1
|
Guo Y, Zhu W, Yuan P, Huang X, Lu S, Cao Z, Zhao X, Wu Y. Similar neurotoxin expression profiles of traditional Chinese scorpion medicine material between juvenile and adult Mesobuthus martensii scorpions revealed by multiple strategic proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118338. [PMID: 38759762 DOI: 10.1016/j.jep.2024.118338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mesobuthus martensii scorpions, called as "Quanxie", are known Chinese medicinal material base on the "Combat poison with poison" strategy for more than one thousand years, and still widely used to treat various diseases according to the Pharmacopoeia of the People's Republic of China nowadays. AIM OF STUDY The study aims to investigate the similarity of scorpion neurotoxins at the protein level between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicine materials. MATERIALS AND METHODS The second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were collected for the characterization of neurotoxin expression through multiple strategic proteomics, including undigested scorpion venom, endopeptidase-digested, and undigested scorpion telson extract for the sample analysis. RESULTS Based on the known 107 scorpion neurotoxins from the genomic and transcriptomic analysis of adult Mesobuthus martensii scorpions, the multiple strategic proteomics first revealed that neurotoxins exhibited more stability in telson extract than secreted venom. In the reported transcripts of scorpion neurotoxins, approximately 53%, 56%, 66% and 78% of neurotoxins were detected through undigested scorpion venom, the endopeptidase Arg-C-, Lys-C-digested telson extract, and undigested telson extract strategies, respectively. Nearly 79% of scorpion neurotoxins detected in third-instar Mesobuthus martensii scorpions represent the largest number of scorpion neurotoxins from proteomic analysis to date. Moreover, a total of 84% of scorpion neurotoxins were successfully identified at the protein level, and similar neurotoxin expression profiles in second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were first revealed by the multiple strategic proteomics. CONCLUSION These findings for the first time demonstrate the similar neurotoxin expression profiles between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicinal material, which would serve as a paradigm for further toxin analysis from different venomous animals.
Collapse
Affiliation(s)
- Yiyuan Guo
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenzhuo Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixin Yuan
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Huang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sijia Lu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaolu Zhao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
3
|
Catterall WA. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels (Austin) 2023; 17:2281714. [PMID: 37983307 PMCID: PMC10761118 DOI: 10.1080/19336950.2023.2281714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve and muscle, and voltage-gated calcium channels couple depolarization of the plasma membrane to intracellular events such as secretion, contraction, synaptic transmission, and gene expression. In this Review and Perspective article, I summarize early work that led to identification, purification, functional reconstitution, and determination of the amino acid sequence of the protein subunits of sodium and calcium channels and showed that their pore-forming subunits are closely related. Decades of study by antibody mapping, site-directed mutagenesis, and electrophysiological recording led to detailed two-dimensional structure-function maps of the amino acid residues involved in voltage-dependent activation and inactivation, ion permeation and selectivity, and pharmacological modulation. Most recently, high-resolution three-dimensional structure determination by X-ray crystallography and cryogenic electron microscopy has revealed the structural basis for sodium and calcium channel function and pharmacological modulation at the atomic level. These studies now define the chemical basis for electrical signaling and provide templates for future development of new therapeutic agents for a range of neurological and cardiovascular diseases.
Collapse
|
4
|
Hérnández-Elizárraga VH, Vega-Tamayo JE, Olguín-López N, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis. J Proteomics 2023; 288:104984. [PMID: 37536522 DOI: 10.1016/j.jprot.2023.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.
Collapse
Affiliation(s)
- Víctor Hugo Hérnández-Elizárraga
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; University of Minnesota Genomics Center, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Norma Olguín-López
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; División Química y Energías Renovables, Universidad Tecnológica de San Juan del Río. Av La Palma No 125 Vista Hermosa, 76800 San Juan del Río, Qro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
5
|
Monastyrnaya MM, Kalina RS, Kozlovskaya EP. The Sea Anemone Neurotoxins Modulating Sodium Channels: An Insight at Structure and Functional Activity after Four Decades of Investigation. Toxins (Basel) 2022; 15:8. [PMID: 36668828 PMCID: PMC9863223 DOI: 10.3390/toxins15010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins-potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes.
Collapse
|
6
|
Chiba O, Shimada N, Yoshio S, Kudo Y, Cho Y, Yotsu-Yamashita M, Konoki K. State-Dependent Inhibition of Voltage-Gated Sodium Channels in Neuroblastoma Neuro-2A Cells by Arachidonic Acid from Halichondria okadai. Chem Res Toxicol 2022; 35:1950-1961. [PMID: 36315108 DOI: 10.1021/acs.chemrestox.2c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Voltage-gated sodium channels (Nav) are closely associated with epilepsy, cardiac and skeletal muscle diseases, and neuropathic pain. Several toxic compounds have been isolated from the marine sponge Halichondria okadai; however, toxic substances that modulate Nav are yet to be identified. This study aimed to identify Nav inhibitors from two snake venoms and H. okadai using mouse neuroblastoma Neuro-2A cells (N2A), which primarily express the specific Nav subtype Nav1.7, using whole-cell patch-clamp recordings. We successfully isolated arachidonic acid (AA, 1) from the hexane extract of H. okadai, and then the fatty acid-mediated modulation of Nav in N2A was investigated in detail for the first time. Octanoic acid (2), palmitic acid (3), and oleic acid (4) showed no inhibitory activity at 100 μM, whereas AA (1), dihomo-γ-linolenic acid (DGLA, 5), and eicosapentaenoic acid (EPA, 6) showed IC50 values of 6.1 ± 2.0, 58 ± 19, and 25 ± 4.0 μM, respectively (N = 4, mean ± SEM). Structure and activity relationships were investigated for the first time using two ω-3 polyunsaturated fatty acids (PUFAs), EPA (6) and eicosatetraenoic acid (ETA, 7), and two ω-6 PUFAs, AA (1) and DGLA (5), to determine their effects on a resting state, activated state, and inactivated state. Steady-state analysis showed that the half inactivation potential was largely hyperpolarized by 10 μM AA (1), while 50 μM DGLA (5), 50 μM EPA (6), and 10 μM ETA (7) led to a slight change. The percentages of the resting state block were 24 ± 1, 22 ± 1, 34 ± 4, and 38 ± 9% in the presence of AA (1), DGLA (5), EPA (6), and ETA (7), respectively, with EPA (6) and ETA (7) exhibiting a greater inhibition than both AA (1) and DGLA (5), and their inhibitions did not increase in the following depolarization pulses. None of the compounds exhibited the use-dependent block. The half recovery times from the inactivated state for the control, AA (1), DGLA (5), EPA (6), and ETA (7) were 7.67 ± 0.33, 34.3 ± 1.10, 15.5 ± 1.10, 10.7 ± 0.31, and 3.59 ± 0.18 ms, respectively, with AA (1) exhibiting a distinctively large effect. Overall, distributed binding to the resting and the inactivated states of Nav would be significant for the inhibition of Nav, which presumably depends on the active structure of each PUFA.
Collapse
Affiliation(s)
- Osamu Chiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Noriko Shimada
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shutaro Yoshio
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
7
|
Jiang D, Zhang J, Xia Z. Structural Advances in Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:908867. [PMID: 35721169 PMCID: PMC9204039 DOI: 10.3389/fphar.2022.908867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the rapid rising-phase of action potentials in excitable cells. Over 1,000 mutations in NaV channels are associated with human diseases including epilepsy, periodic paralysis, arrhythmias and pain disorders. Natural toxins and clinically-used small-molecule drugs bind to NaV channels and modulate their functions. Recent advances from cryo-electron microscopy (cryo-EM) structures of NaV channels reveal invaluable insights into the architecture, activation, fast inactivation, electromechanical coupling, ligand modulation and pharmacology of eukaryotic NaV channels. These structural analyses not only demonstrate molecular mechanisms for NaV channel structure and function, but also provide atomic level templates for rational development of potential subtype-selective therapeutics. In this review, we summarize recent structural advances of eukaryotic NaV channels, highlighting the structural features of eukaryotic NaV channels as well as distinct modulation mechanisms by a wide range of modulators from natural toxins to synthetic small-molecules.
