1
|
Castañeda-Bueno M, Ellison DH, Gamba G. Molecular mechanisms for the modulation of blood pressure and potassium homeostasis by the distal convoluted tubule. EMBO Mol Med 2021; 14:e14273. [PMID: 34927382 PMCID: PMC8819348 DOI: 10.15252/emmm.202114273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological and clinical observations have shown that potassium ingestion is inversely correlated with arterial hypertension prevalence and cardiovascular mortality. The higher the dietary potassium, the lower the blood pressure and mortality. This phenomenon is explained, at least in part, by the interaction between salt reabsorption in the distal convoluted tubule (DCT) and potassium secretion in the connecting tubule/collecting duct of the mammalian nephron: In order to achieve adequate K+ secretion levels under certain conditions, salt reabsorption in the DCT must be reduced. Because salt handling by the kidney constitutes the basis for the long‐term regulation of blood pressure, losing salt prevents hypertension. Here, we discuss how the study of inherited diseases in which salt reabsorption in the DCT is affected has revealed the molecular players, including membrane transporters and channels, kinases, and ubiquitin ligases that form the potassium sensing mechanism of the DCT and the processes through which the consequent adjustments in salt reabsorption are achieved.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.,Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA.,VA Portland Health Care System, Portland, OR, USA
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| |
Collapse
|
2
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Reed AP, Bucci G, Abd-Wahab F, Tucker SJ. Dominant-Negative Effect of a Missense Variant in the TASK-2 (KCNK5) K+ Channel Associated with Balkan Endemic Nephropathy. PLoS One 2016; 11:e0156456. [PMID: 27228168 PMCID: PMC4882002 DOI: 10.1371/journal.pone.0156456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/14/2016] [Indexed: 11/20/2022] Open
Abstract
TASK-2, a member of the Two-Pore Domain (K2P) subfamily of K+ channels, is encoded by the KCNK5 gene. The channel is expressed primarily in renal epithelial tissues and a potentially deleterious missense variant in KCNK5 has recently been shown to be prevalent amongst patients predisposed to the development of Balkan Endemic Nephropathy (BEN), a chronic tubulointerstitial renal disease of unknown etiology. In this study we show that this variant (T108P) results in a complete loss of channel function and is associated with a major reduction in TASK-2 channel subunits at the cell surface. Furthermore, these mutant subunits have a suppressive or ‘dominant-negative’ effect on channel function when coexpressed with wild-type subunits. This missense variant is located at the extracellular surface of the M2 transmembrane helix and by using a combination of structural modelling and further functional analysis we also show that this highly-conserved threonine residue is critical for the correct function of other K2P channels. These results therefore provide further structural and functional insights into the possible pathophysiological effects of this missense variant in TASK-2.
Collapse
Affiliation(s)
- Alan P. Reed
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Giovanna Bucci
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Firdaus Abd-Wahab
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Hausammann GJ, Grütter MG. Chimeric hERG channels containing a tetramerization domain are functional and stable. Biochemistry 2013; 52:9237-45. [PMID: 24325597 DOI: 10.1021/bi401100a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biochemical and detailed structural information of human ether-a-go-go-related gene (hERG) potassium channels are scarce but are a prerequisite to understand the unwanted interactions of hERG with drugs and the effect of mutations that lead to long QT syndrome. Despite the huge interest in hERG, to our knowledge, procedures that provide a purified, functional, and tetrameric hERG channel are not available. Here, we describe hybrid hERG molecules, termed chimeric hERG channels, in which the N-terminal Per-Arnt-Sim (PAS) domain is deleted and the C-terminal C-linker as well as the cyclic nucleotide binding domain (CNBD) portion is replaced by an artificial tetramerization domain. These chimeric hERG channels can be overexpressed in HEK cells, solubilized in detergent, and purified as tetramers. When expressed in Xenopus laevis oocytes, the chimeric channels exhibit efficient trafficking to the cell surface, whereas a hERG construct lacking the PAS and C-linker/CNBD domains is retained in the cytoplasm. The chimeric hERG channels retain essential hERG functions such as voltage-dependent gating and inhibition by astemizole and the scorpion toxin BeKm-1. The chimeric channels are thus powerful tools for helping to understand the contribution of the cytoplasmic hERG domains to the gating process and are suitable for in vitro biochemical and structural studies.
Collapse
Affiliation(s)
- Georg J Hausammann
- From the Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
5
|
D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M. K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci 2013; 7:134. [PMID: 24062639 PMCID: PMC3772396 DOI: 10.3389/fncel.2013.00134] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022] Open
Abstract
K(+) channels are important determinants of seizure susceptibility. These membrane proteins, encoded by more than 70 genes, make the largest group of ion channels that fine-tune the electrical activity of neuronal and non-neuronal cells in the brain. Their ubiquity and extremely high genetic and functional diversity, unmatched by any other ion channel type, place K(+) channels as primary targets of genetic variations or perturbations in K(+)-dependent homeostasis, even in the absence of a primary channel defect. It is therefore not surprising that numerous inherited or acquired K(+) channels dysfunctions have been associated with several neurologic syndromes, including epilepsy, which often generate confusion in the classification of the associated diseases. Therefore, we propose to name the K(+) channels defects underlying distinct epilepsies as "K(+) channelepsies," and introduce a new nomenclature (e.g., Kx.y-channelepsy), following the widely used K(+) channel classification, which could be also adopted to easily identify other channelopathies involving Na(+) (e.g., Nav x.y-phenotype), Ca(2+) (e.g., Cav x.y-phenotype), and Cl(-) channels. Furthermore, we discuss novel genetic defects in K(+) channels and associated proteins that underlie distinct epileptic phenotypes in humans, and analyze critically the recent progress in the neurobiology of this disease that has also been provided by investigations on valuable animal models of epilepsy. The abundant and varied lines of evidence discussed here strongly foster assessments for variations in genes encoding for K(+) channels and associated proteins in patients with idiopathic epilepsy, provide new avenues for future investigations, and highlight these proteins as critical pharmacological targets.
Collapse
Key Words
- Potassium channels: [Kv1, Kv2, Kv3, Kv4, Kv8, Kv11(HERG), KCa1.1, Kvβ1, Kvβ2, KChIP LGI1, Kir1-Kir7 (GIRK, KATP)]
- autism–epilepsy
- channelopathies
- temporal lobe epilepsy
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Faculty of Medicine, Section of Human Physiology, Department of Internal Medicine, University of Perugia Perugia, Italy ; Istituto Euro Mediterraneo di Scienza e Tecnologia, IEMEST Palermo, Italy
| | | | | | | | | |
Collapse
|
6
|
Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, Aranami F, Sasaki S, Mori A, Kido S, Tatsumi S, Segawa H, Miyamoto KI. Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol 2011; 302:C1316-30. [PMID: 22159077 DOI: 10.1152/ajpcell.00314.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mutations in the apically located Na(+)-dependent phosphate (NaPi) cotransporter, SLC34A3 (NaPi-IIc), are a cause of hereditary hypophosphatemic rickets with hypercalciuria (HHRH). We have characterized the impact of several HHRH mutations on the processing and stability of human NaPi-IIc. Mutations S138F, G196R, R468W, R564C, and c.228delC in human NaPi-IIc significantly decreased the levels of NaPi cotransport activities in Xenopus oocytes. In S138F and R564C mutant proteins, this reduction is a result of a decrease in the V(max) for P(i), but not the K(m). G196R, R468W, and c.228delC mutants were not localized to oocyte membranes. In opossum kidney (OK) cells, cell surface labeling, microscopic confocal imaging, and pulse-chase experiments showed that G196R and R468W mutations resulted in an absence of cell surface expression owing to endoplasmic reticulum (ER) retention. G196R and R468W mutants could be partially stabilized by low temperature. In blue native-polyacrylamide gel electrophoresis analysis, G196R and R468W mutants were either denatured or present in an aggregation complex. In contrast, S138F and R564C mutants were trafficked to the cell surface, but more rapidly degraded than WT protein. The c.228delC mutant did not affect endogenous NaPi uptake in OK cells. Thus, G196R and R468W mutations cause ER retention, while S138F and R564C mutations stimulate degradation of human NaPi-IIc in renal epithelial cells. Together, these data suggest that the NaPi-IIc mutants in HHRH show defective processing and stability.
