptosis induced by several cellular stress conditions, including viral infection, cytokine treatment, and growth factor deprivation. In this review, we summarize the evidence for the role of PKR as a death accomplice and discuss how PKR might promote cell demise in light of current knowledge of the molecular mechanisms of apoptosis. Given its new found role and its established antiviral function, it is no wonder that PKR is a popular target for viral evasion of the host defense. PKR-dependent apoptosis may offer a novel cell-death pathway for specific manipulation in therapeutic strategies against apoptosis-related diseases.
Collapse
Affiliation(s)
- S L Tan
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
37
|
Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397:271-4. [PMID: 9930704 DOI: 10.1038/16729] [Citation(s) in RCA: 2508] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein synthesis and the folding of the newly synthesized proteins into the correct three-dimensional structure are coupled in cellular compartments of the exocytosis pathway by a process that modulates the phosphorylation level of eukaryotic initiation factor-2alpha (eIF2alpha) in response to a stress signal from the endoplasmic reticulum (ER). Activation of this process leads to reduced rates of initiation of protein translation during ER stress. Here we describe the cloning of perk, a gene encoding a type I transmembrane ER-resident protein. PERK has a lumenal domain that is similar to the ER-stress-sensing lumenal domain of the ER-resident kinase Ire1, and a cytoplasmic portion that contains a protein-kinase domain most similar to that of the known eIF2alpha kinases, PKR and HRI. ER stress increases PERK's protein-kinase activity and PERK phosphorylates eIF2alpha on serine residue 51, inhibiting translation of messenger RNA into protein. These properties implicate PERK in a signalling pathway that attenuates protein translation in response to ER stress.
Collapse
Affiliation(s)
- H P Harding
- Skirball Institute of Biomolecular Medicine, Department of Medicine, NYU School of Medicine, New York 10016, USA
| | | | | |
Collapse
|
38
|
Paschen W, Doutheil J. Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury? J Cereb Blood Flow Metab 1999; 19:1-18. [PMID: 9886350 DOI: 10.1097/00004647-199901000-00001] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebral ischemia leads to a massive increase in cytoplasmic calcium activity resulting from an influx of calcium ions into cells and a release of calcium from mitochondria and endoplasmic reticulum (ER). It is widely believed that this increase in cytoplasmic calcium activity plays a major role in ischemic cell injury in neurons. Recently, this concept was modified, taking into account that disturbances occurring during ischemia are potentially reversible: it then was proposed that after reversible ischemia, calcium ions are taken up by mitochondria, leading to disturbances of oxidative phosphorylation, formation of free radicals, and deterioration of mitochondrial functions. The current review focuses on the possible role of disturbances of ER calcium homeostasis in the pathologic process culminating in ischemic cell injury. The ER is a subcellular compartment that fulfills important functions such as the folding and processing of proteins, all of which are strictly calcium dependent. ER calcium activity is therefore relatively high, lying in the lower millimolar range (i.e., close to that of the extracellular space). Depletion of ER calcium stores is a severe form of stress to which cells react with a highly conserved stress response, the most important changes being a suppression of global protein synthesis and activation of stress gene expression. The response of cells to disturbances of ER calcium homeostasis is almost identical to their response to transient ischemia, implying common underlying mechanisms. Many observations from experimental studies indicate that disturbances of ER calcium homeostasis are involved in the pathologic process leading to ischemic cell injury. Evidence also has been presented that depletion of ER calcium stores alone is sufficient to activate the process of programmed cell death. Furthermore, it has been shown that activation of the ER-resident stress response system by a sublethal form of stress affords tolerance to other, potentially lethal insults. Also, disturbances of ER function have been implicated in the development of degenerative disorders such as prion disease and Alzheimer's disease. Thus, disturbances of the functioning of the ER may be a common denominator of neuronal cell injury in a wide variety of acute and chronic pathologic states of the brain. Finally, there is evidence that ER calcium homeostasis plays a key role in maintaining cells in their physiologic state, since depletion of ER calcium stores causes growth arrest and cell death, whereas cells in which the regulatory link between ER calcium homeostasis and protein synthesis has been blocked enter a state of uncontrolled proliferation.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