Collapse
Affiliation(s)
- Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daohua Jiang,
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Hmaidi R, Ksouri A, Benabderrazek R, Antonietti V, Sonnet P, Gautier M, Bouhaouala-Zahar B, Ouadid-Ahidouch H. The Pharmacological and Structural Basis of the AahII–NaV1.5 Interaction and Modulation by the Anti-AahII Nb10 Nanobody. Front Pharmacol 2022; 13:821181. [PMID: 35295326 PMCID: PMC8918821 DOI: 10.3389/fphar.2022.821181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Scorpion α-toxins are neurotoxins that target the fast inactivation mechanism of voltage-gated sodium (NaV) channels leading to several neuro- and cardiotoxic effects in mammals. The toxin AahII is the most active α-toxin from the North African scorpion Androctonus australis Hector that slows the fast inactivation of NaV channels. To fight scorpion envenomation, an anti-AahII nanobody named NbAahII10 (Nb10) was developed. The efficiency of this nanobody has been evaluated in vivo on mice, but its mechanism of action at the cellular level remains unknown. Here we have shown that AahII toxin slows the fast inactivation of the adult cardiac NaV1.5 channels, expressed in HEK293 cells, in a dose-dependent manner, while current amplitude was not affected. The inactivation of NaV1.5 is slower by a factor of 4, 7, and 35 in the presence of [AahII] at 75, 150, and 300 nM, respectively. The washout partially reversed the toxin effect on inactivation from 8.3 ± 0.9 ms to 5.2 ± 1.2 ms at 75 nM. We have also demonstrated that the highly neutralizing Nb10 can fully reverse the effect of AahII toxin on the channel inactivation kinetics even at the 1:1 M ratio. However, the 1:0.5 M ratio is not able to neutralize completely the AahII effect. Therefore, the application of Nb10 promotes a partial abolishment of AahII action. Bioinformatic analysis and prediction of NaV1.5-driven docking with AahII show that Ala39 and Arg62 of AahII play a crucial role to establish a stable interaction through H-bound interactions with Gln1615 and Lys1616 (S3–S4 extracellular loop) and Asp1553 (S1–S2 loop) from the voltage-sensing domain IV (VSD4) of NaV1.5, respectively. From this, we notice that AahII shares the same contact surface with Nb10. This strongly suggests that Nb10 dynamically replaces AahII toxin from its binding site on the NaV1.5 channel. At the physiopathological level, Nb10 completely neutralized the enhancement of breast cancer cell invasion induced by AahII. In summary, for the first time, we made an electrophysiological and structural characterization of the neutralization potent of Nb10 against the α-scorpion toxin AahII in a cellular model overexpressing NaV1.5 channels.
Collapse
Affiliation(s)
- Riadh Hmaidi
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
| | - Ayoub Ksouri
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rahma Benabderrazek
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Viviane Antonietti
- Infectious Agents, Resistance and Chemotherapy UR 4294, UFR of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Pascal Sonnet
- Infectious Agents, Resistance and Chemotherapy UR 4294, UFR of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Mathieu Gautier
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| |
Collapse
|
9
|
Su T, Chen ML, Liu LH, Meng H, Tang B, Liu XR, Liao WP. Critical Role of E1623 Residue in S3-S4 Loop of Nav1.1 Channel and Correlation Between Nature of Substitution and Functional Alteration. Front Mol Neurosci 2022; 14:797628. [PMID: 35082603 PMCID: PMC8785683 DOI: 10.3389/fnmol.2021.797628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: An overwhelming majority of the genetic variants associated with genetic disorders are missense. The association between the nature of substitution and the functional alteration, which is critical in determining the pathogenicity of variants, remains largely unknown. With a novel missense variant (E1623A) identified from two epileptic cases, which occurs in the extracellular S3-S4 loop of Nav1.1, we studied functional changes of all latent mutations at residue E1623, aiming to understand the relationship between substitution nature and functional alteration. Methods: Six latent mutants with amino acid substitutions at E1623 were generated, followed by measurements of their electrophysiological alterations. Different computational analyses were used to parameterize the residue alterations. Results: Structural modeling indicated that the E1623 was located in the peripheral region far from the central pore, and contributed to the tight turn of the S3-S4 loop. The E1623 residue exhibited low functional tolerance to the substitutions with the most remarkable loss-of-function found in E1623A, including reduced current density, less steady-state availability of activation and inactivation, and slower recovery from fast inactivation. Correlation analysis between electrophysiological parameters and the parameterized physicochemical properties of different residues suggested that hydrophilicity of side-chain at E1623 might be a crucial contributor for voltage-dependent kinetics. However, none of the established algorithms on the physicochemical variations of residues could well predict changes in the channel conductance property indicated by peak current density. Significance: The results established the important role of the extracellular S3-S4 loop in Nav1.1 channel gating and proposed a possible effect of local conformational loop flexibility on channel conductance and kinetics. Site-specific knowledge of protein will be a fundamental task for future bioinformatics.
Collapse
Affiliation(s)
- Tao Su
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Meng-Long Chen
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Li-Hong Liu
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Hen Meng
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
- *Correspondence: Wei-Ping Liao
| |
Collapse
|
10
|
Wenzhong L, Hualan L. COVID-19: the CaMKII-like system of S protein drives membrane fusion and induces syncytial multinucleated giant cells. Immunol Res 2021; 69:496-519. [PMID: 34410575 PMCID: PMC8374125 DOI: 10.1007/s12026-021-09224-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 S protein on the membrane of infected cells can promote receptor-dependent syncytia formation, relating to extensive tissue damage and lymphocyte elimination. In this case, it is challenging to obtain neutralizing antibodies and prevent them through antibodies effectively. Considering that, in the current study, structural domain search methods are adopted to analyze the SARS-CoV-2 S protein to find the fusion mechanism. The results show that after the EF-hand domain of S protein bound to calcium ions, S2 protein had CaMKII protein activities. Besides, the CaMKII_AD domain of S2 changed S2 conformation, facilitating the formation of HR1-HR2 six-helix bundles. Apart from that, the Ca2+-ATPase of S2 pumped calcium ions from the virus cytoplasm to help membrane fusion, while motor structures of S drove the CaATP_NAI and CaMKII_AD domains to extend to the outside and combined the viral membrane and the cell membrane, thus forming a calcium bridge. Furthermore, the phospholipid-flipping-ATPase released water, triggering lipid mixing and fusion and generating fusion pores. Then, motor structures promoted fusion pore extension, followed by the cytoplasmic contents of the virus being discharged into the cell cytoplasm. After that, the membrane of the virus slid onto the cell membrane along the flowing membrane on the gap of the three CaATP_NAI. At last, the HR1-HR2 hexamer would fall into the cytoplasm or stay on the cell membrane. Therefore, the CaMKII_like system of S protein facilitated membrane fusion for further inducing syncytial multinucleated giant cells.
Collapse
Affiliation(s)
- Liu Wenzhong
- School of Computer Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643002, China.
- School of Life Science and Food Engineering, Yibin University, Yibin, 644000, China.
| | - Li Hualan
- School of Life Science and Food Engineering, Yibin University, Yibin, 644000, China
| |
Collapse
|
11
|
Jiang D, Banh R, Gamal El-Din TM, Tonggu L, Lenaeus MJ, Pomès R, Zheng N, Catterall WA. Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell 2021; 184:5151-5162.e11. [PMID: 34520724 DOI: 10.1016/j.cell.2021.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.