Collapse
Affiliation(s)
- Sakiko Haito-Sugino
- Department of Molecular Nutrition, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Epitope tagging is a method of expressing proteins whereby an epitope for a specific monoclonal antibody is fused to a target protein using recombinant DNA techniques. The fusion gene is cloned into an appropriate expression vector for the experimental cell type and host cells are transfected. The fusion protein can then be detected and/or purified using a monoclonal antibody specific for the epitope tag. This unit presents protocols for detection and purification of proteins tagged with a particular epitope, the FLAG tag, although the same general approach can be applied to other epitope tags. The protocols in this unit employ the anti-FLAG M2 antibody to detect and purify FLAG-tagged proteins. The methods presented are immunoprecipitation of FLAG fusion proteins from cells using an anti-FLAG M2 affinity gel, detection of FLAG fusion proteins by western blotting, and purification of FLAG fusion proteins by anti-FLAG M2 affinity chromatography.
Collapse
Affiliation(s)
- B Brizzard
- Eastman Kodak Company, New Haven, Connecticut, USA
| | | |
Collapse
|
8
|
Maue RA. Understanding ion channel biology using epitope tags: progress, pitfalls, and promise. J Cell Physiol 2007; 213:618-25. [PMID: 17849449 DOI: 10.1002/jcp.21259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epitope tags have been increasingly used to understand ion channel subunit assembly and interaction, trafficking, subcellular localization, and function in living cells. In particular, epitope tags have proven extremely useful for analyses of closely related, highly homologous channel subunits in endogenous cell contexts in vitro and in vivo, where multiple channel isoforms may be expressed. However, as the variety of epitope tags that have been used has expanded, and the use of tagged channel subunits has become increasingly sophisticated and widespread, there has also been an increase in the number of examples highlighting the potential problems associated with the use of epitope tags for ion channel studies. Described here are some of the epitope tags that have been used to study ion channel subunits, including the HA, FLAG, myc, His6, and green fluorescent protein (GFP) epitopes, as well as some of the applications and avenues of research in which they have proven advantageous. Potential pitfalls and caveats associated with the use of these epitope tags are also discussed, with an emphasis on the need to include careful characterization of epitope-tagged channel subunits as part of their construction. Finally, potential avenues for future investigation and the development of this approach are considered.
Collapse
Affiliation(s)
- Robert A Maue
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
9
|
Heusser K, Yuan H, Neagoe I, Tarasov AI, Ashcroft FM, Schwappach B. Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels. J Cell Sci 2007; 119:4353-63. [PMID: 17038548 DOI: 10.1242/jcs.03196] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arginine (Arg)-based endoplasmic reticulum (ER)-localization signals are involved in the quality control of different heteromultimeric membrane protein complexes. ATP-sensitive potassium (KATP) channels are unique because each subunit in the heterooctamer contains an Arg-based ER-localization signal. We have dissected the inactivation events that override the ER-localization activity of the eight peptide-sorting motifs. Employing a 14-3-3-scavenger construct to lower the availability of 14-3-3 proteins, we found that 14-3-3 proteins promote the cell-surface expression of heterologously expressed and native KATP channels. 14-3-3 proteins were detected in physical association with KATP channels in a pancreatic beta-cell line. Our results suggest that the Arg-based signal present in Kir6.2 is sterically masked by the SUR1 subunit. By contrast, 14-3-3 proteins functionally antagonized the Arg-based signal present in SUR1. The last ten amino acids were required for efficient 14-3-3 recruitment to multimeric forms of the Kir6.2 C-terminus. Channels containing a pore-forming subunit lacking these residues reached the cell surface inefficiently but were functionally indistinguishable from channels formed by the full-length subunits. In conclusion, 14-3-3 proteins promote the cell-surface transport of correctly assembled complexes but do not regulate the activity of KATP channels at the cell surface.
Collapse
Affiliation(s)
- Katja Heusser
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Butt AM, Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 2006; 10:33-44. [PMID: 16563220 PMCID: PMC3933100 DOI: 10.1111/j.1582-4934.2006.tb00289.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/15/2006] [Indexed: 12/22/2022] Open
Abstract
Glia in the central nervous system (CNS) express diverse inward rectifying potassium channels (Kir). The major function of Kir is in establishing the high potassium (K+) selectivity of the glial cell membrane and strongly negative resting membrane potential (RMP), which are characteristic physiological properties of glia. The classical property of Kir is that K+ flows inwards when the RMP is negative to the equilibrium potential for K+ (E(K)), but at more positive potentials outward currents are inhibited. This provides the driving force for glial uptake of K+ released during neuronal activity, by the processes of "K+ spatial buffering" and "K+ siphoning", considered a key function of astrocytes, the main glial cell type in the CNS. Glia express multiple Kir channel subtypes, which are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors, including pH, ATP, G-proteins, neurotransmitters and hormones. A feature of CNS glia is their specific expression of the Kir4.1 subtype, which is a major K+ conductance in glial cell membranes and has a key role in setting the glial RMP. It is proposed that Kir4.1 have a primary function in K+ regulation, both as homomeric channels and as heteromeric channels by co-assembly with Kir5.1 and probably Kir2.0 subtypes. Significantly, Kir4.1 are also expressed by oligodendrocytes, the myelin-forming cells of the CNS, and the genetic ablation of Kir4.1 results in severe hypomyelination. Hence, Kir, and in particular Kir4.1, are key regulators of glial functions, which in turn determine neuronal excitability and axonal conduction.
