1
|
Ahmed M, Ahmad A, Mushtaq N, Sher N, Khan RA. Protective Role of Antibiotics (Anisomycin and Puromycin) Against Snake Venom Acetylcholinesterase (AChE). Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
New Synthesized Tri-Peptide as Inhibitor of Krait (Bungarus Sindanus) Venom Acetylcholinesterase. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
3
|
Ahmed M, Khan SZ, Sher N, Rehman ZU, Mushtaq N, Khan RA. Kinetic and toxicological effects of synthesized palladium(II) complex on snake venom (Bungarus sindanus) acetylcholinesterase. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200047. [PMID: 33889183 PMCID: PMC8034821 DOI: 10.1590/1678-9199-jvatitd-2020-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The venom of the krait (Bungarus sindanus), an Elapidae snake, is highly toxic to humans and contains a great amount of acetylcholinesterase (AChE). The enzyme AChE provokes the hydrolysis of substrate acetylcholine (ACh) in the nervous system and terminates nerve impulse. Different inhibitors inactivate AChE and lead to ACh accumulation and disrupted neurotransmission. METHODS The present study was designed to evaluate the effect of palladium(II) complex as antivenom against krait venom AChE using kinetics methods. RESULTS Statistical analysis showed that krait venom AChE inhibition decreases with the increase of Pd(II) complex (0.025-0.05 µM) and exerted 61% inhibition against the AChE at a fixed concentration (0.5 mM) of ACh. Kinetic analysis using the Lineweaver Burk plot showed that Pd(II) caused a competitive inhibition. The compound Pd(II) complex binds at the active site of the enzyme. It was observed that K m (Michaelis-Menten constant of AChE-ACh into AChE and product) increased from 0.108 to 0.310 mM (45.74 to 318.35%) and V max remained constant with an increase of Pd(II) complex concentrations. In AChE K Iapp was found to increase from 0.0912 to 0.025 µM (29.82-72.58%) and did not affect the V maxapp with an increase of ACh from (0.05-1 mM). K i (inhibitory constant) was estimated to be 0.029 µM for snake venom; while the K m was estimated to be 0.4 mM. The calculated IC50 for Pd(II) complex was found to be 0.043 µM at constant ACh concentration (0.5 mM). CONCLUSIONS The results show that the Pd(II) complex can be deliberated as an inhibitor of AChE.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology
Bannu-KPK, Pakistan
| | - Shahan Zeb Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad,
Pakistan
| | - Naila Sher
- Department of Biotechnology, University of Science and Technology
Bannu-KPK, Pakistan
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad,
Pakistan
| | - Nadia Mushtaq
- Department of Botany, University of Science and Technology
Bannu-KPK, Pakistan
| | - Rahmat Ali Khan
- Department of Biotechnology, University of Science and Technology
Bannu-KPK, Pakistan
| |
Collapse
|
4
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
5
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
6
|
Basova NE, Kormilitsyn BN, Perchenok AY, Rozengart EV, Saakov VS, Suvorov AA. Substrate Specificity of Cholinesterases in Various Representatives of the Animal Kingdom. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Glukhova KF, Marchenkov VV, Melnik TN, Melnik BS. Isoforms of green fluorescent protein differ from each other in solvent molecules 'trapped' inside this protein. J Biomol Struct Dyn 2016; 35:1215-1225. [PMID: 27045905 DOI: 10.1080/07391102.2016.1174737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Green fluorescent protein (GFP) has been studied quite thoroughly, however, up to now some experimental data have not been explained explicitly. For example, under native conditions this protein can have two isoforms differing in their mobility in gel. In this case, no differences between the isoforms are revealed under denaturing conditions. In order to understand the difference in the isoforms of this protein, we have investigated GFP-cycle3 using mass spectrometry, gel electrophoresis, size exclusion chromatography, microcalorimetry, and spectroscopy methods under varying conditions. We have also designed and studied three mutant forms of this protein with substitutions of amino acid residues inside the GFP barrel. The mutations have allowed us to influence the formation of different GFP isoforms. Each of the mutant proteins has predominantly only one isoform. As a result of the performed research, it can be concluded that most likely the GFP isoforms differ in the solvent molecules 'trapped' inside the GFP barrel. In their turn, these molecules have an effect on the protein charge and consequently on its mobility at electrophoresis under native conditions.
Collapse
Affiliation(s)
- Kseniya F Glukhova
- a Institute of Protein Research , Russian Academy of Sciences , 142290 Pushchino , Moscow Region , Russia
| | - Victor V Marchenkov
- a Institute of Protein Research , Russian Academy of Sciences , 142290 Pushchino , Moscow Region , Russia
| | - Tatiana N Melnik
- a Institute of Protein Research , Russian Academy of Sciences , 142290 Pushchino , Moscow Region , Russia
| | - Bogdan S Melnik
- a Institute of Protein Research , Russian Academy of Sciences , 142290 Pushchino , Moscow Region , Russia
| |
Collapse
|
8
|
Hargreaves AD, Swain MT, Logan DW, Mulley JF. Testing the Toxicofera: comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system. Toxicon 2014; 92:140-56. [PMID: 25449103 DOI: 10.1016/j.toxicon.2014.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
The identification of apparently conserved gene complements in the venom and salivary glands of a diverse set of reptiles led to the development of the Toxicofera hypothesis - the single, early evolution of the venom system in reptiles. However, this hypothesis is based largely on relatively small scale EST-based studies of only venom or salivary glands and toxic effects have been assigned to only some putative Toxicoferan toxins in some species. We set out to examine the distribution of these proposed venom toxin transcripts in order to investigate to what extent conservation of gene complements may reflect a bias in previous sampling efforts. Our quantitative transcriptomic analyses of venom and salivary glands and other body tissues in five species of reptile, together with the use of available RNA-Seq datasets for additional species, shows that the majority of genes used to support the establishment and expansion of the Toxicofera are in fact expressed in multiple body tissues and most likely represent general maintenance or "housekeeping" genes. The apparent conservation of gene complements across the Toxicofera therefore reflects an artefact of incomplete tissue sampling. We therefore conclude that venom has evolved multiple times in reptiles.
Collapse
Affiliation(s)
- Adam D Hargreaves
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, United Kingdom.
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom.
| | - John F Mulley
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| |
Collapse
|
9
|
Bourne Y, Renault L, Marchot P. Crystal structure of snake venom acetylcholinesterase in complex with inhibitory antibody fragment Fab410 bound at the peripheral site: evidence for open and closed states of a back door channel. J Biol Chem 2014; 290:1522-35. [PMID: 25411244 DOI: 10.1074/jbc.m114.603902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acetylcholinesterase found in the venom of Bungarus fasciatus (BfAChE) is produced as a soluble, non-amphiphilic monomer with a canonical catalytic domain but a distinct C terminus compared with the other vertebrate enzymes. Moreover, the peripheral anionic site of BfAChE, a surface site located at the active site gorge entrance, bears two substitutions altering sensitivity to cationic inhibitors. Antibody Elec410, generated against Electrophorus electricus acetylcholinesterase (EeAChE), inhibits EeAChE and BfAChE by binding to their peripheral sites. However, both complexes retain significant residual catalytic activity, suggesting incomplete gorge occlusion by bound antibody and/or high frequency back door opening. To explore a novel acetylcholinesterase species, ascertain the molecular bases of inhibition by Elec410, and document the determinants and mechanisms for back door opening, we solved a 2.7-Å resolution crystal structure of natural BfAChE in complex with antibody fragment Fab410. Crystalline BfAChE forms the canonical dimer found in all acetylcholinesterase structures. Equally represented open and closed states of a back door channel, associated with alternate positions of a tyrosine phenol ring at the active site base, coexist in each subunit. At the BfAChE molecular surface, Fab410 is seated on the long Ω-loop between two N-glycan chains and partially occludes the gorge entrance, a position that fully reflects the available mutagenesis and biochemical data. Experimentally based flexible molecular docking supports a similar Fab410 binding mode onto the EeAChE antigen. These data document the molecular and dynamic peculiarities of BfAChE with high frequency back door opening, and the mode of action of Elec410 as one of the largest peptidic inhibitors targeting the acetylcholinesterase peripheral site.