Collapse
Affiliation(s)
- Daohua Jiang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Richard Banh
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Abd El-Aziz TM, Xiao Y, Kline J, Gridley H, Heaston A, Linse KD, Ward MJ, Rokyta DR, Stockand JD, Cummins TR, Fornelli L, Rowe AH. Identification and Characterization of Novel Proteins from Arizona Bark Scorpion Venom That Inhibit Nav1.8, a Voltage-Gated Sodium Channel Regulator of Pain Signaling. Toxins (Basel) 2021; 13:toxins13070501. [PMID: 34357973 PMCID: PMC8310189 DOI: 10.3390/toxins13070501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
The voltage-gated sodium channel Nav1.8 is linked to neuropathic and inflammatory pain, highlighting the potential to serve as a drug target. However, the biophysical mechanisms that regulate Nav1.8 activation and inactivation gating are not completely understood. Progress has been hindered by a lack of biochemical tools for examining Nav1.8 gating mechanisms. Arizona bark scorpion (Centruroides sculpturatus) venom proteins inhibit Nav1.8 and block pain in grasshopper mice (Onychomys torridus). These proteins provide tools for examining Nav1.8 structure–activity relationships. To identify proteins that inhibit Nav1.8 activity, venom samples were fractioned using liquid chromatography (reversed-phase and ion exchange). A recombinant Nav1.8 clone expressed in ND7/23 cells was used to identify subfractions that inhibited Nav1.8 Na+ current. Mass-spectrometry-based bottom-up proteomic analyses identified unique peptides from inhibitory subfractions. A search of the peptides against the AZ bark scorpion venom gland transcriptome revealed four novel proteins between 40 and 60% conserved with venom proteins from scorpions in four genera (Centruroides, Parabuthus, Androctonus, and Tityus). Ranging from 63 to 82 amino acids, each primary structure includes eight cysteines and a “CXCE” motif, where X = an aromatic residue (tryptophan, tyrosine, or phenylalanine). Electrophysiology data demonstrated that the inhibitory effects of bioactive subfractions can be removed by hyperpolarizing the channels, suggesting that proteins may function as gating modifiers as opposed to pore blockers.
Collapse
Affiliation(s)
- Tarek Mohamed Abd El-Aziz
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (T.M.A.E.-A.); (J.D.S.)
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Yucheng Xiao
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (Y.X.); (T.R.C.)
| | - Jake Kline
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA; (J.K.); (H.G.); (A.H.); (L.F.)
| | - Harold Gridley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA; (J.K.); (H.G.); (A.H.); (L.F.)
| | - Alyse Heaston
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA; (J.K.); (H.G.); (A.H.); (L.F.)
| | - Klaus D. Linse
- Bio-Synthesis Inc., 612 E. Main Street, Lewisville, TX 75057, USA;
| | - Micaiah J. Ward
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; (M.J.W.); (D.R.R.)
| | - Darin R. Rokyta
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; (M.J.W.); (D.R.R.)
| | - James D. Stockand
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (T.M.A.E.-A.); (J.D.S.)
| | - Theodore R. Cummins
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (Y.X.); (T.R.C.)
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA; (J.K.); (H.G.); (A.H.); (L.F.)
| | - Ashlee H. Rowe
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA; (J.K.); (H.G.); (A.H.); (L.F.)
- Correspondence: ; Tel.: +1-936-577-5782
| |
Collapse
|
13
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
14
|
Zhorov BS. Structure of Sodium and Calcium Channels
with Ligands. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Niklas B, Jankowska M, Gordon D, Béress L, Stankiewicz M, Nowak W. Interactions of Sea Anemone Toxins with Insect Sodium Channel-Insights from Electrophysiology and Molecular Docking Studies. Molecules 2021; 26:molecules26051302. [PMID: 33670972 PMCID: PMC7957711 DOI: 10.3390/molecules26051302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/22/2023] Open
Abstract
Animal venoms are considered as a promising source of new drugs. Sea anemones release polypeptides that affect electrical activity of neurons of their prey. Voltage dependent sodium (Nav) channels are the common targets of Av1, Av2, and Av3 toxins from Anemonia viridis and CgNa from Condylactis gigantea. The toxins bind to the extracellular side of a channel and slow its fast inactivation, but molecular details of the binding modes are not known. Electrophysiological measurements on Periplaneta americana neuronal preparation revealed differences in potency of these toxins to increase nerve activity. Av1 and CgNa exhibit the strongest effects, while Av2 the weakest effect. Extensive molecular docking using a modern SMINA computer method revealed only partial overlap among the sets of toxins’ and channel’s amino acid residues responsible for the selectivity and binding modes. Docking positions support earlier supposition that the higher neuronal activity observed in electrophysiology should be attributed to hampering the fast inactivation gate by interactions of an anemone toxin with the voltage driven S4 helix from domain IV of cockroach Nav channel (NavPaS). Our modelling provides new data linking activity of toxins with their mode of binding in site 3 of NavPaS channel.
Collapse
Affiliation(s)
- Beata Niklas
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
- Correspondence: (B.N.); (W.N.)
| | - Milena Jankowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (M.J.); (M.S.)
| | - Dalia Gordon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - László Béress
- Department of Internal Medicine, Clinic of Immunology, Division of Experimental and Clinical Peptide Research, Hannover Medical School, 30625 Hannover, Germany;
| | - Maria Stankiewicz
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (M.J.); (M.S.)
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
- Correspondence: (B.N.); (W.N.)
| |
Collapse
|
16
|
Wisedchaisri G, Tonggu L, Gamal El-Din TM, McCord E, Zheng N, Catterall WA. Structural Basis for High-Affinity Trapping of the Na V1.7 Channel in Its Resting State by Tarantula Toxin. Mol Cell 2021; 81:38-48.e4. [PMID: 33232657 PMCID: PMC8043720 DOI: 10.1016/j.molcel.2020.10.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
Voltage-gated sodium channels initiate electrical signals and are frequently targeted by deadly gating-modifier neurotoxins, including tarantula toxins, which trap the voltage sensor in its resting state. The structural basis for tarantula-toxin action remains elusive because of the difficulty of capturing the functionally relevant form of the toxin-channel complex. Here, we engineered the model sodium channel NaVAb with voltage-shifting mutations and the toxin-binding site of human NaV1.7, an attractive pain target. This mutant chimera enabled us to determine the cryoelectron microscopy (cryo-EM) structure of the channel functionally arrested by tarantula toxin. Our structure reveals a high-affinity resting-state-specific toxin-channel interaction between a key lysine residue that serves as a "stinger" and penetrates a triad of carboxyl groups in the S3-S4 linker of the voltage sensor. By unveiling this high-affinity binding mode, our studies establish a high-resolution channel-docking and resting-state locking mechanism for huwentoxin-IV and provide guidance for developing future resting-state-targeted analgesic drugs.
Collapse
Affiliation(s)
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Eedann McCord
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nat Commun 2021; 12:128. [PMID: 33397917 PMCID: PMC7782738 DOI: 10.1038/s41467-020-20078-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
Voltage-gated sodium (NaV) channels initiate action potentials in excitable cells, and their function is altered by potent gating-modifier toxins. The α-toxin LqhIII from the deathstalker scorpion inhibits fast inactivation of cardiac NaV1.5 channels with IC50 = 11.4 nM. Here we reveal the structure of LqhIII bound to NaV1.5 at 3.3 Å resolution by cryo-EM. LqhIII anchors on top of voltage-sensing domain IV, wedged between the S1-S2 and S3-S4 linkers, which traps the gating charges of the S4 segment in a unique intermediate-activated state stabilized by four ion-pairs. This conformational change is propagated inward to weaken binding of the fast inactivation gate and favor opening the activation gate. However, these changes do not permit Na+ permeation, revealing why LqhIII slows inactivation of NaV channels but does not open them. Our results provide important insights into the structural basis for gating-modifier toxin binding, voltage-sensor trapping, and fast inactivation of NaV channels.