Collapse
Affiliation(s)
- Arthur M Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, U.K.
| | | |
Collapse
|
11
|
Rungroj N, Devonald MAJ, Cuthbert AW, Reimann F, Akkarapatumwong V, Yenchitsomanus PT, Bennett WM, Karet FE. A Novel Missense Mutation in AE1 Causing Autosomal Dominant Distal Renal Tubular Acidosis Retains Normal Transport Function but Is Mistargeted in Polarized Epithelial Cells. J Biol Chem 2004; 279:13833-8. [PMID: 14734552 DOI: 10.1074/jbc.m400188200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in SLC4A1, encoding the chloride-bicarbonate exchanger AE1, cause distal renal tubular acidosis (dRTA), a disease of defective urinary acidification by the distal nephron. In this study we report a novel missense mutation, G609R, causing dominant dRTA in affected members of a large Caucasian pedigree who all exhibited metabolic acidosis with alkaline urine, prominent nephrocalcinosis, and progressive renal impairment. To investigate the potential disease mechanism, the consequent effects of this mutation were determined. We first assessed anion transport function of G609R by expression in Xenopus oocytes. Western blotting and immunofluorescence demonstrated that the mutant protein was expressed at the oocyte cell surface. Measuring chloride and bicarbonate fluxes revealed normal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-inhibitable anion exchange, suggesting that loss-of-function of kAE1 cannot explain the severe disease phenotype in this kindred. We next expressed epitope-tagged wild-type or mutant kAE1 in Madin-Darby canine kidney cells. In monolayers grown to polarity, mutant kAE1 was detected subapically and at the apical membrane, as well as at the basolateral membrane, in contrast to the normal basolateral appearance of wild-type kAE1. These findings suggest that the seventh transmembrane domain that contains Gly-609 plays an important role in targeting kAE1 to the correct cell surface compartment. They confirm that dominant dRTA is associated with non-polarized trafficking of the protein, with no significant effect on anion transport function in vitro, which remains an unusual mechanism of human disease.
Collapse
Affiliation(s)
- Nanyawan Rungroj
- Departments of Medical Genetics,University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
An ion channel protein begins life as a nascent peptide inside a ribosome, moves to the endoplasmic reticulum where it becomes integrated into the lipid bilayer, and ultimately forms a functional unit that conducts ions in a well-regulated fashion. Here, I discuss the nascent peptide and its tasks as it wends its way through ribosomal tunnels and exit ports, through translocons, and into the bilayer. We are just beginning to explore the sequence of these events, mechanisms of ion channel structure formation, when biogenic decisions are made, and by which participants. These decisions include when to exit the endoplasmic reticulum and with whom to associate. Such issues govern the expression of ion channels at the cell surface and thus the electrical activity of a cell.
Collapse
Affiliation(s)
- Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Bruns JB, Hu B, Ahn YJ, Sheng S, Hughey RP, Kleyman TR. Multiple epithelial Na+ channel domains participate in subunit assembly. Am J Physiol Renal Physiol 2003; 285:F600-9. [PMID: 12770839 DOI: 10.1152/ajprenal.00095.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial sodium channels (ENaCs) are composed of three structurally related subunits that form a tetrameric channel. The Xenopus laevis oocyte expression system was used to identify regions within the ENaC alpha-subunit that confer a dominant negative phenotype on functional expression of alphabetagamma-ENaC to define domains that have a role in subunit-subunit interactions. Coexpression of full-length mouse alphabetagamma-ENaC with either 1) the alpha-subunit first membrane-spanning domain and short downstream hydrophobic domain (alpha-M1H1); 2) alpha-M1H1 and its downstream hydrophilic extracellular loop (alpha-M1H1-ECL); 3) the membrane-spanning domain of a control type 2 transmembrane protein (glutamyl transpeptidase; gamma-GT) fused to the alpha-ECL (gamma-GT-alpha-ECL); 4) the extracellular domain of a control type 1 transmembrane protein (Tac) fused to the alpha-subunit second membrane-spanning domain and short upstream hydrophobic domain (Tac-alpha-H2M2); or 5) the alpha-subunit cytoplasmic COOH terminus (alpha-Ct) significantly reduced amiloride-sensitive Na+ currents in X. laevis oocytes. Functional expression of Na+ channels was not inhibited when full-length alphabetagamma-ENaC was coexpressed with either 1) the alpha-ECL lacking a signal-anchor sequence, 2) alpha-M1H1 and alpha-Ct expressed as a fusion protein, 3) full-length gamma-GT, or 4) full-length Tac. Furthermore, the expression of ROMK channels was not inhibited when full-length ROMK was coexpressed with either alpha-M1H1-ECL or alpha-Ct. Full-length FLAG-tagged alpha-, beta-, or gamma-ENaC coimmunoprecipitated with myc-tagged alpha-M1H1-ECL, whereas wild-type gamma-GT did not. These data suggest that multiple sites within the alpha-subunit participate in subunit-subunit interactions that are required for proper assembly of the heterooligomeric ENaC complex.
Collapse
Affiliation(s)
- James B Bruns
- Department of Medicine, University of Pittsburgh, 15261, USA
| | | | | | | | | | | |
Collapse
|
14
|
Konstas AA, Korbmacher C, Tucker SJ. Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels. Am J Physiol Cell Physiol 2003; 284:C910-7. [PMID: 12456399 DOI: 10.1152/ajpcell.00479.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heteromultimerization between different inwardly rectifying (Kir) potassium channel subunits is an important mechanism for the generation of functional diversity. However, little is known about the mechanisms that control this process and that prevent promiscuous interactions in cells that express many different Kir subunits. In this study, we have examined the heteromeric assembly of Kir5.1 with other Kir subunits and have shown that this subunit exhibits a highly selective interaction with members of the Kir4.0 subfamily and does not physically associate with other Kir subunits such as Kir1.1, Kir2.1, and Kir6.2. Furthermore, we have identified regions within the Kir4.1 subunit that appear to govern the specificity of this interaction. These results help us to understand the mechanisms that control Kir subunit recognition and assembly and how cells can express many different Kir channels while maintaining distinct subpopulations of homo- and heteromeric channels within the cell.
Collapse
|
15
|
Egan TM, Migita K, Voigt MM. Relating the Structure of ATP-Gated Ion Channel Receptors to Their Function. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01006-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Schram G, Melnyk P, Pourrier M, Wang Z, Nattel S. Kir2.4 and Kir2.1 K(+) channel subunits co-assemble: a potential new contributor to inward rectifier current heterogeneity. J Physiol 2002; 544:337-49. [PMID: 12381809 PMCID: PMC2290597 DOI: 10.1113/jphysiol.2002.026047] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Heteromeric channel assembly is a potential source of physiological variability. The potential significance of Kir2 subunit heterotetramerization has been controversial, but recent findings suggest that heteromultimerization of Kir2.1-3 may be significant. This study was designed to investigate whether the recently described Kir2.4 subunit can form heterotetramers with the important subunit Kir2.1, and if so, to investigate whether the resulting heterotetrameric channels are functional. Co-expression of either dominant negative Kir2.1 or Kir2.4 subunits in Xenopus oocytes with either wild-type Kir2.1 or 2.4 strongly decreased resulting current amplitude. To examine physical association between Kir2.1 and Kir2.4, Cos-7 cells were co-transfected with a His(6)-tagged Kir2.1 subunit (Kir2.1-His(6)) and a FLAG-tagged Kir2.4 subunit (Kir2.4-FLAG). After pulldown with a His(6)-binding resin, Kir2.4-FLAG could be detected in the eluted cell lysate by Western blotting, indicating co-assembly of Kir2.1-His(6) and Kir2.4-FLAG. Expression of a tandem construct containing covalently linked Kir2.1 and 2.4 subunits led to robust current expression. Kir2.1-Kir2.4 tandem subunit expression, as well as co-injection of Kir2.1 and Kir2.4 cRNA into Xenopus oocytes, produced currents with barium sensitivity greater than that of Kir2.1 or Kir2.4 subunit expression alone. These results show that Kir2.4 subunits can co-assemble with Kir2.1 subunits, and that co-assembled channels are functional, with properties different from those of Kir2.4 or Kir2.1 alone. Since Kir2.1 and Kir2.4 mRNAs have been shown to co-localize in the CNS, Kir2.1 and Kir2.4 heteromultimers might play a role in the heterogeneity of native inward rectifier currents.
