1
|
Altintas DM, Comoglio PM. An Observatory for the MET Oncogene: A Guide for Targeted Therapies. Cancers (Basel) 2023; 15:4672. [PMID: 37760640 PMCID: PMC10526818 DOI: 10.3390/cancers15184672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging results, however, the complexity of MET's functions in oncogenesis yields intriguing observations, fostering a humbler stance on our comprehension. This review explores recent discoveries concerning MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues, and outlining future directions. By contextualizing the research question and articulating the study's purpose, this work navigates MET biology's intricacies in cancer, offering a comprehensive perspective.
Collapse
Affiliation(s)
| | - Paolo M. Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, 20139 Milano, Italy;
| |
Collapse
|
2
|
Intraoperative MET-receptor targeted fluorescent imaging and spectroscopy for lymph node detection in papillary thyroid cancer: novel diagnostic tools for more selective central lymph node compartment dissection. Eur J Nucl Med Mol Imaging 2022; 49:3557-3570. [PMID: 35389070 PMCID: PMC9308606 DOI: 10.1007/s00259-022-05763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
Purpose Patients undergoing prophylactic central compartment dissection (PCLND) for papillary thyroid cancer (PTC) are often overtreated. This study aimed to determine if molecular fluorescence-guided imaging (MFGI) and spectroscopy can be useful for detecting PTC nodal metastases (NM) and to identify negative central compartments intraoperatively. Methods We used a data-driven prioritization strategy based on transcriptomic profiles of 97 primary PTCs and 80 normal thyroid tissues (NTT) to identify tumor-specific antigens for a clinically available near-infrared fluorescent tracer. Protein expression of the top prioritized antigen was immunohistochemically validated with a tissue microarray containing primary PTC (n = 741) and NTT (n = 108). Staining intensity was correlated with 10-year locoregional recurrence-free survival (LRFS). A phase 1 study (NCT03470259) with EMI-137, targeting MET, was conducted to evaluate safety, optimal dosage for detecting PTC NM with MFGI, feasibility of NM detection with quantitative fiber-optic spectroscopy, and selective binding of EMI-137 for MET. Results MET was selected as the most promising antigen. A worse LRFS was observed in patients with positive versus negative MET staining (81.9% versus 93.2%; p = 0.02). In 19 patients, no adverse events related to EMI-137 occurred. 0.13 mg/kg EMI-137 was selected as optimal dosage for differentiating NM from normal lymph nodes using MFGI (p < 0.0001) and spectroscopy (p < 0.0001). MFGI identified 5/19 levels (26.3%) without NM. EMI-137 binds selectively to MET. Conclusion MET is overexpressed in PTC and associated with increased locoregional recurrence rates. Perioperative administration of EMI-137 is safe and facilitates NM detection using MFGI and spectroscopy, potentially reducing the number of negative PCLNDs with more than 25%. Clinical trial registration. NCT03470259. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05763-3.
Collapse
|
3
|
Ali MF, Latimer AJ, Wang Y, Hogenmiller L, Fontenas L, Isabella AJ, Moens CB, Yu G, Kucenas S. Met is required for oligodendrocyte progenitor cell migration in Danio rerio. G3 (BETHESDA, MD.) 2021; 11:jkab265. [PMID: 34568921 PMCID: PMC8473979 DOI: 10.1093/g3journal/jkab265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022]
Abstract
During vertebrate central nervous system development, most oligodendrocyte progenitor cells (OPCs) are specified in the ventral spinal cord and must migrate throughout the neural tube until they become evenly distributed, occupying non-overlapping domains. While this process of developmental OPC migration is well characterized, the nature of the molecular mediators that govern it remain largely unknown. Here, using zebrafish as a model, we demonstrate that Met signaling is required for initial developmental migration of OPCs, and, using cell-specific knock-down of Met signaling, show that Met acts cell-autonomously in OPCs. Taken together, these findings demonstrate in vivo, the role of Met signaling in OPC migration and provide new insight into how OPC migration is regulated during development.
Collapse
Affiliation(s)
- Maria F Ali
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Andrew J Latimer
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Yinxue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Leah Hogenmiller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
4
|
Highly Modular Protein Micropatterning Sheds Light on the Role of Clathrin-Mediated Endocytosis for the Quantitative Analysis of Protein-Protein Interactions in Live Cells. Biomolecules 2020; 10:biom10040540. [PMID: 32252486 PMCID: PMC7225972 DOI: 10.3390/biom10040540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Protein micropatterning is a powerful tool for spatial arrangement of transmembrane and intracellular proteins in living cells. The restriction of one interaction partner (the bait, e.g., the receptor) in regular micropatterns within the plasma membrane and the monitoring of the lateral distribution of the bait’s interaction partner (the prey, e.g., the cytosolic downstream molecule) enables the in-depth examination of protein-protein interactions in a live cell context. This study reports on potential pitfalls and difficulties in data interpretation based on the enrichment of clathrin, which is a protein essential for clathrin-mediated receptor endocytosis. Using a highly modular micropatterning approach based on large-area micro-contact printing and streptavidin-biotin-mediated surface functionalization, clathrin was found to form internalization hotspots within the patterned areas, which, potentially, leads to unspecific bait/prey protein co-recruitment. We discuss the consequences of clathrin-coated pit formation on the quantitative analysis of relevant protein-protein interactions, describe controls and strategies to prevent the misinterpretation of data, and show that the use of DNA-based linker systems can lead to the improvement of the technical platform.
Collapse
|
5
|
Molecular Engineering Strategies Tailoring the Apoptotic Response to a MET Therapeutic Antibody. Cancers (Basel) 2020; 12:cancers12030741. [PMID: 32245152 PMCID: PMC7140090 DOI: 10.3390/cancers12030741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
The MET oncogene encodes a tyrosine kinase receptor involved in the control of a complex network of biological responses that include protection from apoptosis and stimulation of cell growth during embryogenesis, tissue regeneration, and cancer progression. We previously developed an antagonist antibody (DN30) inducing the physical removal of the receptor from the cell surface and resulting in suppression of the biological responses to MET. In its bivalent form, the antibody displayed a residual agonist activity, due to dimerization of the lingering receptors, and partial activation of the downstream signaling cascade. The balance between the two opposing activities is variable in different biological systems and is hardly predictable. In this study, we generated and characterized two single-chain antibody fragments derived from DN30, sharing the same variable regions but including linkers different in length and composition. The two engineered molecules bind MET with high affinity but induce different biological responses. One behaves as a MET-antagonist, promoting programmed cell death in MET “addicted” cancer cells. The other acts as a hepatocyte growth factor (HGF)-mimetic, protecting normal cells from doxorubicin-induced apoptosis. Thus, by engineering the same receptor antibody, it is possible to generate molecules enhancing or inhibiting apoptosis either to kill cancer cells or to protect healthy tissues from the injuries of chemotherapy.
Collapse
|
6
|
Trovato M, Campennì A, Giovinazzo S, Siracusa M, Ruggeri RM. Hepatocyte Growth Factor/C-Met Axis in Thyroid Cancer: From Diagnostic Biomarker to Therapeutic Target. Biomark Insights 2017; 12:1177271917701126. [PMID: 28469401 PMCID: PMC5391983 DOI: 10.1177/1177271917701126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
The hepatocyte growth factor (HGF)/c-met axis plays a crucial role in cancer development by promoting cellular proliferation, motility, and morphogenesis, as well as angiogenesis. Different cellular distributions of both the ligand and the receptor in benign vs malignant lesions indicate this biological system as a candidate for a diagnostic biomarker of malignancy occurring in endocrine glands, such as the thyroid and pituitary. Furthermore, the HGF/c-met expression may help to identify a subset of patients eligible for potential targeted therapies with HGF/c-met inhibitors or antagonists in thyroid tumour, as well as in other malignancies. This may be relevant for iodine-refractory cancers, the treatment of which is still a major challenge. With this in mind, HGF/c-met expression in thyroid cancer tissue may be useful for prognostic and therapeutic stratification of patients.
Collapse
Affiliation(s)
- Maria Trovato
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Messina, Messina, Italy
| | - Alfredo Campennì
- Department of Biomedical Sciences and Morphological and Functional Images, Unit of Nuclear Medicine, University of Messina, Messina, Italy
| | - Salvatore Giovinazzo
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Messina, Messina, Italy
| | - Massimiliano Siracusa
- Department of Biomedical Sciences and Morphological and Functional Images, Unit of Nuclear Medicine, University of Messina, Messina, Italy
| | - Rosaria Maddalena Ruggeri
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Aptamers Binding to c-Met Inhibiting Tumor Cell Migration. PLoS One 2015; 10:e0142412. [PMID: 26658271 PMCID: PMC4676636 DOI: 10.1371/journal.pone.0142412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/21/2015] [Indexed: 01/04/2023] Open
Abstract
The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF). Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX). CLN64 and a previously described single-stranded DNA (ssDNA) aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.