Collapse
Affiliation(s)
- Yves Bourne
- From Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, campus Luminy, 13228 Marseille cedex 09, France, CNRS, Architecture et Fonction des Macromolécules Biologiques, campus Luminy, 13228 Marseille cedex 09, France, and
| | - Ludovic Renault
- CNRS/Aix-Marseille Université, Ingénierie des Protéines, Faculté de Médecine-Secteur Nord, 13344 Marseille cedex 15, France
| | - Pascale Marchot
- From Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, campus Luminy, 13228 Marseille cedex 09, France, CNRS, Architecture et Fonction des Macromolécules Biologiques, campus Luminy, 13228 Marseille cedex 09, France, and CNRS/Aix-Marseille Université, Ingénierie des Protéines, Faculté de Médecine-Secteur Nord, 13344 Marseille cedex 15, France
| |
Collapse
|
10
|
Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China. J Proteomics 2013; 89:141-53. [PMID: 23796489 DOI: 10.1016/j.jprot.2013.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022]
Abstract
UNLABELLED This study deciphers the geographic variations of king cobra (Ophiophagus hannah) venom using functional proteomics. Pooled samples of king cobra venom (abbreviated as Ohv) were obtained from Indonesia, Malaysia, Thailand, and two provinces of China, namely Guangxi and Hainan. Using two animal models to test and compare the lethal effects, we found that the Chinese Ohvs were more fatal to mice, while the Southeast Asian Ohvs were more fatal to lizards (Eutropis multifasciata). Various phospholipases A2 (PLA2s), three-finger toxins (3FTxs) and Kunitz-type inhibitors were purified from these Ohvs and compared. Besides the two Chinese Ohv PLA2s with known sequences, eight novel PLA2s were identified from the five Ohv samples and their antiplatelet activities were compared. While two 3FTxs (namely oh-55 and oh-27) were common in all the Ohvs, different sets of 3FTx markers were present in the Chinese and Southeast Asian Ohvs. All the Ohvs contain the Kunitz inhibitor, OH-TCI, while only the Chinese Ohvs contain the inhibitor variant, Oh11-1. Relative to the Chinese Ohvs which contained more phospholipases, the Southeast Asian Ohvs had higher metalloproteinase, acetylcholine esterase, and alkaline phosphatase activities. BIOLOGICAL SIGNIFICANCE Remarkable variations in five king cobra geographic samples reveal fast evolution and dynamic translational regulation of the venom which probably adapted to different prey ecology as testified by the lethal tests on mice and lizards. Our results predict possible variations of the king cobra envenoming to human and the importance of using local antivenin for snakebite treatment.
Collapse
|
11
|
Ali SA, Yang DC, Jackson TNW, Undheim EAB, Koludarov I, Wood K, Jones A, Hodgson WC, McCarthy S, Ruder T, Fry BG. Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). J Proteomics 2013; 89:15-23. [PMID: 23714137 DOI: 10.1016/j.jprot.2013.05.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022]
Abstract
UNLABELLED Intra- and interspecific variation in venom composition has been shown to have a major effect upon the efficacy of antivenoms. Due to the absence of domestically produced antivenoms, Pakistan is wholly reliant upon antivenoms produced in other countries, such as India. However, the efficacy of these antivenoms in neutralising the venoms of Pakistani snakes has not been ascertained. This is symptomatic of the general state of toxicological research in this country, which has a myriad of highly toxic and medically important venomous animals. Thus, there is a dire need for knowledge regarding the fundamental proteomics of these venoms and applied knowledge of the relative efficacy of foreign antivenoms. Here we present the results of our proteomic research on two medically important snakes of Pakistan: Bungarus sindanus and Naja naja. Indian Polyvalent Antivenom (Bharat Serums and Vaccines Ltd), which is currently marketed for use in Pakistan, was completely ineffective against either Pakistani species. In addition to the expected pre- and post-synaptic neurotoxic activity, the venom of the Pakistan population of N. naja was shown to be quite divergent from other populations of this species in being potently myotoxic. These results highlight the importance of studying divergent species and isolated populations, where the same data not only elucidates clinical problems in need of immediate attention, but also uncovers sources for novel toxins with potentially useful activities. BIOLOGICAL SIGNIFICANCE Pakistan Bungarus sindanus and Naja naja venoms are differentially complex. Naja naja is potently myotoxic. Neither venom is neutralized by Indian antivenom. These results have direct implications for the treatment of envenomed patients in Pakistan. The unusually myotoxic effects of Naja naja demonstrates the value of studying remote populations for biodiscovery.
Collapse
Affiliation(s)
- Syed A Ali
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Qld 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pinho BR, Ferreres F, Valentão P, Andrade PB. Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment. J Pharm Pharmacol 2013; 65:1681-700. [DOI: 10.1111/jphp.12081] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/11/2013] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is the most common cause of dementia, being responsible for high healthcare costs and familial hardships. Despite the efforts of researchers, no treatment able to delay or stop AD progress exists. Currently, the available treatments are only symptomatic, cholinesterase inhibitors being the most widely used drugs. Here we describe several natural compounds with anticholinesterase (acetylcholinesterase and butyrylcholinesterase) activity and also some synthetic compounds whose structures are based on those of natural compounds.
Key findings
Galantamine and rivastigmine are two cholinesterase inhibitors used in therapeutics: galantamine is a natural alkaloid that was extracted for the first time from Galanthus nivalis L., while rivastigmine is a synthetic alkaloid, the structure of which is modelled on that of natural physostigmine. Alkaloids include a high number of compounds with anticholinesterases activity at the submicromolar range. Quinones and stilbenes are less well studied regarding cholinesterase inhibition, although some of them, such as sargaquinoic acid or (+)-α-viniferin, show promising activity. Among flavonoids, flavones and isoflavones are the most potent compounds. Xanthones and monoterpenes are generally weak cholinesterase inhibitors.
Summary
Nature is an almost endless source of bioactive compounds. Several natural compounds have anticholinesterase activity and others can be used as leader compounds for the synthesis of new drugs.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Patrícia Valentão
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
de Aquino RAN, Modolo LV, Alves RB, de Fátima Â. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. Org Biomol Chem 2013; 11:8395-409. [DOI: 10.1039/c3ob41762j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Tan F, Wang L, Wang J, Wu X, Zhu H, Jiang L, Tao S, Zhao K, Yang Y, Tang X. Enhanced pesticide sensitivity of novel housefly acetylcholinesterases: a new tool for the detection of residual pesticide contamination. Bioprocess Biosyst Eng 2010; 34:305-14. [PMID: 20963445 DOI: 10.1007/s00449-010-0472-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
Abstract
The full-length cDNA encoding an acetylcholinesterase (AChE) was cloned and sequenced from the housefly, Musca domestica, by reverse transcriptase-polymerase chain reaction (RT-PCR). Sequence analysis revealed that this 2,076 bp sequence encodes a mature protein of 612 amino acids (67 kDa) and a 79 residue signal peptide. The amino acid sequence shared 52.8-81.4% identity with the AChE proteins of other insects. The cDNA sequence, which lacked the signal peptide was inserted into the vector pPIC9K and then introduced into strain GS115 of the yeast Pichia pastoris. The recombinant AChE protein was then expressed in P. pastoris strain GS115 by methanol induction. Site-directed mutagenesis of the A262G, Y327F, Y327D and I374D residues, either singly or in combination, was performed by reverse PCR. These mutants improved the catalytic activity and sensitivity to the organophosphate and carbamate insecticides. Although the sensitivity of other mutants was slightly increased, the results still showed that the sensitivity of triple mutant, GDD (A262G/Y327D/I374D), enhanced remarkably as much as 16 times for methomyl, 14 times for both carbofuran and chlorpyrifos, and ten times for parathion-methyl, compared to that of the wild-type. The results strongly suggested that these residues are the key structural elements controlling AChE enzyme catalytic activity and sensitivity to inhibition by insecticides. The AChE enzyme obtained by this method could be used to detect the organophosphate and carbamate insecticide residues in fruits and vegetables, a characteristic of great potential research and industrial application.