Collapse
Affiliation(s)
- Gernot Schram
- Department of Medicine and Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | | | | | | | | |
Collapse
|
17
|
Abstract
Potassium channels are multi-subunit complexes, often composed of several polytopic membrane proteins and cytosolic proteins. The formation of these oligomeric structures, including both biogenesis and trafficking, is the subject of this review. The emphasis is on events in the endoplasmic reticulum (ER), particularly on how, where, and when K(+) channel polypeptides translocate and integrate into the bilayer, oligomerize and fold to form pore-forming units, and associate with auxiliary subunits to create the mature channel complex. Questions are raised with respect to the sequence of these events, when biogenic decisions are made, models for integration of K(+) channel transmembrane segments, crosstalk between the cell surface and ER, and recognition of compatible partner subunits. Also considered are determinants of subunit composition and stoichiometry, their consequence for trafficking, mechanisms for ER retention and export, and sequence motifs that direct channels to the cell surface. It is these mechanistic issues that govern the differential distributions of K(+) conductances at the cell surface, and hence the electrical activity of cells and tissues underlying both the physiology and pathophysiology of an organism.
Collapse
Affiliation(s)
- Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA.
| |
Collapse
|
18
|
Yi BA, Lin YF, Jan YN, Jan LY. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 2001; 29:657-67. [PMID: 11301025 DOI: 10.1016/s0896-6273(01)00241-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
GIRK2 is a major contributor to G protein-activated inward rectifier potassium channels in the mammalian brain. How GIRK channels open upon contact with Gbetagamma remains unknown. Using a yeast genetic screen to select constitutively active mutants from a randomly mutagenized GIRK2 library, we identified five gating mutations at four residues in the transmembrane domain. Further mutagenesis indicates that GIRK channel opening involves a rotation of the transmembrane segments, bringing one of these residues (V188) to a pore-lining position in the open conformation. Combined with double-mutant studies, these findings suggest that GIRK channels gate by moving from the open conformation inferred from our yeast study of Kir2.1 to a closed conformation perhaps resembling the known KcsA structure.
Collapse
Affiliation(s)
- B A Yi
- Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, 533 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
19
|
Hughes BA, Kumar G, Yuan Y, Swaminathan A, Yan D, Sharma A, Plumley L, Yang-Feng TL, Swaroop A. Cloning and functional expression of human retinal kir2.4, a pH-sensitive inwardly rectifying K(+) channel. Am J Physiol Cell Physiol 2000; 279:C771-84. [PMID: 10942728 DOI: 10.1152/ajpcell.2000.279.3.c771] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify novel potassium channel genes expressed in the retina, we screened a human retina cDNA library with an EST sequence showing partial homology to inwardly rectifying potassium (Kir) channel genes. The isolated cDNA yielded a 2,961-base pair sequence with the predicted open reading frame showing strong homology to the rat Kir2. 4 (rKir2.4). Northern analysis of mRNA from human and bovine tissues showed preferential expression of Kir2.4 in the neural retina. In situ hybridization to sections of monkey retina detected Kir2.4 transcript in most retinal neurons. Somatic hybridization analysis and dual-color in situ hybridization to metaphase chromosomes mapped Kir2.4 to human chromosome 19 q13.1-q13.3. Expression of human Kir2. 4 cRNA in Xenopus oocytes generated strong, inwardly rectifying K(+) currents that were enhanced by extracellular alkalinization. We conclude that human Kir2.4 encodes an inwardly rectifying K(+) channel that is preferentially expressed in the neural retina and that is sensitive to physiological changes in extracellular pH.
Collapse
Affiliation(s)
- B A Hughes
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schwappach B, Zerangue N, Jan YN, Jan LY. Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 2000; 26:155-67. [PMID: 10798400 DOI: 10.1016/s0896-6273(00)81146-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
K(ATP) channels are large heteromultimeric complexes containing four subunits from the inwardly rectifying K+ channel family (Kir6.2) and four regulatory sulphonylurea receptor subunits from the ATP-binding cassette (ABC) transporter family (SUR1 and SUR2A/B). The molecular basis for interactions between these two unrelated protein families is poorly understood. Using novel trafficking-based interaction assays, coimmunoprecipitation, and current measurements, we show that the first transmembrane segment (M1) and the N terminus of Kir6.2 are involved in K(ATP) assembly and gating. Additionally, the transmembrane domains, but not the nucleotide-binding domains, of SUR1 are required for interaction with Kir6.2. The identification of specific transmembrane interactions involved in K(ATP) assembly may provide a clue as to how ABC proteins that transport hydrophobic substrates evolved to regulate other membrane proteins.
Collapse
Affiliation(s)
- B Schwappach
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
21
|
Schoots O, Wilson JM, Ethier N, Bigras E, Hebert TE, Van Tol HH. Co-expression of human Kir3 subunits can yield channels with different functional properties. Cell Signal 1999; 11:871-83. [PMID: 10659995 DOI: 10.1016/s0898-6568(99)00059-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To date, no comprehensive study has been done on all combinations of the human homologues of the Kir3.0 channel family, and the human homologue of Kir3.3 has not yet been identified. To obtain support for the contention that most of the functional data on non-human Kir3.0 channels can be extrapolated to human channels, we have cloned the human homologues of the Kir3.0 family, including the yet unidentified human Kir3.3, and the human Kir4.1. The expression pattern of these channels in various human brain areas and peripheral tissues, analysed by Northern blot analysis, allows for the existence of various homomeric and heteromeric forms of human Kir3.0 channels. Expression studies of all possible combinations in Xenopus oocytes indicated that in homomeric Kir3.2c and heteromeric Kir3.1/3.2c channels mediate, in our studies, inward currents with largest amplitude of any other Kir3.0 channel combinations, followed by heteromeric Kir3.1/3.4 and homomeric Kir4.1 channels. Channel combinations which include Kir3.3 are detrimental to the formation of functional channels. The co-expression experiments with different Kir channel subunits indicate the selective formation of certain channel combinations, suggesting that channel specificity is not solely dependent on spatial and temporal regulation of Kir subunit expression.