Collapse
|
8
|
Zorzetto M, Ferrari S, Saracino L, Inghilleri S, Stella GM. MET genetic lesions in non-small-cell lung cancer: pharmacological and clinical implications. Transl Lung Cancer Res 2015; 1:194-207. [PMID: 25806181 DOI: 10.3978/j.issn.2218-6751.2012.09.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of death for solid tumors worldwide with an annual mortality of over one million. Lung carcinoma includes a series of different diseases which are roughly divided into two groups based on clinical and histo-pathological features: non-small cell lung cancer (NSCLC), accounting for almost 80% of lung cancer diagnosis and small cell lung cancer (SCLC) responsible for the remaining 20%. The NSCLC molecular profile has been deeply investigated; alterations in several oncogenes, tumor suppressor genes and transcription factors have been detected, mainly in adenocarcinomas. Dissection of such a complex scenario represents a still open challenge for both researchers and clinicians. MET, the receptor for Hepatocyte Growth Factor (HGF), has been recently identified as a novel promising target in several human malignancies, including NSCLC. Deregulation of the HGF/MET signaling pathway can occur via different mechanisms, including HGF and/or MET overexpression, MET gene amplification, mutations or rearrangements. While the role of MET mutations in NSCLC is not yet fully understood, MET amplification emerged as a critical event in driving cell survival, with preclinical data suggesting that MET-amplified cell lines are exquisitely sensitive to MET inhibition. True MET amplification, which has been associated with poor prognosis in different retrospective series, is a relatively uncommon event in NSCLC, occurring in 1-7% of unselected cases. Nevertheless, in highly selected cohorts of patients, such as those harboring somatic mutations of EGFR with acquired resistance to EGFR tyrosine kinase inhibitors, MET amplification can be observed in up to 20% of cases. Preclinical data suggested that a treatment approach including a combination of EGFR and MET tyrosine kinases could be an effective strategy in this setting and led to the clinical investigation of multiple MET inhibitors in combination with anti-EGFR agents. Results from ongoing and future trials will clarify the role of anti-MET molecules for the treatment of NSCLC and will provide insights into the most appropriate timing for their use. The present review recapitulates the current knowledge on the role of MET signaling in NSCLC mainly focusing on its implications in molecular diagnostic approach and on the novel targeted inhibitors.
Collapse
Affiliation(s)
- Michele Zorzetto
- Department of Molecular Medicine, - Section of Pneumology, Laboratory of Biochemistry & Genetics; University and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia- Italy
| | - Simona Ferrari
- Department of Molecular Medicine, - Section of Pneumology, Laboratory of Biochemistry & Genetics; University and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia- Italy
| | - Laura Saracino
- Department of Molecular Medicine, - Section of Pneumology, Laboratory of Biochemistry & Genetics; University and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia- Italy
| | - Simona Inghilleri
- Department of Molecular Medicine, - Section of Pneumology, Laboratory of Biochemistry & Genetics; University and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia- Italy
| | - Giulia M Stella
- Department of Molecular Medicine, - Section of Pneumology, Laboratory of Biochemistry & Genetics; University and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia- Italy
| |
Collapse
|
9
|
Baldanzi G, Graziani A. Physiological Signaling and Structure of the HGF Receptor MET. Biomedicines 2014; 3:1-31. [PMID: 28536396 PMCID: PMC5344233 DOI: 10.3390/biomedicines3010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
The "hepatocyte growth factor" also known as "scatter factor", is a multifunctional cytokine with the peculiar ability of simultaneously triggering epithelial cell proliferation, movement and survival. The combination of those proprieties results in the induction of an epithelial to mesenchymal transition in target cells, fundamental for embryogenesis but also exploited by tumor cells during metastatization. The hepatocyte growth factor receptor, MET, is a proto-oncogene and a prototypical transmembrane tyrosine kinase receptor. Inhere we discuss the MET molecular structure and the hepatocyte growth factor driven physiological signaling which coordinates epithelial proliferation, motility and morphogenesis.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department Translational Medicine, University Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Andrea Graziani
- Department Translational Medicine, University Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
10
|
Barrow R, Joffre C, Ménard L, Kermorgant S. Measuring the Role for Met Endosomal Signaling in Tumorigenesis. Methods Enzymol 2014; 535:121-40. [DOI: 10.1016/b978-0-12-397925-4.00008-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Lalli G. Extracellular Signals Controlling Neuroblast Migration in the Postnatal Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:149-80. [DOI: 10.1007/978-94-007-7687-6_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Peng Y, Huentelman M, Smith C, Qiu S. MET receptor tyrosine kinase as an autism genetic risk factor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:135-65. [PMID: 24290385 DOI: 10.1016/b978-0-12-418700-9.00005-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions.
Collapse
Affiliation(s)
- Yun Peng
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | | | | | | |
Collapse
|
13
|
Rajadurai CV, Havrylov S, Zaoui K, Vaillancourt R, Stuible M, Naujokas M, Zuo D, Tremblay ML, Park M. Met receptor tyrosine kinase signals through a cortactin-Gab1 scaffold complex, to mediate invadopodia. J Cell Sci 2012; 125:2940-53. [PMID: 22366451 PMCID: PMC3434810 DOI: 10.1242/jcs.100834] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive carcinoma cells form actin-rich matrix-degrading protrusions called invadopodia. These structures resemble podosomes produced by some normal cells and play a crucial role in extracellular matrix remodeling. In cancer, formation of invadopodia is strongly associated with invasive potential. Although deregulated signals from the receptor tyrosine kinase Met (also known as hepatocyte growth factor are linked to cancer metastasis and poor prognosis, its role in invadopodia formation is not known. Here we show that stimulation of breast cancer cells with the ligand for Met, hepatocyte growth factor, promotes invadopodia formation, and in aggressive gastric tumor cells where Met is amplified, invadopodia formation is dependent on Met activity. Using both GRB2-associated-binding protein 1 (Gab1)-null fibroblasts and specific knockdown of Gab1 in tumor cells we show that Met-mediated invadopodia formation and cell invasion requires the scaffold protein Gab1. By a structure–function approach, we demonstrate that two proline-rich motifs (P4/5) within Gab1 are essential for invadopodia formation. We identify the actin regulatory protein, cortactin, as a direct interaction partner for Gab1 and show that a Gab1–cortactin interaction is dependent on the SH3 domain of cortactin and the integrity of the P4/5 region of Gab1. Both cortactin and Gab1 localize to invadopodia rosettes in Met-transformed cells and the specific uncoupling of cortactin from Gab1 abrogates invadopodia biogenesis and cell invasion downstream from the Met receptor tyrosine kinase. Met localizes to invadopodia along with cortactin and promotes phosphorylation of cortactin. These findings provide insights into the molecular mechanisms of invadopodia formation and identify Gab1 as a scaffold protein involved in this process.
Collapse
Affiliation(s)
- Charles V Rajadurai
- Department of Biochemistry, McGill University, Montréal Québec H3A 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chaudhuri A, Xie MH, Yang B, Mahapatra K, Liu J, Marsters S, Bodepudi S, Ashkenazi A. Distinct involvement of the Gab1 and Grb2 adaptor proteins in signal transduction by the related receptor tyrosine kinases RON and MET. J Biol Chem 2011; 286:32762-74. [PMID: 21784853 DOI: 10.1074/jbc.m111.239384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although the signal transduction mechanisms of the receptor tyrosine kinase MET are well defined, less is known about its close relative RON. MET initiates intracellular signaling by autophosphorylation on specific cytoplasmic tyrosines that form docking sites for the adaptor proteins Grb2 and Gab1. Grb2 binds directly and is essential for all of the biological activities of MET. Gab1 docks either directly or indirectly via Grb2 and controls only a subset of MET functions. Because MET and RON possess similar adaptor binding sites, it was anticipated that their adaptor interactions would be conserved. Here we show that in contrast to MET, RON relies primarily on Gab1 for signal transmission. Surprisingly, disruption of the Grb2 docking site of RON or Grb2 depletion augments activity, whereas enhancement of Grb2 binding attenuates Gab1 recruitment and signaling. Hence, RON and MET differ in their adaptor interactions; furthermore, Grb2 performs a novel antagonistic role in the context of RON signaling.
Collapse
Affiliation(s)
- Amitabha Chaudhuri
- Department of Molecular Oncology, Genentech, Inc, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat Biotechnol 2011; 29:653-8. [PMID: 21706016 DOI: 10.1038/nbt.1905] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/03/2011] [Indexed: 12/25/2022]
Abstract
Signaling pathways are commonly organized through inducible protein-protein interactions, mediated by adaptor proteins that link activated receptors to cytoplasmic effectors. However, we have little quantitative data regarding the kinetics with which such networks assemble and dissolve to generate specific cellular responses. To address this deficiency, we designed a mass spectrometry method, affinity purification-selected reaction monitoring (AP-SRM), which we used to comprehensively and quantitatively investigate changes in protein interactions with GRB2, an adaptor protein that participates in a remarkably diverse set of protein complexes involved in multiple aspects of cellular function. Our data reliably define context-specific and time-dependent networks that form around GRB2 after stimulation, and reveal core and growth factor-selective complexes comprising 90 proteins identified as interacting with GRB2 in HEK293T cells. Capturing a key hub protein and dissecting its interactions by SRM should be equally applicable to quantifying signaling dynamics for a range of hubs in protein interaction networks.