Collapse
Affiliation(s)
- Furong Tan
- Biotechnology Research Institute, Shanghai Academy of Agriculture Sciences, 2901 Beidi Road, Shanghai 201106, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Venom on ice: first insights into Antarctic octopus venoms. Toxicon 2010; 56:897-913. [PMID: 20600223 DOI: 10.1016/j.toxicon.2010.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 06/12/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022]
Abstract
The venom of Antarctic octopus remains completely unstudied. Here, a preliminary investigation was conducted into the properties of posterior salivary gland (PSG) extracts from four Antarctica eledonine (Incirrata; Octopodidae) species (Adelieledone polymorpha, Megaleledone setebos, Pareledone aequipapillae, and Pareledone turqueti) collected from the coast off George V's Land, Antarctica. Specimens were assayed for alkaline phosphatase (ALP), acetylcholinesterase (AChE), proteolytic, phospholipase A(2) (PLA(2)), and haemolytic activities. For comparison, stomach tissue from Cirroctopus sp. (Cirrata; Cirroctopodidae) was also assayed for ALP, AChE, proteolytic and haemolytic activities. Dietary and morphological data were collected from the literature to explore the ecological importance of venom, taking an adaptive evolutionary approach. Of the incirrate species, three showed activities in all assays, while P. turqueti did not exhibit any haemolytic activity. There was evidence for cold-adaptation of ALP in all incirrates, while proteolytic activity in all except P. turqueti. Cirroctopus sp. stomach tissue extract showed ALP, AChE and some proteolytic activity. It was concluded that the AChE activity seen in the PSG extracts was possibly due to a release of household proteins, and not one of the secreted salivary toxins. Although venom undoubtedly plays an important part in prey capture and processing by Antarctica eledonines, no obvious adaptations to differences in diet or morphology were apparent from the enzymatic and haemolytic assays. However, several morphological features including enlarged PSG, small buccal mass, and small beak suggest such adaptations are present. Future studies should be conducted on several levels: Venomic, providing more detailed information on the venom compositions as well as the venom components themselves; ecological, for example application of serological or genetic methods in identifying stomach contents; and behavioural, including observations on capture of different types of prey.
Collapse
|
16
|
Lang GJ, Shang JY, Chen YX, Cui YJ, Wang Q, Tang ZH, Zhang CX. Expression of the housefly acetylcholinesterase in a bioreactor and its potential application in the detection of pesticide residues. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0360-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Blacklow B, Konstantakopoulos N, Hodgson WC, Nicholson GM. Presence of presynaptic neurotoxin complexes in the venoms of Australo-Papuan death adders (Acanthophis spp.). Toxicon 2010; 55:1171-80. [PMID: 20064542 DOI: 10.1016/j.toxicon.2010.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 11/19/2022]
Abstract
Australo-papuan death adders (Acanthophis spp.) are a cause of serious envenomations in Papua New Guinea and northern Australia often resulting in neurotoxic paralysis. Furthermore, victims occasionally present with delayed-onset neurotoxicity that sometimes responds poorly to antivenom or anticholinesterase treatment. This clinical outcome could be explained by the presence of potent snake presynaptic phospholipase A(2) neurotoxin (SPAN) complexes and monomers, in addition to long- and short-chain postsynaptic alpha-neurotoxins, that bind irreversibly, block neurotransmitter release and result in degeneration of the nerve terminal. The present study therefore aimed to determine within-genus variations in expression of high molecular mass SPAN complexes in the venoms of six major species of Acanthophis, four geographic variants of Acanthophis antarcticus. Venoms were separated by size-exclusion liquid chromatography under non-denaturing conditions and fractions corresponding to proteins in the range of 22 to >60 kDa were subjected to pharmacological characterization using the isolated chick biventer cervicis nerve-muscle (CBCNM) preparation. All venoms, except Acanthophis wellsi and Acanthophis pyrrhus, contained high mass fractions with phospholipase A(2) activity that inhibited twitch contractions of the CBCNM preparation. This inhibition was of slow onset, and responses to exogenous nicotinic agonists were not blocked, consistent with the presence of SPAN complexes. The results of the present study indicate that clinicians may need to be aware of possible prejunctional neurotoxicity following envenomations from A. antarcticus (all geographic variants except perhaps South Australia), Acanthophis praelongus, Acanthophis rugosus and Acanthophis. laevis species, and that early antivenom intervention is important in preventing further development of toxicity.
Collapse
Affiliation(s)
- Benjamin Blacklow
- Department of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway, NSW, Australia
| | | | | | | |
Collapse
|
18
|
Weiner L, Shnyrov VL, Konstantinovskii L, Roth E, Ashani Y, Silman I. Stabilization of Torpedo californica Acetylcholinesterase by Reversible Inhibitors. Biochemistry 2008; 48:563-74. [DOI: 10.1021/bi801196y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lev Weiner
- Chemical Research Support and Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, and Department of Biochemistry and Molecular Biology, Universidad de Salamanca, Salamanca 37007, Spain
| | - Valery L. Shnyrov
- Chemical Research Support and Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, and Department of Biochemistry and Molecular Biology, Universidad de Salamanca, Salamanca 37007, Spain
| | - Leonid Konstantinovskii
- Chemical Research Support and Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, and Department of Biochemistry and Molecular Biology, Universidad de Salamanca, Salamanca 37007, Spain
| | - Esther Roth
- Chemical Research Support and Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, and Department of Biochemistry and Molecular Biology, Universidad de Salamanca, Salamanca 37007, Spain
| | - Yacov Ashani
- Chemical Research Support and Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, and Department of Biochemistry and Molecular Biology, Universidad de Salamanca, Salamanca 37007, Spain
| | - Israel Silman
- Chemical Research Support and Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, and Department of Biochemistry and Molecular Biology, Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
19
|
Abstract
Acetylcholine is the major excitatory neurotransmitter controlling motor activities in nematodes, and the enzyme which hydrolyses and inactivates acetylcholine, acetylcholinesterase, is thus essential for regulation of cholinergic transmission. Different forms of acetylcholinesterase are encoded by multiple genes in nematodes, and analysis of the pattern of expression of these genes in Caenorhabditis elegans suggests that they perform non-redundant functions. In addition, many parasitic species which colonise host mucosal surfaces secrete hydrophilic variants of acetylcholinesterase, although the function of these enzymes is still unclear. Acetylcholinesterases have a history as targets for therapeutic agents against helminth parasites, but anti-cholinesterases have been used much more extensively as pesticides, for example to control crop damage and ectoparasitic infestation of livestock. The toxicity associated with these compounds (generally organophosphates and carbamates) has led to legislation to withdraw them from the market or restrict their use in many countries. Nevertheless, acetylcholinesterases provide a good example of a neuromuscular target enzyme in helminth parasites, and it may yet be possible to develop more selective inhibitors. In this article, we describe what is known about the structure and function of vertebrate cholinesterases, illustrate the molecular diversity and tissue distribution of these enzymes in C. elegans, and discuss to what extent this may represent a paradigm for nematodes in general.
Collapse
Affiliation(s)
- M E Selkirk
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AY, United Kingdom.
| | | | | |
Collapse
|
20
|
Birrell GW, Earl STH, Wallis TP, Masci PP, de Jersey J, Gorman JJ, Lavin MF. The Diversity of Bioactive Proteins in Australian Snake Venoms. Mol Cell Proteomics 2007; 6:973-86. [PMID: 17317661 DOI: 10.1074/mcp.m600419-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Australian elapid snakes are among the most venomous in the world. Their venoms contain multiple components that target blood hemostasis, neuromuscular signaling, and the cardiovascular system. We describe here a comprehensive approach to separation and identification of the venom proteins from 18 of these snake species, representing nine genera. The venom protein components were separated by two-dimensional PAGE and identified using mass spectrometry and de novo peptide sequencing. The venoms are complex mixtures showing up to 200 protein spots varying in size from <7 to over 150 kDa and in pI from 3 to >10. These include many proteins identified previously in Australian snake venoms, homologs identified in other snake species, and some novel proteins. In many cases multiple trains of spots were typically observed in the higher molecular mass range (>20 kDa) (indicative of post-translational modification). Venom proteins and their post-translational modifications were characterized using specific antibodies, phosphoprotein- and glycoprotein-specific stains, enzymatic digestion, lectin binding, and antivenom reactivity. In the lower molecular weight range, several proteins were identified, but the predominant species were phospholipase A2 and alpha-neurotoxins, both represented by different sequence variants. The higher molecular weight range contained proteases, nucleotidases, oxidases, and homologs of mammalian coagulation factors. This information together with the identification of several novel proteins (metalloproteinases, vespryns, phospholipase A2 inhibitors, protein-disulfide isomerase, 5'-nucleotidases, cysteine-rich secreted proteins, C-type lectins, and acetylcholinesterases) aids in understanding the lethal mechanisms of elapid snake venoms and represents a valuable resource for future development of novel human therapeutics.