Collapse
Affiliation(s)
- O Schoots
- Laboratory for Molecular Neurobiology, Centre for Addiction and Mental Health, Clarke Div., Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Tucker SJ, Ashcroft FM. Mapping of the physical interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2. J Biol Chem 1999; 274:33393-7. [PMID: 10559219 DOI: 10.1074/jbc.274.47.33393] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino-terminal and carboxyl-terminal domains of inwardly rectifying potassium (Kir) channel subunits are both intracellular. There is increasing evidence that both of these domains are required for the regulation of Kir channels by agents such as G-proteins and nucleotides. Kir6.2 is the pore-forming subunit of the ATP-sensitive K(+) (K(ATP)) channel. Using an in vitro protein-protein interaction assay, we demonstrate that the two intracellular domains of Kir6.2 physically interact with each other, and we map a region within the N terminus that is responsible for this interaction. "Cross-talk" through this interaction may explain how mutations in either the N or C terminus can influence the intrinsic ATP-sensitivity of Kir6.2. Interestingly, the "interaction domain" is highly conserved throughout the superfamily of Kir channels. The N-terminal interaction domain of Kir6.2 can also interact with the C terminus of both Kir6.1 and Kir2.1. Furthermore, a mutation within the conserved region of the N-terminal interaction domain, which disrupts its interaction with the C terminus, severely compromised the ability of both Kir6.2 and Kir2.1 to form functional channels, suggesting that this interaction may be a feature common to all members of the Kir family of potassium channels.
Collapse
Affiliation(s)
- S J Tucker
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, United Kingdom.
| | | |
Collapse
|
23
|
Chalfant ML, Denton JS, Langloh AL, Karlson KH, Loffing J, Benos DJ, Stanton BA. The NH(2) terminus of the epithelial sodium channel contains an endocytic motif. J Biol Chem 1999; 274:32889-96. [PMID: 10551853 DOI: 10.1074/jbc.274.46.32889] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An epithelial sodium channel (ENaC) is composed of three homologous subunits: alpha, beta, and gamma. To elucidate the function of the cytoplasmic, NH(2) terminus of rat ENaC (rENaC) subunits, a series of mutant cDNAs was constructed and the cRNAs for all three subunits were expressed in Xenopus oocytes. Amiloride-sensitive Na(+) currents (I(Na)) were measured by the two-electrode voltage clamp technique. Deletion of the cytoplasmic, NH(2) terminus of alpha (Delta2-109), beta (Delta2-49), or gamma-rENaC (Delta2-53) dramatically reduced I(Na). A series of progressive, NH(2)-terminal deletions of alpha-rENaC were constructed to identify motifs that regulate I(Na). Deletion of amino acids 2-46 had no effect on I(Na): however, deletion of amino acids 2-51, 2-55, 2-58, and 2-67 increased I(Na) by approximately 4-fold. By contrast, deletion of amino acids 2-79, 2-89, 2-100, and 2-109 eliminated I(Na). To evaluate the mechanism whereby Delta2-67-alpha-rENaC increased I(Na), single channels were evaluated by patch clamp. The single-channel conductance and open probability of alpha,beta,gamma-rENaC and Delta2-67-alpha,beta,gamma-rENaC were similar. However, the number of active channels in the membrane increased from 6 +/- 1 channels per patch with alpha,beta,gamma-rENaC to 11 +/- 1 channels per patch with Delta2-67-alpha,beta,gamma-rENaC. Laser scanning confocal microscopy confirmed that there were more Delta2-67-alpha,beta, gamma-rENaC channels in the plasma membrane than alpha,beta, gamma-rENaC channels. Deletion of amino acids 2-67 in alpha-rENaC reduced the endocytic retrieval of channels from the plasma membrane and increased the half-life of the channel in the membrane from 1.1 +/- 0.2 to 3.5 +/- 1.1 h. We conclude that the cytoplasmic, NH(2) terminus of alpha-, beta-, and gamma-rENaC is required for channel activity. The cytoplasmic, NH(2) terminus of alpha-rENaC contains two key motifs. One motif regulates the endocytic retrieval of the channel from the plasma membrane. The second motif is required for channel activity.
Collapse
Affiliation(s)
- M L Chalfant
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci 1999. [PMID: 10377337 DOI: 10.1523/jneurosci.19-13-05255.1999] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large-conductance Ca2+- and voltage-dependent potassium (BK) channels exhibit functional diversity not explained by known splice variants of the single Slo alpha-subunit. Here we describe an accessory subunit (beta3) with homology to other beta-subunits of BK channels that confers inactivation when it is coexpressed with Slo. Message encoding the beta3 subunit is found in rat insulinoma tumor (RINm5f) cells and adrenal chromaffin cells, both of which express inactivating BK channels. Channels resulting from coexpression of Slo alpha and beta3 subunits exhibit properties characteristic of native inactivating BK channels. Inactivation involves multiple cytosolic, trypsin-sensitive domains. The time constant of inactivation reaches a limiting value approximately 25-30 msec at Ca2+ of 10 microM and positive activation potentials. Unlike Shaker N-terminal inactivation, but like native inactivating BK channels, a cytosolic channel blocker does not compete with the native inactivation process. Finally, the beta3 subunit confers a reduced sensitivity to charybdotoxin, as seen with native inactivating BK channels. Inactivation arises from the N terminal of the beta3 subunit. Removal of the beta3 N terminal (33 amino acids) abolishes inactivation, whereas the addition of the beta3 N terminal onto the beta1 subunit confers inactivation. The beta3 subunit shares with the beta1 subunit an ability to shift the range of voltages over which channels are activated at a given Ca2+. Thus, the beta-subunit family of BK channels regulates a number of critical aspects of BK channel phenotype, including inactivation and apparent Ca2+ sensitivity.
Collapse
|
25
|
Zerangue N, Schwappach B, Jan YN, Jan LY. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 1999; 22:537-48. [PMID: 10197533 DOI: 10.1016/s0896-6273(00)80708-4] [Citation(s) in RCA: 808] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proper ion channel function often requires specific combinations of pore-forming alpha and regulatory beta subunits, but little is known about the mechanisms that regulate the surface expression of different channel combinations. Our studies of ATP-sensitive K+ channel (K(ATP)) trafficking reveal an essential quality control function for a trafficking motif present in each of the alpha (Kir6.1/2) and beta (SUR1) subunits of the K(ATP) complex. We show that this novel motif for endoplasmic reticulum (ER) retention/retrieval is required at multiple stages of K(ATP) assembly to restrict surface expression to fully assembled and correctly regulated octameric channels. We conclude that exposure of a three amino acid motif (RKR) can explain how assembly of an ion channel complex is coupled to intracellular trafficking.
Collapse
Affiliation(s)
- N Zerangue
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143-0725, USA
| | | | | | | |
Collapse
|
26
|
Karschin C, Karschin A. Chapter 15 Distribution of Inwardly Rectifying Potassium Channels in the Brain. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
27
|
Chapter 9 The Assembly of Inwardly Rectifying Potassium Channels. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
28
|
Abstract
Inwar J rectifier K+ channels control resting membrane potential, cell excitability, insulin secretion and renal K+ transport. Much progress has been made in the structure and regulation, as well as the molecular identity and physiological role played by the channels. This review discusses recent advances in inward rectifier K+ channels with a special emphasis on the renal channels.