39
|
Laitusis AL, Brostrom MA, Brostrom CO. The dynamic role of GRP78/BiP in the coordination of mRNA translation with protein processing. J Biol Chem 1999; 274:486-93. [PMID: 9867869 DOI: 10.1074/jbc.274.1.486] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of GRP78/BiP in coordinating endoplasmic reticular (ER) protein processing with mRNA translation was examined in GH3 pituitary cells. ADP-ribosylation of GRP78 and eukaryotic initiation factor (eIF)-2alpha phosphorylation were assessed, respectively, as indices of chaperone inactivation and the inhibition of translational initiation. Inhibition of protein processing by ER stress (ionomycin and dithiothreitol) resulted in GRP78 deribosylation and eIF-2 phosphorylation. Suppression of translation relative to ER protein processing (cycloheximide) produced approximately 50% ADP-ribosylation of GRP78 within 90 min without eIF-2 phosphorylation. ADP-ribosylation was reversed in 90 min by cycloheximide removal in a manner accelerated by ER stressors. Cycloheximide sharply reduced eIF-2 phosphorylation in response to ER stressors for about 30 min; sensitivity returned as GRP78 became increasingly ADP-ribosylated. Reduced sensitivity of eIF-2 to phosphorylation appeared to derive from the accumulation of free, unmodified chaperone as proteins completed processing without replacements. Prolonged (24 h) incubations with cycloheximide resulted in the selective loss of the ADP-ribosylated form of GRP78 and increased sensitivity of eIF-2 phosphorylation in response to ER stressors. Brefeldin A decreased ADP-ribosylation of GRP78 in parallel with increased eIF-2 phosphorylation. The cytoplasmic stressor, arsenite, which inhibits translational initiation through eIF-2 phosphorylation without affecting the ER, also produced ADP-ribosylation of GRP78.
Collapse
Affiliation(s)
- A L Laitusis
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
40
|
Tan SL, Katze MG. Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase. J Interferon Cytokine Res 1998; 18:757-66. [PMID: 9781815 DOI: 10.1089/jir.1998.18.757] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The interferon (IFN)-induced protein kinase (PKR) functions as a gatekeeper of mRNA translation initiation and is, therefore, a key mediator of the host IFN-induced antiviral defense system. Many viruses have invested countermeasures against PKR. Some apparently use more than one mechanism. The influenza virus can repress PKR activity through the use of at least two factors, the cellular P58IPK protein and the viral NS1 protein. The exact mode of action of the latter has not been established. Here, using a coprecipitation assay, we found that PKR could form a complex with NS1 in crude cell extracts prepared from influenza virus-infected HeLa cells. The NS1-PKR interaction was verified by using the yeast two-hybrid system and an in vitro binding assay. Deletion analysis mapped the NS1 binding site to the N-terminal 98 residues of PKR regulatory region. Furthermore, an NS1 mutant, which lacks PKR inhibitory activity, did not bind PKR. Finally, the functional role of NS1 in PKR inhibition was substantiated using an in vivo assay for PKR activity. These results support the role of NS1 in PKR modulation during viral infection that is mediated through a complex formation between the two proteins.
Collapse
Affiliation(s)
- S L Tan
- Department of Microbiology School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
41
|
Tan SL, Katze MG. Using genetic means to dissect homologous and heterologous protein-protein interactions of PKR, the interferon-induced protein kinase. Methods 1998; 15:207-23. [PMID: 9735306 DOI: 10.1006/meth.1998.0625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interferon-induced protein kinase, PKR, is a pivotal component of interferon (IFN)-induced cellular antiviral and antiproliferative response. The identification and characterization of proteins, of both viral and cellular origins, that interact with PKR have proven to be a valuable probe for unraveling the cellular regulation and function of PKR. Several studies have demonstrated that PKR forms dimers and that dimerization is likely to be required for activation and/or catalytic function. It is therefore important to elucidate the mechanism of PKR dimer formation and the role of PKR effectors in modulating kinase dimerization. Herein we describe the use of the two genetic approaches, the lambda repressor fusion and the yeast two-hybrid systems, to detect and analyze homo- and heterotypic interactions with PKR. We also describe several biochemical methodologies commonly used in our laboratory to validate the genetic results. Although the examples in this article focus on PKR, the techniques can easily be adapted to investigate protein-protein associations in a variety of experimental systems. Finally, given the important role of PKR as a mediator of IFN-induced antiviral and antiproliferative effects, these studies may provide clues to the development of reagents that target PKR to enhance the therapeutic use of IFN in the treatment of disease.