Collapse
|
16
|
A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol 2011; 13:827-37. [PMID: 21642981 DOI: 10.1038/ncb2257] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/07/2011] [Indexed: 11/08/2022]
Abstract
Compartmentalization of signals generated by receptor tyrosine kinase (RTK) endocytosis has emerged as a major determinant of various cell functions. Here, using tumour-associated Met-activating mutations, we demonstrate a direct link between endocytosis and tumorigenicity. Met mutants exhibit increased endocytosis/recycling activity and decreased levels of degradation, leading to accumulation on endosomes, activation of the GTPase Rac1, loss of actin stress fibres and increased levels of cell migration. Blocking endocytosis inhibited mutants' anchorage-independent growth, in vivo tumorigenesis and metastasis while maintaining their activation. One mutant resistant to inhibition by a Met-specific tyrosine kinase inhibitor was sensitive to endocytosis inhibition. Thus, oncogenicity of Met mutants results not only from activation but also from their altered endocytic trafficking, indicating that endosomal signalling may be a crucial mechanism regulating RTK-dependent tumorigenesis.
Collapse
|
17
|
Riera L, Lasorsa E, Ambrogio C, Surrenti N, Voena C, Chiarle R. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth. J Biol Chem 2010; 285:26441-50. [PMID: 20554525 DOI: 10.1074/jbc.m110.116327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most anaplastic large cell lymphomas (ALCL) express oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. Frequently ALCL carry the t(2;5) translocation, which fuses the ALK gene to the nucleophosmin (NPM1) gene. The transforming activity mediated by NPM-ALK fusion induces different pathways that control proliferation and survival of lymphoma cells. Grb2 is an adaptor protein thought to play an important role in ALK-mediated transformation, but its interaction with NPM-ALK, as well as its function in regulating ALCL signaling pathways and cell growth, has never been elucidated. Here we show that active NPM-ALK, but not a kinase-dead mutant, bound and induced Grb2 phosphorylation in tyrosine 160. An intact SH3 domain at the C terminus of Grb2 was required for Tyr(160) phosphorylation. Furthermore, Grb2 did not bind to a single region but rather to different regions of NPM-ALK, mainly Tyr(152-156), Tyr(567), and a proline-rich region, Pro(415-417). Finally, shRNA knockdown experiments showed that Grb2 regulates primarily the NPM-ALK-mediated phosphorylation of SHP2 and plays a key role in ALCL cell growth.
Collapse
Affiliation(s)
- Ludovica Riera
- Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Ruggeri RM, Vitarelli E, Barresi G, Trimarchi F, Benvenga S, Trovato M. The tyrosine kinase receptor c-met, its cognate ligand HGF and the tyrosine kinase receptor trasducers STAT3, PI3K and RHO in thyroid nodules associated with Hashimoto's thyroiditis: an immunohistochemical characterization. Eur J Histochem 2010; 54:e24. [PMID: 20558345 PMCID: PMC3167304 DOI: 10.4081/ejh.2010.e24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/20/2010] [Accepted: 04/12/2010] [Indexed: 01/07/2023] Open
Abstract
Hepatocyte growth factor (HGF) exerts proliferative activities in thyrocytes upon binding to its tyrosine kinase receptor c-met and is also expressed in benign thyroid nodules as well as in Hashimoto's thyroiditis (HT). The simultaneous expression of HGF/c-met and three trasducers of tyrosine kinase receptors (STAT3, PI3K, RHO) in both the nodular and extranodular tissues were studied by immunohistochemistry in 50 benign thyroid nodules (NGs), 25 of which associated with HT. The ligand/tyrosine kinase receptor pair HGF/c-met and the two trasducers PI3K and RHO were expressed in NGs, regardless of association with HT, with a higher positive cases percentage in HT-associated NGs compared to not HT-associated NGs (25/25 or 100% vs 7/25 or 28%; P<0.001). HGF, PI3K and RHO expression was only stromal (fibroblasts and endothelial cells), in all 32 reactive NGs, while c-met localization was consistently epithelial (thyrocyes). Immunoreactions for HGF, c-met, PI3K and RHO were also apparent in the extra-nodular tissue of HT specimens, where HGF and PI3K were expressed not only in stromal cells but also in thyrocyes along with the c-met. Finally, a positive correlation was observed between the proportion of HGF, c-met, PI3K follicular cells and the grade of lymphoid aggregates in HT. In conclusion, HGF, c-met, PI3K are much more frequently and highly expressed in HT compared to NGs, and among all NGs in those present in the context of HT. A paracrine effect of HFG/c-met on nodule development, based on the prevalent stromal expression, may be suggested along with a major role of HGF/c-met and PI3K in HT. Finally, the expression of such molecules in HT may be regulated by lymphoid infiltrate.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Clinical-Experimental, Department of Medicine and Pharmacology, University of Messina, Messina, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Russo AL, Jedlicka K, Wernick M, McNally D, Kirk M, Sproull M, Smith S, Shankavaram U, Kaushal A, Figg WD, Dahut W, Citrin D, Bottaro DP, Albert PS, Tofilon PJ, Camphausen K. Urine analysis and protein networking identify met as a marker of metastatic prostate cancer. Clin Cancer Res 2009; 15:4292-8. [PMID: 19549766 DOI: 10.1158/1078-0432.ccr-09-0599] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Metastatic prostate cancer is a major cause of death of men in the United States. Expression of met, a receptor tyrosine kinase, has been associated with progression of prostate cancer. EXPERIMENTAL DESIGN To investigate met as a biomarker of disease progression, urinary met was evaluated via ELISA in men with localized (n = 75) and metastatic (n = 81) prostate cancer. Boxplot analysis was used to compare the distribution of met values between each group. We estimated a receiver operating characteristic curve and the associated area under the curve to summarize the diagnostic accuracy of met for distinguishing between localized and metastatic disease. Protein-protein interaction networking via yeast two-hybrid technology supplemented by Ingenuity Pathway Analysis and Human Interactome was used to elucidate proteins and pathways related to met that may contribute to progression of disease. RESULTS Met distribution was significantly different between the metastatic group and the group with localized prostate cancer and people with no evidence of cancer (P < 0.0001). The area under the curve for localized and metastatic disease was 0.90, with a 95% confidence interval of 0.84 to 0.95. Yeast two-hybrid technology, Ingenuity Pathway Analysis, and Human Interactome identified 89 proteins that interact with met, of which 40 have previously been associated with metastatic prostate cancer. CONCLUSION Urinary met may provide a noninvasive biomarker indicative of metastatic prostate cancer and may be a central regulator of multiple pathways involved in prostate cancer progression.
Collapse
Affiliation(s)
- Andrea L Russo
- Radiation Oncology Branch, National Cancer Institute, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee BS, Park M, Cha HY, Lee JH. Hepatocyte growth factor induces delayed STAT3 phosphorylation through interleukin-6 expression. Cell Signal 2008; 21:419-27. [PMID: 19071214 DOI: 10.1016/j.cellsig.2008.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 11/13/2008] [Accepted: 11/15/2008] [Indexed: 11/30/2022]
Abstract
Met receptor tyrosine kinase mediates pleiotropic cellular responses following its activation by hepatocyte growth factor or scatter factor (HGF/SF). STAT3 was reported to be one of direct downstream molecules in HGF/SF-Met signaling. In the present study, however, we observed that Tyr705 of STAT3 was phosphorylated from 2 h or 6 h in NIH3T3 and Chang liver cells, respectively, after HGF/SF treatment. Blocking of the phosphorylation by cycloheximide or actinomycin D and the rapid STAT3 phosphorylation with the conditioned medium from HGF/SF-treated NIH3T3 cells suggested that a newly synthesized secretory protein was responsible for the delayed STAT3 phosphorylation. Among the known mediators to induce STAT3 phosphorylation, interleukin-6 (IL-6) mRNA and protein were induced by HGF/SF, and the released IL-6 was accumulated in the conditioned medium after HGF/SF treatment. Furthermore, the neutralizing IL-6 antibody abolished the STAT3 phosphorylation. Treatment with LY294002, a PI3 kinase inhibitor, but not with other signal inhibitors, resulted in the loss of delayed STAT3 phosphorylation by HGF/SF, showing the involvement of PI3 kinase pathway. Collectively, these results demonstrate that HGF/SF-Met signal cascade stimulates IL-6 production via PI3 kinase pathway, leading to STAT3 phosphorylation as a secondary effect.
Collapse
Affiliation(s)
- Bok-Soon Lee
- Department of Biochemistry and Molecular Biology, Ajou University Medical School, 5 Wonchon-Dong, Yeongtong-Gu, Suwon 443-721, South Korea
| | | | | | | |
Collapse
|
21
|
Hepatocyte growth factor regulates migration of olfactory interneuron precursors in the rostral migratory stream through Met-Grb2 coupling. J Neurosci 2008; 28:5901-9. [PMID: 18524894 DOI: 10.1523/jneurosci.1083-08.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The olfactory bulb is one of the few structures in the mammalian forebrain in which continuous neurogenesis takes place throughout life. Neuronal precursors originate from progenitors located in the subventricular zone (SVZ) of the lateral ventricles, move tangentially in chains through the rostral migratory stream (RMS), and reach the olfactory bulb (OB), where they finally differentiate into granule and glomerular interneurons. Multiple molecular factors are involved in controlling the various steps of this neurogenic process. Here, we show that hepatocyte growth factor (HGF) and its receptor Met protein are expressed in vivo in the OB and throughout the migratory pathway, implying that HGF might mediate migratory signals in this system. By using primary in vitro cultures, we demonstrate that HGF promotes migration of RMS neuroblasts, acting both as an inducer and attractant. HGF stimulation on RMS tissue explants selectively induces MAP kinase pathway activation. Furthermore, in vitro analysis of mice with a point mutation in the Met receptor that impairs signal transduction through the Ras/MAP kinase pathway (Met(Grb2/Grb2)) shows that without Met-Grb2 binding, neuroblast migration is reduced. Overall, these findings indicate that HGF signaling via Met-Grb2 coupling influences olfactory interneuron precursor migration along the RMS.