Collapse
Affiliation(s)
- Geoff W Birrell
- The Queensland Institute of Medical Research, P. O. Royal Brisbane Hospital, Brisbane 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Poyot T, Nachon F, Froment MT, Loiodice M, Wieseler S, Schopfer LM, Lockridge O, Masson P. Mutant of Bungarus fasciatus acetylcholinesterase with low affinity and low hydrolase activity toward organophosphorus esters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1470-8. [PMID: 16962835 DOI: 10.1016/j.bbapap.2006.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/22/2022]
Abstract
Enzymes hydrolysing highly toxic organophosphate esters (OPs) are promising alternatives to pharmacological countermeasures against OPs poisoning. Bungarus fasciatus acetylcholinesterase (BfAChE) was engineered to acquire organophosphate hydrolase (OPase) activity by reproducing the features of the human butyrylcholinesterase G117H mutant, the first mutant designed to hydrolyse OPs. The modification consisted of a triple mutation on the (122)GFYS(125) peptide segment, resulting in (122)HFQT(125). This substitution introduced a nucleophilic histidine above the oxyanion hole, and made space in that region. The mutant did not show inhibition by excess acetylthiocholine up to 80 mM. The k(cat)/K(m) ratio with acetylthiocholine was 4 orders of magnitude lower than that of wild-type AChE. Interestingly, due to low affinity, the G122H/Y124Q/S125T mutant was resistant to sub-millimolar concentrations of OPs. Moreover, it had hydrolysing activity with paraoxon, echothiophate, and diisopropyl phosphofluoridate (DFP). DFP was characterised as a slow-binding substrate. This mutant is the first mutant of AChE capable of hydrolysing organophosphates. However, the overall OPase efficiency was greatly decreased compared to G117H butyrylcholinesterase.
Collapse
Affiliation(s)
- Thomas Poyot
- Département de Toxicologie, Centre de Recherches du Service de Santé des Armées, BP 87, 38702 La Tronche Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rochu D, Cléry-Barraud C, Renault F, Chevalier A, Bon C, Masson P. Capillary electrophoresis versus differential scanning calorimetry for the analysis of free enzyme versus enzyme-ligand complexes: in the search of the ligand-free status of cholinesterases. Electrophoresis 2006; 27:442-51. [PMID: 16342323 DOI: 10.1002/elps.200500517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cholinesterases (ChEs) are highly efficient biocatalysts whose active site is buried in a deep, narrow gorge. The talent of CE to discover inhibitors in the gorge of highly purified preparations has fairly altered the meaning of a ChE ligand-free status. To attempt at a description of this one, we investigated the stability of Bungarus fasciatus acetylcholinesterase (AChE), alone or complexed with different inhibitors. Determination of mid-transition temperature for thermal denaturation, using differential scanning calorimetry (DSC) and CE, provided conflicting results. Discrepancies strongly question the reality of a ligand-free AChE state. DSC allowed estimation of the stability of AChE-ligands complexes, and to rank the stabilizing effect of different inhibitors. CE acted as a detector of hidden ligands, provided that they were charged, reversibly bound, and thus dissociable upon action of electric fields. Then, CE allowed quantification of the stability of ligand-free AChE. CE and DSC providing each fractional and nonredundant information, cautious attention must be paid for actual estimation of the conformational stability of ChEs. Because inhibitors used in purification of ChEs by affinity chromatography are charged, CE remains a leading method to estimate enzyme stability and detect the presence of bound hidden ligands.
Collapse
Affiliation(s)
- Daniel Rochu
- Centre de Recherches du Service de Santé des Armées, La Tronche, France.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
This review describes 183 compounds obtained from plants and fungi which have been shown to inhibit acetylcholinesterase. The mechanism of action of cholinesterase, together with the binding sites, and, where this is known, the mode of action of inhibitors is described. The relative activities of the different compounds are recorded. The strongest inhibitors are generally alkaloids although some meroterpenoids from fungi have also been found to be active and display better selectivity.
Collapse
Affiliation(s)
- Peter J Houghton
- Pharmacognosy Research Laboratories, Pharmaceutical Sciences Research Division, King's College London, Franklin-Wilkins Building, UK
| | | | | |
Collapse
|
24
|
Selkirk ME, Lazari O, Hussein AS, Matthews JB. Nematode acetylcholinesterases are encoded by multiple genes and perform non-overlapping functions. Chem Biol Interact 2005; 157-158:263-8. [PMID: 16243303 DOI: 10.1016/j.cbi.2005.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nematodes are unusual in that diverse molecular forms of acetylcholinesterase are the product of distinct genes. This is best characterised in the free living organism Caenorhabditis elegans, in which 3 genes are known to give rise to distinct enzymes, with a fourth likely to be non-functional. ACE-1 is an amphiphilic tetramer associated with a hydrophobic non-catalytic subunit, analogous to vertebrate T enzymes, whereas ACE-2 and ACE-3 are glycosylphosphatidylinositol-linked amphiphilic dimers. The different ace genes show distinct anatomical patterns of expression in muscles, sensory neurons and motor neurons, with only a few examples of coordinated expression. Clear homologues of ace-1 and ace-2 have now been isolated from a variety of parasitic nematodes, and the predicted proteins have very similar C-terminal amino acid sequences, implying an analogous means of anchorage to membranes. In addition to these membrane-bound enzymes, many parasitic nematodes which colonise mucosal surfaces secrete acetylcholinesterases to the external (host) environment. These hydrophilic enzymes are separately encoded in the genome, so that some parasites may thus have a total complement of six ace genes. The secretory enzymes have been characterised from the intestinal nematode Nippostrongylus brasiliensis and the lungworm Dictyocaulus viviparus. These show a number of common features, including a truncated C-terminus and an insertion at the molecular surface, when compared to other nematode acetylcholinesterases. Although the function of these enzymes has not been determined, they most likely alter host physiological responses to promote survival of the parasite.
Collapse
Affiliation(s)
- Murray E Selkirk
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AY, UK.
| | | | | | | |
Collapse
|
25
|
Khalid A, Azim MK, Parveen S, Choudhary MI. Structural basis of acetylcholinesterase inhibition by triterpenoidal alkaloids. Biochem Biophys Res Commun 2005; 331:1528-32. [PMID: 15959931 DOI: 10.1016/j.bbrc.2005.03.248] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Acetylcholinesterase plays a crucial role in the metabolism of neurotransmitter, acetylcholine. Inhibition of Torpedo californica acetylcholinesterase by triterpenoidal alkaloids buxamine-B (1) and buxamine-C (2) has been studied by enzyme kinetics and molecular docking experiments. Buxamine-C (2) has been found to be 20-fold potent than buxamine-B (1) (Ki = 5.5 and 110 microM, respectively). The ligand docking experiments predicted that the cyclopentanophenanthrene skeleton of both inhibitors properly fits into the aromatic gorge of the enzyme. The C-3 and C-20 amino groups of both alkaloids mimic the well-known bis-quaternary ammonium inhibitors such as decamethonium and interact with Trp84 and Trp279 residues of the enzyme, respectively. The C-3 amino group in buxamine-C (2) appears to be better positioned at the bottom of the aromatic gorge and thus seems to be crucial for the inhibitory activity of such inhibitors.
Collapse
Affiliation(s)
- Asaad Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical Sciences, University of Karachi, Pakistan
| | | | | | | |
Collapse
|
26
|
Wang Y, Schopfer LM, Duysen EG, Nachon F, Masson P, Lockridge O. Screening assays for cholinesterases resistant to inhibition by organophosphorus toxicants. Anal Biochem 2004; 329:131-8. [PMID: 15136175 DOI: 10.1016/j.ab.2004.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2004] [Indexed: 11/19/2022]
Abstract
Methods to measure resistance to inhibition by organophosphorus toxicants (OP) for mutants of butyrylcholinesterase (EC 3.1.1.8; BChE) and acetylcholinesterase (EC 3.1.1.7; AChE) enzymes were devised. Wild-type cholinesterases were completely inhibited by 0.1 mM echothiophate or 0.001 mM diisopropylfluorophosphate, but human BChE mutants G117H, G117D, L286H, and W231H and snake AChE mutant HFQT retained activity. Tissues containing a mixture of cholinesterases could be assayed for amount of G117H BChE. For example, the serum of transgenic mice expressing human G117H BChE contained 0.5 microg/ml human G117H BChE, 2 microg/ml wild-type mouse BChE, and 0.06 microg/ml wild-type mouse AChE. The oligomeric structure of G117H BChE in the serum of transgenic mice was determined by nondenaturing gel electrophoresis followed by staining for butyrylthiocholine hydrolysis activity in the presence of 0.1 mM echothiophate. Greater than 95% of the human G117H BChE in transgenic mouse serum was a tetramer. To visualize the distribution of G117H BChE in tissues of transgenic mice, sections of small intestine were treated with echothiophate and then stained for BChE activity. Both wild-type and G117H BChE were in the epithelial cells of the villi. These assays can be used to identify OP-resistant cholinesterases in culture medium and in animal tissues.