Collapse
|
18
|
Characterisation of d-Conotoxin TxVIA as a Mammalian T-Type Calcium Channel Modulator. Mar Drugs 2020; 18:md18070343. [PMID: 32629781 PMCID: PMC7401249 DOI: 10.3390/md18070343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
The 27-amino acid (aa)-long d-conotoxin TxVIA, originally isolated from the mollusc-hunting cone snail Conus textile, slows voltage-gated sodium (NaV) channel inactivation in molluscan neurons, but its mammalian ion channel targets remain undetermined. In this study, we confirmed that TxVIA was inactive on mammalian NaV1.2 and NaV1.7 even at high concentrations (10 µM). Given the fact that invertebrate NaV channel and T-type calcium channels (CaV3.x) are evolutionarily related, we examined the possibility that TxVIA may act on CaV3.x. Electrophysiological characterisation of the native TxVIA on CaV3.1, 3.2 and 3.3 revealed that TxVIA preferentially inhibits CaV3.2 current (IC50 = 0.24 mM) and enhances CaV3.1 current at higher concentrations. In fish bioassays TxVIA showed little effect on zebrafish behaviours when injected intramuscular at 250 ng/100 mg fish. The binding sites for TxVIA at NaV1.7 and CaV3.1 revealed that their channel binding sites contained a common epitope.
Collapse
|
19
|
Thull S, Neacsu C, O'Reilly AO, Bothe S, Hausmann R, Huth T, Meents J, Lampert A. Mechanism underlying hooked resurgent-like tail currents induced by an insecticide in human cardiac Nav1.5. Toxicol Appl Pharmacol 2020; 397:115010. [PMID: 32302602 DOI: 10.1016/j.taap.2020.115010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Abstract
Voltage-gated sodium channels are responsible not only for the fast upstroke of the action potential, but they also modify cellular excitability via persistent and resurgent currents. Insecticides act via permanently opening sodium channels to immobilize the animals. Cellular recordings performed decades ago revealed distinctly hooked tail currents induced by these compounds. Here, we applied the classical type-II pyrethroid deltamethrin on human cardiac Nav1.5 and observed resurgent-like currents at very negative potentials in the absence of any pore-blocker, which resemble those hooked tail currents. We show that deltamethrin dramatically slows both fast inactivation and deactivation of Nav1.5 and thereby induces large persistent currents. Using the sea anemone toxin ATx-II as a tool to prevent all inactivation-related processes, resurgent-like currents were eliminated while persistent currents were preserved. Our experiments suggest that, in deltamethrin-modified channels, recovery from inactivation occurs faster than delayed deactivation, opening a brief window for sodium influx and leading to hooked, resurgent-like currents, in the absence of an open channel blocker. Thus, we now explain with pharmacological methods the biophysical gating changes underlying the deltamethrin induced hooked tail currents. SUMMARY: The pyrethroid deltamethrin induces hooked resurgent-like tail currents in human cardiac voltage-gated Nav1.5 channels. Using deltamethrin and ATx-II, we identify additional conducting channel states caused by a faster recovery from inactivation compared to the deltamethrin-induced delayed deactivation.
Collapse
Affiliation(s)
- Sarah Thull
- Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Cristian Neacsu
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstr. 17, 91054 Erlangen, Germany
| | - Andrias O O'Reilly
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Stefanie Bothe
- Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Ralf Hausmann
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Tobias Huth
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstr. 17, 91054 Erlangen, Germany
| | - Jannis Meents
- Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Angelika Lampert
- Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany; Research Training Group 2415 ME3T, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
20
|
Catterall WA, Lenaeus MJ, Gamal El-Din TM. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu Rev Pharmacol Toxicol 2020; 60:133-154. [PMID: 31537174 DOI: 10.1146/annurev-pharmtox-010818-021757] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated sodium and calcium channels are evolutionarily related transmembrane signaling proteins that initiate action potentials, neurotransmission, excitation-contraction coupling, and other physiological processes. Genetic or acquired dysfunction of these proteins causes numerous diseases, termed channelopathies, and sodium and calcium channels are the molecular targets for several major classes of drugs. Recent advances in the structural biology of these proteins using X-ray crystallography and cryo-electron microscopy have given new insights into the molecular basis for their function and pharmacology. Here we review this recent literature and integrate findings on sodium and calcium channels to reveal the structural basis for their voltage-dependent activation, fast and slow inactivation, ion conductance and selectivity, and complex pharmacology at the atomic level. We conclude with the theme that new understanding of the diseases and therapeutics of these channels will be derived from application of the emerging structural principles from these recent structural analyses.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Michael J Lenaeus
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Tamer M Gamal El-Din
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
21
|
Konoki K, Baden DG, Scheuer T, Catterall WA. Molecular Determinants of Brevetoxin Binding to Voltage-Gated Sodium Channels. Toxins (Basel) 2019; 11:toxins11090513. [PMID: 31484365 PMCID: PMC6784055 DOI: 10.3390/toxins11090513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Brevetoxins are produced by dinoflagellates such as Karenia brevis in warm-water red tides and cause neurotoxic shellfish poisoning. They bind to voltage-gated sodium channels at neurotoxin receptor 5, making the channels more active by shifting the voltage-dependence of activation to more negative potentials and by slowing the inactivation process. Previous work using photoaffinity labeling identified binding to the IS6 and IVS5 transmembrane segments of the channel α subunit. We used alanine-scanning mutagenesis to identify molecular determinants for brevetoxin binding in these regions as well as adjacent regions IVS5-SS1 and IVS6. Most of the mutant channels containing single alanine substitutions expressed functional protein in tsA-201 cells and bound to the radioligand [42-3H]-PbTx3. Binding affinity for the great majority of mutant channels was indistinguishable from wild type. However, transmembrane segments IS6, IVS5 and IVS6 each contained 2 to 4 amino acid positions where alanine substitution resulted in a 2–3-fold reduction in brevetoxin affinity, and additional mutations caused a similar increase in brevetoxin affinity. These findings are consistent with a model in which brevetoxin binds to a protein cleft comprising transmembrane segments IS6, IVS5 and IVS6 and makes multiple distributed interactions with these α helices. Determination of brevetoxin affinity for Nav1.2, Nav1.4 and Nav1.5 channels showed that Nav1.5 channels had a characteristic 5-fold reduction in affinity for brevetoxin relative to the other channel isoforms, suggesting the interaction with sodium channels is specific despite the distributed binding determinants.
Collapse
Affiliation(s)
- Keiichi Konoki
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, USA.
| | - Daniel G Baden
- Center for Marine Science, University of North Carolina, Wilmington, NC 28409, USA
| | - Todd Scheuer
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
22
|
Costé de Bagneaux P, Campiglio M, Benedetti B, Tuluc P, Flucher BE. Role of putative voltage-sensor countercharge D4 in regulating gating properties of Ca V1.2 and Ca V1.3 calcium channels. Channels (Austin) 2019; 12:249-261. [PMID: 30001160 PMCID: PMC6161609 DOI: 10.1080/19336950.2018.1482183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Voltage-dependent calcium channels (CaV) activate over a wide range of membrane potentials, and the voltage-dependence of activation of specific channel isoforms is exquisitely tuned to their diverse functions in excitable cells. Alternative splicing further adds to the stunning diversity of gating properties. For example, developmentally regulated insertion of an alternatively spliced exon 29 in the fourth voltage-sensing domain (VSD IV) of CaV1.1 right-shifts voltage-dependence of activation by 30 mV and decreases the current amplitude several-fold. Previously we demonstrated that this regulation of gating properties depends on interactions between positive gating charges (R1, R2) and a negative countercharge (D4) in VSD IV of CaV1.1. Here we investigated whether this molecular mechanism plays a similar role in the VSD IV of CaV1.3 and in VSDs II and IV of CaV1.2 by introducing charge-neutralizing mutations (D4N or E4Q) in the corresponding positions of CaV1.3 and in two splice variants of CaV1.2. In both channels the D4N (VSD IV) mutation resulted in a ̴5 mV right-shift of the voltage-dependence of activation and in a reduction of current density to about half of that in controls. However in CaV1.2 the effects were independent of alternative splicing, indicating that the two modulatory processes operate by distinct mechanisms. Together with our previous findings these results suggest that molecular interactions engaging D4 in VSD IV contribute to voltage-sensing in all examined CaV1 channels, however its striking role in regulating the gating properties by alternative splicing appears to be a unique property of the skeletal muscle CaV1.1 channel.