Collapse
Affiliation(s)
- S L Tan
- School of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | | |
Collapse
|
42
|
Laitusis AL, Brostrom CO, Ryazanov AG, Brostrom MA. An examination of the role of increased cytosolic free Ca2+ concentrations in the inhibition of mRNA translation. Arch Biochem Biophys 1998; 354:270-80. [PMID: 9637736 DOI: 10.1006/abbi.1998.0712] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mobilization of Ca2+ sequestered by the endoplasmic reticulum (ER) produces the phosphorylation of initiation factor (eIF) 2, whereas an increase in cytosolic free Ca2+ ([Ca2+]i) due to plasmalemmal Ca2+ influx increases the phosphorylation of elongation factor (eEF) 2. In nucleated mammalian cells, depletion of ER Ca2+ stores has been demonstrated to inhibit translational initiation, but evidence that increased [Ca2+]i per se causes slowing of peptide chain elongation is lacking. L-type Ca2+ channel activity of GH3 pituitary cells, which are enriched in calmodulin-dependent eEF-2 kinase, was manipulated such that the impact of [Ca2+]i on eEF-2 phosphorylation and translational rate could be examined for up to 10 min without inhibiting initiation. At 1 mM extracellular Ca2+, resting [Ca2+]i values were high (154-255 nM) and eEF-2 was phosphorylated. The Ca2+ channel antagonist, nisoldipine, lowered [Ca2+]i and reduced eEF-2 phosphorylation by half but had no effect on amino acid incorporation. The Ca2+ channel agonist, Bay K 8644, produced sustained elevations of [Ca2+]i that were associated with 25-50% increases in eEF-2 phosphorylation, but no changes in protein synthetic rates occurred. Larger Ca2+ influxes were achievable with either 25 mM KCl or KCl plus Bay K 8644. These treatments further increased eEF-2 phosphorylation (50-100% above control) and inhibited leucine incorporation by 20-70% but ATP content was reduced by 25-50% and total cell-associated Ca2+ contents rose by 3- to 13-fold. eIF-2alpha was not phosphorylated during these treatments. Addition of low concentrations of ionomycin, which do not lower ATP content, was associated with complex changes in [Ca2+]i that resembled alterations in eEF-2 phosphorylation. The inhibition of leucine incorporation in response to ionomycin, however, coincided only with the phosphorylation of eIF-2alpha, not eEF-2. It is concluded that changes in [Ca2+]i occurring in the absence of ATP depletion alter the phosphorylation state of eEF-2 but are not regulatory for mRNA translation.
Collapse
Affiliation(s)
- A L Laitusis
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | | | | | | |
Collapse
|
43
|
Linden T, Doutheil J, Paschen W. Role of calcium in the activation of erp72 and heme oxygenase-1 expression on depletion of endoplasmic reticulum calcium stores in rat neuronal cell culture. Neurosci Lett 1998; 247:103-6. [PMID: 9655603 DOI: 10.1016/s0304-3940(98)00278-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum (ER) calcium pool depletion was induced by 30 min exposure of primary neuronal cells to thapsigargin (Tg), an irreversible inhibitor of ER Ca2+-ATPase. Twelve hours later, erp72 and heme oxygenase-1 (HO-1) mRNA levels were quantified by PCR. Protein synthesis was also measured. Transient Tg exposure of neurons induced a marked rise in mRNA levels (7-fold and a 21-fold increase in erp72 and HO-1 mRNA levels; P < 0.001). Loading of neurons with the calcium chelator 1,2-bis(o-Aminophenoxy)ethane-N,N,N',N'-tetra(acetoxymethyl)ester (BAPTA-AM) prior to thapsigargin treatment had only a minor effect on the Tg-induced rise in gene expression. This small inhibitory effect may result from the severe suppression of protein synthesis caused by BAPTA-AM. The results suggest that the increase in stress gene expression induced by exposure of neurons to Tg is triggered by a decrease in ER calcium activity and not by the corresponding increase in cytoplasmic calcium activity.