Collapse
Affiliation(s)
- C L Huang
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8856, USA.
| |
Collapse
|
29
|
Episodic ataxia mutations in Kv1.1 alter potassium channel function by dominant negative effects or haploinsufficiency. J Neurosci 1998. [PMID: 9526001 DOI: 10.1523/jneurosci.18-08-02842.1998] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Subunits of the voltage-gated potassium channel Kv1.1 containing mutations responsible for episodic ataxia (EA), a human inherited neurological disease, were expressed in Xenopus oocytes. Five EA subunits formed functional homomeric channels with lower current amplitudes and altered gating properties compared with wild type. Two EA mutations located in the first cytoplasmic loop, R239S and F249I, yielded minimal or no detectable current, and Western blot analysis showed reduced protein levels. Coinjection of equal amounts of EA and wild-type mRNAs, mimicking the heterozygous condition, resulted in current amplitudes and gating properties that were intermediate between wild-type and EA homomeric channels, suggesting that heteromeric channels are formed with a mixed stoichiometry of EA and wild-type subunits. To examine the relative contribution of EA subunits in forming heteromeric EA and wild-type channels, each EA subunit was made insensitive to TEA, TEA-tagged, and coexpressed with wild-type subunits. TEA-tagged R239S and F249I induced the smallest shift in TEA sensitivity compared with homomeric wild-type channels, whereas the other TEA-tagged EA subunits yielded TEA sensitivities similar to coexpression of wild-type and TEA-tagged wild-type subunits. Taken together, these results show that the different mutations in Kv1.1 affect channel function and indicate that both dominant negative effects and haplotype insufficiency may result in the symptoms of EA.
Collapse
|
30
|
Koster JC, Bentle KA, Nichols CG, Ho K. Assembly of ROMK1 (Kir 1.1a) inward rectifier K+ channel subunits involves multiple interaction sites. Biophys J 1998; 74:1821-9. [PMID: 9545044 PMCID: PMC1299526 DOI: 10.1016/s0006-3495(98)77892-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ROMK1 (Kir 1.1a) channel is formed by a tetrameric complex of subunits, each characterized by cytoplasmic N- and C-termini and a core region of two transmembrane helices flanking a pore-forming segment. To delineate the general regions mediating the assembly of ROMK1 subunits we constructed epitope-tagged N-terminal, C-terminal, and transmembrane segment deletion mutants. Nonfunctional subunits with N-terminal, core region, and C-terminal deletions had dominant negative effects when coexpressed with wild-type ROMK1 subunits in Xenopus oocytes. In contrast, coexpression of these nonfunctional subunits with Kv 2.1 (DRK1) did not suppress Kv 2.1 currents in control oocytes. Interactions between epitope-tagged mutant and wild-type ROMK1 subunits were studied in parallel by immunoprecipitating [35S]-labeled oocyte membrane proteins. Complexes containing both wild-type and mutant subunits that retained H5, M2, and C-terminal regions were coimmunoprecipitated to a greater extent than complexes consisting of wild-type and mutant subunits with core region and/or C-terminal deletions. The present findings are consistent with the hypothesis that multiple interaction sites located in the core region and cytoplasmic termini of ROMK1 subunits mediate homomultimeric assembly.
Collapse
Affiliation(s)
- J C Koster
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
31
|
Lorenz E, Alekseev AE, Krapivinsky GB, Carrasco AJ, Clapham DE, Terzic A. Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel. Mol Cell Biol 1998; 18:1652-9. [PMID: 9488482 PMCID: PMC108880 DOI: 10.1128/mcb.18.3.1652] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1997] [Accepted: 12/12/1997] [Indexed: 02/06/2023] Open
Abstract
Structurally unique among ion channels, ATP-sensitive K+ (KATP) channels are essential in coupling cellular metabolism with membrane excitability, and their activity can be reconstituted by coexpression of an inwardly rectifying K+ channel, Kir6.2, with an ATP-binding cassette protein, SUR1. To determine if constitutive channel subunits form a physical complex, we developed antibodies to specifically label and immunoprecipitate Kir6.2. From a mixture of Kir6.2 and SUR1 in vitro-translated proteins, and from COS cells transfected with both channel subunits, the Kir6.2-specific antibody coimmunoprecipitated 38- and 140-kDa proteins corresponding to Kir6.2 and SUR1, respectively. Since previous reports suggest that the carboxy-truncated Kir6.2 can form a channel independent of SUR, we deleted 114 nucleotides from the carboxy terminus of the Kir6.2 open reading frame (Kir6.2deltaC37). Kir6.2deltaC37 still coimmunoprecipitated with SUR1, suggesting that the distal carboxy terminus of Kir6.2 is unnecessary for subunit association. Confocal microscopic images of COS cells transfected with Kir6.2 or Kir6.2deltaC37 and labeled with fluorescent antibodies revealed unique honeycomb patterns unlike the diffuse immunostaining observed when cells were cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1. Membrane patches excised from COS cells cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 exhibited single-channel activity characteristic of pancreatic KATP channels. Kir6.2deltaC37 alone formed functional channels with single-channel conductance and intraburst kinetic properties similar to those of Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 but with reduced burst duration. This study provides direct evidence that an inwardly rectifying K+ channel and an ATP-binding cassette protein physically associate, which affects the cellular distribution and kinetic behavior of a KATP channel.
Collapse
Affiliation(s)
- E Lorenz
- Department of Medicine, Mayo Clinic, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ludwig J, Owen D, Pongs O. Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-à-go-go potassium channel. EMBO J 1997; 16:6337-45. [PMID: 9400421 PMCID: PMC1170240 DOI: 10.1093/emboj/16.21.6337] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The specific assembly of subunits to oligomers is an important prerequisite for producing functional potassium channels. We have studied the assembly of voltage-gated rat ether-à-go-go (r-eag) potassium channels with two complementary assays. In protein overlay binding experiments it was shown that a 41-amino-acid domain, close to the r-eag subunit carboxy-terminus, is important for r-eag subunit interaction. In an in vitro expression system it was demonstrated that r-eag subunits lacking this assembly domain cannot form functional potassium channels. Also, a approximately 10-fold molar excess of the r-eag carboxy-terminus inhibited in co-expression experiments the formation of functional r-eag channels. When the r-eag carboxy-terminal assembly domain had been mutated, the dominant-negative effect of the r-eag carboxy-terminus on r-eag channel expression was abolished. The results demonstrate that a carboxy-terminal assembly domain is essential for functional r-eag potassium channel expression, in contrast to the one of Shaker-related potassium channels, which is directed by an amino-terminal assembly domain.
Collapse
Affiliation(s)
- J Ludwig
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Germany
| | | | | |
Collapse
|
33
|
Adams CM, Snyder PM, Welsh MJ. Interactions between subunits of the human epithelial sodium channel. J Biol Chem 1997; 272:27295-300. [PMID: 9341177 DOI: 10.1074/jbc.272.43.27295] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human epithelial sodium channel (hENaC) mediates Na+ transport across the apical membrane of epithelia, and mutations in hENaC result in hypertensive and salt-wasting diseases. In heterologous expression systems, maximal hENaC function requires co-expression of three homologous proteins, the alpha, beta, and gammahENaC subunits, suggesting that hENaC subunits interact to form a multimeric channel complex. Using a co-immunoprecipitation assay, we found that hENaC subunits associated tightly to form homo- and heteromeric complexes and that the association between subunits occurred early in channel biosynthesis. Deletion analysis of gammahENaC revealed that the N terminus was sufficient but not necessary for co-precipitation of alphahENaC, and that both the N terminus and the second transmembrane segment (M2) were required for gamma subunit function. The biochemical studies were supported by functional studies. Co-expression of gamma subunits lacking M2 with full-length hENaC subunits revealed an inhibitory effect on hENaC channel function that appeared to be mediated by the cytoplasmic N terminus of gamma, and was consistent with the assembly of nonfunctional subunits into the channel complex. We conclude that the N terminus of gammahENaC is involved in channel assembly.