Collapse
Affiliation(s)
- Pierre Costé de Bagneaux
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| | - Marta Campiglio
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| | - Bruno Benedetti
- b Institute of Experimental Neuroregeneration Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS) , Paracelsus Medical University , Salzburg , Austria
| | - Petronel Tuluc
- c Department of Pharmacology and Toxicology , University of Innsbruck , Innsbruck , Austria
| | - Bernhard E Flucher
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
23
|
Wisedchaisri G, Tonggu L, McCord E, Gamal El-Din TM, Wang L, Zheng N, Catterall WA. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell 2019; 178:993-1003.e12. [PMID: 31353218 PMCID: PMC6688928 DOI: 10.1016/j.cell.2019.06.031] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/06/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate action potentials in nerve, muscle, and other electrically excitable cells. The structural basis of voltage gating is uncertain because the resting state exists only at deeply negative membrane potentials. To stabilize the resting conformation, we inserted voltage-shifting mutations and introduced a disulfide crosslink in the VS of the ancestral bacterial sodium channel NaVAb. Here, we present a cryo-EM structure of the resting state and a complete voltage-dependent gating mechanism. The S4 segment of the VS is drawn intracellularly, with three gating charges passing through the transmembrane electric field. This movement forms an elbow connecting S4 to the S4-S5 linker, tightens the collar around the S6 activation gate, and prevents its opening. Our structure supports the classical "sliding helix" mechanism of voltage sensing and provides a complete gating mechanism for voltage sensor function, pore opening, and activation-gate closure based on high-resolution structures of a single sodium channel protein.
Collapse
Affiliation(s)
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Eedann McCord
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Liguo Wang
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Guo D, Jenkinson S. Simultaneous assessment of compound activity on cardiac Nav1.5 peak and late currents in an automated patch clamp platform. J Pharmacol Toxicol Methods 2019; 99:106575. [PMID: 30999054 DOI: 10.1016/j.vascn.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION High throughput in vitro profiling of the cardiac Nav1.5 peak sodium current (INa) is widely used in cardiac safety screening. However, there is no standardized high throughput method to measure late INa. This study assessed the pharmacological and biophysical properties of veratridine and ATX-II, as well as the channel mutation (Nav1.5-∆KPQ) on the late INa. We describe a method for simultaneous measurement of both peak and late INa. METHODS The planar patch clamp technique (QPatch) was applied to record the peak and late INa. RESULTS The Nav1.5-∆KPQ mutant produced a small late INa (41.9 ± 5.4 pA) not large enough to enable compound profiling. In contrast in wild type Nav1.5 expressing cells veratridine (100 μM) and ATX-II (100 nM) enhanced concentration-dependent increases in the late INa (maximum responses of 1162.2 ± 258.5 pA and 392.4 ± 71.3 pA, respectively). Veratridine inhibited, whereas, ATX-II had a minimal effect, on the peak INa and preserved the current-voltage curve. Peak and late INa inhibition was characterized for 25 clinical INa blockers in the presence of ATX-II. Compound IC50 values for peak INa generated in the absence or presence of ATX-II correlated. The potency of the late INa block was found to be dependent on whether it was measured at the end of the depolarizing pulse or during the ramp. DISCUSSION In the presence of ATX-II, both peak and late INa could be assessed simultaneously. Late INa may be best assessed using the maximum response obtained during the ramp of the voltage protocol.
Collapse
Affiliation(s)
- Donglin Guo
- Drug Safety Research and Development, Pfizer Inc., La Jolla, CA 92121, United States of America.
| | - Stephen Jenkinson
- Drug Safety Research and Development, Pfizer Inc., La Jolla, CA 92121, United States of America
| |
Collapse
|
25
|
Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, Payandeh J. Structural basis of α-scorpion toxin action on Na v channels. Science 2019; 363:eaav8573. [PMID: 30733386 DOI: 10.1126/science.aav8573] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Alexander Cloake
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - José P Llongueras
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Zhong Rong Li
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Yuwen Jian
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA
| | | | - Pierre E Bougis
- Aix Marseille Université, CNRS, LNC, UMR 7291, 13003 Marseille, France
| | - Claudio Ciferri
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - David H Hackos
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
26
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
27
|
Göransson U, Jacobsson E, Strand M, Andersson HS. The Toxins of Nemertean Worms. Toxins (Basel) 2019; 11:E120. [PMID: 30781381 PMCID: PMC6410017 DOI: 10.3390/toxins11020120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Most ribbon worms (phylum: Nemertea) are found in marine environments, where they act as predators and scavengers. They are characterized by an eversible proboscis that isused to hunt for prey and thick mucus covering their skin. Both proboscis and epidermal mucus mediate toxicity to predators and preys. Research into the chemical nature of the substances that render toxicity has not been extensive, but it has nevertheless led to the identification of several compounds of potential medicinal use or for application in biotechnology. This review provides a complete account of the current status of research into nemertean toxins.
Collapse
Affiliation(s)
- Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden.
| | - Erik Jacobsson
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden.
| | - Malin Strand
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Håkan S Andersson
- Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39231 Kalmar, Sweden.
| |
Collapse
|
28
|
Zhang F, Wu Y, Zou X, Tang Q, Zhao F, Cao Z. BmK AEP, an Anti-Epileptic Peptide Distinctly Affects the Gating of Brain Subtypes of Voltage-Gated Sodium Channels. Int J Mol Sci 2019; 20:ijms20030729. [PMID: 30744067 PMCID: PMC6387193 DOI: 10.3390/ijms20030729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
BmK AEP, a scorpion peptide purified form the venom of Buthus martensii Karsch, has been reported to display anti-epileptic activity. Voltage-gated sodium channels (VGSCs) are responsible for the rising phase of action potentials (APs) in neurons and, therefore, controlling neuronal excitability. To elucidate the potential molecular mechanisms responsible for its anti-epileptic activity, we examined the influence of BmK AEP on AP firing in cortical neurons and how BmK AEP influences brain subtypes of VGSCs (Nav1.1–1.3 and Nav1.6). BmK AEP concentration-dependently suppresses neuronal excitability (AP firing) in primary cultured cortical neurons. Consistent with its inhibitory effect on AP generation, BmK AEP inhibits Na+ peak current in cortical neurons with an IC50 value of 2.12 µM by shifting the half-maximal voltage of activation of VGSC to hyperpolarized direction by ~7.83 mV without affecting the steady-state inactivation. Similar to its action on Na+ currents in cortical neurons, BmK AEP concentration-dependently suppresses the Na+ currents of Nav1.1, Nav1.3, and Nav1.6, which were heterologously expressed in HEK-293 cells, with IC50 values of 3.20, 1.46, and 0.39 µM with maximum inhibition of 82%, 56%, and 93%, respectively. BmK AEP shifts the voltage-dependent activation in the hyperpolarized direction by ~15.60 mV, ~9.97 mV, and ~6.73 mV in Nav1.1, Nav1.3, and Nav1.6, respectively, with minimal effect on steady-state inactivation. In contrast, BmK AEP minimally suppresses Nav1.2 currents (~15%) but delays the inactivation of the channel with an IC50 value of 1.69 µM. Considered together, these data demonstrate that BmK AEP is a relatively selective Nav1.6 gating modifier which distinctly affects the gating of brain subtypes of VGSCs.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ying Wu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
29
|
Gamal El-Din TM, Lenaeus MJ, Catterall WA. Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective. Handb Exp Pharmacol 2018; 246:53-72. [PMID: 29043505 DOI: 10.1007/164_2017_61] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels initiate and propagate action potentials in excitable cells. They respond to membrane depolarization through opening, followed by fast inactivation that terminates the sodium current. This ON-OFF behavior of voltage-gated sodium channels underlays the coding of information and its transmission from one location in the nervous system to another. In this review, we explore and compare structural and functional data from prokaryotic and eukaryotic channels to infer the effects of evolution on sodium channel structure and function.