Collapse
Affiliation(s)
- Yuxia Wang
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
27
|
Stojan J, Brochier L, Alies C, Colletier JP, Fournier D. Inhibition of Drosophila melanogaster acetylcholinesterase by high concentrations of substrate. ACTA ACUST UNITED AC 2004; 271:1364-71. [PMID: 15030487 DOI: 10.1111/j.1432-1033.2004.04048.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acetylcholine hydrolysis by acetylcholinesterase is inhibited at high substrate concentrations. To determine the residues involved in this phenomenon, we have mutated most of the residues lining the active-site gorge but mutating these did not completely eliminate hydrolysis. Thus, we analyzed the effect of a nonhydrolysable substrate analogue on substrate hydrolysis and on reactivation of an analogue of the acetylenzyme. Analyses of various models led us to propose the following sequence of events: the substrate initially binds at the rim of the active-site gorge and then slides down to the bottom of the gorge where it is hydrolyzed. Another substrate molecule can bind to the peripheral site: (a) when the choline is still inside the gorge - it will thereby hinder its exit; (b) after choline has dissociated but before deacetylation occurs - binding at the peripheral site increases deacetylation rate but (c) if a substrate molecule bound to the peripheral site slides down to the bottom of the active-site before the catalytic serine is deacetylated, its new position will prevent the approach of water, thus blocking deacetylation.
Collapse
Affiliation(s)
- Jure Stojan
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
28
|
Lazari O, Hussein AS, Selkirk ME, Davidson AJ, Thompson FJ, Matthews JB. Cloning and expression of two secretory acetylcholinesterases from the bovine lungworm, Dictyocaulus viviparus. Mol Biochem Parasitol 2004; 132:83-92. [PMID: 14599668 DOI: 10.1016/j.molbiopara.2003.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the molecular cloning, expression and biochemical characterisation of recombinant forms of two secreted acetylcholinesterases from adult Dictyocaulus viviparus. The two variants (designated Dv-ACE-1 and Dv-ACE-2) were 613 and 615 amino acids long and showed 94.7% identity to one another. The highest level of identity to other cholinesterases was with ACE-2 of Caenorhabditis elegans. Dv-ACE-1 and Dv-ACE-2 showed 48.0 and 47.7% identity to C. elegans ACE-2 over 577 amino acids, respectively. The primary structure of both enzymes showed conservation of the catalytic triad and of a tryptophan residue known to be critical for the choline-binding site, but differed in the number of potential glycosylation sites and at one amino acid in the peripheral anionic site. Southern blotting and PCR experiments indicated that the genes encoding these enzymes are distinct. When expressed in Pichia pastoris, the enzymes were active, but differed subtly in their biochemical characteristics. Both enzymes exhibited a preference for acetylcholine as substrate, but differed in the extent of excess substrate inhibition and in their optimal pH for activity. The lack of an obvious carboxy-terminal membrane anchor and the presence of an insertion at the molecular surface were other features which, thus far, appear to be characteristic of parasite secreted acetylcholinesterases.
Collapse
Affiliation(s)
- Ovadia Lazari
- Department of Veterinary Clinical Science and Animal Husbandry, University of Liverpool, Leahurst, CH64 7TE, South Wirral, UK
| | | | | | | | | | | |
Collapse
|
29
|
Saxena A, Hur RS, Luo C, Doctor BP. Natural Monomeric Form of Fetal Bovine Serum Acetylcholinesterase Lacks the C-Terminal Tetramerization Domain. Biochemistry 2003; 42:15292-9. [PMID: 14690439 DOI: 10.1021/bi030150x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.
Collapse
Affiliation(s)
- Ashima Saxena
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | |
Collapse
|
30
|
Schulze H, Vorlová S, Villatte F, Bachmann TT, Schmid RD. Design of acetylcholinesterases for biosensor applications. Biosens Bioelectron 2003; 18:201-9. [PMID: 12485766 DOI: 10.1016/s0956-5663(02)00184-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, the use of acetylcholinesterases (AChEs) in biosensor technology has gained enormous attention, in particular with respect to insecticide detection. The principle of biosensors using AChE as a biological recognition element is based on the inhibition of the enzyme's natural catalytic activity by the agent that is to be detected. The advanced understanding of the structure-function-relationship of AChEs serves as the basis for developing enzyme variants, which, compared to the wild type, show an increased inhibition efficiency at low insecticide concentrations and thus a higher sensitivity. This review describes different expression systems that have been used for the production of recombinant AChE. In addition, approaches to purify recombinant AChEs to a degree that is suitable for analytical applications will be elucidated as well as the various attempts that have been undertaken to increase the sensitivity of AChE to specified organophosphates and carbamates using side-directed mutagenesis and employing the enzyme in different assay formats.
Collapse
Affiliation(s)
- Holger Schulze
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
31
|
Bourne Y, Taylor P, Radić Z, Marchot P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J 2003; 22:1-12. [PMID: 12505979 PMCID: PMC140045 DOI: 10.1093/emboj/cdg005] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The peripheral anionic site on acetylcholinesterase (AChE), located at the active center gorge entry, encompasses overlapping binding sites for allosteric activators and inhibitors; yet, the molecular mechanisms coupling this site to the active center at the gorge base to modulate catalysis remain unclear. The peripheral site has also been proposed to be involved in heterologous protein associations occurring during synaptogenesis or upon neurodegeneration. A novel crystal form of mouse AChE, combined with spectrophotometric analyses of the crystals, enabled us to solve unique structures of AChE with a free peripheral site, and as three complexes with peripheral site inhibitors: the phenylphenanthridinium ligands, decidium and propidium, and the pyrogallol ligand, gallamine, at 2.20-2.35 A resolution. Comparison with structures of AChE complexes with the peptide fasciculin or with organic bifunctional inhibitors unveils new structural determinants contributing to ligand interactions at the peripheral site, and permits a detailed topographic delineation of this site. Hence, these structures provide templates for designing compounds directed to the enzyme surface that modulate specific surface interactions controlling catalytic activity and non-catalytic heterologous protein associations.
Collapse
Affiliation(s)
- Yves Bourne
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20,
Ingénierie des Protéines, CNRS UMR 6560, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, F-13916 Marseille Cedex 20, France and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA Corresponding authors e-mail: or
| | - Palmer Taylor
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20,
Ingénierie des Protéines, CNRS UMR 6560, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, F-13916 Marseille Cedex 20, France and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA Corresponding authors e-mail: or
| | - Zoran Radić
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20,
Ingénierie des Protéines, CNRS UMR 6560, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, F-13916 Marseille Cedex 20, France and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA Corresponding authors e-mail: or
| | - Pascale Marchot
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20,
Ingénierie des Protéines, CNRS UMR 6560, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, F-13916 Marseille Cedex 20, France and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA Corresponding authors e-mail: or
| |
Collapse
|
32
|
Weill CO, Vorlová S, Berna N, Ayon A, Massoulié J. Transcriptional regulation of gene expression by the coding sequence: An attempt to enhance expression of human AChE. Biotechnol Bioeng 2002; 80:490-7. [PMID: 12355459 DOI: 10.1002/bit.10392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In a previous report, Morel and Massoulié showed that Bungarus AChE (bBAChE) is produced more efficiently than rat AChE in various expression systems, mainly because the Bungarus coding sequence exerts a stimulatory effect on transcription (Morel and Massoulié, 2000). They reported that a 5' Bungarus fragment could partially transfer this property to a CAT expression vector. This appeared to offer the possibility of increasing the production of recombinant proteins. In the present paper, we show that insertion of this fragment in the transcribed region, before the polyadenylation site, may have either stimulatory or inhibitory effects, depending on the vector and on the reporter gene. Since the stimulatory effect of Bungarus coding region could not be attached to a small number of discrete motifs, we reasoned that it might result from a general feature of the sequence. Therefore it might be possible to partially transfer this property to the very homologous human AChE (hHAChE) coding sequence by modifications based on synonymous codons, which increased nucleotide identity between the 5' fragment (721 nucleotides) of bBAChE and hHAChE from 71% to 85%. The production of human AChE in transfected COS cells was increased nearly 2-fold with this modified construct, but still remained about 4-fold smaller than that of Bungarus AChE. There was no change in expression level in transformed Pichia pastoris. We thus confirm that coding sequences can strongly influence gene expression, but in a manner that depends on the context and cannot yet be predicted.