Collapse
Affiliation(s)
- C M Adams
- Howard Hughes Medical Institute and Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
34
|
Gosset P, Ghezala GA, Korn B, Yaspo ML, Poutska A, Lehrach H, Sinet PM, Créau N. A new inward rectifier potassium channel gene (KCNJ15) localized on chromosome 21 in the Down syndrome chromosome region 1 (DCR1). Genomics 1997; 44:237-41. [PMID: 9299242 DOI: 10.1006/geno.1997.4865] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Down syndrome chromosome region-1 (DCR1) on subband q22.2 of chromosome 21 is thought to contain genes contributing to many features of the trisomy 21 phenotype, including dysmorphic features, hypotonia, and psychomotor delay. Isolation, mapping, and sequencing of trapped exons and captured cDNAs from cosmids of this region have revealed the presence of a gene (KCNJ15) encoding a potassium (K+) channel belonging to the family of inward rectifier K+ (Kir) channels. The amino acid sequence deduced from the 1125-bp open reading frame indicates that this gene is a member of the Kir4 subfamily; it has been named Kir4.2. It is expressed in kidney and lung during human development and in several adult tissues including kidney and brain. After Kir3.2 (GIRK2), Kir4.2 is the second K+ channel gene of this type described within the DCR1.
Collapse
Affiliation(s)
- P Gosset
- Faculté de Médecine Necker, CNRS URA1335, 156 rue de Vaugirard, Paris, 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nelson CS, Marino JL, Allen CN. Cloning and characterization of Kir3.1 (GIRK1) C-terminal alternative splice variants. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:185-96. [PMID: 9191093 DOI: 10.1016/s0169-328x(96)00301-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Southern blot analysis of RT-PCR products from brain and heart revealed multiple products for a C-terminal region of Kir3.1. Sequencing yielded clones for wild-type Kir3.1 and three Kir3.1 C-terminal alternative splice variants, including a unique alternative exon. Two of these variants encoded truncated Kir3.1 molecules. Tissue distribution and electrophysiological characterization of a single truncated variant, Kir3.1(00) were then examined. Kir3.1 channels are gated by G-protein beta gamma-subunits binding to the C-terminal domain, thus, the truncation of Kir3.1(00) removes a major functional domain. When incorporated into heteromeric channels with other family members (Kir3.1, 3.2 or 3.4) several functional changes were observed: (1) Kir3.1(00) changes G-protein activation of Kir3 channels; (2) Kir3.1(00) is restricted in its ability to assemble with other channel subunits as heteromers; and (3) incorporation of Kir3.1(00) into heteromeric channel complexes alters the kinetics of channel re-activation.
Collapse
Affiliation(s)
- C S Nelson
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201, USA.
| | | | | |
Collapse
|
36
|
Woodward R, Stevens EB, Murrell-Lagnado RD. Molecular determinants for assembly of G-protein-activated inwardly rectifying K+ channels. J Biol Chem 1997; 272:10823-30. [PMID: 9099737 DOI: 10.1074/jbc.272.16.10823] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kir3.1 and Kir3.2 associate to form G-protein-activated, inwardly rectifying K+ channels. To identify regions involved in the coassembly of these subunits, truncated Kir3.1 polypeptides were coexpressed with epitope-tagged subunits in an in vitro translation system. N-terminal, C-terminal, and core region polypeptides were coimmunoprecipitated with both Kir3.2 and Kir3.1, suggesting that multiple elements distributed throughout the Kir3.1 polypeptide contribute to intersubunit binding interactions. The Kir3.2 C-terminal polypeptide coimmunoprecipitated with the Kir3.1 C-terminal polypeptide, but neither region recognized the N-terminal domain and core region of the Kir3.1 subunit. This suggests that within Kir3 channels the C-terminal domains of neighboring subunits interact. Coexpression of the truncated polypeptides with Kir3.1 and Kir3.2 in Xenopus oocytes reduced functional expression of the heteromeric channels. Constructs encoding the core region plus N-terminal and proximal C-terminal regions competed more effectively than the core region alone, which supports the contribution of all three regions to intersubunit binding interactions. Proximal and distal segments of the C-terminal domain were as effective at inhibiting functional expression as the entire C-terminal domain.
Collapse
Affiliation(s)
- R Woodward
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, United Kingdom
| | | | | |
Collapse
|
37
|
Gribble FM, Tucker SJ, Ashcroft FM. The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J 1997; 16:1145-52. [PMID: 9135131 PMCID: PMC1169713 DOI: 10.1093/emboj/16.6.1145] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ATP-sensitive K-channel (K-ATP channel) plays a key role in insulin secretion from pancreatic beta-cells. It is closed by glucose metabolism, which stimulates insulin secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and Mg-ADP, which inhibit and potentiate channel activity, respectively. The beta-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. We have mutated (independently or together) two lysine residues in the Walker A (W(A)) motifs of the first (K719A) and second (K1384M) nucleotide-binding domains (NBDs) of SUR1. These mutations are expected to inhibit nucleotide hydrolysis. Our results indicate that the W(A) lysine of NBD1 (but not NBD2) is essential for activation of K-ATP currents by diazoxide. The potentiatory effects of Mg-ADP required the presence of the W(A) lysines in both NBDs. Mutant currents were slightly more sensitive to ATP than wild-type currents. Metabolic inhibition led to activation of wild-type and K1384M currents, but not K719A or K719A/K1384M currents, suggesting that there may be a factor in addition to ATP and ADP which regulates K-ATP channel activity.
Collapse
Affiliation(s)
- F M Gribble
- University Laboratory of Physiology, Oxford, UK
| | | | | |
Collapse
|
38
|
Shuck ME, Piser TM, Bock JH, Slightom JL, Lee KS, Bienkowski MJ. Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3). J Biol Chem 1997; 272:586-93. [PMID: 8995301 DOI: 10.1074/jbc.272.1.586] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The DNA sequence encoding the rat brain inward rectifier-10 K+ channel was amplified from rat brain RNA using reverse transcription-polymerase chain reaction and used to clone the human homolog. Low stringency screening of a human kidney cDNA library and subsequent DNA sequence analysis identified two related K+ inward rectifier cDNAs, referred to as Kir1.2 and Kir1.3, which were derived from transcription of distinct human genes. Kir1.2 represents the human homolog of the rat BIRK-10 sequence, whereas Kir1.3 was unique compared with all available sequence data bases. The genes that encode Kir1.2 and Kir1.3 were mapped to human chromosomes 1 and 21, respectively. Both genes showed tissue-specific expression when analyzed by Northern blots. Kir1.2 was only detected in brain >> kidney and was detected at high levels in all brain regions examined. Kir1.3 was most readily detected in kidney and was also expressed in pancreas > lung. Comparative analysis of the predicted amino acid sequences for Kir1.2 and Kir1.3 revealed they were 62% identical. The most remarkable difference between the two polypeptides is that the Walker Type A consensus binding motif present in both Kir1.1 and Kir1.2 was not conserved in the Kir1.3 sequence. Expression of the Kir1.2 polypeptide in Xenopus oocytes resulted in the synthesis of a K+-selective channel that exhibited an inwardly rectifying current-voltage relationship and was inhibited by external Ba2+ and Cs+. Kir1.2 current amplitude was reduced by >85% when the pH was decreased from pH 7.4 to 5.9 using the membrane-permeant buffer acetate but was relatively unaffected when pH was similarly lowered using membrane-impermeant biphthalate. The inhibition by intracellular protons was voltage-independent with an IC50 of pH 6.2 and a Hill coefficient of 1.9, suggesting the cooperative binding of 2 protons to the intracellular face of the channel. In contrast, Kir1.3 expression in Xenopus oocytes was not detectable despite the fact that the cRNA efficiently directed the synthesis of a polypeptide of the expected Mr in an in vitro translation system. Co-expression of Kir1.3 with either Kir1.1 or Kir1.2 reduced currents resulting from expression of these inward-rectifier subunits alone, consistent with a dominant negative influence on Kir1.1 and Kir1.2 expression.