Collapse
Affiliation(s)
- T Linden
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Köln, Germany
| | | | | |
Collapse
|
44
|
Paschen W, Gissel C, Linden T, Doutheil J. Erp72 expression activated by transient cerebral ischemia or disturbance of neuronal endoplasmic reticulum calcium stores. Metab Brain Dis 1998; 13:55-68. [PMID: 9570640 DOI: 10.1023/a:1020631029168] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stress-induced activation of the expression of the endoplasmic reticulum (ER)-resident chaperon and member of the protein disulfide isomerase family erp72 was studied after transient cerebral ischemia in vivo using the four-vessel occlusion method and experimental depletion of ER calcium stores in primary neuronal cell cultures. After 8 days in vitro, neurons were exposed to thapsigargin (Tg), an irreversible inhibitor of ER Ca2+-ATPase, or the Tg solvent DMSO. In separate experiments neurons were pre-loaded with the cell-permeant calcium chelator BAPTA-AM before Tg exposure. Stress-induced changes in erp72 expression were analysed by quantitative PCR. Transient cerebral ischemia produced a significant increase in erp72 mRNA levels which rose to about 200% of control (hippocampus) or 300% of control (cortex). After depletion of ER calcium stores neuronal erp72 mRNA levels rose markedly, peaking at 12 h of recovery. Counteracting the Tg-induced rise in cytoplasmic calcium activity by preloading cells with the chelator BAPTA-AM did not influence erp72 expression significantly, suggesting that the activation of erp72 expression resulted from the depletion of ER calcium stores and not from the corresponding increase in cytoplasmic calcium activity. An activation of erp72 expression is indicative of a disturbance of ER function. The results of the present study therefore provide evidence to support the notion that transient cerebral ischemia induces disturbances of neuronal ER function, probably through a depletion of ER calcium stores.
Collapse
Affiliation(s)
- W Paschen
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany.
| | | | | | | |
Collapse
|
45
|
Reilly BA, Brostrom MA, Brostrom CO. Regulation of protein synthesis in ventricular myocytes by vasopressin. The role of sarcoplasmic/endoplasmic reticulum Ca2+ stores. J Biol Chem 1998; 273:3747-55. [PMID: 9452507 DOI: 10.1074/jbc.273.6.3747] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein synthesis in H9c2 ventricular myocytes was subject to rapid inhibition by agents that release Ca2+ from the sarcoplasmic/endoplasmic reticulum, including thapsigargin, ionomycin, caffeine, and arginine vasopressin. Inhibitions were attributable to the suppression of translational initiation and were coupled to the mobilization of cell-associated Ca2+ and the phosphorylation of eIF2alpha. Ionomycin and thapsigargin produced relatively stringent degrees of Ca2+ mobilization that produced an endoplasmic reticulum (ER) stress response. Translational recovery was associated with the induction of ER chaperones and resistance to translational inhibition by Ca2+-mobilizing agents. Vasopressin at physiologic concentrations mobilized 60% of cell-associated Ca2+ and decreased protein synthesis by 50% within 20-30 min. The inhibition of protein synthesis was exerted through an interaction at the V1 vascular receptor, was imposed at physiologic extracellular Ca2+ concentrations, and became refractory to hormonal washout within 10 min of treatment. Inhibition was found to attenuate after 30 min, with full recovery occurring in 2 h. Translational recovery did not involve an ER stress response but rather was derived from the partial repletion of intracellular Ca2+ stores. Longer exposures to vasopressin were invariably accompanied by increased rates of protein synthesis. Translational inhibition by vasopressin, but not by Ca2+-mobilizing drugs, was both preventable and reversible by treatment with phorbol ester, which reduced the extent of Ca2+ mobilization occurring in response to the hormone. Larger and more prolonged translational inhibitions occurred after down-regulation of protein kinase C. This report provides the first compelling evidence that hormonally induced mobilization of sarcoplasmic/endoplasmic reticulum Ca2+ stores is regulatory upon mRNA translation.