Collapse
Affiliation(s)
- Claire O Weill
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, ENS, CNRS UMR 8544, Paris, France
| | | | | | | | | |
Collapse
|
33
|
Shin I, Wachtel E, Roth E, Bon C, Silman I, Weiner L. Thermal denaturation of Bungarus fasciatus acetylcholinesterase: Is aggregation a driving force in protein unfolding? Protein Sci 2002; 11:2022-32. [PMID: 12142456 PMCID: PMC2373691 DOI: 10.1110/ps.0205102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A monomeric form of acetylcholinesterase from the venom of Bungarus fasciatus is converted to a partially unfolded molten globule species by thermal inactivation, and subsequently aggregates rapidly. To separate the kinetics of unfolding from those of aggregation, single molecules of the monomeric enzyme were encapsulated in reverse micelles of Brij 30 in 2,2,4-trimethylpentane, or in large unilamellar vesicles of egg lecithin/cholesterol at various protein/micelle (vesicle) ratios. The first-order rate constant for thermal inactivation at 45 degrees C, of single molecules entrapped within the reverse micelles (0.031 min(-1)), was higher than in aqueous solution (0.007 min(-1)) or in the presence of normal micelles (0.020 min(-1)). This clearly shows that aggregation does not provide the driving force for thermal inactivation of BfAChE. Within the large unilamellar vesicles, at average protein/vesicle ratios of 1:1 and 10:1, the first-order rate constants for thermal inactivation of the encapsulated monomeric acetylcholinesterase, at 53 degrees C, were 0.317 and 0.342 min(-1), respectively. A crosslinking technique, utilizing the photosensitive probe, hypericin, showed that thermal denaturation produces a distribution of species ranging from dimers through to large aggregates. Consequently, at a protein/vesicle ratio of 10:1, aggregation can occur upon thermal denaturation. Thus, these experiments also demonstrate that aggregation does not drive the thermal unfolding of Bungarus fasciatus acetylcholinesterase. Our experimental approach also permitted monitoring of recovery of enzymic activity after thermal denaturation in the absence of a competing aggregation process. Whereas no detectable recovery of enzymic activity could be observed in aqueous solution, up to 23% activity could be obtained for enzyme sequestered in the reverse micelles.
Collapse
Affiliation(s)
- I Shin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Hussein AS, Harel M, Selkirk ME. A distinct family of acetylcholinesterases is secreted by Nippostrongylus brasiliensis. Mol Biochem Parasitol 2002. [DOI: 10.1016/s0166-6851(02)00141-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Jones AK, Bentley GN, Oliveros Parra WG, Agnew A. Molecular characterization of an acetylcholinesterase implicated in the regulation of glucose scavenging by the parasite Schistosoma. FASEB J 2002; 16:441-3. [PMID: 11821256 DOI: 10.1096/fj.01-0683fje] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acetylcholinesterase (AChE) present on the surface of the trematode blood fluke Schistosoma has been implicated in the regulation of glucose scavenging from the host blood. Determination of the molecular structure and functional characteristics of this molecule is a crucial first step in understanding the novel function for AChE and in evaluating the potential of schistosome AChE as a target of new parasite control methods. We have determined the primary structure of acetylcholinesterase from Schistosoma haematobium. Immunolocalization studies confirmed that the enzyme was present on the parasite surface as well as in the muscle. The derived amino acid sequence possesses features common to acetylcholinesterases: the catalytic triad, six cysteines that form three intramolecular disulphide bonds, and aromatic residues lining the catalytic gorge. An unusual feature is that the fully processed native enzyme exists as a glycoinositol phospholipid (GPI)-anchored dimer, but the sequence of the C?terminus does not conform to the current consensus for GPI modification. The enzyme expressed in Xenopus oocytes showed conventional substrate specificity and sensitivity to established inhibitors of AChE, although it is relatively insensitive to the peripheral site inhibitor propidium iodide. Distinctions between host and parasite AChEs will allow the rational design of schistosome-specific drugs and vaccines.
Collapse
Affiliation(s)
- Andrew K Jones
- The School of Biology, University of Leeds, Leeds, West Yorkshire, UK, LS2 9JT
| | | | | | | |
Collapse
|
36
|
Masson P, Schopfer LM, Bartels CF, Froment MT, Ribes F, Nachon F, Lockridge O. Substrate activation in acetylcholinesterase induced by low pH or mutation in the pi-cation subsite. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:313-24. [PMID: 11904227 DOI: 10.1016/s0167-4838(01)00323-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the pi-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the pi-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Unité d'Enzymologie, La Tronche Cédex, france.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
This review summarizes the work of our laboratory to explore the use of capillary zone electrophoretic (CZE) methods for the investigation of protein conformational stability. Early CZE works on protein denaturation as well as fundamental and theoretical considerations are discussed. Instrumental aspects of the CE-based approach including general and particular CE requirements are documented. Several aspects dealing with estimation of stability of enzymes (cholinesterases and organophosphate-hydrolyzing enzymes) interacting with organophosphates profusely illustrate the multiple advantages of CZE. The discrimination of parameters controlling the "good compromise" stability/plasticity for allowing functional efficiency of these enzymes is exemplified. Thermal stability, susceptibility to high electric field, alteration of stability by bound ligands and the role of associated cations in metalloenzymes have been successfully investigated.
Collapse
Affiliation(s)
- Daniel Rochu
- Unité d'Enzymologie, Centre de Recherches du Service de Santé des Armées, La Tronche, France.
| | | |
Collapse
|
38
|
Samimi A, Last JA. Mechanism of inhibition of lysyl hydroxylase activity by the organophosphates malathion and malaoxon. Toxicol Appl Pharmacol 2001; 176:181-6. [PMID: 11714250 DOI: 10.1006/taap.2001.9275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct inhibition of lysyl hydroxylase by malathion and malaoxon was observed in an in vitro enzyme assay with recombinant lysyl hydroxylase expressed via a baculoviral system. The IC50 values for malathion and malaoxon were estimated to be approximately 60 and 45 mM, respectively. Additional kinetic studies showed this inhibition to be competitive or partially competitive with respect to the synthetic (collagen) peptide, partially uncompetitive with respect to Fe(2+), and partially noncompetitive with respect to ascorbic acid. The calculated values for the K(i) were consistent with the IC50 values. Allosteric effects were not found for any of the cofactors tested, the peptide substrate, or the inhibitors. Interactions were found to be unimolecular for lysyl hydroxylase and its substrate and cofactors as well as for the inhibitors malathion and malaoxon. A computer search of a protein structure database showed an unexpected region of partial homology between the active site sequence of acetylcholinesterase and a segment of lysyl hydroxylase, suggesting a possible molecular basis for these observations. These results suggest the possibility of a novel and hitherto unexpected class of inhibitors of lysyl hydroxylase, based on the organophosphate structure, that might be of value for testing as antifibrotic drugs.