Collapse
|
22
|
Liu X, Yao W, Newton RC, Scherle PA. Targeting the c-MET signaling pathway for cancer therapy. Expert Opin Investig Drugs 2008; 17:997-1011. [DOI: 10.1517/13543784.17.7.997] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiangdong Liu
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Wenqing Yao
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Robert C Newton
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Peggy A Scherle
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| |
Collapse
|
23
|
Met-driven invasive growth involves transcriptional regulation of Arhgap12. Oncogene 2008; 27:5590-8. [PMID: 18504429 DOI: 10.1038/onc.2008.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Invasive growth is a complex biological program triggered by hepatocyte growth factor (HGF) through its tyrosine kinase receptor encoded by the Met proto-oncogene. The program involves-besides proliferation-cell dissociation, motility and invasiveness, controlled by intracellular signals impinging on PI3K and on the small G-proteins of the Rac/Rho family. The mechanism(s) unbalancing Rac/Rho activation are still not completely clarified. Here, we describe a functional link between HGF and Arhgap12, a gene encoding a previously uncharacterized protein of the RhoGAP family. We identified Arhgap12 as a transcriptional target of HGF, through a novel gene trapping strategy. We found that Arhgap12 mRNA and protein are robustly suppressed by HGF treatment, but not by serum. Arhgap12 displayed GTPase activating protein (GAP) activity towards Rac1 and, upon overexpression, impaired cell scattering, invasion and adhesion to fibronectin in response to HGF. Consistently, Arhgap12 silencing by RNA interference selectively increased the scatter and adhesion responses. These data show that HGF-driven invasive growth involves transcriptional regulation of a Rac1-specific GAP.
Collapse
|
24
|
Seiden-Long I, Navab R, Shih W, Li M, Chow J, Zhu CQ, Radulovich N, Saucier C, Tsao MS. Gab1 but not Grb2 mediates tumor progression in Met overexpressing colorectal cancer cells. Carcinogenesis 2008; 29:647-55. [PMID: 18192688 DOI: 10.1093/carcin/bgn009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatocyte growth factor receptor (Met) plays an important role in the progression of multiple cancer types. The overexpression of Met in DLD-1 colon carcinoma cells with kirsten rat sarcoma oncogene homolog (KRAS) oncogene activation resulted in enhanced subcutaneous and orthotopic tumor growth rate and increased metastatic potential. To elucidate the mechanism of this effect, we stably expressed kinase-inactive Met(K1110A), Src homology 2 (SH2)-binding domain-inactive Met(Y1349/1356F), growth factor receptor-bound protein 2 (Grb2) non-binding Met(N1358H) and mutant receptors with ability to selectively recruit signaling proteins Grb2, src homology domain c-terminal adaptor homolog (Shc), phospholipase c-gamma (PLCgamma) and p85 phosphatidyl inositol 3 kinase. As subcutaneous implants, DLD-1 cells that expressed the majority of these receptor constructs failed to recapitulate the tumor growth-enhancing effect of the wild-type Met receptor. The Grb2- and Shc-recruiting Met mutants demonstrated slight but consistent tumor-suppressive activity, whereas the expression of N1358H mutant stimulated tumor growth rate comparable with the wild-type receptor. This suggests that direct Grb2/Shc binding does not contribute to the tumor progression activity of Met receptor. The tumors expressing Grb2- and Shc-recruiting Met receptors demonstrated a marked loss in Grb2-associated adaptor protein 1 (Gab1) protein levels, which was not observed in the cell lines, consistent with a post-translationally regulated process. Moreover, a moderate level of Gab1 overexpression stimulated tumor growth. The findings suggest a delicate balance for intact Y1349/1356 SH2-binding domain to mediate the tumor progression activity of the coactivated Met-rat sarcoma oncogene homolog (RAS) pathways. Selectivity for specific adaptor protein involvement may be the key that determines the tissue- and cell-type specificity of Met-mediated tumorigenicity in human cancers.
Collapse
Affiliation(s)
- Isolde Seiden-Long
- Ontario Cancer Institute and Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kondo A, Hirayama N, Sugito Y, Shono M, Tanaka T, Kitamura N. Coupling of Grb2 to Gab1 mediates hepatocyte growth factor-induced high intensity ERK signal required for inhibition of HepG2 hepatoma cell proliferation. J Biol Chem 2007; 283:1428-1436. [PMID: 18003605 DOI: 10.1074/jbc.m704999200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the extracellular signal-regulated kinase (ERK) pathway is a key factor in the regulation of cell proliferation by growth factors. Hepatocyte growth factor (HGF)-induced cell cycle arrest in the human hepatocellular carcinoma cell line HepG2 requires strong activation of the ERK pathway. In this study, we investigated the molecular mechanism of the activation. We constructed a chimeric receptor composed of the extracellular domain of the NGF receptor and the cytoplasmic domain of the HGF receptor (c-Met) and introduced a point mutation (N1358H) into the chimeric receptor, which specifically abrogates the direct binding of Grb2 to c-Met. The mutant chimeric receptor failed to mediate the strong activation of ERK, up-regulation of the expression of a Cdk inhibitor p16(INK4a) and inhibition of HepG2 cell proliferation by ligand stimulation. Moreover, the mutant receptor did not induce tyrosine phosphorylation of the docking protein Gab1. Knockdown of Gab1 using siRNA suppressed the HGF-induced strong activation of ERK and inhibition of HepG2 cell proliferation. These results suggest that coupling of Grb2 to Gab1 mediates the HGF-induced strong activation of the ERK pathway, which is required for the inhibition of HepG2 cell proliferation.
Collapse
Affiliation(s)
- Asuka Kondo
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Naoki Hirayama
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yasuko Sugito
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Michihiro Shono
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiaki Tanaka
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Naomi Kitamura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
26
|
Zeng F, Zhang MZ, Singh AB, Zent R, Harris RC. ErbB4 isoforms selectively regulate growth factor induced Madin-Darby canine kidney cell tubulogenesis. Mol Biol Cell 2007; 18:4446-56. [PMID: 17761534 PMCID: PMC2043549 DOI: 10.1091/mbc.e07-03-0223] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ErbB4, a member of the epidermal growth factor (EGF) receptor family that can be activated by heregulin beta1 and heparin binding (HB)-EGF, is expressed as alternatively spliced isoforms characterized by variant extracellular juxtamembrane (JM) and intracellular cytoplasmic (CYT) domains. ErbB4 plays a critical role in cardiac and neural development. We demonstrated that ErbB4 is expressed in the ureteric buds and developing tubules of embryonic rat kidney and in collecting ducts in adult. The predominant isoforms expressed in kidney are JM-a and CYT-2. In ErbB4-transfected MDCK II cells, basal cell proliferation and hepatocyte growth factor (HGF)-induced tubule formation were decreased by all four isoforms. Only JM-a/CYT-2 cells formed tubules upon HB-EGF stimulation. ErbB4 was activated by both HRG-beta1 and HB-EGF stimulation; however, compared with HRG-beta1, HB-EGF induced phosphorylation of the 80-kDa cytoplasmic cleavage fragment of the JM-a/CYT-2 isoform. HB-EGF also induced early activation of ERK1/2 in JM-a/CYT-2 cells and promoted nuclear translocation of the JM-a/CYT-2 cytoplasmic tail. In summary, our data indicate that JM-a/CYT-2, the ErbB4 isoform that is proteinase cleavable but does not contain a PI3K-binding domain in its cytoplasmic tail, mediates important functions in renal epithelial cells in response to HB-EGF.
Collapse
Affiliation(s)
- Fenghua Zeng
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - Ming-Zhi Zhang
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - Amar B. Singh
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - Roy Zent
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
- Nashville Veterans Affairs Hospital, Nashville, TN 37232
| | - Raymond C. Harris
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
- Nashville Veterans Affairs Hospital, Nashville, TN 37232
| |
Collapse
|
27
|
Li N, Lorinczi M, Ireton K, Elferink LA. Specific Grb2-mediated interactions regulate clathrin-dependent endocytosis of the cMet-tyrosine kinase. J Biol Chem 2007; 282:16764-75. [PMID: 17449471 DOI: 10.1074/jbc.m610835200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomal degradation of the receptor-tyrosine kinase cMet requires receptor ubiquitination by the E3 ubiquitin ligase Cbl followed by clathrin-dependent internalization. A role for Cbl as an adaptor for cMet internalization has been previously reported. However, the requirement for Cbl ubiquitin ligase activity in this process and its mode of recruitment to cMet has yet to be determined. Cbl can directly bind cMet at phosphotyrosine 1003 or indirectly via Grb2 to phosphotyrosine 1356 in the multisubstrate binding domain of cMet. The direct binding of Cbl with cMet is critical for receptor degradation and not receptor internalization. Here we show a strict requirement for Grb2 and the ubiquitin ligase activity of Cbl for cMet endocytosis. Receptor internalization was impaired by small interfering RNA depletion of Grb2, overexpression of dominant negative Grb2 mutants, and point mutations in the cMet multisubstrate docking site that inhibits the direct association of Grb2 with cMet. The requirement for Grb2 was specific and did not involve the multiadaptor Gab1. cMet internalization was impaired in cells expressing an ubiquitin ligase-deficient Cbl mutant or conjugation-deficient ubiquitin but was unaffected in cells expressing a Cbl mutant that is unable to bind cMet directly. Expression of a Cbl-Grb2 chimera rescued impaired cMet endocytosis in cells depleted of endogenous Grb2. These results indicate that the ubiquitin ligase activity of Cbl is critical for clathrin-dependent cMet internalization and suggest a role for Grb2 as an intermediary linking Cbl ubiquitin ligase activity to this process.