Collapse
Affiliation(s)
- B A Reilly
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
46
|
Brostrom CO, Brostrom MA. Regulation of translational initiation during cellular responses to stress. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:79-125. [PMID: 9308364 DOI: 10.1016/s0079-6603(08)60034-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemicals and conditions that damage proteins, promote protein misfolding, or inhibit protein processing trigger the onset of protective homeostatic mechanisms resulting in "stress responses" in mammalian cells. Included in these responses are an acute inhibition of mRNA translation at the initiation step, a subsequent induction of various protein chaperones, and the recovery of mRNA translation. Separate, but closely related, stress response systems exist for the endoplasmic reticulum (ER), relating to the induction of specific "glucose-regulated proteins" (GRPs), and for the cytoplasm, pertaining to the induction of the "heat shock proteins" (HSPs). Activators of the ER stress response system, including Ca(2+)-mobilizing and thiol-reducing agents, are discussed and compared to activators of the cytoplasmic stress system, such as arsenite, heavy metal cations, and oxidants. An emerging integrative literature is reviewed that relates protein chaperones associated with cellular stress response systems to the coordinate regulation of translational initiation and protein processing. Background information is presented describing the roles of protein chaperones in the ER and cytoplasmic stress response systems and the relationships of chaperones and protein processing to the regulation of mRNA translation. The role of chaperones in regulating eIF-2 alpha kinase activities, eIF-2 cycling, and ribosomal loading on mRNA is emphasized. The putative role of GRP78 in coupling rates of translation to processing is modeled, and functional relationships between the HSP and GRP chaperone systems are discussed.
Collapse
Affiliation(s)
- C O Brostrom
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA
| | | |
Collapse
|
47
|
Chon JH, Wang HS, Chaikof EL. Role of fibronectin and sulfated proteoglycans in endothelial cell migration on a cultured smooth muscle layer. J Surg Res 1997; 72:53-9. [PMID: 9344714 DOI: 10.1006/jsre.1997.5168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endothelial cell (EC) migration is essential for the healing of denudation injuries to the vessel wall. This event occurs in vivo in a pericellular environment and should be regulated in part by juxtacrine and paracrine interactions with underlying smooth muscle cells (SMCs). To investigate the EC migration behavior over SMCs under direct cell-cell contact conditions, we have utilized human umbilical vein endothelial cells (HUVECs) grown to confluence on microcarrier beads and radiolabeled with chromium-51. The EC carrying beads were spread over a confluent human aortic SMC monolayer and cocultured for 48 hr, allowing the EC to migrate from beads onto the underlying SMC monolayer in the presence of sodium chlorate, cycloheximide (CHM), or anti-fibronectin monoclonal antibody (anti-FN mAb). The level of EC migration was quantified by counting the amount of radioactivity on the SMC layer after the removal of the beads. The presence of a SMC layer enhanced EC migration more than threefold (P < 0.05). Furthermore, EC migration was inhibited from 30 to 80% (P < 0.05) by sodium chlorate, CHM, and anti-FN mAb in a dose-dependent fashion. This model has shown that smooth muscle cells augment endothelial motility. Both fibronectin and sulfated proteoglycans released by ECs and SMCs likely play an important role in the regulation of EC migration behavior over SMCs. The method described of using radiolabeled ECs on microcarrier beads should prove to be a useful tool in the study of cell migration in a heterotypic cellular environment.