Collapse
Affiliation(s)
- A Samimi
- Pulmonary/Critical Care Medicine, University of California, Davis, California 95616, USA
| | | |
Collapse
|
39
|
Bunyapaiboonsri T, Ramström O, Lohmann S, Lehn JM, Peng L, Goeldner M. Dynamic deconvolution of a pre-equilibrated dynamic combinatorial library of acetylcholinesterase inhibitors. Chembiochem 2001; 2:438-44. [PMID: 11828475 DOI: 10.1002/1439-7633(20010601)2:6<438::aid-cbic438>3.0.co;2-j] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A dynamic combinatorial library composed of interconverting acylhydrazones has been generated and screened towards inhibition of acetylcholinesterase from the electric ray Torpedo marmorata. Starting from a small set (13) of initial hydrazide and aldehyde building blocks, a library containing possibly 66 different species was obtained in a single operation. Of all possible acylhydrazones formed, active compounds containing two terminal cationic recognition groups separated by an appropriate distance, permitting two-site binding, could be rapidly identified by using a dynamic deconvolution--screening procedure, based on the sequential removal of starting building blocks. A very potent bis-pyridinium inhibitor (K(i)=1.09 nM, alphaK(i)=2.80 nM) was selected from the process and the contribution of various structural features to inhibitory potency was evaluated.
Collapse
Affiliation(s)
- T Bunyapaiboonsri
- Laboratoire de Chimie Supramoléculaire, CNRS UPRES A 7006, ISIS - Université Louis Pasteur, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
40
|
Rochu D, Pernet T, Renault F, Bon C, Masson P. Dual effect of high electric field in capillary electrophoresis study of the conformational stability of Bungarus fasciatus acetylcholinesterase. J Chromatogr A 2001; 910:347-57. [PMID: 11261729 DOI: 10.1016/s0021-9673(00)01211-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of high electric field in capillary zone electrophoresis (CZE) was evaluated for the study of the thermally induced unfolding of Bungarus fasciatus acetylcholinesterase. This monomer enzyme is characterised by two interdependent uncommon structural features, the asymmetrical distribution of charged residues and a relatively low thermal denaturation temperature. Both traits were presumed to interfere in the thermal unfolding of this enzyme as investigated by CZE. This paper analyses the effect of high electric field on the behaviour of the enzyme native state. It is shown that increasing the applied field causes denaturation-like transition of the enzyme at a current power which does not induce excessive Joule heating in the capillary. The susceptibility to electric field of proteins like cholinesterases, with charge distribution anisotropy, large permanent dipole moment and notable molecular flexibility associated with moderate thermal stability, was subsequently discussed.
Collapse
Affiliation(s)
- D Rochu
- Unité d'Enzymologie, Centre de Recherches du Service de Santé des Armées, La Tronche, France.
| | | | | | | | | |
Collapse
|
41
|
Rochu D, Georges C, Répiton J, Viguié N, Saliou B, Bon C, Masson P. Thermal stability of acetylcholinesterase from Bungarus fasciatus venom as investigated by capillary electrophoresis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:216-26. [PMID: 11342047 DOI: 10.1016/s0167-4838(00)00279-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies on the conformation of the monomeric acetylcholinesterase (AChE) from the krait (Bungarus fasciatus) venom showed that the protein possesses a large permanent dipole moment. These studies predicted that thermal irreversible denaturation must occur via partially unfolded states. The thermal stability of Bungarus AChE was determined using capillary electrophoresis (CE) with optimized conditions. Runs performed at convenient temperature scanning rates provided evidence for an irreversible denaturation process according to the Lumry and Eyring model. The mid-transition temperature, T(m), and the effective enthalpy change, DeltaH(m) were determined at different pH. The temperature dependence of the free energy, DeltaG, of Bungarus AChE unfolding was drawn using values of T(m), DeltaH(m) and DeltaC(p) determined by CE. The thermodynamic parameters for the thermal denaturation of the monomeric snake enzyme were compared with those of different dimeric and tetrameric ChEs. It was shown that the changes in the ratio of DeltaH(cal/)DeltaH(vH) and DeltaC(p) reflect the oligomerization state of these proteins. All these results indicate that wild-type monomeric Bungarus AChE is a stable enzyme under standard conditions. However, designed mutants of this enzyme capable of degrading organophosphates have to be engineered to enhance their thermostability.
Collapse
Affiliation(s)
- D Rochu
- Unité d'Enzymologie, Centre de Recherches du Service de Santé des Armées, La Tronche, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Bertrand C, Chatonnet A, Takke C, Yan YL, Postlethwait J, Toutant JP, Cousin X. Zebrafish acetylcholinesterase is encoded by a single gene localized on linkage group 7. Gene structure and polymorphism; molecular forms and expression pattern during development. J Biol Chem 2001; 276:464-74. [PMID: 11016933 DOI: 10.1074/jbc.m006308200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We cloned and sequenced the acetylcholinesterase gene and cDNA of zebrafish, Danio rerio. We found a single gene (ache) located on linkage group LG7. The relative organization of ache, eng2, and shh genes is conserved between zebrafish and mammals and defines a synteny. Restriction fragment length polymorphism analysis was allowed to identify several allelic variations. We also identified two transposable elements in non-coding regions of the gene. Compared with other vertebrate acetylcholinesterase genes, ache gene contains no alternative splicing at 5' or 3' ends where only a T exon is present. The translated sequence is 60-80% identical to acetylcholinesterases of the vertebrates and exhibits an extra loop specific to teleosts. Analysis of molecular forms showed a transition, at the time of hatching, from the globular G4 form to asymmetric A12 form that becomes prominent in adults. In situ hybridization and enzymatic activity detection on whole embryos confirmed early expression of the acetylcholinesterase gene in nervous and muscular tissues. We found no butyrylcholinesterase gene or activity in Danio. These findings make zebrafish a promising model to study function of acetylcholinesterase during development and regulation of molecular forms assembly in vivo.
Collapse
Affiliation(s)
- C Bertrand
- Différenciation Cellulaire et Croissance, INRA, 2 Place Viala, 34060 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Marcel V, Estrada-Mondaca S, Magné F, Stojan J, Klaébé A, Fournier D. Exploration of the Drosophila acetylcholinesterase substrate activation site using a reversible inhibitor (Triton X-100) and mutated enzymes. J Biol Chem 2000; 275:11603-9. [PMID: 10766776 DOI: 10.1074/jbc.275.16.11603] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholinesterases are activated at low substrate concentration, and this is followed by inhibition as the level of substrate increases. However, one of these two components is sometimes lacking. In Drosophila acetylcholinesterase, the two phases are present, allowing both phenomena to be studied. Several kinetic schemes can explain this complex kinetic behavior. Among them, one model assumes that activation results from the binding of a substrate molecule to a non-productive site affecting the entrance of a substrate molecule into the active site. To test this hypothesis, we looked for an inhibitor competitive for activation and we found Triton X-100. Using organophosphates or carbamates as hemisubstrates, we showed that Triton X-100 inhibits or increases phosphorylation or carbamoylation of the enzyme. In vitro mutagenesis of the residues lining the active site gorge allowed us to locate the Triton X-100 binding site at the rim of the gorge with glutamate 107 playing the major role. These results led to the hypothesis that substrate binding at this site affects the entrance of another substrate molecule into the active site cleft.
Collapse
Affiliation(s)
- V Marcel
- Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique, ESA 5068, Groupe de Biochimie des Protéines, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
44
|
Hussein AS, Smith AM, Chacón MR, Selkirk ME. Determinants of substrate specificity of a second non-neuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2276-82. [PMID: 10759851 DOI: 10.1046/j.1432-1327.2000.01232.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently reported on a non-neuronal secreted acetylcholinesterase (AChE B) from the nematode parasite Nippostrongylus brasiliensis. Here we describe the primary structure and enzymatic properties of a second secreted variant, termed AChE C after the designation of native AChE isoforms from this parasite. As for the former enzyme, AChE C is truncated at the carboxyl terminus in comparison with the Torpedo AChE, and three of the 14 aromatic residues that line the active site gorge are substituted by nonaromatic residues, corresponding to Tyr70 (Ser), Trp279 (Asn) and Phe288 (Met). A recombinant form of AChE C was highly expressed by Pichia pastoris. The enzyme was monomeric and hydrophilic, and displayed a marked preference for acetylthiocholine as substrate. A double mutation (W302F/W345F, corresponding to positions 290 and 331 in Torpedo) rendered the enzyme 10-fold less sensitive to excess substrate inhibition and two times less susceptible to the bis quaternary inhibitor BW284C51, but did not radically affect substrate specificity or sensitivity to the 'peripheral site' inhibitor propidium iodide. In contrast, a triple mutant (M300G/W302F/W345F) efficiently hydrolysed propionylthiocholine and butyrylthiocholine in addition to acetylthiocholine, while remaining insensitive to the butyrylcholinesterase-specific inhibitor iso-OMPA and displaying a similar profile of excess substrate inhibition as the double mutant. These data highlight a conserved pattern of active site architecture for nematode secreted AChEs characterized to date, and provide an explanation for the substrate specificity that might otherwise appear inconsistent with the primary structure in comparison to other invertebrate AChEs.