Collapse
Affiliation(s)
- Ning Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1074, USA
| | | | | | | |
Collapse
|
28
|
Crepaldi T, Bersani F, Scuoppo C, Accornero P, Prunotto C, Taulli R, Forni PE, Leo C, Chiarle R, Griffiths J, Glass DJ, Ponzetto C. Conditional Activation of MET in Differentiated Skeletal Muscle Induces Atrophy. J Biol Chem 2007; 282:6812-22. [PMID: 17194700 DOI: 10.1074/jbc.m610916200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Skeletal muscle atrophy is a common debilitating feature of many systemic diseases, including cancer. Here we examined the effects of inducing expression of an oncogenic version of the Met receptor (Tpr-Met) in terminally differentiated skeletal muscle. A responder mouse containing the Tpr-Met oncogene and GFP (green fluorescent protein) as a reporter was crossed with a transactivator mouse expressing tTA under the control of the muscle creatine kinase promoter. Tpr-Met induction during fetal development and in young adult mice caused severe muscle wasting, with decreased fiber size and loss of myosin heavy chain protein. Concomitantly, in the Tpr-Met-expressing muscle the mRNA of the E3 ubiquitin ligases atrogin-1/MAFbx, MuRF1, and of the lysosomal protease cathepsin L, which are markers of skeletal muscle atrophy, was significantly increased. In the same muscles phosphorylation of the Met downstream effectors Akt, p38 MAPK, and IkappaBalpha was higher than in normal controls. Induction of Tpr-Met in differentiating satellite cells derived from the double transgenics caused aberrant cell fusion, protein loss, and myotube collapse. Increased phosphorylation of Met downstream effectors was also observed in the Tpr-Met-expressing myotubes cultures. Treatment of these cultures with either a proteasomal or a p38 inhibitor prevented Tpr-Met-mediated myotube breakdown, establishing accelerated protein degradation consequent to inappropriate activation of p38 as the major route for the Tpr-Met-induced muscle phenotype.
Collapse
Affiliation(s)
- Tiziana Crepaldi
- Center for Experimental Research and Medical Studies, University of Turin, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Various cytokines and soluble growth factors upon interaction with their membrane receptors are responsible for inducing cellular proliferation, differentiation, movement, and protection from anoikis (a planned suicide activated by normal cells in absence of attachment to neighboring cells or extracellular matrix (EMC)). Among those soluble factors a major position is exerted by hepatocyte growth factor (HGF) together with its receptor MET and macrophage-stimulating protein (MSP) in cooperation with its receptor RON.
Collapse
Affiliation(s)
- Silvia Benvenuti
- Division of Molecular Oncology, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Candiolo (Torino), Italy
| | | |
Collapse
|
30
|
Ishibe S, Haydu JE, Togawa A, Marlier A, Cantley LG. Cell confluence regulates hepatocyte growth factor-stimulated cell morphogenesis in a beta-catenin-dependent manner. Mol Cell Biol 2006; 26:9232-43. [PMID: 17030602 PMCID: PMC1698536 DOI: 10.1128/mcb.01312-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Following organ injury, morphogenic epithelial responses can vary depending on local cell density. In the present study, the role of cell confluence in determining the responsiveness of renal epithelial cells to the dedifferentiating morphogenic signals of hepatocyte growth factor (HGF) was examined. Increasing confluence resulted in a greater tendency of cells to organize into epithelial tubes and a significant decrease in migratory responsiveness to HGF. Analysis of downstream signaling revealed that the HGF receptor c-Met was equally activated in confluent and nonconfluent cells following HGF stimulation but that phosphoinositide 3-kinase-dependent activation of Akt and Rac were selectively diminished in confluent cells. In nonconfluent cells treated with HGF, the high level of Akt activation resulted in inhibitory phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) and increased beta-catenin nuclear signaling. In contrast, confluent cells, in which HGF-stimulated Akt activation was diminished, displayed less inhibitory phosphorylation of GSK-3beta and less nuclear signaling by beta-catenin. Overexpression of beta-catenin (SA), which cannot be phosphorylated by GSK-3beta and targeted for ubiquitination, significantly increased migration in fully confluent cells. Thus, cells maintained at high confluence selectively downregulate signaling events such as Rac activation and beta-catenin-dependent transcription that would otherwise promote cell dedifferentiation and migration.
Collapse
Affiliation(s)
- Shuta Ishibe
- Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Metastasis follows the inappropriate activation of a genetic programme termed invasive growth, which is a physiological process that occurs during embryonic development and post-natal organ regeneration. Burgeoning evidence indicates that invasive growth is also executed by stem and progenitor cells, and is usurped by cancer stem cells. The MET proto-oncogene, which is expressed in both stem and cancer cells, is a key regulator of invasive growth. Recent findings indicate that the MET tyrosine-kinase receptor is a sensor of adverse microenvironmental conditions (such as hypoxia) and drives cell invasion and metastasis through the transcriptional activation of a set of genes that control blood coagulation.
Collapse
Affiliation(s)
- Carla Boccaccio
- Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Str. Prov. 142, 10060 Candiolo, Italy.
| | | |
Collapse
|
32
|
Mood K, Saucier C, Bong YS, Lee HS, Park M, Daar IO. Gab1 is required for cell cycle transition, cell proliferation, and transformation induced by an oncogenic met receptor. Mol Biol Cell 2006; 17:3717-28. [PMID: 16775003 PMCID: PMC1556377 DOI: 10.1091/mbc.e06-03-0244] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have shown previously that either Grb2- or Shc-mediated signaling from the oncogenic Met receptor Tpr-Met is sufficient to trigger cell cycle progression in Xenopus oocytes. However, direct binding of these adaptors to Tpr-Met is dispensable, implying that another Met binding partner mediates these responses. In this study, we show that overexpression of Grb2-associated binder 1 (Gab1) promotes cell cycle progression when Tpr-Met is expressed at suboptimal levels. This response requires that Gab1 possess an intact Met-binding motif, the pleckstrin homology domain, and the binding sites for phosphatidylinositol 3-kinase and tyrosine phosphatase SHP-2, but not the Grb2 and CrkII/phospholipase Cgamma binding sites. Importantly, we establish that Gab1-mediated signals are critical for cell cycle transition promoted by the oncogenic Met and fibroblast growth factor receptors, but not by progesterone, the natural inducer of cell cycle transition in Xenopus oocytes. Moreover, Gab1 is essential for Tpr-Met-mediated morphological transformation and proliferation of fibroblasts. This study provides the first evidence that Gab1 is a key binding partner of the Met receptor for induction of cell cycle progression, proliferation, and oncogenic morphological transformation. This study identifies Gab1 and its associated signaling partners as potential therapeutic targets to impair proliferation or transformation of cancer cells in human malignancies harboring a deregulated Met receptor.
Collapse
Affiliation(s)
- Kathleen Mood
- *Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702; and
| | | | - Yong-Sik Bong
- *Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702; and
| | - Hyun-Shik Lee
- *Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702; and
| | - Morag Park
- Molecular Oncology Group and
- Departments of Biochemistry, Medicine, and Oncology, McGill University Health Center, Montreal, Quebec, Canada H3A 1A1
| | - Ira O. Daar
- *Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702; and
| |
Collapse
|
33
|
Mood K, Saucier C, Ishimura A, Bong YS, Lee HS, Park M, Daar IO. Oncogenic Met receptor induces cell-cycle progression in Xenopus oocytes independent of direct Grb2 and Shc binding or Mos synthesis, but requires phosphatidylinositol 3-kinase and Raf signaling. J Cell Physiol 2006; 207:271-85. [PMID: 16331688 DOI: 10.1002/jcp.20564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Biological responses of hepatocyte growth factor (HGF) are mediated by the Met receptor tyrosine kinase. Although HGF is a potent mitogen for a variety of cells, the signals required for cell-cycle progression by the Met/HGF receptor are poorly defined. In this study, we have used the Xenopus oocyte system to define the role of various Met proximal-binding partners and downstream signaling pathways in cell-cycle regulation. We show that cell-cycle progression and activation of MAPK and JNK mediated by the oncogenic Met receptor, Tpr-Met, are dependent on its kinase activity and the presence of the twin phosphotyrosine (Y482 & Y489) residues in its C-terminus, but that the recruitment of Grb2 and Shc adaptor proteins is dispensable, implicating other signaling molecules. However, using Met receptor oncoproteins engineered to recruit specific signaling proteins, we demonstrate that recruitment of Grb2 or Shc adaptor proteins is sufficient to induce cell-cycle progression and activation of MAPK and JNK, while the binding of phospholipase-Cgamma or phosphatidylinositol 3-kinase alone fails to elicit these responses. Using various means to block phosphatidylinositol 3-kinase, phospholipase-Cgamma, MEK, JNK, Mos, and Raf1 activity, we show that unlike the fibroblast growth factor receptor, MEK-dependent and independent signaling contribute to Met receptor-mediated cell-cycle progression, but phospholipase-Cgamma or JNK activity and Mos synthesis are not critical. Notably, we demonstrate that Raf1 and phosphatidylinositol 3-kinase signaling are required for cell-cycle progression initiated by the Met receptor, a protein frequently deregulated in human tumors.