Collapse
Affiliation(s)
- J H Chon
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | | | | |
Collapse
|
48
|
Clemens MJ, Elia A. The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 1997; 17:503-24. [PMID: 9335428 DOI: 10.1089/jir.1997.17.503] [Citation(s) in RCA: 452] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review describes the structure and function of the interferon (IFN)-inducible, double-stranded RNA-activated protein kinase PKR. This protein kinase has been studied extensively in recent years, and a large body of evidence has accumulated concerning its expression, interaction with regulatory RNA and protein molecules, and modes of activation and inhibition. PKR has been shown to play a variety of important roles in the regulation of translation, transcription, and signal transduction pathways through its ability to phosphorylate protein synthesis initiation factor eIF2, I-kappaB (the inhibitor of NF-kappaB), and other substrates. Expression studies involving both the wild-type protein and dominant negative mutants of PKR have established roles for the enzyme in the antiviral effects of IFNs, in the responses of uninfected cells to physiologic stresses, and in cell growth regulation. The possibility that PKR may function as a tumor suppressor and inducer of apoptosis suggests that this IFN-regulated protein kinase may be of central importance to the control of cell proliferation and transformation.
Collapse
Affiliation(s)
- M J Clemens
- Department of Cellular and Molecular Sciences, St. George's Hospital Medical School, London, U.K
| | | |
Collapse
|
49
|
Cooper GR, Brostrom CO, Brostrom MA. Analysis of the endoplasmic reticular Ca2+ requirement for alpha1-antitrypsin processing and transport competence. Biochem J 1997; 325 ( Pt 3):601-8. [PMID: 9271078 PMCID: PMC1218601 DOI: 10.1042/bj3250601] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Depletion of Ca2+ sequestered within the endoplasmic reticulum (ER) of HepG2 hepatoma cells results in the luminal accumulation of immature alpha1-antitrypsin possessing Man8-9 GlcNAc2 oligosaccharide side chains. This study explores the basis for this arrest and describes consequent alterations in the size and rate of secretion of the complex endoglycosidase H-resistant form of the protein. Inhibition of glucosidase I and II with castanospermine or alpha-1,2-mannosidase with 1-deoxymannojirimycin produced altered ER processing intermediates that were rapidly secreted. Subsequent mobilization of ER Ca2+ stores resulted in the appearance and retention of slightly larger related forms of these intermediates. Retention of glycosylated intermediates was not ascribable to an association with alpha1,2-mannosidase or lectin-like chaperones, the intermediates were not degraded and all evidence of ER retention or size alterations produced by Ca2+ depletion was quickly reversed by Ca2+ restoration. Cells that were Ca2+ depleted for 2 h slowly secreted an abnormal slightly smaller complex oligosaccharide form of alpha1-antitrypsin at approximately the same rate as the non-glycosylated protein generated by treatment with tunicamycin. The hypothesis that Ca2+ affects the folding and ER transport competence of glycosylated forms of alpha1-antitrypsin is discussed.
Collapse
Affiliation(s)
- G R Cooper
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
50
|
Savinova O, Jagus R. Use of vertical slab isoelectric focusing and immunoblotting to evaluate steady-state phosphorylation of eIF2 alpha in cultured cells. Methods 1997; 11:419-25. [PMID: 9126555 DOI: 10.1006/meth.1996.0438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The combination of vertical, one-dimensional isoelectric focusing and immunoblotting works very well for the evaluation of the phosphorylation state of the alpha-subunit of eIF2 using reticulocyte lysate or purified eIF2. However, the method is more difficult to apply to the analysis of eIF2 alpha phosphorylation in cultured cells. In part this reflects the fact that the protein content of cultured cell extracts is rarely as high as that found in extracts produced from reticulocytes, and in part this reflects the fact that some component(s) of cell extracts interferes with the entry of eIF2 alpha into the isoelectric focusing gel. To overcome these difficulties, we have modified the earlier method to include immunoprecipitation of eIF2 from cell extracts prior to isoelectric focusing, as well as a low sodium dodecyl sulfate concentration in the isoelectric focusing sample buffer. Since the PKR activation state and therefore the eIF2 alpha phosphorylation state change with cell density and nutritional status, we routinely set up consistent feeding schedules and recommend the collection of data over a range of cell densities.
Collapse
Affiliation(s)
- O Savinova
- Center of Marine Biotechnology, UMBI, Baltimore, Maryland, USA
| | | |
Collapse
|