Collapse
Affiliation(s)
- A S Hussein
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
45
|
Morel N, Massoulié J. Comparative expression of homologous proteins. A novel mode of transcriptional regulation by the coding sequence folding compatibility of chimeras. J Biol Chem 2000; 275:7304-12. [PMID: 10702301 DOI: 10.1074/jbc.275.10.7304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant acetylcholinesterases (AChE) are produced at systematically different levels, depending on the enzyme species. To identify the cause of this difference, we designed expression vectors that differed only by the central region of the coding sequence, encoding Torpedo, rat, and Bungarus AChEs and two reciprocal rat/Bungarus and Bungarus/rat chimeras. We found that folding is a limiting factor in the case of Torpedo AChE and the chimeras, for which only a limited fraction of the synthesized polypeptides becomes active and is secreted. In contrast, the fact that rat AChE is less well produced than Bungarus AChE reflects the levels of their respective mRNAs, which seem to be controlled by their transcription rates. A similar difference was observed in the coding and noncoding orientations; it seems to depend on multiple cis-elements. Using CAT constructs, we found that a DNA fragment from the Bungarus AChE gene stimulates expression of the reporter protein, whereas a homologous fragment from the rat AChE gene had no influence. This stimulating effect appears different from that of classical enhancers, although its mechanism remains unknown. In any case, the present results demonstrate that the coding region contributes to control the level of gene expression.
Collapse
Affiliation(s)
- N Morel
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | |
Collapse
|
46
|
Altamirano CV, Lockridge O. Conserved aromatic residues of the C-terminus of human butyrylcholinesterase mediate the association of tetramers. Biochemistry 1999; 38:13414-22. [PMID: 10529218 DOI: 10.1021/bi991475+] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human butyrylcholinesterase (BChE) in serum is composed predominantly of tetramers. The tetramerization domain of each subunit is contained within 40 C-terminal residues. To identify key residues within this domain participating in tetramer stabilization, the interaction between C-terminal 46 residue peptides was quantitated in the yeast two-hybrid system. The wild-type peptide interacted strongly with another wild-type peptide in the yeast two-hybrid system. The C571A mutant peptides interacted to a similar degree as the wild-type. However, the mutant in which seven conserved aromatic residues (Trp 543, Phe 547, Trp 550, Tyr 553, Trp 557, Phe 561, and Tyr 564) and C571 were altered to alanines showed only 12% of the interaction seen with the wild-type peptide. The seven mutations (aromatics-off) were incorporated into the complete BChE molecule, with or without the C571A mutation, and expressed in 293T and CHO-K1 cells. Expression of wild-type BChE in these cell lines yielded 10% tetramers. The aromatics-off mutant formed dimers and monomers but no tetramers. The aromatics-off/C571A mutant yielded only monomers. Addition of poly-L-proline to culture medium, or coexpression with the N-terminus of COLQ including the proline-rich attachment domain (Q(N)PRAD), increased the amount of tetrameric wild-type BChE from 10 to 70%, but had no effect on the G534stop (lacking 41 C-terminal residues) and the aromatics-off mutants. Recombinant BChE produced by coexpression with Q(N)PRAD was purified by column chromatography. The purified tetramers contained the FLAG-tagged Q(N)PRAD peptide. These observations suggest that the stabilization of BChE tetramers is mediated through the interaction of the seven conserved aromatic residues and that poly-L-proline and PRAD act through these aromatic residues to induce tetramerization.
Collapse
Affiliation(s)
- C V Altamirano
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | |
Collapse
|
47
|
Simon S, Le Goff A, Frobert Y, Grassi J, Massoulié J. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door". J Biol Chem 1999; 274:27740-6. [PMID: 10488117 DOI: 10.1074/jbc.274.39.27740] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.
Collapse
Affiliation(s)
- S Simon
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS URA 1857, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
48
|
Choumet V, Cousin X, Bon C. Production of an immunoenzymatic tracer combining a scFv and the acetylcholinesterase of Bungarus fasciatus by genetic recombination. FEBS Lett 1999; 455:18-22. [PMID: 10428463 DOI: 10.1016/s0014-5793(99)00825-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We constructed a plasmid containing a chimeric gene composed of the gene encoding acetylcholinesterase (AChE) from Bungarus fasciatus venom and a gene encoding a single chain antibody fragment (scFv) directed against one of the two subunits of a presynaptic neurotoxin from rattlesnake. Large quantities of the fusion protein were produced in the culture medium of transfected COS cells. Fusion to AChE did not affect the ability of the scFv to recognise its antigen. Similarly, the AChE activity was not impaired in the fusion. The fusion protein was purified from the culture medium in a single step by affinity chromatography. The immunoconjugate obtained consisted of a soluble monomeric form of AChE fused to scFv. It was monovalent and had a molecular weight of 94 kDa. The properties of this scFv-AChE fusion show that the simple, reproducible preparation of various recombinant monovalent immunoenzymatic tracers with low molecular weight is possible. In addition, in the construct presented, the scFv domain can be easily changed to another one taking advantage of the SfiI-NotI restriction sites surrounding this domain.
Collapse
Affiliation(s)
- V Choumet
- Unité des Venins, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
49
|
Stojan J, Marcel V, Fournier D. Effect of tetramethylammonium, choline and edrophonium on insect acetylcholinesterase: test of a kinetic model. Chem Biol Interact 1999; 119-120:137-46. [PMID: 10421447 DOI: 10.1016/s0009-2797(99)00022-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholinesterases display a non-Michaelian behaviour with respect to substrate concentration. With the insect enzyme, there is an activation at low substrate concentrations and an inhibition at high concentrations. Previous studies allow us to propose a kinetic model involving a secondary non-productive binding site for the substrate. Unexpectedly, this secondary site has a very high affinity for the substrate when the enzyme is free. On the contrary, when the catalytic site of the enzyme is occupied a strong decrease of this affinity was observed. Moreover, a substrate molecule bound to the peripheral site results in a global decrease of the acylation and/or the deacylation step. Kinetic studies with three reversible inhibitors, tetramethylammonium, edrophonium and choline supported the kinetic model and enable its further refinement.
Collapse
Affiliation(s)
- J Stojan
- Institute of Biochemistry, Medical Faculty, Ljubljana, Slovenia
| | | | | |
Collapse
|
50
|
Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem Biol Interact 1999; 119-120:29-42. [PMID: 10421436 DOI: 10.1016/s0009-2797(99)00011-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular forms of acetylcholinesterase (AChE) correspond to various quaternary structures and modes of anchoring of the enzyme. In vertebrates, these molecules are generated from a single gene: the catalytic domain may be associated with several types of C-terminal peptides, that define distinct types of catalytic subunits (AChE(S), AChE(H), AChE(T)) and determine their post-translational maturation. AChE(S) generates soluble monomers, in the venom of Elapid snakes. AChE(H) generates GPI-anchored dimers, in Torpedo muscles and on mammalian blood cells. AChE(T) is the only type of catalytic subunit that exists in all vertebrate cholinesterases; it produces the major forms in adult brain and muscle. AChE(T) generates multiple structures, ranging from monomers and dimers to collagen-tailed and hydrophobic-tailed forms, in which catalytic tetramers are associated with anchoring proteins that attach them to the basal lamina or to cell membranes. In the collagen-tailed forms, AChE(T) subunits are associated with a specific collagen, ColQ, which is encoded by a single gene in mammals. ColQ contains a short peptidic motif, the proline-rich attachment domain (PRAD), that triggers the formation of AChE(T) tetramers, from monomers and dimers. The critical feature of this motif is the presence of a string of prolines, and in fact synthetic polyproline shows a similar capacity to organize AChE(T) tetramers. Although the COLQ gene produces multiple transcripts, it does not generate the hydrophobic tail. P, which anchors AChE in mammalian brain membranes. The coordinated expression of AChE(T) subunits and anchoring proteins determines the pattern of molecular forms and therefore the localization and functionality of the enzyme.
Collapse
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS URA 1857, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | | | |
Collapse
|