Collapse
Affiliation(s)
- Kathleen Mood
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Ishimura A, Lee HS, Bong YS, Saucier C, Mood K, Park EK, Daar IO. Oncogenic Met receptor induces ectopic structures in Xenopus embryos. Oncogene 2006; 25:4286-99. [PMID: 16518409 DOI: 10.1038/sj.onc.1209463] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When aberrantly expressed or activated, the Met receptor tyrosine kinase is involved in tumor invasiveness and metastasis. In this study, we have used the Xenopus embryonic system to define the role of various Met proximal-binding partners and downstream signaling pathways in regulating an induced morphogenetic event. We show that expression of an oncogenic derivative of the Met receptor (Tpr-Met) induces ectopic morphogenetic structures during Xenopus embryogenesis. Using variant forms of Tpr-Met that are engineered to recruit a specific signaling molecule of choice, we demonstrate that the sole recruitment of either the Grb2 or the Shc adaptor protein is sufficient to induce ectopic structures and anterior reduction, while the recruitment of PI-3Kinase (PI-3K) is necessary but not sufficient for this effect. In contrast, the recruitment of PLCgamma can initiate the induction, but fails to maintain or elongate supernumerary structures. Finally, evidence indicates that the Ras/Raf/MAPK pathway is necessary, but not sufficient to induce these structures. This study also emphasizes the importance of examining signaling molecules in the regulatory context that is provided by receptor/effector interactions when assessing a role in cell growth and differentiation.
Collapse
Affiliation(s)
- A Ishimura
- Laboratory of Protein Dynamics & Signaling, National Cancer Institute-Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
McGill GG, Haq R, Nishimura EK, Fisher DE. c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem 2006; 281:10365-73. [PMID: 16455654 DOI: 10.1074/jbc.m513094200] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF)/c-Met signaling is thought to be a key pathway in both melanocyte development and melanoma metastasis. Here, HGF stimulation of melanocytes was seen to up-regulate c-Met expression. In an effort to decipher the mechanism by which HGF up-regulates its receptor, we found that c-Met is a direct transcriptional target of Mitf. This was confirmed with chromatin immunoprecipitation experiments of the human c-Met promoter, as well as by the ability of adenovirally expressed Mitf to modulate endogenous c-Met protein levels in melanocytes. Disruption of Mitf blocked HGF-dependent increases in endogenous c-Met message and protein levels, indicating that HGF regulates its own receptor levels via Mitf. Finally, dominant-negative inhibition of Mitf resulted in profound resistance of melanocytes and melanoma cells to HGF-dependent matrix invasion, suggesting a physiologic role for this pathway in melanocytic development and melanoma.
Collapse
Affiliation(s)
- Gaël G McGill
- Department of Pediatric Oncology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
36
|
Dharmawardana PG, Peruzzi B, Giubellino A, Burke TR, Bottaro DP. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs 2006; 17:13-20. [PMID: 16317285 DOI: 10.1097/01.cad.0000185180.72604.ac] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.
Collapse
Affiliation(s)
- Pathirage G Dharmawardana
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1107, USA
| | | | | | | | | |
Collapse
|
37
|
Bardelli C, Sala M, Cavallazzi U, Prat M. Agonist Met antibodies define the signalling threshold required for a full mitogenic and invasive program of Kaposi's Sarcoma cells. Biochem Biophys Res Commun 2005; 334:1172-9. [PMID: 16039997 DOI: 10.1016/j.bbrc.2005.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Accepted: 07/11/2005] [Indexed: 01/08/2023]
Abstract
We previously showed that the Kaposi Sarcoma line KS-IMM express a functional Met tyrosine kinase receptor, which, upon HGF stimulation, activates motogenic, proliferative, and invasive responses. In this study, we investigated the signalling pathways activated by HGF, as well as by Met monoclonal antibodies (Mabs), acting as full or partial agonists. The full agonist Mab mimics HGF in all biological and biochemical aspects. It elicits the whole spectrum of responses, while the partial agonist Mab induces only wound healing. These differences correlated with a more prolonged and sustained tyrosine phosphorylation of the receptor and MAPK evoked by HGF and by the full agonist Mab, relative to the partial agonist Mab. Since Gab1, JNK and PI 3-kinase are activated with same intensity and kinetics by HGF and by the two agonist antibodies, it is concluded that level and duration of MAPK activation by Met receptor are crucial for the induction of a full HGF-dependent mitogenic and invasive program in KS cells.
Collapse
Affiliation(s)
- Claudio Bardelli
- Dipt. Scienze Mediche, Università del Piemonte Orientale A. Avogadro Via Solaroli 17, 28100 Novara, Italy
| | | | | | | |
Collapse
|
38
|
Stella MC, Trusolino L, Pennacchietti S, Comoglio PM. Negative feedback regulation of Met-dependent invasive growth by Notch. Mol Cell Biol 2005; 25:3982-96. [PMID: 15870272 PMCID: PMC1087707 DOI: 10.1128/mcb.25.10.3982-3996.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hepatocyte growth factor (HGF) receptor encoded by the Met oncogene controls a genetic program-known as "invasive growth"-responsible for several developmental processes and involved in cancer invasion and metastasis. This program functions through several regulatory gene products, as yet largely unknown, both upstream and downstream of Met. Here we show that activation of the Notch receptor results in transcriptional down-regulation of Met, suppression of HGF-dependent Ras signaling, and impairment of HGF-dependent cellular responses. In turn, Met activation leads to transcriptional induction of the Notch ligand Delta and the Notch effector HES-1, indicating that Met is able to self-tune its own protein levels and the ensuing biochemical and biological outputs through stimulation of the Notch pathway. By using branching morphogenesis of the tracheal system in Drosophila as a readout of invasive growth, we also show that exogenous expression of a constitutively active form of human Met induces enhanced sprouting of the tracheal tree, a phenotype that is further increased in embryos lacking Notch function. These results unravel an in-built mechanism of negative feedback regulation in which Met activation leads to transcriptional induction of Notch function, which in turn limits HGF activity through repression of the Met oncogene.
Collapse
Affiliation(s)
- M Cristina Stella
- Institute for Cancer Research and Treatment, University of Turin School of Medicine, Division of Molecular Oncology, IV Floor, Str. Prov. 142, Km. 3,95, 10060 Candiolo, Torino, Italy.
| | | | | | | |
Collapse
|
39
|
Basar T, Shen Y, Ireton K. Redundant roles for Met docking site tyrosines and the Gab1 pleckstrin homology domain in InlB-mediated entry of Listeria monocytogenes. Infect Immun 2005; 73:2061-74. [PMID: 15784547 PMCID: PMC1087421 DOI: 10.1128/iai.73.4.2061-2074.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The bacterial pathogen Listeria monocytogenes causes food-borne illnesses leading to gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some mammalian cells through interaction of the bacterial surface protein InlB with host Met receptor tyrosine kinase. Binding of InlB leads to phosphorylation of Met and the adapter Gab1 and to activation of host phosphoinositide (PI) 3-kinase. The mammalian ligand of Met, hepatocyte growth factor, promotes cell motility and morphogenesis in a manner dependent on phosphorylation of two docking site tyrosines at positions 1349 and 1356 in the receptor's cytoplasmic tail. Here we determined if these tyrosines were essential for Listeria entry. A derivative of the human cell line T47D stably expressing a truncated Met lacking most of its cytoplasmic domain was unable to support InlB-mediated signaling or entry. Surprisingly, cells expressing mutant Met containing phenylalanine substitutions in both tyrosines 1349 and 1356 (MetYF) allowed entry and InlB-induced Gab1 phosphorylation. However, in contrast to the situation in cells expressing wild-type Met, Gab1 phosphorylation in MetYF cells required PI 3-kinase activity. The Gab1 pleckstrin homology (PH) domain was constitutively associated with the plasma membrane of cells in a PI 3-kinase-dependent manner. Overexpression of the PH domain blocked entry of Listeria into cells expressing MetYF but not into cells expressing wild-type Met. Taken together, these results indicate that the docking site tyrosines are dispensable for internalization when membrane localization of Gab1 is constitutive. Distinct pathways of recruitment by phosphorylated tyrosines in Met and PH domain ligands in the membrane are redundant for bacterial entry.