Collapse
Affiliation(s)
- Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle, WA, 98195-7280, USA.
| | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA, 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA, 98195-7280, USA
| |
Collapse
|
30
|
Tibery DV, Campos LA, Mourão CBF, Peigneur S, E Carvalho AC, Tytgat J, Schwartz EF. Electrophysiological characterization of Tityus obscurus β toxin 1 (To1) on Na +-channel isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:142-150. [PMID: 30463697 DOI: 10.1016/j.bbamem.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
To1, previously named Tc49b, is a peptide neurotoxin isolated from venom of the scorpion Tityus obscurus that is responsible for lethal human poisoning cases in the Brazilian Amazonian region. Previously, To1 was shown to be lethal to mice and to change Na+ permeation in cerebellum granular neurons from rat brain. In addition, To1 did not affect Shaker B K+ channels. Based on sequence similarities, To1 was described as a β-toxin. In the present work, To1 was purified from T. obscurus venom and submitted to an electrophysiological characterization in human and invertebrate NaV channels. The analysis of the electrophysiological experiments reveal that To1 enhances the open probability at more negative potentials of human NaV 1.3 and 1.6, of the insect channel BgNaV1 and of arachnid VdNaV1 channel. In addition, To1 reduces the peak of Na+ currents in some of the NaVs tested. These results support the classification of the To1 as a β-toxin. A structure and functional comparison to other β-toxins that share sequence similarity to To1 is also presented.
Collapse
Affiliation(s)
- Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Leandro Ambrósio Campos
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Caroline Barbosa Farias Mourão
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Brasília, Campus Ceilândia, Brasília, Distrito Federal, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - Andréa Cruz E Carvalho
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
31
|
Ortiz E, Possani LD. Scorpion toxins to unravel the conundrum of ion channel structure and functioning. Toxicon 2018; 150:17-27. [DOI: 10.1016/j.toxicon.2018.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/24/2018] [Accepted: 04/29/2018] [Indexed: 01/11/2023]
|
32
|
A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors. Neurosci Lett 2018; 679:35-47. [DOI: 10.1016/j.neulet.2018.04.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 01/04/2023]
|
33
|
De La Rosa V, Bennett AL, Ramsey IS. Coupling between an electrostatic network and the Zn 2+ binding site modulates Hv1 activation. J Gen Physiol 2018; 150:863-881. [PMID: 29743298 PMCID: PMC5987874 DOI: 10.1085/jgp.201711822] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 01/20/2023] Open
Abstract
The voltage sensor (VS) domain in Hv1 proton channels mediates a voltage-dependent and H+-selective "aqueous" conductance (GAQ) that is potently modulated by extracellular Zn2+ Although two conserved His residues are required for Zn2+ effects on GAQ gating, the atomic structure of the Zn2+ coordination site and mechanism by which extracellular Zn2+ stabilizes a closed-state conformation remain unknown. Here we use His mutagenesis to identify residues that increase Zn2+ potency and are therefore likely to participate in first solvation shell interactions with Zn2+ Experimental Zn2+-mapping data were then used to constrain the structure of a new resting-state Hv1 model (Hv1 F). Molecular dynamics (MD) simulations show how protein and water atoms directly contribute to octahedral Zn2+ coordination spheres in Zn2+-bound and -unbound Hv1 F models. During MD simulations, we observed correlated movements of Zn2+-interacting side chains and residues in a highly conserved intracellular Coulombic network (ICN) that contains highly conserved Arg "gating charges" in S4 as well as acidic "counter-charges" in S2 and S3 and is known to control VS activation, suggesting that occupancy of the extracellular Zn2+ site is conformationally coupled to reorganization of the ICN. To test this hypothesis, we neutralized an ICN Glu residue (E153) and show that in addition to shifting GAQ activation to more negative voltages, E153A also decreases Zn2+ potency. We speculate that extracellular gating-modifier toxins and other ligands may use a generally similar long-range conformational coupling mechanism to modulate VS activation in related ion channel proteins.
Collapse
Affiliation(s)
- Victor De La Rosa
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Medical College of Virginia Campus, Richmond, VA
| | - Ashley L Bennett
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Medical College of Virginia Campus, Richmond, VA
| | - Ian Scott Ramsey
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Medical College of Virginia Campus, Richmond, VA
| |
Collapse
|
34
|
Wang L, Zellmer SG, Printzenhoff DM, Castle NA. PF-06526290 can both enhance and inhibit conduction through voltage-gated sodium channels. Br J Pharmacol 2018; 175:2926-2939. [PMID: 29791744 DOI: 10.1111/bph.14338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological agents that either inhibit or enhance flux of ions through voltage-gated sodium (Nav ) channels may provide opportunities for treatment of human health disorders. During studies to characterize agents that modulate Nav 1.3 function, we identified a compound that appears to exhibit both enhancement and inhibition of sodium ion conduction that appeared to be dependent on the gating state that the channel was in. The objective of the current study was to determine if these different modulatory effects are mediated by the same or distinct interactions with the channel. EXPERIMENTAL APPROACH Electrophysiology and site-directed mutation were used to investigate the effects of PF-06526290 on Nav channel function. KEY RESULTS PF-06526290 greatly slows inactivation of Nav channels in a subtype-independent manner. However, upon prolonged depolarization to induce inactivation, PF-06526290 becomes a Nav subtype-selective inhibitor. Mutation of the domain 4 voltage sensor modulates inhibition of Nav 1.3 or Nav 1.7 channels by PF-06526290 but has no effect on PF-06526290 mediated slowing of inactivation. CONCLUSIONS AND IMPLICATIONS These findings suggest that distinct interactions may underlie the two modes of Nav channel modulation by PF-06526290 and that a single compound can affect sodium channel function in several ways.
Collapse
Affiliation(s)
- Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
35
|
Jacobsson E, Andersson HS, Strand M, Peigneur S, Eriksson C, Lodén H, Shariatgorji M, Andrén PE, Lebbe EKM, Rosengren KJ, Tytgat J, Göransson U. Peptide ion channel toxins from the bootlace worm, the longest animal on Earth. Sci Rep 2018; 8:4596. [PMID: 29567943 PMCID: PMC5864730 DOI: 10.1038/s41598-018-22305-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Polypeptides from animal venoms have found important uses as drugs, pharmacological tools, and within biotechnological and agricultural applications. We here report a novel family of cystine knot peptides from nemertean worms, with potent activity on voltage-gated sodium channels. These toxins, named the α-nemertides, were discovered in the epidermal mucus of Lineus longissimus, the ‘bootlace worm’ known as the longest animal on earth. The most abundant peptide, the 31-residue long α-1, was isolated, synthesized, and its 3D NMR structure determined. Transcriptome analysis including 17 species revealed eight α-nemertides, mainly distributed in the genus Lineus. α-1 caused paralysis and death in green crabs (Carcinus maenas) at 1 µg/kg (~300 pmol/kg). It showed profound effect on invertebrate voltage-gated sodium channels (e.g. Blattella germanica Nav1) at low nanomolar concentrations. Strong selectivity for insect over human sodium channels indicates that α-nemertides can be promising candidates for development of bioinsecticidal agents.
Collapse
Affiliation(s)
- Erik Jacobsson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Håkan S Andersson
- Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Malin Strand
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Steve Peigneur
- Toxicology & Pharmacology, University of Leuven (KU Leuven), O&N 2, PO Box 992, Herestraat 49, 3000, Leuven, Belgium
| | - Camilla Eriksson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Henrik Lodén
- Biomolecular Mass Spectrometry Imaging (BMSI), National and SciLifeLab Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Mohammadreza Shariatgorji
- Biomolecular Mass Spectrometry Imaging (BMSI), National and SciLifeLab Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Per E Andrén
- Biomolecular Mass Spectrometry Imaging (BMSI), National and SciLifeLab Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Eline K M Lebbe
- Toxicology & Pharmacology, University of Leuven (KU Leuven), O&N 2, PO Box 992, Herestraat 49, 3000, Leuven, Belgium
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jan Tytgat
- Toxicology & Pharmacology, University of Leuven (KU Leuven), O&N 2, PO Box 992, Herestraat 49, 3000, Leuven, Belgium
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
36
|
Gilchrist J, Bosmans F. Using voltage-sensor toxins and their molecular targets to investigate Na V 1.8 gating. J Physiol 2018; 596:1863-1872. [PMID: 29193176 DOI: 10.1113/jp275102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated sodium (NaV ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce animal toxin sensitivity in each VSD of an acceptor channel by transferring in portable S3b-S4 motifs from the four VSDs of a toxin-susceptible donor channel (NaV 1.2). By doing so, we observe that in NaV 1.8, a relatively unexplored channel subtype with distinctly slow gating kinetics, VSDI-III participate in channel opening whereas VSDIV can regulate opening as well as fast inactivation. These results illustrate the effectiveness of a pharmacological approach to investigate the mechanism underlying gating of a mammalian NaV channel complex.