Collapse
Affiliation(s)
- M E Shuck
- Department of Cell Biology and Inflammation Research, Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49007, USA
| | | | | | | | | | | |
Collapse
|
39
|
Gribble FM, Ashfield R, Ammälä C, Ashcroft FM. Properties of cloned ATP-sensitive K+ currents expressed in Xenopus oocytes. J Physiol 1997; 498 ( Pt 1):87-98. [PMID: 9023770 PMCID: PMC1159236 DOI: 10.1113/jphysiol.1997.sp021843] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. We have studied the electrophysiological properties of cloned ATP-sensitive K+ channels (KATP channels) heterologously expressed in Xenopus oocytes. This channel comprises a sulphonylurea receptor subunit (SUR) and an inwardly rectifying K+ channel subunit (Kir). 2. Oocytes injected with SUR1 and either Kir6.2 or Kir6.1 exhibited large inwardly rectifying K+ currents when cytosolic ATP levels were lowered by the metabolic inhibitors azide or FCCP. No currents were observed in response to azide in oocytes injected with Kir6.2, Kir6.1 or SUR1 alone, indicating that both the sulphonylurea receptor (SUR1) and an inward rectifier (Kir6.1 or Kir6.2) are needed for functional channel activity. 3. The pharmacological properties of Kir6.2-SUR1 currents resembled those of native beta-cell ATP-sensitive K+ channel currents (KATP currents): the currents were > 90% blocked by tolbutamide (500 microM), meglitinide (10 microM) or glibenclamide (100 nM), and activated 1.8-fold by diazoxide (340 microM), 1.4-fold by pinacidil (1 mM) and unaffected by cromakalim (0.5 mM). 4. Macroscopic Kir6.2-SUR1 currents in inside-out patches were inhibited by ATP with a Ki of 28 microM. Kir6.1-SUR1 currents ran down within seconds of patch excision preventing analysis of ATP sensitivity. 5. No sensitivity to tolbutamide or metabolic inhibition was observed when SUR1 was coexpressed with either Kir1.1a or Kir2.1, suggesting that these proteins do not couple in Xenopus ocytes. 6. Our data demonstrate that the Xenopus oocyte constitutes a good expression system for cloned KATP channels and that expression may be assayed by azide-induced metabolic inhibition.
Collapse
Affiliation(s)
- F M Gribble
- University Laboratory of Physiology, Oxford, UK
| | | | | | | |
Collapse
|
40
|
Abstract
Inwardly rectifying potassium channels have an important role in determining the resting potential of the cell. They are tetrameric proteins with two transmembrane segments (M1 and M2), a pore-forming loop (H5), a cytoplasmic N-terminal, and longer C-terminal domain. We have used biochemical and electrophysiological methods to identify regions required for homotypic interactions and those responsible for the incompatibility between IRK1 and two other members of the same subfamily (IRK2 and IRK3) and two members from other subfamilies (ROMK1 and 6.1 uK(ATP)). The data indicate that, in contrast to the voltage-gated class of potassium channel, the proximal C-terminus and the transmembrane segment M2 determine homo-and heteromultimerization and that heteromultimerization between members of the same or different subfamilies is case specific.
Collapse
Affiliation(s)
- A Tinker
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143-0724, USA
| | | | | |
Collapse
|
41
|
Tucker SJ, Pessia M, Moorhouse AJ, Gribble F, Ashcroft FM, Maylie J, Adelman JP. Heteromeric channel formation and Ca(2+)-free media reduce the toxic effect of the weaver Kir 3.2 allele. FEBS Lett 1996; 390:253-7. [PMID: 8706871 DOI: 10.1016/0014-5793(96)00635-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Weaver mice have a severe hypoplasia of the cerebellum with an almost complete loss of the midline granule cells. Recent genetic studies of weaver mice have identified a mutation resulting in an amino acid substitution (G156S) in the pore of the inwardly rectifying potassium channel subunit Kir 3.2. When expressed in Xenopus oocytes the weaver mutation alters channel selectivity from a potassium-selective to a nonspecific cation-selective pore. In this study we confirm by cell-attached patch-clamp recording that the mutation produces a non-selective cation channel. We also demonstrate that the cell death induced by weaver expression may be prevented by elimination of calcium from the extracellular solution as well as by coexpression with the wild-type Kir 3.2 allele, or other members of the Kir 3.0 subfamily. These results suggest that the weaver defect in Kir 3.2 may cause cerebellar cell death by cell swelling and calcium overload. Cells which express the weaver subunit, but which normally survive, may do so because of heteromeric subunit assembly with wild-type subunits of the Kir 3.0 subfamily.
Collapse
Affiliation(s)
- S J Tucker
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kennedy ME, Nemec J, Clapham DE. Localization and interaction of epitope-tagged GIRK1 and CIR inward rectifier K+ channel subunits. Neuropharmacology 1996; 35:831-9. [PMID: 8938714 DOI: 10.1016/0028-3908(96)00132-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
GIRK1 and CIR are G-protein activated inward rectifier K+ channel subunits that combine to form the heteromultimer IKACh, the G beta gamma-activated atrial K channel responsible for the vagal slowing of heart rate. Epitope-tagged channel subunits were constructed by the introduction of distinct six amino acid epitopes into the C-termini or putative extracellular domains of GIRK1 and CIR. Carboxyl-terminal tagged subunits were activated by purified G beta gamma subunits in inside-out patches when expressed in Cos cells. Interestingly, insertion of three amino acids into the putative extracellular domain of GIRK1 resulted in an inactive subunit that acted as a dominant negative subunit when coexpressed with wild type GIRK1 and CIR in Xenopus oocytes. The epitope-tagged CIR-AU1 subunit coimmunoprecipitated GIRK1-AU5 from metabolically labeled Cos cells. Immunofluorescence labeling of Cos cells localized GIRK1-AU5 to internal cytoskeletal structures that co-stained with antibodies against the intermediate filament protein, vimentin. CIR-AU1 localized primarily to the plasma membrane. Double immunofluorescence labeling showed that GIRK1-AU5 plasma membrane staining was detectable only when coexpressed with CIR-AU1.
Collapse
|