Collapse
Affiliation(s)
- Tumay Basar
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
40
|
Hov H, Holt RU, Rø TB, Fagerli UM, Hjorth-Hansen H, Baykov V, Christensen JG, Waage A, Sundan A, Børset M. A Selective c-Met Inhibitor Blocks an Autocrine Hepatocyte Growth Factor Growth Loop in ANBL-6 Cells and Prevents Migration and Adhesion of Myeloma Cells. Clin Cancer Res 2004; 10:6686-94. [PMID: 15475459 DOI: 10.1158/1078-0432.ccr-04-0874] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We wanted to examine the role of the hepatocyte growth factor (HGF) receptor c-Met in multiple myeloma by applying a novel selective small molecule tyrosine kinase inhibitor, PHA-665752, directed against the receptor. EXPERIMENTAL DESIGN Four biological sequels of HGF related to multiple myeloma were studied: (1) proliferation of myeloma cells, (2) secretion of interleukin-11 from osteogenic cells, (3) migration of myeloma cells, and (4) adhesion of myeloma cells to fibronectin. We also examined effects of the c-Met inhibitor on intracellular signaling pathways in myeloma cells. RESULTS PHA-665752 effectively blocked the biological responses to HGF in all assays, with 50% inhibition at 5 to 15 nmol/L concentration and complete inhibition at around 100 nmol/L. PHA-665752 inhibited phosphorylation of several tyrosine residues in c-Met (Tyr(1003), Tyr(1230/1234/1235), and Tyr(1349)), blocked HGF-mediated activation of Akt and p44/42 mitogen-activated protein kinase, and prevented the adaptor molecule Gab1 from complexing with c-Met. In the HGF-producing myeloma cell line ANBL-6, PHA-665752 revealed an autocrine HGF-c-Met-mediated growth loop. The inhibitor also blocked proliferation of purified primary myeloma cells, suggesting that autocrine HGF-c-Met-driven growth loops are important for progression of multiple myeloma. CONCLUSIONS Collectively, these findings support the role of c-Met and HGF in the proliferation, migration, and adhesion of myeloma cells and identify c-Met kinase as a therapeutic target for treatment of patients with multiple myeloma.
Collapse
Affiliation(s)
- Håkon Hov
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Higuchi T, Orita T, Katsuya K, Yamasaki Y, Akiyama K, Li H, Yamamoto T, Saito Y, Nakamura M. MUC20 suppresses the hepatocyte growth factor-induced Grb2-Ras pathway by binding to a multifunctional docking site of met. Mol Cell Biol 2004; 24:7456-68. [PMID: 15314156 PMCID: PMC506992 DOI: 10.1128/mcb.24.17.7456-7468.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cDNA encoding a novel mucin protein, MUC20, was isolated as a gene that is up-regulated in the renal tissues of patients with immunoglobulin A nephropathy. We demonstrate here that the C terminus of MUC20 associates with the multifunctional docking site of Met without ligand activation, preventing Grb2 recruitment to Met and thus attenuating hepatocyte growth factor (HGF)-induced transient extracellular signal-regulated kinase-1 and -2 activation. Production of MUC20 reduced HGF-induced matrix metalloproteinase expression and proliferation, which require the Grb2-Ras pathway, whereas cell scattering, branching morphogenesis, and survival via the Gab1/phosphatidylinositol 3-kinase (PI3K) pathways was not affected. Thus, MUC20 reduces HGF-induced activation of the Grb2-Ras pathway but not the Gab1/PI3K pathways. We further demonstrate that the cytoplasmic domain of MUC20 has the ability to oligomerize and that the oligomerization augments its affinity for Met. Taken together, these results suggest that MUC20 is a novel regulator of the Met signaling cascade which has a role in suppression of the Grb2-Ras pathway.
Collapse
Affiliation(s)
- Toshio Higuchi
- Central Pharmaceutical Research Institute, Pharmaceutical Frontier Research Laboratories, Japan Tobacco Inc., Yokohama, 236-0004, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Halevy O, Cantley LC. Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Exp Cell Res 2004; 297:224-34. [PMID: 15194438 DOI: 10.1016/j.yexcr.2004.03.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 03/01/2004] [Indexed: 12/20/2022]
Abstract
Hepatocyte growth factor (HGF) promotes the proliferation of adult myoblasts and inhibits their differentiation, whereas insulin-like growth factor I (IGF-I) enhances both processes. Recent studies indicate that activation of the phosphoinositide 3'-kinase (PI3K) pathway promotes myoblast differentiation, whereas activation of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) promotes proliferation and inhibits their differentiation. This simple model is confounded by the fact that both HGF and IGF-I have been shown to activate both pathways. In this study, we have compared the ability of HGF and IGF-I to activate PI3K and MAPK/ERK in i28 myogenic cells. We find that, although the two stimuli result in comparable recruitment of the p85alpha subunit of PI3K into complexes with tyrosine-phosphorylated proteins, the p85beta regulatory subunit and p110alpha catalytic subunit of PI3K are preferentially recruited into these complexes in response to IGF-I. In agreement with this observation, IGF-I is much more potent than HGF in stimulating phosphorylation of Akt/PKB, a protein kinase downstream of PI3K. In contrast, MAPK/ERK phosphorylation was higher in response to HGF and lasted longer, relative to IGF-I. Moreover, the specific PI3K inhibitor, Wortmannin, abolished MAPK/ERK and Elk-1 phosphorylation in HGF-treated cells, suggesting the requirement of PI3K in mediating the HGF-induced MAPK pathway. UO126, a specific MAPK pathway inhibitor, had no effect on PI3K activity or Akt phosphorylation, implying that at least in muscle cells, the MAPK/ERK pathway is not required for HGF-induced PI3K activation. These results provide a biochemical rationale for the previous observations that HGF and IGF-I have opposite effects on myogenic cells, consistent with studies linking PI3K activation to differentiation and MAPK/ERK activation to proliferation in these cells. Moreover, the finding that PI3K activity is required for HGF-induced MAPK activation suggests its additional role in proliferation, rather than exclusively in the differentiation of adult myoblasts.
Collapse
Affiliation(s)
- Orna Halevy
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
43
|
Kong-Beltran M, Stamos J, Wickramasinghe D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 2004; 6:75-84. [PMID: 15261143 DOI: 10.1016/j.ccr.2004.06.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 06/11/2004] [Accepted: 06/28/2004] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor (HGF) binds the extracellular domain and activates the Met receptor to induce mitogenesis, morphogenesis, and motility. The extracellular domain of Met is comprised of Sema, PSI, and four IPT subdomains. We investigated the contribution of these subdomains to Met receptor dimerization. Our observations indicate that the Sema domain is necessary for dimerization in addition to HGF binding. Treatment of Met-overexpressing tumor cells with recombinant Sema in the presence or absence of HGF results in decreased Met-mediated signal transduction, cell motility, and migration, behaving in a manner similar to an antagonistic anti-Met Fab. These data suggest that the Sema domain of Met may not only represent a novel anticancer therapeutic target but also acts as a biotherapeutic itself.
Collapse
Affiliation(s)
- Monica Kong-Beltran
- Department of Molecular Oncology, Genetech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | | | | |
Collapse
|
44
|
Saucier C, Khoury H, Lai KMV, Peschard P, Dankort D, Naujokas MA, Holash J, Yancopoulos GD, Muller WJ, Pawson T, Park M. The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci U S A 2004; 101:2345-50. [PMID: 14983012 PMCID: PMC356953 DOI: 10.1073/pnas.0308065101] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The etiology and progression of a variety of human malignancies are linked to the deregulation of receptor tyrosine kinases (RTKs). To define the role of RTK-dependent signals in various oncogenic processes, we have previously engineered RTK oncoproteins that recruit either the Shc or Grb2 adaptor proteins. Although these RTK oncoproteins transform cells with similar efficiencies, fibroblasts expressing the Shc-binding RTK oncoproteins induced tumors with short latency (approximately 7 days), whereas cells expressing the Grb2-binding RTK oncoproteins induced tumors with delayed latency (approximately 24 days). The early onset of tumor formation correlated with the ability of cells expressing the Shc-binding RTK oncoproteins to produce vascular endothelial growth factor (VEGF) in culture and an angiogenic response in vivo. Consistent with this, treatment with a VEGF inhibitor, VEGF-Trap, blocked the in vivo angiogenic and tumorigenic properties of these cells. The importance of Shc recruitment to RTKs for the induction of VEGF was further demonstrated by using mutants of the Neu/ErbB2 RTK, where the Shc, but not Grb2, binding mutant induced VEGF. Moreover, the use of fibroblasts derived from ShcA-deficient mouse embryos, demonstrated that Shc was essential for the induction of VEGF by the Met/hepatocyte growth factor RTK oncoprotein and by serum-derived growth factors. Together, our findings identify Shc as a critical angiogenic switch for VEGF production downstream from the Met and ErbB2 RTKs.
Collapse
Affiliation(s)
- Caroline Saucier
- Molecular Oncology Group, McGill University Health Centre, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Balkovetz DF, Gerrard ER, Li S, Johnson D, Lee J, Tobias JW, Rogers KK, Snyder RW, Lipschutz JH. Gene expression alterations during HGF-induced dedifferentiation of a renal tubular epithelial cell line (MDCK) using a novel canine DNA microarray. Am J Physiol Renal Physiol 2004; 286:F702-10. [PMID: 14665430 DOI: 10.1152/ajprenal.00270.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) elicits a broad spectrum of biological activities, including epithelial cell dedifferentiation. One of the most widely used and best-studied polarized epithelial cell lines is the Madin-Darby canine kidney (MDCK) cell line. Here, we describe and validate the early response of polarized monolayers of MDCK cells stimulated with recombinant HGF using a novel canine DNA microarray designed to query 12,473 gene sequences. In our survey, eight genes previously implicated in the HGF signaling pathway were differentially regulated, demonstrating that the system was responsive to HGF. Also identified were 117 genes not previously known to be involved in the HGF pathway. The results were confirmed by real-time PCR or Western blot analysis for 38 genes. Of particular interest were the large number of differentially regulated genes encoding small GTPases, proteins involved in endoplasmic reticulum translation, proteins involved in the cytoskeleton, the extracellular matrix, and the hematopoietic and prostaglandin systems.