Collapse
Affiliation(s)
- John Gilchrist
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Frank Bosmans
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
37
|
Abstract
Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.
Collapse
Affiliation(s)
- Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, China.
| |
Collapse
|
38
|
Abstract
Armstrong and Hollingworth discuss inactivation in the light of modern structural data from K and Na channels. We are wired with conducting cables called axons that rapidly transmit electrical signals (e.g., “Ouch!”) from, for example, the toe to the spinal cord. Because of the high internal resistance of axons (salt water rather than copper), a signal must be reinforced after traveling a short distance. Reinforcement is accomplished by ion channels, Na channels for detecting the signal and reinforcing it by driving it further positive (to near 50 mV) and K channels for then restoring it to the resting level (near −70 mV). The signal is called an action potential and has a duration of roughly a millisecond. The return of membrane voltage (Vm) to the resting level after an action potential is facilitated by “inactivation” of the Na channels: i.e., an internal particle diffuses into the mouth of any open Na channel and temporarily blocks it. Some types of K channels also show inactivation after being open for a time. N-type inactivation of K channels has a relatively fast time course and involves diffusion of the N-terminal of one of the channel’s four identical subunits into the channel’s inner mouth, if it is open. This mechanism is similar to Na channel inactivation. Both Na and K channels also display slower inactivation processes. C inactivation in K channels involves changes in the channel’s outer mouth, the “selectivity filter,” whose normal function is to prevent Na+ ions from entering the K channel. C inactivation deforms the filter so that neither K+ nor Na+ can pass.
Collapse
Affiliation(s)
- Clay M Armstrong
- Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
39
|
Abstract
Sack discusses the evolution of toxin research in JGP over the last 100 years. Toxins are the poisonous products of organisms. Toxins serve vital defensive and offensive functions for those that harbor them: stinging scorpions, pesticidal plants, sanguinary snakes, fearless frogs, sliming snails, noxious newts, and smarting spiders. For physiologists, toxins are integral chemical tools that hijack life’s fundamental processes with remarkable molecular specificity. Our understanding of electrophysiological phenomena has been transformed time and time again with the help of some terrifying toxins. For this reason, studies of toxin mechanism are an important and enduring facet of The Journal of General Physiology (JGP). This Milestone in Physiology reflects on toxins studied in JGP over its first 100 years, what they have taught us, and what they have yet to reveal.
Collapse
Affiliation(s)
- Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA .,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
40
|
Catterall WA. Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochem Res 2017; 42:2495-2504. [PMID: 28589518 PMCID: PMC5693772 DOI: 10.1007/s11064-017-2314-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 11/24/2022]
Abstract
Voltage-gated sodium channels initiate action potentials in brain neurons. In the 1970s, much was known about the function of sodium channels from measurements of ionic currents using the voltage clamp method, but there was no information about the sodium channel molecules themselves. As a postdoctoral fellow and staff scientist at the National Institutes of Health, I developed neurotoxins as molecular probes of sodium channels in cultured neuroblastoma cells. During those years, Bruce Ransom and I crossed paths as members of the laboratories of Marshall Nirenberg and Philip Nelson and shared insights about sodium channels in neuroblastoma cells from my work and electrical excitability and synaptic transmission in cultured spinal cord neurons from Bruce's pioneering electrophysiological studies. When I established my laboratory at the University of Washington in 1977, my colleagues and I used those neurotoxins to identify the protein subunits of sodium channels, purify them, and reconstitute their ion conductance activity in pure form. Subsequent studies identified the molecular basis for the main functions of sodium channels-voltage-dependent activation, rapid and selective ion conductance, and fast inactivation. Bruce Ransom and I re-connected in the 1990s, as ski buddies at the Winter Conference on Brain Research and as faculty colleagues at the University of Washington when Bruce became our founding Chair of Neurology and provided visionary leadership of that department. In the past decade my work on sodium channels has evolved into structural biology. Molecular modeling and X-ray crystallographic studies have given new views of sodium channel function at atomic resolution. Sodium channels are also the molecular targets for genetic diseases, including Dravet Syndrome, an intractable pediatric epilepsy disorder with major co-morbidities of cognitive deficit, autistic-like behaviors, and premature death that is caused by loss-of-function mutations in the brain sodium channel NaV1.1. Our work on a mouse genetic model of this disease has shown that its multi-faceted pathophysiology and co-morbidities derive from selective loss of electrical excitability and action potential firing in GABAergic inhibitory neurons, which disinhibits neural circuits throughout the brain and leads directly to the epilepsy, premature death and complex co-morbidities of this disease. It has been rewarding for me to use our developing knowledge of sodium channels to help understand the pathophysiology and to suggest potential therapeutic approaches for this devastating childhood disease.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA, 98195-7280, USA.
| |
Collapse
|
41
|
Hopp BH, Arvidson RS, Adams ME, Razak KA. Arizona bark scorpion venom resistance in the pallid bat, Antrozous pallidus. PLoS One 2017; 12:e0183215. [PMID: 28854259 PMCID: PMC5576675 DOI: 10.1371/journal.pone.0183215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/01/2017] [Indexed: 11/19/2022] Open
Abstract
The pallid bat (Antrozous pallidus), a gleaning bat found in the western United States and Mexico, hunts a wide variety of ground-dwelling prey, including scorpions. Anecdotal evidence suggests that the pallid bat is resistant to scorpion venom, but no systematic study has been performed. Here we show with behavioral measures and direct injection of venom that the pallid bat is resistant to venom of the Arizona bark scorpion, Centruroides sculpturatus. Our results show that the pallid bat is stung multiple times during a hunt without any noticeable effect on behavior. In addition, direct injection of venom at mouse LD50 concentrations (1.5 mg/kg) has no effect on bat behavior. At the highest concentration tested (10 mg/kg), three out of four bats showed no effects. One of the four bats showed a transient effect suggesting that additional studies are required to identify potential regional variation in venom tolerance. Scorpion venom is a cocktail of toxins, some of which activate voltage-gated sodium ion channels, causing intense pain. Dorsal root ganglia (DRG) contain nociceptive neurons and are principal targets of scorpion venom toxins. To understand if mutations in specific ion channels contribute to venom resistance, a pallid bat DRG transcriptome was generated. As sodium channels are a major target of scorpion venom, we identified amino acid substitutions present in the pallid bat that may lead to venom resistance. Some of these substitutions are similar to corresponding amino acids in sodium channel isoforms responsible for reduced venom binding activity. The substitution found previously in the grasshopper mouse providing venom resistance to the bark scorpion is not present in the pallid bat, indicating a potentially novel mechanism for venom resistance in the bat that remains to be identified. Taken together, these results indicate that the pallid bat is resistant to venom of the bark scorpion and altered sodium ion channel function may partly underlie such resistance.
Collapse
Affiliation(s)
- Bradley H. Hopp
- Graduate Neuroscience Program, University of California, Riverside, California, United States of America
| | - Ryan S. Arvidson
- Departments of Entomology and Cell Biology & Neuroscience, University of California, Riverside, California, United States of America
| | - Michael E. Adams
- Graduate Neuroscience Program, University of California, Riverside, California, United States of America
- Departments of Entomology and Cell Biology & Neuroscience, University of California, Riverside, California, United States of America
| | - Khaleel A. Razak
- Graduate Neuroscience Program, University of California, Riverside, California, United States of America
- Department of Psychology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Cardoso FC, Dekan Z, Smith JJ, Deuis JR, Vetter I, Herzig V, Alewood PF, King GF, Lewis RJ. Modulatory features of the novel spider toxin μ-TRTX-Df1a isolated from the venom of the spider Davus fasciatus. Br J Pharmacol 2017; 174:2528-2544. [PMID: 28542706 DOI: 10.1111/bph.13865] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Naturally occurring dysfunction of voltage-gated sodium (NaV ) channels results in complex disorders such as chronic pain, making these channels an attractive target for new therapies. In the pursuit of novel NaV modulators, we investigated spider venoms for new inhibitors of NaV channels. EXPERIMENTAL APPROACH We used high-throughput screens to identify a NaV modulator in venom of the spider Davus fasciatus. Further characterization of this venom peptide was undertaken using fluorescent and electrophysiological assays, molecular modelling and a rodent pain model. KEY RESULTS We identified a potent NaV inhibitor named μ-TRTX-Df1a. This 34-residue peptide fully inhibited responses mediated by NaV 1.7 endogenously expressed in SH-SY5Y cells. Df1a also inhibited voltage-gated calcium (CaV 3) currents but had no activity against the voltage-gated potassium (KV 2) channel. The modelled structure of Df1a, which contains an inhibitor cystine knot motif, is reminiscent of the NaV channel toxin ProTx-I. Electrophysiology revealed that Df1a inhibits all NaV subtypes tested (hNaV 1.1-1.7). Df1a also slowed fast inactivation of NaV 1.1, NaV 1.3 and NaV 1.5 and modified the voltage-dependence of activation and inactivation of most of the NaV subtypes. Df1a preferentially binds to the domain II voltage-sensor and has additional interactions with the voltage sensors domains III and IV, which probably explains its modulatory features. Df1a was analgesic in vivo, reversing the spontaneous pain behaviours induced by the NaV activator OD1. CONCLUSION AND IMPLICATIONS μ-TRTX-Df1a shows potential as a new molecule for the development of drugs to treat pain disorders mediated by voltage-gated ion channels.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer J Smith
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
43
|
The chemical basis for electrical signaling. Nat Chem Biol 2017; 13:455-463. [PMID: 28406893 DOI: 10.1038/nchembio.2353] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Electrical signals generated by minute currents of ions moving across cell membranes are central to all rapid processes in biology. Initiation and propagation of electrical signals requires voltage-gated sodium (NaV) and calcium (CaV) channels. These channels contain a tetramer of membrane-bound subunits or domains comprising a voltage sensor and a pore module. Voltage-dependent activation occurs as membrane depolarization drives outward movements of positive gating changes in the voltage sensor via a sliding-helix mechanism, which leads to a conformational change in the pore module that opens its intracellular activation gate. A unique negatively charged site in the selectivity filter conducts hydrated Na+ or Ca2+ rapidly and selectively. Ion conductance is terminated by voltage-dependent inactivation, which causes asymmetric pore collapse. This Review focuses on recent advances in structure and function of NaV and CaV channels that expand our current understanding of the chemical basis for electrical signaling mechanisms conserved from bacteria to humans.
Collapse
|
44
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
45
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
46
|
Israel MR, Tay B, Deuis JR, Vetter I. Sodium Channels and Venom Peptide Pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:67-116. [PMID: 28528674 DOI: 10.1016/bs.apha.2017.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Venomous animals including cone snails, spiders, scorpions, anemones, and snakes have evolved a myriad of components in their venoms that target the opening and/or closing of voltage-gated sodium channels to cause devastating effects on the neuromuscular systems of predators and prey. These venom peptides, through design and serendipity, have not only contributed significantly to our understanding of sodium channel pharmacology and structure, but they also represent some of the most phyla- and isoform-selective molecules that are useful as valuable tool compounds and drug leads. Here, we review our understanding of the basic function of mammalian voltage-gated sodium channel isoforms as well as the pharmacology of venom peptides that act at these key transmembrane proteins.
Collapse
Affiliation(s)
- Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Bryan Tay
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
47
|
Theile JW, Fuller MD, Chapman ML. The Selective Nav1.7 Inhibitor, PF-05089771, Interacts Equivalently with Fast and Slow Inactivated Nav1.7 Channels. Mol Pharmacol 2016; 90:540-548. [PMID: 27587537 DOI: 10.1124/mol.116.105437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated sodium (Nav) channel inhibitors are used clinically as analgesics and local anesthetics. However, the absence of Nav channel isoform selectivity of current treatment options can result in adverse cardiac and central nervous system side effects, limiting their therapeutic utility. Human hereditary gain- or loss-of-pain disorders have demonstrated an essential role of Nav1.7 sodium channels in the sensation of pain, thus making this channel an attractive target for new pain therapies. We previously identified a novel, state-dependent human Nav1.7 selective inhibitor (PF-05089771, IC50 = 11 nM) that interacts with the voltage-sensor domain (VSD) of domain IV. We further characterized the state-dependent interaction of PF-05089771 by systematically varying the voltage, frequency, and duration of conditioning prepulses to provide access to closed, open, and fast- or slow-inactivated states. The current study demonstrates that PF-05089771 exhibits a slow onset of block that is depolarization and concentration dependent, with a similarly slow recovery from block. Furthermore, the onset of block by PF-05089771 develops with similar rates using protocols that bias channels into predominantly fast- or slow-inactivated states, suggesting that channel inhibition is less dependent on the availability of a particular inactivated state than the relative time that the channel is depolarized. Taken together, the inhibitory profile of PF-05089771 suggests that a conformational change in the domain IV VSD after depolarization is necessary and sufficient to reveal a high-affinity binding site with which PF-05089771 interacts, stabilizing the channel in a nonconducting conformation from which recovery is slow.
Collapse
Affiliation(s)
- Jonathan W Theile
- Neusentis US, Pfizer Global R&D, (currently Icagen, Inc.), Durham, North Carolina
| | - Matthew D Fuller
- Neusentis US, Pfizer Global R&D, (currently Icagen, Inc.), Durham, North Carolina
| | - Mark L Chapman
- Neusentis US, Pfizer Global R&D, (currently Icagen, Inc.), Durham, North Carolina
| |
Collapse
|
48
|
Ahern CA, Payandeh J, Bosmans F, Chanda B. The hitchhiker's guide to the voltage-gated sodium channel galaxy. ACTA ACUST UNITED AC 2016; 147:1-24. [PMID: 26712848 PMCID: PMC4692491 DOI: 10.1085/jgp.201511492] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Baron Chanda
- Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
49
|
Martin-Eauclaire MF, Salvatierra J, Bosmans F, Bougis PE. The scorpion toxin Bot IX is a potent member of the α-like family and has a unique N-terminal sequence extension. FEBS Lett 2016; 590:3221-32. [DOI: 10.1002/1873-3468.12357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Juan Salvatierra
- Department of Physiology; School of Medicine; Johns Hopkins University; Baltimore MD USA
| | - Frank Bosmans
- Department of Physiology; School of Medicine; Johns Hopkins University; Baltimore MD USA
- Solomon H. Snyder Department of Neuroscience; School of Medicine; Johns Hopkins University; Baltimore MD USA
| | - Pierre E. Bougis
- Aix Marseille Université; CNRS; CRN2M; UMR7286; PFRN-CAPM; Marseille France
| |
Collapse
|
50
|
Ghovanloo MR, Aimar K, Ghadiry-Tavi R, Yu A, Ruben PC. Physiology and Pathophysiology of Sodium Channel Inactivation. CURRENT TOPICS IN MEMBRANES 2016; 78:479-509. [PMID: 27586293 DOI: 10.1016/bs.ctm.2016.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications.
Collapse
Affiliation(s)
- M-R Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - K Aimar
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - R Ghadiry-Tavi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - A Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - P C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|