Collapse
Affiliation(s)
- Daniel F Balkovetz
- Departments of Medicine and Cell Biology, University of Alabama at Birmingham, and Veterans Administration Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Palka HL, Park M, Tonks NK. Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem 2003; 278:5728-35. [PMID: 12475979 DOI: 10.1074/jbc.m210656200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The receptor protein-tyrosine phosphatase (PTP) DEP-1 (CD148/PTP-eta) has been implicated in the regulation of cell growth, differentiation, and transformation, and most recently has been identified as a potential tumor suppressor gene mutated in colon, lung, and breast cancers. We have generated constructs comprising the cytoplasmic segment of DEP-1 fused to the maltose-binding protein to identify potential substrates and thereby suggest a physiological function for DEP-1. We have shown that the substrate-trapping mutant form of DEP-1 interacted with a small subset of tyrosine-phosphorylated proteins from lysates of the human breast tumor cell lines MDA-MB-231, T-47D, and T-47D/Met and have identified the hepatocyte growth factor/scatter factor receptor Met, the adapter protein Gab1, and the junctional component p120 catenin as potential substrates. Following ligand stimulation, phosphorylation of specific tyrosyl residues in Met induces mitogenic, motogenic, and morphogenic responses. When co-expressed in 293 cells, the full-length substrate-trapping mutant form of DEP-1 formed a stable complex with the chimeric receptor colony stimulating factor 1 (CSF)-Met and wild type DEP-1 dephosphorylated CSF-Met. Furthermore, we observed that DEP-1 preferentially dephosphorylated a Gab1 binding site (Tyr(1349)) and a COOH-terminal tyrosine implicated in morphogenesis (Tyr(1365)), whereas tyrosine residues in the activation loop of Met (Tyr(1230), Tyr(1234), and Tyr(1235)) were not preferred targets of the PTP. The ability of DEP-1 preferentially to dephosphorylate particular tyrosine residues that are required for Met-induced signaling suggests that DEP-1 may function in controlling the specificity of signals induced by this PTK, rather than as a simple "off-switch" to counteract PTK activity.
Collapse
Affiliation(s)
- Helena L Palka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
47
|
Uzumcu M, Westfall SD, Dirks KA, Skinner MK. Embryonic testis cord formation and mesonephric cell migration requires the phosphotidylinositol 3-kinase signaling pathway. Biol Reprod 2002; 67:1927-35. [PMID: 12444071 DOI: 10.1095/biolreprod.102.006254] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mesonephric cell migration and seminiferous cord formation are critical processes in embryonic testis development at the time of male sex determination. Extracellular growth factors shown to influence seminiferous cord formation such as neurotropin-3 utilize in part the phosphotidylinositol 3-kinase (PI3K) signal transduction pathway. The current study investigates the hypothesis that the PI3K pathway is critical in seminiferous cord formation and testis development. The role of the PI3K signaling pathway in testicular cord formation was examined using an Embryonic Day 13 organ culture system and a PI3K-specific inhibitor LY294002. The actions of a mitogen-activated protein (MAP) kinase-specific inhibitor PD98059 was also examined. The PI3K inhibitor blocked cord formation or reduced the number of cords in a concentration-dependent manner. The actions of LY294002 were found to have a developmental stage specificity in that cord inhibition was observed in organs from embryos with 16-17 tail somites, while organs from embryos with 19 or more tail somites had no block in cord formation and only a small reduction in cord number. In contrast, the MAP kinase inhibitor PD98059 did not block cord formation and only caused a slight reduction in cord number. Neither PI3K or MAP kinase inhibitor altered apoptotic cell number, suggesting apoptosis was not the reason for the inhibition of cord formation. Embryonic testis cell migration assays showed that the PI3K inhibitor LY294002 blocked mesonephros cell migration into the testis, while the MAP kinase inhibitor had no effect. Observations suggest the interference of cell migration is the cause for the inhibition of cord formation. Western blot analysis confirmed that LY294002 and PD98509 inhibited phosphorylation of Akt and ERK1/ERK2, respectively. Combined observations demonstrate that the PI3K signaling pathway is involved in embryonic testis cord formation and mesonephros cell migration.
Collapse
Affiliation(s)
- Mehmet Uzumcu
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman 99164-4231, USA
| | | | | | | |
Collapse
|
48
|
Ieraci A, Forni PE, Ponzetto C. Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc Natl Acad Sci U S A 2002; 99:15200-5. [PMID: 12397180 PMCID: PMC137567 DOI: 10.1073/pnas.222362099] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Indexed: 11/18/2022] Open
Abstract
Cerebellar development occurs mainly postnatally and implies cell proliferation and migration. Hepatocyte growth factor (HGF) and Met are involved in mediating these responses in other tissues and are coexpressed in the cerebellum. Here we show that Met is localized in granule cell precursors and that cultures of these cells respond to HGF with proliferation. To study the role of HGF and Met in the cerebellum in vivo, we produced a viable hypomorphic Met mutant by knocking in the met locus a point mutation to abrogate the receptor Grb2-binding site. A similar mutant was previously described as perinatal lethal. In this "first-generation" knock-in the recombinant locus retained the Neo cassette (Met(grb2/grb2neo+)). In the knock-in presented here Neo was Loxed and excised by Cre recombinase, which led to higher tissue levels of Met(grb2) protein, sufficient to rescue viability. In Met(grb2/grb2neo-) mice the size of the cerebellum was reduced and foliation defects were evident, especially in the central and posterior half of the vermis. Proliferation of granule precursors in vivo was 25% lower than in controls. In cultures of mutant granule cells HGF-induced microtubule-associated protein kinase activation was reduced and transient. Behavioral tests indicated a balance impairment in Met(grb2/grb2neo-) mice. Altogether these data indicate that normal cerebellar development and, possibly, function, require HGF and Met, and that proliferation of granule cells in the cerebellum critically depends on full HGF/Met signaling.
Collapse
Affiliation(s)
- Alessandro Ieraci
- Department of Medical Sciences, Università del Piemonte Orientale Amedeo Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | | | | |
Collapse
|
49
|
Taher TEI, Tjin EPM, Beuling EA, Borst J, Spaargaren M, Pals ST. c-Cbl Is Involved in Met Signaling in B Cells and Mediates Hepatocyte Growth Factor-Induced Receptor Ubiquitination. THE JOURNAL OF IMMUNOLOGY 2002; 169:3793-800. [PMID: 12244174 DOI: 10.4049/jimmunol.169.7.3793] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF) and its receptor tyrosine kinase Met are key regulators of epithelial motility and morphogenesis. Recent studies indicate that the HGF/Met pathway also plays a role in B cell differentiation, whereas uncontrolled Met signaling may lead to B cell neoplasia. These observations prompted us to explore HGF/Met signaling in B cells. In this study, we demonstrate that HGF induces strong tyrosine phosphorylation of the proto-oncogene product c-Cbl in B cells and increases Cbl association with the Src family tyrosine kinases Fyn and Lyn, as well as with phosphatidylinositol-3 kinase and CrkL. In addition, we demonstrate that c-Cbl mediates HGF-induced ubiquitination of Met. This requires the juxtamembrane tyrosine Y1001 (Y2) of Met, but not the multifunctional docking site (Y14/15) or any additional C-terminal tyrosine residues (Y13-16). In contrast to wild-type c-Cbl, the transforming mutants v-Cbl and 70Z/3 Cbl, which lack the ubiquitin ligase RING finger domain, suppress Met ubiquitination. Our findings identify c-Cbl as a negative regulator of HGF/Met signaling in B cells, mediating ubiquitination and, consequently, proteosomal degradation of Met, and suggest a role for Cbl in Met-mediated tumorigenesis.
Collapse
Affiliation(s)
- Taher E I Taher
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Wang D, Li Z, Messing EM, Wu G. Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM. J Biol Chem 2002; 277:36216-22. [PMID: 12147692 DOI: 10.1074/jbc.m205111200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MET is a receptor protein-tyrosine kinase (RPTK) for hepatocyte growth factor (HGF), which is a multifunctional cytokine controlling cell growth, morphogenesis, and motility. MET overexpression has been identified in a variety of human cancers. Oncogenic missense mutations of the tyrosine kinase domain of the MET gene have been identified in human papillary renal cell carcinomas. In this study, RanBPM, also known as RanBP9, is identified as a novel interacting protein of MET through yeast two-hybrid screen. RanBPM contains a conserved SPRY (repeats in splA and RyR) domain. We demonstrate that RanBPM can interact with MET in vitro and in vivo, and the interaction can be strengthened by HGF stimulation. RanBPM interacts with the tyrosine kinase domain of MET through its SPRY domain. We show that RanBPM can induce GTP-Ras association and Erk phosphorylation and elevate serum response element-luciferase (SRE-LUC) expression, indicating that RanBPM can activate the Ras-Erk-SRE pathway. We demonstrate that RanBPM, which itself is not a guanine exchange protein, stimulates Ras activation by recruiting Sos. On the cellular level, A704 cells, a human renal carcinoma cell line, transfected with RanBPM exhibit increased migration ability. Our data suggest that RanBPM, functioning as an adaptor protein for the MET tyrosine kinase domain, can augment the HGF-MET signaling pathway and that RanBPM overexpression may cause constitutive activation of the Ras signaling pathway.
Collapse
Affiliation(s)
- Dakun Wang
- Department of Urology, The James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|